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Abstract 

Regulation of haematopoiesis during human development remains poorly defined. Here, we 

applied single-cell (sc)RNA-Seq and scATAC-Seq analysis to over 8,000 human 

immunophenotypic blood cells from foetal liver and bone marrow. We inferred their 

differentiation trajectory and identified three highly proliferative oligopotent progenitor 

populations downstream from haematopoietic stem cell/multipotent progenitors (HSC/MPPs). 

Along this trajectory, we observed opposing patterns of chromatin accessibility and 

differentiation that coincided with dynamic changes in the activity of distinct lineage-specific 

transcription factors. Integrative analysis of chromatin accessibility and gene expression 

revealed extensive epigenetic but not transcriptional priming of HSC/MPPs prior to their 

lineage commitment. Finally, we refined and functionally validated the sorting strategy for the 

HSC/MPPs and achieved around 90% enrichment. Our study provides a useful framework for 

future investigation of human developmental haematopoiesis in the context of blood 

pathologies and regenerative medicine. 

Keywords 
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Introduction 
During embryonic development, haematopoietic stem cells (HSCs) need to rapidly 

differentiate into mature blood cells. Our current knowledge of foetal haematopoietic stem and 

progenitor cells (HSPCs) has been mainly advanced by murine and in vitro model systems. It 

has been demonstrated that foetal haematopoiesis consists of several, separate waves of 

specification, migration, and differentiation of rare HSCs at distinct organs during development 

(Ivanovs et al., 2017). In humans, definitive haematopoiesis starts with the appearance of 

HSCs within haematopoietic clusters, in the dorsal aorta, at 27 days post-conception. These 

definitive HSCs first colonise the foetal liver at 4 post-conceptional weeks (pcw) where they 

expand in numbers. At 10.5 pcw, the haematopoietic site shifts once more to the cavities of 

bones (i.e., bone marrow), where adult haematopoiesis is established permanently. The first 

HSCs that seed the bone marrow are thought to continue to rapidly increase in numbers before 

undergoing a dramatic change in their proliferative and differentiation properties to 

accommodate the need for high production of differentiated progeny (Mikkola and Orkin, 

2006). 
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Historically, differentiation processes in the haematopoietic system have been depicted as a 

series of intermediate steps, defined by panels of cell surface markers (i.e., cluster of 

differentiation, CD). In this model, often represented as a “haematopoietic tree”, HSCs give 

rise to increasingly lineage-restricted cell types, eventually leading to mature blood cells 

(Akashi et al., 1999) (Weissman, 2000). This paradigm shifted in the last five years with several 

studies reporting the transcriptomes of thousands of single haematopoietic cells, isolated by 

cell surface markers, both in the mouse model and in adult humans (Paul et al., 2015) (Velten 

et al., 2017). These reports showed that progenitor populations, previously thought to be 

homogeneous, are actually very heterogeneous on the transcriptional level.  

The mechanisms underlying early fate decisions in HSCs are largely unknown. It has been 

postulated that the stochastic expression of lineage-specific transcription factors (TFs) above 

the noise threshold can “lock” a cell into a distinct cell fate (Graf and Enver, 2009). In line with 

this, co-expression of genes associated with antagonistic lineages, including key TFs, have 

been observed in multipotent haematopoietic cells, albeit at low levels (Hu et al., 1997) 

(Miyamoto et al., 2002). This points towards the presence of sub-populations of cells within 

the multipotent compartment that are permissive for opposing cell fates prior to their lineage 

commitment, a phenomenon referred to as priming (Nimmo et al., 2015). More recently, single-

cell RNA sequencing (scRNA-Seq) of human HSPCs introduced a different concept of priming. 

Studies of the adult bone marrow and foetal liver haematopoiesis identified sub-populations 

of haematopoietic stem cells and multipotent progenitors (HSC/MPPs) with a coordinated 

expression of marker genes, specific for distinct uni-lineage differentiation programmes, that 

gradually increased along all differentiation branches (Velten et al., 2017) (Popescu et al., 

2019). In addition, there are some indications that lineage priming in the HSC compartment 

might be happening not only on the transcriptional but also at the epigenetic level (Nimmo et 

al., 2015). Data from single-cell Assay for Transposase Accessible Chromatin sequencing 

(scATAC-Seq) of phenotypic HSPCs from the adult human bone marrow show that phenotypic 

multipotent progenitors have variations in chromatin accessibility consistent with a bias 

towards erythroid and lymphoid lineages (Buenrostro et al., 2018). 

Here we performed an integrative analysis of scRNA-Seq and scATAC-Seq of more than 

8,000 immunophenotypic HSPCs, from 17-22 pcw human foetal liver, femur, and hip to define 

transcriptional and epigenetic changes during blood differentiation. We explored lineage 

priming at the transcriptional and chromatin level in HSC/MPPs and refined the sorting 

strategy for the isolation of a highly enriched HSC/MPP population. 
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Results 

Single-cell transcriptome of the haematopoietic compartment in human foetal liver and 
bone marrow  

To capture the full repertoire of haematopoietic cells during foetal development, we single-cell 

sorted phenotypically defined blood populations, from matched (i.e., from the same individual) 

foetal livers, femur, and hip (iliac) bones, between 17 and 22 pcw (Figure 1A). Cells from the 

liver, hip, and femur were sorted and processed independently in all experiments. Thus, each 

cell can be traced back to the foetus and organ it came from. We used a hierarchical approach, 

where we first isolated non-committed (Lin- [CD3, CD8, CD11b, CD14, CD19, and CD56] 

CD34+ CD38-) progenitors, that contain all immature haematopoietic populations and are 

present at the frequency of less than 0.1% of the total foetal bone marrow (Golfier et al., 2008), 

followed by a more restrictive panel to capture differentiated and mature cell types. We next 

isolated committed (Lin-, CD34+ CD38+) progenitors as well as phenotypic HSCs, multipotent 

progenitors (MPPs), common myeloid progenitors (CMPs), megakaryocyte-erythroid 

progenitors (MEPs), granulocyte-monocyte progenitors (GMPs), and common lymphoid 

progenitors (CLPs). In addition, based on broad phenotypic markers, we sorted T cells, NK 

cells, innate lymphoid cells (ILCs), monocytes, dendritic cells, mast cells, basophils, 

neutrophils, eosinophils, erythroid progenitors, erythrocytes, immature megakaryocytes 

(MKs), mature MKs, progenitor B cells (pro-B cells), precursor B cells (pre-B cells), mature B 

cells, and endothelial cells (Supplementary table 1, Supplementary figure 1).  

 

Single cells from 15 foetuses were processed for scRNA-Seq using the SmartSeq2 protocol 

(Picelli et al., 2014) (Figure 1A). Overall, 4,504 cells passed quality control (QC) 

(Supplementary table 2) with an average of ~3,600 genes per cell and ~670,000 reads per 

cell (Supplementary figure 2A-C, K-L). To exclude technical batch effects, we merged the 

datasets from all samples and tissues using autoencoders (AEs) and applied the batch 

balanced k nearest neighbours (BBKNN) approach (Polański et al., 2020; Luecken et al., 

2020) to the latent space (Tangherloni et al., 2019) (Supplementary figure 2O). We applied 

the graph-based Leiden clustering algorithm (Traag et al., 2019) to the batch corrected 

neighbourhood graph. Based on differential expression (DE) analysis and top 20 marker 

genes (Figure 1B) ranked on the significance of standardised expression, we manually 

annotated 23 distinct populations. Within the haematopoietic progenitor compartment, we 

annotated clusters as HSC/MPPs, HSC/MPPs-Cycle, lympho-myeloid progenitors (LMPs), 

megakaryocyte-erythroid-mast progenitors (MEMPs), MEMPs-Cycle, granulocytic progenitors 

(GPs), as well as numerous mature blood cell types as shown in the Uniform Manifold 

Approximation and Projection (UMAP) space (Becht et al., 2018) (Figure 1D).  
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Of the mature blood cell types, we identified clear transcriptional signatures of erythroid cells 

(expressing HBG1, HBA1, GYPA, and ALAS2), megakaryocytes (expressing FLI1, ITGA2B, 

and GP9), monocyte progenitors and monocytes (expressing CD14, MPEG1, and CD33), 

CD4+ monocytes, mast cells (expressing CD63, GATA2, and HDC), plasmacytoid dendritic 

cells (pDCs - expressing IL3RA, IRF8, MPEG1, and JCHAIN), with an additional cluster of 

highly cycling pDCs (expressing pDC and proliferation markers, e.g., MKI67) and granulocytes 

1, 2, and 3 (expressing AZU1, MPO, and PRTN3), (Figure 1B, Supplementary figure 3). While 

granulocytes were present in our dataset, we could not clearly distinguish neutrophils, 

basophils, and eosinophils due to the mixed expression signatures. In the lymphoid 

compartment, we identified NK cells (expressing CD3D, IL2RB, and CD96) and B cells 

(expressing CD19 and CD79B) (Figure 1B, Supplementary figure 3). B cell lineage included 

pro-B, which showed expression of IGLL1 and RAG1, and pre-B, expressing high levels of 
CD79B, VPREB1, and CD24 (Figure 1B). Finally, we identified a cluster of mature B cells, 

expressing high levels of IGHM and decreased levels of IGLL1, compared to pro/pre B clusters 

(Figure 1B). We did not detect any T cells or ILCs in the liver or in the femur in spite of sorting 

phenotypic T cells and ILCs using broad cell surface markers for these populations. Unlike B 

cells that mature in the BM, T cells derive from lymphoid progenitors that migrate from the BM 

to the thymus, where they complete their maturation. The development of ILCs is less 

understood but there have been suggestions that ILC precursors migrate early on from BM 

into non-haematopoietic tissues, e.g., gut (Cichocki et al., 2019). Since we only sorted BM and 

not thymus or gut, we might have captured only progenitors but not T cells and ILCs. By using 

a Deep Neural Network (DNN) (LeCun et al., 2015) and the top 30 marker genes for each 

cluster, we were able to correctly classify the cells to the prospective clusters with 90.46% 

accuracy, confirming that our manual annotation of clusters separated well the distinct cell 

types/states (see Methods, Supplementary figure 4A).  

In the last decade, human HSCs and other progenitor populations have been isolated and 

used in functional assays based on specific sets of cell surface markers. It has been suggested 

that the foetal haematopoietic progenitor compartment differs substantially from its adult 

counterpart (Notta et al., 2016). Our approach allowed us to compare the extent to which the 

phenotypic identity of cell populations (as defined by CD markers) matched their 

transcriptional state, i.e., our manually curated clusters and thus to critically examine the use 

of CD markers in the context of foetal bone marrow haematopoiesis.  

 

Single-cell analysis revealed substantial transcriptional heterogeneity within all 

immunophenotypically-defined stem and progenitor populations, with some phenotypic 

progenitor populations such as HSCs, MPPs, CMPs, GMPs, MEPs, and CLPs being 
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comprised of more than ten different transcriptionally-defined populations. (Figure 1C, 

Supplementary figure 4B). This observation is in agreement with recent research showing a 

high level of heterogeneity of the progenitor compartment of human cord blood (Knapp et al., 

2018). Taken together, our comparative analysis shows that currently used cell-surface 

markers are a poor predictor of the transcriptional state of human foetal haematopoietic 

progenitors. 

 

Inference of differentiation trajectories during foetal haematopoiesis 

Next, we used a Force-Directed Graph drawing algorithm, ForceAtlas2, to infer the 

differentiation trajectory of haematopoietic cells during human foetal development (Jacomy et 

al., 2014). We initialised a ForceAtlas2 layout with Partition-based Approximate Graph 

Abstraction (PAGA) coordinates from our annotated cell types (Wolf et al., 2019). This 

initialisation generated an interpretable single-cell embedding that is faithful to the global 

topology. The obtained global topology revealed HSC/MPPs at the tip of the trajectory (Figure 

2A-B, Supplementary figure 3). HSC/MPPs showed high expression of MLLT3, a crucial 

regulator of human HSC maintenance (Calvanese et al., 2019), HLF, a TF involved in 

preserving quiescence in HSCs (Komorowska et al., 2017) and MEIS1, a TF involved in 

limiting oxidative stress in HSCs, which is necessary for quiescence (Unnisa et al., 2012) 

(Wang et al., 2018). Cells in this cluster also expressed high levels of surface markers of 

HSPCs such as CD34, (Morisot et al., 2006), SELL (Ivanovs et al., 2017), and PROM1 (de 

Wynter et al., 1998) (Saha et al., 2020) (Figure 1B and 2C). Downstream of HSC/MPPs, we 

identified three distinct, highly proliferative, oligopotent progenitor populations. We used 

Scanpy's dpt function to infer the progression of the cells through geodesic distance along the 

graph. Then, we used Scanpy's paga_path function to show how the gene expression and 

annotation changes along the three main paths (MEMPs, GP, and LMPs) that are present in 

the abstracted graph (Figure 2C). 

MEMPs connected HSC/MPPs with megakaryocytes, erythroid, and mast cells. In line with 

this, differentially regulated genes in the HSC/MPPs transition to MEMPs included 

megakaryocyte/erythroid/mast cells lineage-specific genes such as GATA1, ITGA2B, PLEK, 
KLF1, HDC, and MS4A3, (Figure 1B, 2C, Supplementary figure 5B). Presence of MEMPs in 

our dataset is consistent with studies in mouse models proposing a common trajectory 

between erythroid, megakaryocytic, and mast cell lineages (Franco et al., 2010). This concept 

was more recently supported by a study in human foetal liver showing a shared progenitor of 

megakaryocyte, erythroid, and mast cells (Popescu et al., 2019). In addition, we identified a 

proliferative population of MEMPs-Cycle of which ~92% were in the G2M/S phase compared 
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to 65% of MEMPs (Figure 2E). MEMPs-Cycle population further upregulated erythroid-specific 

genes such as KLF1, BLVRB, and TFRC compared to MEMPs suggesting their gradual 

commitment towards erythroid lineage (Supplementary figure 5C).  

GPs connected the HSC/MPP cluster with granulocyte clusters. Cells in this cluster 

differentially expressed myeloid lineage-specific genes (e.g., AZU1, LYZ, and MPO) 

compared to HSC/MMPs (Figure 2C, Supplementary figure 5D and were highly cycling, with 

73% of cells in the G2M/S phase (Figure 2E). Finally, our data pointed towards the existence 

of a common progenitor population for B cells, monocytes, pDCs, and NK cells, here 

annotated as lymphoid-myeloid progenitors (LMPs). Cells in this cluster expressed genes 

specific to those lineages, including IGLL1, HMGB2, and CD79B (lymphoid) (Figure 2C, 

Supplementary figure 3) and upregulated lymphoid genes such as CD81, IGLL1, and HMGN2 
compared to HSC/MPP cluster (Supplementary figure 5E). Again, this was a highly 

proliferative population of cells with ~89% of cells being in the G2M/S phase (Figure 2E).  

Our findings support previous studies on early lymphoid commitment in human cord blood, 

both in vitro and in vivo, which identified a shared lineage progenitor between lymphoid, NK, 

B, and T cells, monocytes, and dendritic cells (Doulatov et al., 2010) (Collin et al., 2011). 

Interestingly, the LMP cluster had higher expression of MPP-related genes such as SPINK2, 

CD52, and SELL compared to MEMPs, suggesting that these progenitors represent a more 

immature population compared to MEMPs (Supplementary figure 5F).  

Next, we used the Python implementation of Single‐Cell rEgulatory Network Inference and 

Clustering (SCENIC) (Aibar et al., 2017, Van de Sande et al., 2020) to identify master 

regulators and gene regulatory networks (GRN) in HSPC and mature blood cells across 

differentiation trajectories. We found 162 regulons of which some were enriched across many 

different cell types, often as a part of the particular differentiation branch, and some were cell-

type specific (Figure 2D). We identified HLF and HOXA9 as main regulons in HSC/MPPs, 

whereas GATA1, GATA2, and TAL1 were identified in the MEMP branch of the 

haematopoietic tree (Figure 2D). FOXO3 was highly specific for erythroid cells whereas 

EOMES, OLIG2, and IRF8 for NK cells, monocytes, and pDCs, respectively. Importantly, the 

regulons confirmed the inferred differentiation trajectory. 

To further explore heterogeneity within the HSC/MPP population we examined whether 

HSC/MPP cells simultaneously primed several different lineage-affiliated programs of gene 

activity. While HSC/MPPs sporadically expressed lymphoid, myeloid, or megakaryocyte-

erythroid differentiation genes, we did not observe consistent expression of antagonistic 
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lineage-affiliated genes in individual cells. In addition, after further sub-clustering the 

HSC/MPPs, there was no evident consolidation of lineage-affiliated transcriptional programs 

in any of the sub-populations (Supplementary figure 6). Our scRNA-Seq data, thus, do not 

support recently reported transcriptional lineage priming in the foetal HSC/MPP compartment 

(Popescu et al., 2019) and suggest that, transcriptionally, our HSC/MPP cluster represents a 

highly immature population of cells.  

DE analysis between HSC/MPPs-Cycle and HSC/MPPs revealed upregulation of genes 

involved in cell cycle regulation (FOS, PTP4A1, MCL1, and PKN2) in HSC/MPPs-Cycle 

(Supplementary figure 5A) thus confirming that they are indeed a population of cycling stem 

and multipotent cells. In line with this, cell cycle analysis confirmed that ~36% of HSC/MPPs 

were cycling compared to ~53% of HSC/MPPs-Cycle (Figure 2E). The HSC/MPPs-Cycle had 

an increased expression of genes involved in glycolysis, a feature commonly found in 

proliferating cells (Ito and Suda, 2014) (Supplementary figure 5G). However, there were no 

other transcriptional differences between HSC/MPPs and HSC/MPP-Cycle, excluding the 

presence of transcriptional priming in the HSC/MPP-Cycle cluster.  

Previous research showed that, contrary to adult blood progenitors that are mainly unilineage, 

foetal liver blood progenitors maintain multilineage potential (Notta et al., 2016). Our data are 

consistent with this observation and point towards the existence of three oligopotent progenitor 

populations downstream of the HSC/MPP compartments: MEMPs giving rise to erythroid, 

megakaryocytes, and mast cells, GPs differentiating into granulocytes and LMPs generating 

lymphoid, monocytes and dendritic cells. 

scATAC-Seq of foetal non-committed progenitors (CD34+ CD38-) 

Detection of low abundant transcripts, such as TFs, might be difficult in scRNA-Seq data due 

to technical limitations of the approach, leading to false negatives (so-called drop-outs). The 

activity of these TFs can be inferred, however, from chromatin accessibility, emphasizing the 

importance of approaches integrating scRNA-Seq and scATAC-Seq data. In addition, 

chromatin accessibility at regulatory regions might precede gene activity and thus have 

predictive value for future transcription of a gene. Therefore, to further investigate the 

regulatory events in the very immature cell populations, we examined the single-cell chromatin 

accessibility landscape (using scATAC-Seq) of human foetal Lin- CD34+ CD38- cells (see 

Methods). We sequenced 4,001 cells from the liver and femur of three foetuses, 18, 20, and 

21 pcw (see Methods). Based on our scRNA-Seq data, we expected that 90% of captured 

cells would be associated with one of the six populations: HSC/MPPs, HSC/MPPs-Cycle, 
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MEMPs, MEMPs-Cycle, GPs, and LMPs, with HSC/MPPs(Cycle) constituting the majority 

(Supplementary figure 4B).  

To capture peaks that are present in less abundant cell types such as MEMPs, MEMPs-Cycle, 

GPs, and LMPs, we employed an iterative peak-calling approach. We first defined open 

chromatin regions by pooling all the data and calling peaks in the pooled samples. Following 

dimensionality reduction with Diffusion maps (Haghverdi et al., 2015) and clustering using the 

Louvain community detection algorithm (Blondel et al., 2008), we performed a second round 

of peak calling in the clusters with more than 50 cells.  Out of the initial ~474,000 reads, after 

preprocessing steps, (Supplementary figure 2D-F), on average we detected ~32,400 

fragments per cell and 56% of those mapped to peaks (Supplementary figure 2G-H, M). 

Following filtering steps (Supplementary figure 2I-J, N), 3,611 cells passed QC with 152,282 

distinct peaks.  

Motif accessibility dynamics along the inferred differentiation trajectories 

In order to merge samples and remove the batch effects, we applied Harmony (Korsunsky et 

al., 2019; Luecken et al., 2020) on the first 50 Latent Semantic Indexing (LSI) components, 

excluding the first one because it was highly correlated to the sequencing depth 

(Supplementary figure 2P-Q). By using a shared nearest neighbour (SNN) modularity 

optimization based clustering algorithm, we obtained seven distinct clusters of differentially 

accessible peaks (Figure 3A).  

To explore the chromatin accessibility profiles across the seven clusters, we examined the 

accessibility of selected marker genes from our scRNA-Seq data (Figure 3B). We observed 

higher accessibility of marker genes associated with stem cells (e.g., MLLT3, PROM1, FLI1, 

and GATA2) and lower accessibility of genes associated with distinct lineages (e.g., MPO, 

ALAS2, MPEG1, and CD19), keeping in line with the undifferentiated nature of sorted cells 

(Figure 3B). Interestingly, we observed a clear separation of clusters in terms of their overall 

accessibility of marker genes, with clusters 1, 2, 4, and 7 being more accessible and clusters 

3 and 5 being less accessible. Cluster 6 had a mixed signature (Figure 3B).  

Extensively open chromatin in multipotent cells has been previously associated with a 

permissive state to which multiple programmes of gene regulation may be applied upon 

differentiation and is considered important for the maintenance of pluripotency (Gaspar-Maia 

et al., 2011). To further investigate if there were global dynamic changes in accessibility 

patterns associated with the differentiation of foetal HSC/MPPs, we inferred differentiation 

pseudotime from our scATAC-Seq data using the same approach as with scRNA-Seq 

described above. Briefly, we built a Force-directed Graph from our seven scATAC-Seq 
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clusters by initialising a ForceAtlas2 layout with PAGA coordinates (Figure 3C-D). The 

generated trajectory revealed two branches with a clear trend between chromatin accessibility 

and differentiation in each branch (Figure 3D-E). We observed the highest accessibility in 

clusters 1, 2, and 4 that gradually decreased towards the tips of the two branches (i.e., clusters 

1- 2 -3 on one side, and 1- 4- 5- 6 and 1- 6 on the other), (Figure 3E). This result is compatible 

with the notion that clusters 1, 2, and 4 represent HSC/MPP population.  

Control of gene expression is a dynamic process that involves both the cell-type-specific 

expression of TFs and the establishment of an accessible chromatin state that permits binding 

of TFs to a defined motif. Thus, to assess regulatory programs that are active in HSPCs, we 

used chromVAR (Schep et al., 2017) to calculate the most variable accessible TF sequence 

motifs in different clusters and examine their activity along the differentiation trajectory. Along 

the two branches identified by the trajectory inference, we observed dynamic changes in the 

accessibility of lineage-specific haematopoietic TF motifs such as GATA1, TAL1, KLF1, HTF4, 

ID4, IRF8, TFE2 (Figure 3F-H).  

GATA1 activity (Figure 3G-H) and gene-body accessibility (Figure 3B) were enriched in cluster 

6. GATA1 is known to be an important regulator of erythroid, megakaryocytic, and mast cells 

differentiation (Katsumura et al., 2017) and was exclusively expressed in the MEMP cluster, 

in our scRNA-Seq dataset. Thus, the identified trajectories between clusters 1-6 and clusters 

1-4-5-6 most likely represent the MEMP differentiation paths (Figure 3D). Interestingly, in 

cluster 6, compared to clusters 2 and 3, we detected opposing patterns of motif accessibility 

for the two different TAL1 binding sites (TAL1.0.A and TAL1.1.A, respectively) (Figure 3F-H). 

Substantial changes in occupancy by TAL1 during differentiation have been observed, which 

are dependent on its binding partners (Wu et al., 2014). It has been previously reported that 

TAL1.0.A was co-occupied by TAL1 and GATA1 (Kassouf et al., 2010) whereas TAL1.1.A by 

TAL1 and TCF3 (Hsu et al., 1994). Our analysis, thus, revealed that the two different TAL1 

binding motifs are active in distinct haematopoietic progenitor populations during foetal 

haematopoiesis (Figure 3F-H).  

Clusters 2 and 3 also showed increased activity of CEBPD and IRF8, crucial for myeloid and 

dendritic cell differentiation and of ID4 and HTF4, which are involved in the establishment of 

the lymphoid lineage (Miyazaki et al., 2017) (Figure 3F-H). This points towards clusters 1, 2 

and 3 forming a common initial trajectory between the myeloid and lymphoid fate, consistent 

with our observations in scRNA-Seq data. Cluster 1 and 4 were characterised by a high level 

of activity of TFs of the NF-kB pathway (i.e., NF-kB2, REL, and RELB), (Figure 3I-K), known 

to be involved in the regulation of HSCs maintenance and self-renewal (Zhao et al., 2012) 

(Espín-Palazón and Traver, 2016).  
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Integrating scRNA-Seq and scATAC-Seq data 

Next, we wanted to map the cells from our scATAC-Seq data to specific cell types. Since, 

currently, no chromatin accessibility maps are available for human foetal HSPCs, we chose a 

strategy to integrate our scRNA-Seq and scATAC-Seq by mapping cells based on their gene 

body accessibility. We used a recently developed method which identifies pairwise 

correspondences (termed "anchors") between single cells across two different types of 

datasets, and their transformation into the shared space (Stuart et al., 2019). This approach 

allowed us to transfer scRNA-Seq derived annotations, learned by a classifier, onto scATAC-

Seq data (see Methods).  

We trained the classifier on CD34+ CD38- cells from the scRNA-Seq experiment using the six 

most abundant cell types (see Methods). Overall, ~57% of scATAC-Seq cells were assigned 

to the HSC/MPP cluster, ~18% to HSC/MPPs-Cycle, ~5% to MEMPs, ~7% to MEMPs-Cycle, 

~7% to GPs, and ~3% to LMPs. Cells with the prediction score lower than 40% were labelled 

as unclassified (~5%) (Figure 4A).  

The frequency of assigned cell types in the scATAC-Seq data set was highly concordant with 

the ones from scRNA-Seq data (Supplementary figure 4B) suggesting that overall the two 

modalities, i.e., chromatin accessibility and transcriptome are correlated. To validate the cell 

type assignment of scATAC-Seq cells, we examined the accessibility of selected lineage-

specific TF motifs in each of the annotated cell types (Figure 4B). In line with the predicted 

annotations, the GATA1 motif showed the highest accessibility in MEMPs and MEMPs-Cycle, 

whereas TEF2 (known to play a role in myeloid and lymphoid differentiation, (Miyamoto et al., 

2002)) was most active in GPs and LMPs. Confirming our earlier observation, two distinct 

TAL1 motifs had anticorrelated accessibility. TAL1.0.A was preferentially active in MEMPs and 

MEMPs-Cycle, while TAL1.1.A in GPs and LMPs (Figure 4B).  

The Force Atlas representation of the classified scATAC-Seq cells revealed, however, 

considerable intermixing of different cell types across the trajectory with enrichment of 

MEMPs/MEMPs-Cycle in cluster 6 and to a lesser extent of GPs and LMPs in clusters 2 and 

3 (Figure 4C). HSC/MPPs(Cycle) were distributed across all seven clusters. This wide 

distribution of HSC/MPPs(Cycle) across multiple clusters within scATAC-Seq data suggested 

that, even though chromatin accessibility and the transcriptional state of foetal HSC/MPPs are 

correlated, there is extensive chromatin priming in the HSC/MPP population that results in 

their heterogeneity.  

Next, we compared the accessibility of selected lineage-specific TF motifs in HSC/MPPs 

across the seven clusters (Figure 4D-G). We observed a low level of activity of all examined 
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TFs in cluster 1 followed by a statistically significant increase of HTF4, ID4, and TFE2 and 

decrease of GATA1, in HSC/MPPs in clusters 2 and 3. GATA1 activity, however, increased in 

HSC/MPPs in cluster 6. Our data suggest that, within the transcriptionally homogeneous 

population of HSC/MPPs, there are significant differences in the activity of specific TFs that 

may precede gene expression and mark initial priming of HSC/MPPs prior to their commitment 

to the specific lineage. To explore further this “time lag” between the chromatin accessibility 

and gene expression during differentiation we examined scRNA-Seq and scATAC-Seq data 

for the top GATA1-regulon target genes (ranked based on the AUCell score) identified by 

pySCENIC (Figure 5). We looked at the accessibility of both gene promoters (+/- 3 kb from 

TSS) and distal regulatory regions  (+/- 50 kb from the TSS) as well as the expression levels 

of the selected target genes along the MEMP differentiation trajectory (Figure 5A). We 

observed that promoters of GATA1-regulon target genes were often open in HSC/MPPs prior 

to any noticeable gene expression (Figure 5A). Thus, in line with our previous observation, 

chromatin accessibility in HSC/MPPs preceded transcriptional changes that were only present 

in more differentiated cells. Interestingly, promoter accessibility of GATA1 target genes was 

overall lower in cluster 6 (MEMPs) compared to cluster 1 (HSC/MPPs) (Figure 5B, D, E), and 

coincided with lower promoter co-accessibility of the antagonistic genes (i.e. genes that are 

specific for distinct lineages), (Figure 5F). In contrast, the accessibility of distal regulatory 

elements/enhancers had higher accessibility in cluster 6 compared to cluster 1 (Figure 5C). 

This may indicate that in GATA-regulon genes may be primed at promoters while it is the 

enhancers that contribute the cell-type-specific expression. 

Validation of HSC/MPP identity and their differentiation capacity  

Given the observed limitation of commonly used sorting markers to isolate pure progenitor 

populations, we devised a new FACS sorting strategy for HSC/MPPs based on cell-surface 

markers selected from the top 20 marker genes for this cluster in our scRNA-Seq dataset. The 

refined panel for HSC/MPPs included Lin- CD34+ CD38- CD52+ CD62L+ CD133+ (CD-REF 

from now on, Figure 6A).  

We FACS sorted cells from the femur BM using the CD-REF panel and profiled them again 

by scRNA-Seq and single-cell in vitro differentiation assays. CD-REF cells on average 

accounted for 40% (± 13%, n=4) of Lin- CD34+ CD38- cells in the femur, based on FACS 

analysis. The scRNA-Seq analysis of cells sorted with the refined panel showed that ~88% of 

CD-REF cells labelled HSC/MPP and HSC/MPP-Cycle clusters combined (Figure 6B) 

compared to commonly used CD panels for HSCs (Lin- CD34+ CD38- CD45RA- CD90+ 

CD49f+) and MPPs (Lin- CD34+ CD38- CD90- CD45RA- CD49f- CD10- CD7-) where ~59% 
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and ~73% respectively of sorted cells had a transcriptional signature of our most immature 

cell population (Figure 1C, Supplementary figure 4B).  

To assess the differentiation potential and robustness of the lineage output of CD-REF cells 

we sorted individual cells from three foetuses on either mouse MS5 feeder layer or on a more 

physiologically relevant, primary human foetal mesenchymal stem cells (fMSCs) (Figure 6C, 

see Methods section). After two weeks, 80% of cells sorted on MS5 and 85% of cells sorted 

on human foetal fMSCs generated colonies. In total, we analysed 201 colonies for their size 

and lineage output (erythroid-Ery, myeloid-My, megakaryocytic-Mk, lymphoid-Ly) using FACS 

(see Methods and Supplementary figure 7A). Our FACS analysis revealed that 7% of colonies 

on MS5 and 8% on fMSCs were quadri-lineage, 43% and 31% were tri-lineage, 29% and 25% 

were bilineage, 20% and 28% were unilineage and 1% and 8% were undifferentiated colonies, 

respectively (Figure 6D).  

Next, we sorted individual CD-REFs and immunophenotypic HSCs (CD34+CD34-

CD90+CD45RA-CD49f+/-) from the bone marrow and liver of the same foetus (n=2) on MS5 

feeder layer and assessed 324 cells in total for their lineage output. Our analysis showed that 

the liver and femur derived CD-REF cells had comparable efficacy of colony formation and 

the lineage output, suggesting that CD-REF enriches for the population of cells with 

multilineage output in both foetal liver and bone marrow. Similarly, the lineage output of CD-

REF cells and immunophenotypic HSC was comparable, however, the efficacy of colony 

formation appeared to be higher in CD-REF vs phenotypic HSCs isolated from the femur 

(Supplementary figure 7). Our finding that CD-REF cells indeed have multipotent potential and 

the lineage output comparable to phenotypic HSCs is in line with our observation that these 

cells sit at the tip of the differentiation trajectories. All together, we computationally and 

functionally confirmed that CD-REF represents a highly enriched population of HSC/MPPs. 

Comparative analysis of HSC/MPP cells from different haematopoietic organs  

Cells in the HSC/MPP cluster originated from the liver, femur, and hip. This provided a unique 

opportunity to assess potential qualitative and quantitative differences in the HSC/MPP 

population that originated from foetal liver or bone marrow. We first applied Fisher's exact test 

on the number of liver and femur cells in the different cell cycle states to determine whether 

there are non-random associations between the cycle state and the organ of origin (see 

Methods for further details). Interestingly, there was a statistically significant difference (p-

value=4.25⨉10-9) in the cell cycle state of cells in the HSC/MPP cluster between femur and liver 

(Figure 7A). Cells in the femur were predominantly in G1 (~70% of cells) compared to the 
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same population in the liver (~52%) (Figure 7B). These data suggest that HSC/MPPs become 

more quiescent as they migrate from the liver to the bone marrow during the second trimester 

of human development. In line with this, HSC/MPP cells were significantly less frequent in 

femur compared to the liver (Figure 7D), as confirmed by Fisher’s exact test on the total 

number of liver and femur cells (Figure 7E). This is in agreement with the increased proportion 

of phenotypic non-committed progenitors (CD34+ CD38-) found in the liver compared to the 

bone marrow (Figure 7C). Using Mki67 and DAPI staining we quantified the proportion of cells 

in the different stages of the cell cycle: G0 (Mki67-DAPI-), G1 (Mki67+DAPI-), S-G2-M 

(Mki67+DAPI+), as previously described (Kim and Sederstrom, 2015). Our analysis showed 

that the CD34+CD38- population is less cycling in both foetal liver and femur compared to 

CD34+CD38+ population (Figure 6E-F). Furthermore, we further showed that the vast majority 

of CD-REF cells are in G0/G1 in both femur and liver but that nearly twice as many cells are 

in S-G2-M in the liver compared to the femur (Figure 6G).  

In order to evaluate if there is a statistically significant difference in the number of expressed 

genes between HSC/MPPs collected from the liver and femur, we used both the Kolmogorov–

Smirnov (KS) and Mann–Whitney–Wilcoxon (MWW) test. We applied a subsampling strategy 

to downsample the cluster with more cells and balance the two distributions (see Methods). 

KS and MWW revealed a statistically significant decrease in the number of expressed genes 

in HSC/MPPs in the femur compared to the liver (Figure 7F-G). Gene-set enrichment analysis, 

using pathway databases, of differentially expressed genes between the liver and femur 

revealed that HSC/MPPs in the femur up-regulate genes involved in nucleosome assembly, 

chromatin assembly, and DNA packaging such as HIST1H1E and HIST1H2BN, possibly 

marking their entry into quiescence (Figure 7H). Interestingly, DE analysis of genes that 

encode membrane proteins revealed statistically significant upregulation of genes related with 

actin cytoskeleton remodelling, cell adhesion, and migration (e.g., JAML, SELPLG, LCP1, 

MSN, RHOA)  in HSC/MPPs in the liver compared to the femur (Figure 7I). This would be in 

line with the higher propensity of liver HSC/MPPs to migrate to other tissues such as bone 

marrow. In addition, we detected higher expression of interferon-induced gene IFITM1 in foetal 

liver, known to play a role in the transduction of antiproliferative and adhesion signals (Figure 

7J). This shift of HSC/MPPs from highly proliferative to quiescent as well as downregulation 

of genes involved in actin cytoskeleton remodelling, as they migrate from foetal liver to bone 

marrow, signifies the role of the niche in the modulation of HSC/MPPs behaviour. 
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Discussion  

Here, we present an integrative analysis of the single-cell transcriptome and chromatin 

accessibility of human foetal HSPCs. Our strategy involved plate-based sorting of well-defined 

immunophenotypic HSPCs from matched foetal liver and bone marrow. This approach 

enabled us to go beyond cataloguing heterogeneity of cellular states during foetal 

haematopoiesis and to: i) examine the extent to which phenotypic markers used over the last 

decade coincided with the true nature of the sorted foetal blood populations, ii) refine the 

sorting strategy for HSC/MPPs, iii) identify cell-cycle and gene expression differences between 

HSC/MPPs from foetal liver and bone marrow, iv) infer HSPCs differentiation trajectory, and 

v) explore lineage priming within the HCS/MPP population.  

In doing so, we observed a striking level of heterogeneity in all immunophenotypic HSPCs, 

with more than ten transcriptionally-defined cell populations identified in each of the progenitor 

populations. Although this is consistent with previous studies of human adult and cord blood 

haematopoiesis (Knapp et al., 2018), it further emphasized the need for refining the sorting 

strategy for human foetal HSPCs. Our CD-REF panel achieved nearly 90% enrichment of 

HSC/MPPs, which we validated using single-cell in vitro differentiation assays and scRNASeq. 

CD-REF cells comprised 40% of all CD34+ CD38- cells in the foetal bone marrow with the 

majority of HSC/MPPs not cycling. The shift from highly proliferative state to quiescence 

coincided with the migration of HSC/MPPs from the foetal liver to bone marrow suggesting an 

important role of the niche in the modulation of HSC/MPPs behaviour. This is remarkably 

different from previous studies in mice, where an extensive proliferation of HSPCs in the bone 

marrow continued up to three weeks after birth (Bowie et al., 2006). 

Downstream of the HSC/MPPs, we identified three highly proliferative oligopotent progenitor 

populations (MEMPs, LMPs, and GPs). Integrative scRNA-Seq and scATAC-Seq analysis of 

HSC/MPPs and all main progenitor populations revealed a correlation between chromatin 

accessibility and gene expression but also pointed out that, within transcriptionally 

homogeneous HSC/MPPs, there are multiple subpopulations that differed in their overall 

chromatin accessibility as well as lineage-specific TF activity. This indicates that within the 

HSC/MPP population, regulatory programmes permissive for different fates are being primed 

on the chromatin level, prior to their commitment to a specific lineage. The higher coordination 

of transcription and chromatin accessibility only occurred along the commitment of HSC/MPPs 

towards MEMPs, implying a hierarchy of different levels of commitment in the foetal progenitor 

compartment with MEMP population being the most committed (compared to LMPs and GPs).  
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Overall, our study has provided a high resolution transcriptional and chromatin accessibility 

map of foetal HSPCs from the liver and bone marrow that will be essential for further 

exploration of HSC/MPPs in the context of blood pathologies and for the purpose of 

regenerative medicine. 

Limitations of the study 

In this study, we characterised human foetal liver and bone marrow haematopoiesis using a 

combination of single-cell transcriptomics/epigenetics and in vitro single-cell differentiation 

assays. In order to avoid perturbations caused by freezing and thawing cycles, all experiments 

were performed on freshly-isolated tissues. Such experimental design and the nature of 

analysed tissues come with a few limitations: 1) samples are rare and 2) the cellularity varies 

significantly between different stages of development and individual foetuses, especially in the 

bone marrow. As a result, the number of cells available for the analysis was limited. For this 

reason, we were not able to obtain enough cells to perform xenotransplantation experiments 

to confirm the stem cell identity and self-renewing potential of our CD-REF cells, collected from 

bone marrow. Instead, we used single-cell in vitro assays as an alternative, albeit not optimal, 

readout of the multilineage potential of a cell. In addition, we could only collect a limited number 

of distinct phenotypically defined populations from individual foetuses and, therefore, for any 

given population, the number of analysed samples was relatively low.  
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STAR Methods 

RESOURCES AVAILABILITY 

Lead Contact  

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the Lead Contact, Dr Ana Cvejic (as889@cam.ac.uk). 

Materials Availability 

This study did not generate new unique reagents. 

Data and Code Availability 

The raw RNA-Seq data (i.e., fastq files) and cell assignment are deposited at ArrayExpress 

with accession code E-MTAB-9067, while the raw ATAC-Seq data (i.e., fastq files) and cell 

assignment are deposited at ArrayExpress with accession code E-MTAB-9068. 

All scripts, functions, and Jupyter Notebook developed for this study are freely available on 

GitLab: https://gitlab.com/cvejic-group/integrative-scrna-scatac-human-foetal. The repository 

also contains the gene expression and fragment matrices. 

https://gitlab.com/cvejic-group/integrative-scrna-scatac-human-foetal


 

17 
 

EXPERIMENTAL MODEL AND SUBJECT DETAILS 

Ethics and Tissue acquisition 

Human foetal bone and liver samples were obtained from 33 foetuses aged 17-22 pcw, 

following termination of pregnancy and informed written consent. The human foetal material 

was provided by the Joint MRC/Wellcome Trust (Grant MR/R006237/1) Human 

Developmental Biology Resource (http://www.hdbr.org), in accordance with ethical approval 

by the NHS Research Health Authority, REC Ref: 18/LO/0822.  

 

 

METHOD DETAILS 

Tissue processing 

Tissues were kept in cold DMEM medium (Invitrogen) until dissection and processed on the 

same day of collection. Single-cell suspensions were generated from matched foetal liver and 

bone tissues after rinsing them with cold PBS (Gibco). Liver samples were passed through a 

70 µm strain into a falcon tube prefilled with cold PBS. Bone marrow from long bones was 

isolated by flushing cold PBS into the diaphysis and collected into a falcon tube. Bone marrow 

from hip bone was collected by dissecting the bone with a sterile scalpel and flushing cold 

PBS in the marrow cavity into a falcon tube. The suspension obtained from long bones and 

hip bones was then passed through a 70 µm strain into a new falcon tube. Cells were then 

centrifuged for 5 minutes at 300 g, 4°C and the pellet was resuspended into the RBC lysis 

buffer (eBioscience) for 2 minutes at room temperature, after which 20 ml of cold PBS were 

added to stop the lysis reaction. RBC step was not performed when sorting erythroid cells. 

Live cell enrichment was performed using MACS columns (Miltenyi Biotec - 130-090-101) 

following the manufacturer's instructions. When sorting CD34+ or CD45+ cells, column 

enrichment was performed using MACS columns (Miltenyi Biotec - 130-046-702 and 130-045-

801 respectively for CD34+ and CD45+ cells), following the manufacturer's instructions. 

Fluorescence-activated cell sorting 

Cells were stained with antibody cocktails in a total volume of 100 µl 5% FBS (Gibco) in PBS 

for 30 minutes at 4°C, centrifuged for 5 minutes at 300 g, 4°C, resuspended in a final volume 

of 500 µl of 5% FBS in PBS and subsequently filtered into polypropylene FACS tubes 

(ThermoFisher). For scRNA-Seq experiments, single cells were index sorted using a BD Influx 

http://www.hdbr.org/
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Sorter into wells of 96-well plates (4titude) prefilled with 2 µl of lysis buffer consisting of 0.2% 

Triton X-100 (Sigma) and 1 U/µl RNAse inhibitor (Life Technologies) in nuclease-free water 

(Invitrogen). For scATAC-Seq experiments, 5,000 - 20,000 cells were sorted using a BD Influx 

machine into 1.5 ml tubes (Eppendorf). Following bulk tagmentation with Tn5 (Chen et al., 

2018), single nuclei were index sorted in wells of 384-well plates (Eppendorf) prefilled with 2 

µl of lysis buffer consisting of 0.2% SDS, 20 µg/ml proteinase K (Ambion), 50 mM Tris-HCl 

(Gibco) and 50mM NaCl (Sigma) in nuclease-free water. 

Library preparation  

The Smart-Seq2 method (Picelli et al., 2014) was used for library preparation for the scRNA-

Seq experiments, with some modifications as described in (Macaulay et al., 2016). The quality 

of libraries was evaluated with Bioanalyzer (Agilent). Good-quality libraries were subsequently 

quantified with KAPA Library Quantification Kit (Roche) and submitted for sequencing. Library 

preparation for the scATAC-Seq experiments was performed using a recently described 

method (Chen et al., 2018). Library traces were evaluated using Bioanalyzer. 

Sequencing 

Libraries for scRNA-Seq experiments were multiplexed using Nextera Index sets A, B, C, and 

D (v.2, Illumina) and sequenced on HiSeq4000 and NovaSeq6000 (Illumina) in pair-end mode, 

with an interquartile range (IQR) of 697,427 uniquely mapped reads (average: 666,632; 

standard deviation: 557,274). Libraries for scATAC-Seq experiments were sequenced on 

HiSeq4000 in pair-end mode, with a mean read count of 473,886 and IQR 341,210. 

Upstream analysis of scRNA-Seq data 

Smart-Seq2 sample demultiplex fastq files were quality checked, aligned and quantified by 

using the scRNA-Seq pipeline. This pipeline is based on STAR with default parameters 

(v.2.5.4a) (Dobin et al., 2013) index and annotation from the Ensembl release 91 of the 

GRCh38 human reference genome. Transcript and gene counts were quantified using the 

option quantMode GeneCounts provided by STAR. Since we used different sets of well-

defined antibodies to isolate different cell types, we applied specific thresholds for each 

sample to filter out both the cells and genes (Supplementary table 3). We detected on average 

3,642 genes per cell (IQR: 2,239; standard deviation: 1,621). 

Downstream analysis of scRNA-Seq data 

In what follows, for each function that we applied, we only report the parameter settings we 

modified. All other parameter settings of the functions are the default ones provided by the 
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used computational libraries. 

We performed the downstream analysis of scRNA-Seq using the Python (v.3.6.9) package 

SCANPY (v.1.4.5.1) (Wolf et al., 2018). Our pipeline included: 1) a QC step (number of 

identified counts and number of expressed genes using the filter_cells function, and the 

fraction of mitochondrial genes). We obtained the 4,504 cells that were used in the next steps 

(Supplementary table 2), 2) removing the genes expressed in less than 10 cells (filter_genes 

function), 3) data normalisation (normalize_per_cell function with scaling factor 10,000 and 

log1p function), 4) detection of the top 1,000 highly variable genes (HVGs) 

(highly_variable_genes function, in which the HVGs were selected separately within each 

batch and then merged, where each batch corresponds to a specific sample), 5) scaling of the 

features to unit variance and zero mean (scale function with max_value equal to 10), 6) 

application of scAEspy on the HVG space by considering the raw expression (i.e., counts) 

(Tangherloni et al., 2019), 7) batch correction by sample applying BBKNN algorithm (v.1.3.6, 

bbkkn function with use_faiss equal to false, approx equal to false and the Euclidean distance) 

to the latent space (16 components) generated by the used AE, 8) Leiden algorithm (leiden 

function with resolution equal to 2.2) applied to the neighbourhood graph generated by 

BBKNN. The 27 obtained clusters were manually annotated by considering the merged data 

using well-known cell-type specific genes and the Differentially Expressed Genes (DEGs). 

DEGs were computed by using rank_genes_groups function (Wilcoxon rank-sum with 

adjusted p-values for multiple testing with the Bonferroni correction), which compares each 

cluster to the union of the rest of the clusters. The clusters that either did not express specific 

cell type genes or expressed marker genes of different cell types had been iteratively 

subclustered. Specifically, we applied the Leiden algorithm (leiden function with resolution 

equal to 0.5) to subcluster Endothelial cells, obtaining four distinct clusters: the first two 

clusters have been annotated as Monocytes 2, the third as NK cells and the fourth as 

Endothelial cells. Finally, we used the Leiden algorithm (leiden function with resolution equal 

to 0.5) to cluster the Unspecified cluster getting four clusters. We merged three clusters with 

the HSC/MPP cluster while one was annotated as Unspecified. 

Dimensionality reduction of scRNA-Seq data 

After the detection of the first 1,000 HVGs, we applied scAEspy to HVG space by setting alpha 

and lambda equal to 0 and 2, respectively, in order to obtain the Gaussian Mixture Maximum 

Mean Discrepancy Variational AE (GMMMDVAE) (Tangherloni et al., 2019). We run 

GMMMDVAE for 100 epochs with a batch size equal to 100, one hidden layer of 64 neurons, 

a latent space of 16 neurons, 15 Gaussian distributions, learnable prior distribution, 

constrained Poisson loss function, and sigmoid activation function. Then, we applied BBKNN 
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to the latent space (16 components) to generate the neighbourhood graph by identifying top 

neighbours of each cell in each batch separately. We applied UMAP (v.0.3.10, SCANPY umap 

function with random_state equal to 8 and n_components equal to 3) to the obtained 

neighbourhood graph.  

Trajectory analysis of scRNA-Seq data 

In order to perform a detailed comparison among different trajectory modelling tools, the 

Dynverse tool (Saelens et al., 2019) was used. Based on the scoring system provided by 

Dynverse and following a careful inspection of the generated trajectories, we applied PAGA 

and Force-Directed Graph (FDG) to infer the development trajectories. We removed the 

endothelial cells and recalculated the neighbourhood graph (neighbors function with 

n_neighbors equal to 30) on the latent space (16 components) to exploit the data before batch 

correction (Luecken and Theis, 2019). We computed the PAGA graph (paga function with 

model equal to v1.2) and the ForceAtlas2 (FA2) using PAGA-initialization (draw_graph 

function, which exploits the FA2 class from fa2 (v.0.3.5) Python package, using the HSC/MPP 

cluster as root and maxiter equal to 1,000). 

Differential expression analysis 

Following cluster annotation, we performed biologically-relevant pairwise DE tests between 

pairs of clusters to identify DEGs and to examine the quantitative changes in the expression 

levels between the clusters. Specifically, we tested MPPs against MPPs-Cycle, MEMPs 

against MEMPs-Cycle, MPPs against MEMPs, MPPs against LMPs, MPPs against GPs, and 

MEMPs against LMPs. In order to cope with the unbalanced distributions between two groups 

of cells, due to the different number of cells in each cluster, we used the following subsampling 

strategy. Given two groups of cells, the biggest group was randomly subsampled taking a 

number of cells equal to the number of cells composing the smallest group. For each gene, a 

two-sided T-test for the means of two independent samples (i.e., biggest group and 

subsampled one) was applied. We used the ttest_ind function (equal_var equal to false) 

provided by the Python SciPy (Virtanen et al., 2020) package (v.1.4.1). Since we did not 

assume that the two groups have identical variances, the Welch’s t-test was automatically 

applied. Then, we calculated the median of the p-values of these T-tests. We applied this 

subsampling strategy 1001 times and calculated the median of the medians to select the 

subset of the biggest group to run the DE analysis. 

For a given subset of cells from the biggest group and the smallest one, we calculated the 

DEGs by applying the rank_genes_groups function (Wilcoxon rank-sum with adjusted p-
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values for multiple testing with the Benjamini-Hochberg correction). Then, we filtered out the 

obtained DEGs by using the filter_rank_genes_groups function (min_in_group_fraction equal 

to 0.3 and max_out_group_fraction equal to 1, so that a gene is expressed in at least 30% of 

the cells in one of the two tested groups; min_fold_change equal to 0). Following the 

aforementioned workflow, we compared cells from the liver and femur from the same cluster. 

Finally, we analysed HSC/MPPs and HSC/MPPs-Cycle to see which genes contributed to the 

observed difference between cells from femur and liver. 

We also carried out a DE test to compare the expression of cell surface proteins in HSC/MPPs 

from femur and liver cells. As a first step, we selected 1) genes that encode CD molecules, 2) 

transmembrane genes available in CellPhoneDB (Efremova et al., 2020), and 3) genes that 

encode plasma membrane proteins from Uniprot (key KW-1003). Then, we applied the 

subsampling strategy comparing HSC/MPPs from femur and liver cells. Finally, we calculated 

the DEGs by considering only the genes that are expressed in at least 30% of the cells in one 

of the two tested groups. 

Differentiation pathway analysis 

We performed a gene-set enrichment analysis, using pathway databases, comparing liver and 

femur HSC/MPP cells. Firstly, we calculated DEGs by comparing liver and femur applying the 

strategy described above. Then, we used g:Profiler (Raudvere et al., 2019) focusing on Gene 

Ontology (GO) terms, Kyoto Encyclopedia of Genes and Genomes (KEGG), and Reactome. 

Specifically, we applied the profile function provided by the Python GProfiler package for both 

liver and femur cells. As a query set, we used the liver (or femur) DEGs while as background 

we used the genes that are expressed in at least 30% of liver (or femur) cells. We also set the 

following parameters required by the profile function: organism equal to homo sapiens; 

sources equal GO terms, KEGG, and Reactome; domain_scope equal to custom_annotated; 

significance_threshold_method (i.e., the correction method for the p-values) equal to 

bonferroni; user_threshold (i.e., the threshold for the corrected p-values) equal to 0.01. 

Cell type classification 

We trained both a Random Forest classifier (Pedregosa et al., 2011) and a DNN to predict the 

cell types by considering the top 5, 10, 20, 30, 50, and 100 marker genes for each cluster 

using the log-normalised expression. Since some marker genes are shared among the 

clusters, we considered them only once to avoid duplicated columns in the feature matrices. 

We merged the following clusters: HSC/MPPs and HSC/MPPs-Cycle as HSC/MPPs, MEMPs 

and MEMPs-Cycle as MEMPs, Granulocytes 1, Granulocytes 2, and Granulocytes 3 as 
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Granulocytes; pDCs and pDCs-Cycle as pDCs; CD4+ Monocytes, Monocytes, and Monocyte 

Prog as Monocytes; Pre-B cells, Pro-B cells, and Mature B cells as B cells. Thus, we obtained 

14 distinct clusters. 

We used the RandomForestClassifier (n_estimators equal to 100 and Gini criterion) provided 

by Scikit-learn (Pedregosa et al., 2011) (v.0.21.2). We developed the DNN by using Keras1 

(v.2.2.4) with Tensorflow (Abadi et al., 2016) (v.1.12.0) as backend. The network is composed 

of 2 dense hidden layers of 64 and 32 neurons, respectively. We added a dropout (50%) layer 

before the first layer as well as a dropout (30%) layer before the second layer. We trained the 

DNN for 1,000 epochs using the Adam optimiser (Kingma and Ba, 2014) by minimising the 

categorical cross-entropy loss function. We also set an early stopping with 100 epochs as 

patience to avoid overfitting. 

We applied a stratified 10 fold cross-validation (Scikit-learn StratifiedKFold function) 

resampling procedure to evaluate both the Random Forest and DNN. The Random Forest 

achieved the best result when the top 30 marker genes per cluster were used (mean accuracy 

equal to 88.54% and standard deviation equal to 1.03%), while the DNN considering the top 

30 (mean accuracy equal to 90.40% standard deviation equal to 1.31%) and 50 marker genes 

per cluster (90.25% and standard deviation equal to 0.98%). 

As a further test, we evaluated the ability of our DNN to generalise on unseen data. We split 

the dataset into a train set (80%) and a test set (20%) (Scikit-learn train_test_split function 

with test_size equal to 0.2). We then divided the train set into a train set (85%) and a validation 

set (15%, (train_test_split function with test_size equal to 0.15). We trained our DNN with the 

train set, validating it using the validation set. When we took into account the top 30 marker 

genes, we achieved an accuracy equal to 91.50% on the validation set. When considering the 

top 50 marker genes the accuracy was 91.68%. Finally, we predicted the labels of the test set 

by obtaining an accuracy equal to 90.46% (30 marker genes) and 90.23% (50 marker genes).  

Upstream analysis of scATAC-Seq data 

We performed the upstream analysis using the samtools (Li et al., 2009) (v1.9), bedtools 

(Quinlan, 2014) (v2.27.1), Picard tools2 (v2.9.0) and BWA (Li and Durbin, 2009) (v0.7.17). 

First, we aligned fastq files to the GRCh38 reference genome (average 473,886 reads per 

cell), followed by marking duplicates with MarkDuplicates function from Picard tools and 

removing duplicates using samtools view with -F 1804 parameter per each cell. Overall with 

                                                
1 Chollet et al.: https://keras.io 
2 Broad Institute: http://broadinstitute.github.io/picard/ 

https://keras.io/
http://broadinstitute.github.io/picard/
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average duplicates rate 77% we obtained 91,554 reads per cell after removing duplicates. 

Next, we transformed bam files to bed files using bamtobed bedtools function in bedpe mode 

and kept only fragments that are no bigger than 1000 bp using a custom script. We called 

peaks (for the clusters with more than 50 cells) using the SnapATAC approach (Fang et al., 

2019) with macs2 (Zhang et al., 2008) parameters "--nomodel --shift 100 --ext 200 --qval 5e-

2 -B" and obtained 152,283 peaks. Importantly, for the downstream analysis in R, we binarized 

counts per cell using Signac3 BinarizeCounts function, resulting in 32,217 fragments per cell 

on average.  

Downstream analysis of scATAC-Seq data 

The downstream analysis was done in R 3.6.1 applying Seurat (Butler et al., 2018) (Stuart et 

al., 2019) (v3.1.4), Signac (v0.2.4), chromVAR (Schep et al., 2017) (v.1.8) and Harmony 

(Korsunsky et al., 2019)  (v1.0). The pipeline included a QC step (duplicates removal, number 

of fragments, fragments per peak, fraction of reads mapping to blacklist regions, nucleosome 

signal, and transcriptional start site (TSS) enrichment), application of LSI dimensionality 

reduction to the three samples independently (RunTFIDF function with method equal to 2, 

FindTopFeatures function setting min.cutoff to q0, and RunSVD function using the peaks as 

assay), batch correction by sample, lane, and organ applying Harmony on the first 50 LSI 

components, excluding the first one, (RunHarmony function setting assay.use to peaks, 

max.iter.harmony to 20, max.iter.cluster to 200, sigma to 0.25, and theta to 2, 4, 4 in order to 

weight more the batch related to samples). TF activities on the ATAC-seq data were calculated 

using the Signac implementation of chromVAR using the RunChromVAR function taking as 

tested motifs dataset from HOCOMOCO (Kulakovskiy et al., 2018) v11 human TF binding 

models database (769 TFs).  

Dimensionality reduction of scATAC-Seq data 

We applied the UMAP algorithm to the first 50 LSI components corrected by Harmony 

(RunUMAP function with umap.method equal to uwot and n.neighbors equal to 10, 

FindNeighbors function setting annoy.metric to cosine). We identified seven distinct clusters 

by using the Seurat function FindClusters (resolution equal to 0.5).  

Trajectory analysis of scATAC-Seq data 

We inferred the development trajectories by applying PAGA and FDG. We recalculated the 

neighbourhood graph using the SCANPY neighbors functions (n_neighbors equal to 30) on 

                                                
3 Stuart et al.: https://github.com/timoast/signac/ 

https://github.com/timoast/signac/
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the 50 LSI components corrected by Harmony. We computed the PAGA graph (SCANPY paga 

function with model equal to v1.0) and used it to initialise the FA2 algorithm (SCANPY 

draw_graph function using cluster 1 as root and maxiter equal to 1,000). 

Integration of scRNA-Seq and scATAC-Seq data 

We integrated scRNA-Seq and scATAC-Seq data using a recently developed method by 

Stuart et al. (Stuart et al., 2019). Namely, we used our scRNA-Seq data as reference dataset 

to train the classifier and automatically assign a cell type to each scATAC-Seq cell. The 

training of the classifier was performed using 511 CD34+ CD38- cells from our scRNA-Seq 

experiment. In order to have a suitable number of cells for each cell type to train the classifier, 

we considered scRNA-Seq clusters with at least 20 cells (i.e., HSC/MPPs, HSC/MPPs-Cycle, 

MEMPs, MEMPs-Cycle, GPs, and LMPs). We generated a gene expression matrix from our 

scATAC-Seq data set by assigning each peak to the gene by considering the genome 

coordinates of the gene body ± 3 kb. We applied the Seurat function FindTransferAnchors 

(query.assay equal to RNA_promoter, features equal to the counts of the RNA_promoter, and 

k.anchor equal to 6) on the Canonical Correlation Analysis (CCA) space because it was more 

suitable, compared to the LSI space, for capturing the shared feature correlation structure 

between scRNA-Seq and scATAC-Seq data. We assigned the cell types to the scATAC-Seq 

cells by applying the Seurat TransferData on the first 50 LSI components corrected by 

Harmony considering the calculated anchors (refdata equal to the six scRNA-Seq clusters). In 

order to avoid assignments based on a low score, all cells with the prediction score lower than 

40% (the value of a uniform distribution of six clusters is 16,67%) were labelled as unknown. 

Transcription factor regulons prediction 

To run SCENIC workflow on our raw scRNA-Seq data, we used an in-house constructed 

Snakemake pipeline via combining Arboreto package GRNBoost2 and SCENIC algorithms 

with default parameters. To predict transcription factor regulons, we used human v9 motif 

collection, as well as both hg38__refseq-r80__10kb_up_and_down_tss.mc9nr.feather and 

hg38__refseq-r80__500bp_up_and_100bp_down_tss.mc9nr.feather databases from the 

cisTarget (https://resources.aertslab.org/cistarget/). The resulting AUC scores per each cell 

and adjacency matrix were used for downstream analysis and visualization. 

Isolation of human foetal MSCs 

Human primary fMSCs were isolated from the femur of a 19 pcw sample following an 

established protocol used for mouse bones (Perpétuo et al., 2019). Briefly, the bone was 

rinsed in PBS and the bone epiphyses cut with a scalpel. The bone marrow was flushed with 

https://resources.aertslab.org/cistarget/
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50 ml PBS, centrifuged at 300 g for 5 minutes, resuspended in alphaMEM medium (Thermo 

Fisher Scientific) supplemented with 2 mM L-glutamine (Thermo Fisher Scientific), 100 U/ml 

penicillin/streptomycin (Thermo Fisher Scientific) and 10% fetal bovine serum (Sigma) at a 

concentration of 5x106 cells/ml and cultured at 37°C at 5% CO2. After 24 hours, floating cells 

were removed by washing twice with PBS and medium was changed twice a week until the 

culture was 70% confluent. Cells were cryopreserved until use. 

Single-cell in vitro culture 

Single Lin- CD34+ CD38- CD62L+ CD52+ CD133+ cells, isolated from the foetal bone marrow 

of three different foetuses (20-22 pcw), were index-sorted into 96-well plates seeded with 

fMSCs or MS5 (obtained by DSMZ) and supplemented with cytokines as previously described 

(Velten et al., 2017). Cells were cultured for 15 days at 37°C at 5% CO2. At the end of the 

culture, colonies were filtered to exclude feeder layer cells, and their lineage output was 

assessed by the expression of CD41a (megakaryocytic-Mk), CD235a (erythroid-Ery), 

CD3/CD56 (lymphoid-Ly), and CD11b (myeloid-My) by flow cytometry using a BD LSR-

Fortessa analyser. Colonies were considered positive for a lineage if ≥ 30 cells were detected 

in the relative gate. 

Cell cycle analysis 

Cells from the foetal liver and the bone marrow were stained with cell-surface antibodies, fixed 

and permeabilised for 20 minutes at 4°C using the Cytofix/cytoperm kit (BD Biosciences). Cells 

were then stained with FITC-MKi67 antibody (BD Biosciences) overnight at 4°C and finally 

with DAPI prior to flow cytometry acquisition. Cell cycle phases were defined as follows: G0 

(Mki67-DAPI-), G1 (Mki67+DAPI-), S-G2-M (Mki67+DAPI+). 

 

QUANTIFICATION AND STATISTICAL ANALYSIS 

Differences across cell types 

In order to assess qualitative and quantitative differences between the haematopoietic cells 

collected from the liver and femur, we implemented different statistical tests. For each cluster, 

we calculated if there is a statistically significant difference in the number of cells (Test 1), the 

number of expressed genes per cell (Test 2), and the cell cycle state of blood cells collected 

from liver and femur (Test 3).  
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Test 1. Since we used different gates to sort cells and we sorted a different number of cells in 

each experiment, we first normalised the number of cells from liver and femur. We selected 

only the matched gates (i.e., the gates where we sorted haematopoietic cells from both liver 

and femur). Then, we selected cells from the liver (or femur) from each gate in each of the 

clusters. For each cluster, we normalised the number of cells inside the cluster in the range 

[0, 100] by dividing the number of cells for the total number of cells of the gate in order to 

obtain a number of cells equal to 100. Next, for each cluster, we calculated the median of the 

cells in the liver (or femur) among the different gates. In order to evaluate if there is a 

statistically significant difference between the number of cells in the liver and femur 

considering all the clusters, we applied the ChiSq test by normalising the distributions (i.e, the 

median of the gates of each cluster) of the cells from liver and femur among the clusters. We 

applied the chi2_contingency function provided by the Python SciPy. Since the obtained p-

value is equal to 1.02×10-4, we applied Fisher's exact test (SciPy fisher_exact function) to each 

cluster to find which clusters contributed to the difference. 

Test 2. In this test, we evaluated the number of expressed genes between cells collected from 

femur and liver. In order to remove possible technical effects for each cell, we divided the 

number of expressed genes by the number of reads uniquely mapped against the reference 

genome. For each cluster, we applied both the KS test (SciPy ks_2samp function) and the 

MWW test (SciPy mannwhitneyu function). Since the number of cells from femur and liver is 

very different in any given cluster (giving rise to unbalanced distributions) we used a 

subsampling strategy similar to that used for the DE analysis. We randomly subsampled the 

biggest group 1,001 times taking a number of cells equal to the number of cells composing 

the smallest group. We applied the KS (and MWW) test comparing the smallest group to the 

subsampled ones obtaining a distribution of p-values. Finally, we calculated the median of this 

distribution of p-values to evaluate if there is a statistically significant difference between the 

number of expressed genes in the cells from the liver and femur. Note that we excluded the 

clusters where the number of the cells from femur or liver was lower than 20. 

Test 3. For each cluster, we compared G2M/S and G1 states by normalising the number of 

cells from the liver and femur in the two states. We applied Fisher's exact test (SciPy 

fisher_exact function) to each cluster to find a possible statistically significant difference 

between the number of cells in G2M/S and G1 states in the liver and femur. 
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Figures 

Figure 1 – Single-cell transcriptome analysis of human foetal haematopoiesis. A. 

Schematic overview of the experimental workflow. From each foetus (age 17-22 pcw), 

phenotypically defined HSPCs and mature blood cells were sorted from bone marrow (femur 

and hip) and liver and processed for scRNA-Seq (n=15), scATAC-Seq (n=3), as well as for 

single-cell in vitro differentiation assays (n=4). B. Heatmap of the mean expression value of 

two manually selected marker genes for each cell type. The expression of the genes is 

standardised between 0 and 1. For each gene, the minimum value is subtracted and the result 

is divided by the maximum. The standardised expression level is indicated by colour intensity. 

C. Donut plots showing the percentage of transcriptionally defined (i.e., manually curated) cell 

populations in each of the phenotypically defined stem and progenitor populations. The 

colours correspond to the identified cell types. D. UMAP visualisation of haematopoietic cells 

from liver and bone marrow coloured by cell type. HSC/MPPs-Cycle - cycling haematopoietic 

stem cells/multipotent progenitors; HSC/MPPs - haematopoietic stem cells/multipotent 

progenitors; MEMPs - megakaryocyte-erythroid-mast progenitors; MEMPs-Cycle - cycling 

megakaryocyte-erythroid-mast progenitors; GPs - granulocytic progenitors; LMPs - lympho-

myeloid progenitors; pDCs-Cycle - cycling plasmacytoid dendritic cells; pDCs - plasmacytoid 

dendritic cells. 

 

Figure 2 – Differentiation trajectory of human foetal haematopoietic cells. A. FDG 

visualisation of the differentiation trajectory of haematopoietic cells from Figure 1D. B. PAGA 

trajectory model imposed on the FDG visualisation of the differentiation trajectory. The size of 

the dots is proportional to the number of cells in the clusters. C. Heatmap showing dynamic 

expression of lineage-specific genes along the three differentiation paths (MEMP, 

Granulocyte, and LMP path). Cluster colours match those of (A) and (B). D. Heatmap of the 

normalised AUC score of selected TFs for each cell type obtained by pySCENIC. Cluster 

colours match those of (A) and (B). E. Donut plots showing the percentages of cells in G1, S, 

and G2M in HSC/MPPs, HSC/MPPs-Cycle, MEMPs, MEMPs-Cycle, LMPs, and GPs. Force-

Directed Graph - FDG; ForceAtlas2 - FA2; HSC/MPPs-Cycle - cycling haematopoietic stem 

cells/multipotent progenitors; HSC/MPPs - haematopoietic stem cells/multipotent progenitors; 

MEMPs - megakaryocyte-erythroid-mast progenitors; MEMPs-Cycle - cycling megakaryocyte-

erythroid-mast progenitors; GPs - granulocytic progenitors; LMPs - lympho-myeloid 
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progenitors; pDCs-Cycle - cycling plasmacytoid dendritic cells; pDCs - plasmacytoid dendritic 

cells.  

 

Figure 3 – Single-cell chromatin accessibility analysis of human foetal haematopoiesis. 

A. UMAP visualisation of the scATAC-Seq dataset (=3,611 nuclei from CD34+ CD38- cells 

from the liver and bone marrow) coloured by cluster. B. (Top) Bar plot showing the average 

accessibility of 36 selected marker genes from our scRNA-Seq data considering all cells. 

(Bottom) Dot plot of the standardised accessibility of the marker genes (gene body ± 3 kb) in 

each of the seven clusters. For each gene, the minimum value of its accessibility is subtracted 

and the result is divided by the maximum value of its accessibility. The dot size indicates the 

percentage of cells in each cluster in which the gene of interest is accessible. C. FDG 

visualisation of the differentiation trajectory of haematopoietic cells from (A). D. PAGA 

trajectory model imposed on the FDG visualisation of the differentiation trajectory of 

haematopoietic cells from (A). The size of the dots is proportional to the number of cells in the 

clusters. E. Violin plots showing the chromatin accessibility in different clusters. p-

value1,2<2⨉10-16; p-value2,3<2⨉10-16; p-value3,4<2⨉10-16; p-value4,5 <2⨉10-16; p-value4,6= 1.4E-

07; p-value4,7= 0.00235. p-value<0.001 (***); 0.001<p-value<0.01 (**); 0.01<p-value<0.05 (*); 

p-value≥0.05 (ns). F-H. Heatmap showing the activity of lineage-specific TFs along 

differentiation trajectories: F. Clusters 1-2-3. G. Clusters 1-6. H. Clusters 1-4-5-6. (I-K) FDG 

visualisation of the min-max normalised TF motif accessibility along the differentiation 

trajectory. I. NF-kB2. J. REL. K. RELB. Force-Directed Graph - FDG; ForceAtlas2 - FA2. 

 

Figure 4 – Integration of scRNA-Seq and scATAC-Seq data. A. Donut plot showing the 

percentage of scATAC-Seq cells automatically assigned to different cell types. B. Boxplot 

showing the accessibility of GATA1, TFE2, TAL1.0.A, and TAL1.1.A  motifs in the annotated 

cell types. On the top right of each boxplot, the TF sequence logos from JASPAR database 

similar to the analysed motifs are shown. Cluster colours match those of (A). C. Barplot 

showing the percentage of cells within each cluster assigned to the annotated cell types. 

Cluster colours match those in (A). (D-G) Boxplots showing the accessibility of lineage-specific 

TF motifs in HSC/MPPs across the seven clusters. D. HTF4 (p-value1,2<2⨉10-16; p-

value1,3<2⨉10-16). E. ID4 (p-value1,2<2⨉10-16; p-value1,3=10-13). F. TFE2 (p-value1,2<2⨉10-16; 
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p-value1,3<2⨉10-16). G. GATA1 (p-value1,2<2⨉10-16; p-value1,3<2⨉10-16; p-value1,6=0.0071). p-

value<0.001 (***); 0.001<p-value<0.01 (**); 0.01<p-value<0.05 (*); p-value≥0.05 (ns). Force-

Directed Graph - FDG; ForceAtlas2 - FA2. 

 
Figure 5 – Chromatin accessibility and expression dynamics of GATA1-regulon target 
genes. A. Heatmap showing the chromatin accessibility changes for promoters (left) and 

related distal regulatory elements (right), as well as RNA expression (centre) for the target 

genes of GATA1 regulon obtained from pySCENIC. Only target genes with importance higher 

than 4 were considered. We normalised the expression of the set of GATA1 target genes into 

the range [0, 1]. For the promoters, the reads that overlapped the TSS regions +/-3 kb were 

extracted, normalised and scaled into the range [0, 1] for each cell. To identify the enhancers 

for each gene, we took peaks around TSS +/-50 kb (excluding +/-3 kb region), which have 

predicted GATA1 binding sites within them. We used normalized values for such peaks and 

scaled values from 0 to 1. Resulted values were summarized using mean per each cluster. 

For the visualisation purposes, we pooled all data together and clustered with 5 centroids 

using k-means. B-C. Boxplot showing the difference in chromatin accessibility for GATA1-

regulon genes for all identified scATAC-Seq clusters. Values were obtained following similar 

criteria as described in A. B. Promoters. Significant p-values: p-value1,3=7.7x10-5, p-

value1,4=0.005, p-value1,5=3x10-9, p-value1,6=0.026, p-value2,3=0.001, p-value2,4=0.047, p-

value2,5=1.8x10-7, p-value3,5=0.023, p-value3,6=0.034, p-value3,7=0.018, p-value4,5=3.4x10-4, p-

value5,6=8.7x10-6, p-value5,7=5.5x10-6.C. Enhancers. Significant p-values: p-value1,6=0.017, p-

value3,6 =0.006, p-value3,6=2.9x10-4, p-value4,6=9.1x10-4, p-value5,6=1.3x10-4, p-value6,7=0.004. 

D-E. Heatmaps of the binarised chromatin accessibility in cluster 1 (D) and cluster 6 (E) for 

the promoters (+/-3 kb from TSS) of the selected marker genes of Megakaryocytes (MK), 

Erythrocytes (Ery), and Mast cells. Barplots on the left side of the heatmaps show the mean 

accessibility of the gene promoter for each cluster. F. Barplots showing the co-accessibility of 

promoters’ of lineage-specific marker genes. Fisher exact test was used to check if binarised 

accessibility of promoters from different marker genes is associated between each other. Odds 

ratios of Fisher’s exact tests are reported on the y-axes. P-value (Mast-Ery: cluster 1) = 

0.03149, p-value(Mast-Ery: cluster 6) = 0.6379; p-value( MK-Ery: cluster 1) = 0.01026; p-

value(MK-Ery: cluster 6) = 0.1734; p-value (MK-Mast: cluster 1) = 0.3007; p-value (MK-Mast: 

cluster 6) = 0.005428. 
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Figure 6 – Refining the sorting strategy to isolate foetal HSC/MPPs. A. Novel FACS panel 

(CD-REF panel) designed to increase the purity of the sorted HSC/MPP population. After 

excluding debris, doublets, and Lin+ cells, CD34+ CD38- CD52+ CD62L+ CD133+ were 

sorted. B. Donut plots showing the percentage of transcriptionally defined (i.e., manually 

curated) cell populations in the phenotypically defined CD-REF population. The colours 

correspond to the identified cell types. C. Schematic overview of the single-cell in vitro 
differentiation assay. Single CD-REF cells were sorted in liquid culture with either a mouse 

stromal cell line (MS5) or a human foetal primary feeder layer (fMSC). After 15 days of culture, 

lineage output was assessed by the expression of lineage markers CD41a (megakaryocytic), 

CD235a (erythroid), CD3/CD56 (lymphoid), and CD11b (myeloid) by flow cytometry. D. 
Percentage of colonies derived from single CD-REF cells characterised by quadrilineage, 

trilineage, bilineage, unilineage and undifferentiated lineage output, on two different feeder 

layers (n=201 colonies, n=2 foetuses per feeder layer). E-G. Representative flow-cytometric 

images of cell-cycle analysis by Mki67/DAPI co-staining of CD34+CD38- (E), CD34+CD38+ 

(F) and CD34+CD38-CD133+ (G) in matched foetal liver and femur. 

 

Figure 7 – Statistically significant differences between femur and liver cells across cell 
types. A. Heatmap showing the confidence interval of Fisher's exact test on the normalised 

number of different haematopoietic cell types sorted from the liver and femur in G2M/S 

compared to G1. B. Donut plots displaying the percentage of cells in G1, G2M, and S in 

HSC/MPPs sorted from femur or liver. C. Bar plot representing the proportion of CD34+ CD38- 

and CD34+ CD38+ cells of total live cells present in the liver and bone marrow (femur and hip) 

n=15. D. Bar plot of the normalised distributions of the number of cells in each cell type sorted 

from liver or femur. E. Heatmap showing the confidence interval of Fisher's exact test on the 

normalised number of cells in each cell type collected from liver or femur F. Heatmaps 

depicting the confidence interval of the KS (left) and MWW (right) test on the number of 

expressed genes in each cell type collected from femur or liver cells. Notice that all the 

confidence intervals are split into 4 subintervals (i.e., [0, 0.01] strong statistically significant 

difference; (0.01, 0.05] statistically significant difference; (0.05, 0.1] marginal statistically 

significant difference; (0.1, 1] no statistically significant difference). G. Violin plot of the number 

of expressed genes in HSC/MPPs collected from the femur (blue) or liver (orange). H. Volcano 

plot showing DEGs in HSC/MPPs collected from femur or liver cells. The x-axis shows the log2 

fold-change (magnitude of change), while the y-axis shows the -log10 adjusted p-value 

(statistical significance). We used the Wilcoxon rank-sum with the Benjamini-Hochberg 

correction. Colours represent the significance of the genes, both in terms of p-value and log2 



 

37 
 

fold-change. I. Bubble plots showing the top Gene Ontology terms (GO:MF - Molecular 

Function, GO:CC - Cellular Component, GO:BP - Biological Process), Kyoto Encyclopedia of 

Genes and Genomes, and Reactome calculated by using the DEGs in HSC/MPPs collected 

from the liver (top) vs femur (bottom) cells. J. Volcano plot showing DEGs in HSC/MPPs 

collected from femur or liver cells by considering only genes that encode plasma membrane 

proteins. The x-axis shows the log2 fold-change (magnitude of change), while the y-axis shows 

the -log10 adjusted p-value (statistical significance). We used the Wilcoxon rank-sum with the 

Benjamini-Hochberg correction. Colours represent the significance of the genes, both in terms 

of p-value and log2 fold-change. 



 

 

KEY RESOURCES TABLE 
 

REAGENT or RESOURCE SOURCE IDENTIFIER 
Antibodies 
CD3 AF700 Biolegend OKT3 
CD8 AF700 Biolegend SK1 
CD11b AF700 Biolegend CBRM1/5 
CD14 AF700 Thermo Fisher 61D3 
CD19 AF700 Biolegend HIB19 
CD56 AF700 BD Biosciences B159 
CD34 APC-Cy7 Biolegend 581 
CD38 PE-Cy7 BD Biosciences HB7 
CD45RA BV785 Biolegend HI100 
CD90 PE BD Biosciences 5E10 
CD49f PE-Cy5 BD Biosciences GoH3 
CD10 BUV737 BD Biosciences HI10a 
CD7 FITC BD Biosciences MT701 
CD123 BV421 BD Biosciences 9F5 
CD45 FITC Thermo Fisher HI30 
CD52 FITC Biolegend HI186 
CD62L BV421 Biolegend DREG-56 
CD133 PE Biolegend Clone7 
CD127 PE Biolegend A019D5 
CD33 PE-Cy5 Biolegend WM53 
CD203c PE Biolegend NP4D6 
CD63 APC Biolegend H5C6 
CD15 PE Thermo Fisher HI98 
CD16 APC Biolegend 3G8 
CD36 PE Biolegend 5271 
CD71APC Biolegend CY1G4 
CD235a APC BD Biosciences GAR2 
CD41 FITC BD Biosciences HIP8 
CD42 PE BD Biosciences HIP1 
CD61 APC Dako Y251 
CD31 FITC Biolegend WM59 
CD144 PE Biolegend BV9 
CD309 APC Biolegend 7D46 
CD11b PE Biolegend ICRF44 
   
Biological samples   
Human foetal liver and bone marrow Human 

Developmental 
Biology Resource 
(HDBR) 

www.hdbr.org 

Critical Commercial Assays 

Key Resource Table



 

Nextera XT Library Prep Kit Illumina 15032354 
Nextera XT Index Kit v2 Illumina 15052164 
KAPA Library Quant Kit (Illumina) Roche 07960140001 
   
Deposited Data 
Single-cell RNA Sequencing - raw data This paper ArrayExpress: E-

MTAB-9067 
Single-cell ATAC Sequencing - raw data This paper ArrayExpress: E-

MTAB-9068 
Analysed data This paper https://gitlab.com/cvejic

-group/integrative-
scrna-scatac-human-
foetal#data 

Human reference genome NCBI GRCh38 Genome Reference 
Consortium 

http://www.ncbi.nlm.nih
.gov/projects/genome/a
ssembly/grc/human/ 

   
Experimental Models: Cell Lines 
MS5 cell line DSMZ ACC 441 
   
Software and Algorithms 
Python Python Programming 

Language 
https://www.python.org/ 

R The R Project for 
Statistical Computing 

https://www.r-
project.org/ 

STAR Dobin et al., 2013 https://github.com/alex
dobin/STAR 

Bedtools Quinlan, 2014 https://bedtools.readthe
docs.io/en/latest/ 

Samtools Li et al., 2009 http://www.htslib.org/ 
BWA 
 

Li and Durbin, 2009 http://bio-
bwa.sourceforge.net/ 

Picard 
 

Broad Institute http://broadinstitute.gith
ub.io/picard/ 

SnapATAC Fang et al., 2019 https://github.com/r3fan
g/SnapATAC 

Macs2 Zhang et al., 2008 https://github.com/mac
s3-project/MACS 

Scanpy and dependencies   Wolf et al., 2018 https://scanpy.readthed
ocs.io/en/stable/ 

PAGA and dependencies Wolf et al., 2019 https://github.com/theisl
ab/paga 

BBKNN Polański et al., 2020 https://github.com/Teic
hlab/bbknn 

Python version of g:Profiler Raudvere et al., 2019 https://pypi.org/project/
gprofiler-official/ 

scAEspy Tangherloni et al., 
2019 

https://gitlab.com/cvejic
-group/scaespy 

Tensorflow Abadi et al., 2016 https://www.tensorflow.
org/ 

Keras Chollet et al. https://keras.io 

https://gitlab.com/cvejic-group/integrative-scrna-scatac-human-foetal#data
https://gitlab.com/cvejic-group/integrative-scrna-scatac-human-foetal#data
https://gitlab.com/cvejic-group/integrative-scrna-scatac-human-foetal#data
https://gitlab.com/cvejic-group/integrative-scrna-scatac-human-foetal#data
http://www.ncbi.nlm.nih.gov/projects/genome/assembly/grc/human/
http://www.ncbi.nlm.nih.gov/projects/genome/assembly/grc/human/
http://www.ncbi.nlm.nih.gov/projects/genome/assembly/grc/human/
https://www.python.org/
https://www.r-project.org/
https://www.r-project.org/
https://github.com/alexdobin/STAR
https://github.com/alexdobin/STAR
https://bedtools.readthedocs.io/en/latest/
https://bedtools.readthedocs.io/en/latest/
http://www.htslib.org/
http://bio-bwa.sourceforge.net/
http://bio-bwa.sourceforge.net/
http://broadinstitute.github.io/picard/
http://broadinstitute.github.io/picard/
https://github.com/r3fang/SnapATAC
https://github.com/r3fang/SnapATAC
https://www.tensorflow.org/
https://www.tensorflow.org/
https://keras.io/


 

Scikit-learn Pedregosa et al., 2011 https://scikit-
learn.org/stable/ 

Seurat and dependencies Butler et al., 2018; 
Stuart et al., 2019 

https://satijalab.org/seu
rat/ 

Signac Satija Lab https://satijalab.org/sign
ac/ 

chromVAR Schep et al., 2017 https://greenleaflab.gith
ub.io/chromVAR/ 

Harmony Korsunsky et al., 2019 https://github.com/imm
unogenomics/harmony 

Dynverse Saelens et al., 2019 https://dynverse.org/ 
SCENIC and dependencies Aibar et al., 2017 https://github.com/aerts

lab/SCENIC 
pySCENIC and dependencies Van de Sande et al., 

2020 
https://pyscenic.readth
edocs.io/en/latest/ 

CellPhoneDB Efremova et al., 2020 https://www.cellphoned
b.org/ 

HOCOMOCO Kulakovskiy et al., 
2018 

https://hocomoco11.aut
osome.ru/ 

Custom Python and R functions/scripts This paper https://gitlab.com/cvejic
-group/integrative-
scrna-scatac-human-
foetal 
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Supplementary figure 1 – Sorting panels, Related to Figure 1, related to Figure 1. A-N. FACS

sorting panel and gating strategy for the isolation of phenotypically defined cell types: A. Committed

and non-committed haematopoietic progenitors, HSCs, MPPs, CMPs, GMPs, MEPs, and CLPs. B.
T cells. C. NK cells. D. ILCs. E. Monocytes. F. Dendritic cells. G. Neutrophils and eosinophils. H.
Mast cells. I. Basophils. J. Erythroid progenitors. K. Erythrocytes. L. Immature and mature MKs.

M. Pro-B cells, pre-B cells, and mature B cells. N. Endothelial cells. O-Q. Index sorting data FACS

plots showing sorted cells (blue), total gated population (red), and unstained population (yellow)

for defined cell types: O. CMPs. P. HSCs. Q. GMPs. HSCs - haematopoietic stem cells, MPPs -

multipotent progenitors, CMPs - common myeloid progenitors, GMPs - granulocyte-monocyte pro-

genitors, MEPs - megakaryocyte-erythroid progenitors and CLPs - common lymphoid progenitors,

NK cells - natural killer cells, ILCs - innate lymphoid cells, MKs - megakaryocytes.
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Supplementary figure 2 – Quality control and batch effects correction in scRNA-Seq and
scATAC-Seq data, related to Figures 1 and 3. A. Violin plots showing the number of expressed

genes per cell in scRNA-Seq data. B. Violin plots showing the number of uniquely mapped reads

against the reference genome per cell in scRNA-Seq data. C. Violin plots showing the fraction of

mitochondrial genes compared to all genes per cell in scRNA-Seq data. D. Violin plots showing the

number of reads per cell, prior to duplicates removal, in scATAC-Seq data. The y-axis is in log10
scale. E. Violin plots showing the number of reads per cell after duplicates removal in scATAC-Seq

data. The y-axis is in log10 scale. F. Violin plots showing the duplicate rate in scATAC-Seq data. G.
Violin plots showing the number of fragments per cell in scATAC-Seq data. The y-axis is in log10
scale. H. Violin plots showing the percentage of fragments per peak in scATAC-Seq data. I. Violin

plots showing the percentage of reads mapping to the blacklist regions in scATAC-Seq data. J. Violin

plots showing the nucleosome signal per cell in scATAC-Seq data. K. Box plot showing the number

of genes per cell in each identified cell type in scRNA-Seq data. L. Box plot showing the number

of uniquely mapped reads per cell in each identified cell type in scRNA-Seq data. M. Histogram

showing the length of the fragments in terms of base pairs (200 bins). N. Scatterplot showing the

fragments in peaks with respect to TSS enrichment. The colour intensity represents the number of

counts. The x-axis is in log10 scale. O. UMAP visualization of the scRNA-Seq samples (n = 15)

after the batch effect correction with BBKNN. Each colour represents a different sample. P. UMAP

visualization of the scATAC-Seq samples (n = 3) after the batch effect correction with Harmony.

Each colour represents a different sample. Q. UMAP visualization of the scATAC-Seq bone marrow

(blue) and liver (orange) CD34+ CD38- cells after the batch effect correction with Harmony.
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Supplementary figure 3 – Expression of top marker genes along the differentiation trajec-
tory, related to Figure 2. (A-J) FDG visualisation of the log-normalised gene expression of marker

genes along the differentiation trajectory. A. HSC/MPPs (CD34, CD52, HLF, PROM1, and MLLT3).

B. MEMPs (KLF1, CTNNBL1, TESPA1, and TFRC). C. GPs and granulocytes (LYZ, AZU1, SPI1,

and CLEC11A). D. Erythrocytes (ALAS2, HBG1, HBA1, and GYPA). E. pDCs (MPEG1, IL3RA, and

IRF8). F. Mast cells (HDC and CD63). G. Monocytes (ITGAM, CD14, and CD33). H. Megakary-

ocytes (ITGA2B and FLI1). I. B cells (CD79B, IGHM, and CD19). J. NK cells (CD3 and NCAM1).

Force-Directed Graph - FDG; ForceAtlas2 - FA2; HSC/MPPs - haematopoietic stem cells/multipotent

progenitors; MEMPs - megakaryocyte-erythroid-mast progenitors; GPs - granulocytic progenitors;

pDCs-Cycle - cycling plasmacytoid dendritic cells.
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Supplementary figure 4 – Validation of the cell type assignment and transcriptional hetero-
geneity of phenotypically defined cell populations, related to Figures 1 and 3. A. Confusion

matrix showing the cell type assignment achieved by the DNN on the test set (901 cells), consid-

ering the top 30 marker genes per cell type (14 distinct cell types). The colour intensity represents

the fraction of the assigned cells per cell type. B. Donut plots showing the percentage of tran-

scriptionally defined (i.e., manually curated) cell populations in each of the phenotypically defined

populations (Expanded from Figure 1C). Each colour represents a different cell type. HSC/MPPs-

Cycle - cycling haematopoietic stem cells/multipotent progenitors; HSC/MPPs - haematopoietic stem

cells/multipotent progenitors; MEMPs - megakaryocyte-erythroid-mast progenitors; MEMPs-Cycle -

cycling megakaryocyte-erythroid-mast progenitors; GPs - granulocytic progenitors; LMPs - lympho-

myeloid progenitors; pDCs-Cycle - cycling plasmacytoid dendritic cells; pDCs - plasmacytoid den-

dritic cells.
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Supplementary figure 5 – Differential expression analysis of the progenitor compartment, re-
lated to the STAR Methods section. (A-F) Volcano plot showing DEGs between two cell types

of interest. A. HSC/MPPs and HSC/MPPs-Cycle. B. HSC/MPPs and MEMPs. C. MEMPs and

MEMPs-Cycle. D. HSC/MPPs and GPs. E. HSC/MPPs and LMPs. F. MEMPs and LMPs. The x-

axes show the log2 fold-change (magnitude of change), while the y-axes show the �log10 adjusted

p-value (statistical significance). We used the Wilcoxon rank-sum with the Benjamini-Hochberg

correction. Colours represent the significance of the genes, both in terms of p-value and log2 fold-

change. G. Dot plot of the expression of metabolic genes involved in glycolysis in the identified

progenitor compartment. The expression of the genes is standardised between 0 and 1. For each

gene, the minimum value is subtracted and the result is divided by the maximum. The spot size

indicates the percentage of cells that express the gene of interest within each cell type. The colour

intensity represents the standardised expression level. HSC/MPPs-Cycle - cycling haematopoi-

etic stem cells/multipotent progenitors; HSC/MPPs - haematopoietic stem cells/multipotent progeni-

tors; MEMPs - megakaryocyte-erythroid-mast progenitors; MEMPs-Cycle - cycling megakaryocyte-

erythroid-mast progenitors; GPs - granulocytic progenitors; LMPs - lympho-myeloid progenitors.
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Supplementary figure 6 – Expression of lineage-specific marker genes in HSC/MPP sub-
populations, related to 2. A. FDG visualisation of the identified differentiation trajectory. B.
FDG visualisation of the HSC/MPP sub-populations. (C-R) Left panels - violin plots showing the

log-normalised median gene expression of lineage-specific marker genes in the HSC/MPP sub-

populations and more differentiated haematopoietic cells. Right panels - FDG visualisations of

the log-normalised gene expression of the same genes as in violin plots along the differentiation

trajectory, considering only the HSC/MPP sub-populations. C. GATA1. D. KLF1. E. AZU1. F.
HBG1. G. HBA1. H. GYPA. I. HDC. J. ITGA2B. K. MPEG1. L. IL3RA. M. IRF8. N. CD79B. O.
IL1RL1. P. LYZ. Q. MPO. R. CSF1R. Force-Directed Graph - FDG; ForceAtlas2 - FA2; HSC/MPPs -

haematopoietic stem cells/multipotent progenitors; HSC/MPPs-Cycle - cycling haematopoietic stem

cells/multipotent progenitors; MEMPs - megakaryocyte-erythroid-mast progenitors; MEMPs-Cycle -

cycling megakaryocyte-erythroid-mast progenitors; GPs - granulocytic progenitors; LMPs - lympho-

myeloid progenitors; pDCs - plasmacytoid dendritic cells.
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Supplementary figure 7 – Colony formation and the lineage output of CD-REF cells and phe-
notypic HSCs isolated from the foetal liver and femur, related to Figure 6. A-B. Stacked bar

chart showing the differentiation potential and efficiency of colony formation of CD-REF cells com-

pared to the phenotypic HSCs isolated from foetal liver and femur. The y-axis shows the percentage

of colonies. The colonies have been divided by their differentiation potential as determined by FACS,

namely: multilineage, bilineage, unilineage, and undifferentiated. Data from two different experi-

ments are shown. C. Representative FACS plot showing the lineage composition of a quadrilineage

colony.



Supplementary table 1 – Cell-surface markers used to isolate cell types, related to Figure 1.

Phenotypic cell type Cell-surface markers
HSCs Lin- CD34+ CD38- CD45RA- CD90+ CD49f+/-

MPPs Lin- CD34+ CD38- CD90- CD45RA- CD49f- CD10- CD7-

CMPs Lin- CD34+ CD38+ CD90- CD45RA- CD49f- CD10- CD7-

MEPs Lin- CD34+ CD38+ CD90- CD45RA- CD49f- CD10- CD7- CD123-

GMPs Lin- CD34+ CD38+ CD90- CD45RA+ CD49f- CD10- CD7- CD123+/-

CLPs Lin-, CD34+ CD38+ CD90- CD45RA+ CD49f - CD10+ CD7-

T cells CD45+ CD3+

NK cells CD45+ CD56+

ILCs Lin+/- CD45+ CD127+

Monocytes CD34- CD33+ CD14+

Dendritic cells Lin- CD45+ CD123+

Mast cells CD45+ CD203c+

Basophils CD45+ CD203c+ CD63+

Neutrophils CD45+ CD15+ CD16+

Eosinophils CD45+ CD15+ CD16-

Erythroid progenitors CD36+ CD71+

Erythrocytes CD235a+

Immature MKs Lin- CD34- CD41+ CD61+ CD42-

Mature MKs Lin- CD34- CD41+ CD61+ CD42+

Pro-B cells CD45+ CD34+ CD19+ CD10+

Pre-B cells CD45+ CD34- CD19+ CD10+

Mature B cells CD45+ CD34- CD19+ CD10-

Endothelial cells CD31+ CD144+ CD309+



Supplementary table 2 – Phenotypic cell types per organ, related to Figure 1.

Phenotypic cell type Femur Hip Liver Total
Committed progenitors (Lin-CD34+CD38+) 291 128 257 676

Non-committed progenitors (Lin-CD34+CD38-) 262 114 187 563

Basophils 76 0 47 123

CLPs 33 0 41 74

CMPs 130 12 76 218

CD62L-CD52-CD114-CD125-CD117+ 79 0 86 165

Dendritic cells 85 0 87 172

Erythroid progenitors 126 0 0 126

Endothelial cells 35 0 29 64

Eosinophils 20 0 29 49

Erythrocytes 22 0 39 61

GMPs 117 7 88 212

HSCs 50 8 67 125

ILCs 75 0 83 158

MEPs 131 22 95 248

Immature MKs 48 0 0 48

Mature MKs 31 0 0 31

Monocytes 45 0 43 88

MPPs 121 38 111 270

Bone marrow cells 137 0 0 137

Mast cells 41 0 0 41

Neutrophils 39 0 31 70

NK-cell 74 0 0 74

CD-REF cells 500 0 0 500

T cells 79 0 0 79

Mature B cells 20 0 22 42

Pre-B cells 34 0 26 60

Pro-B cells 26 0 4 30

Total 2727 329 1448 4504



Supplementary table 3 – scRNA-Seq samples, related to the STAR Methods section.

No. Gates Min
#counts

Max
#counts

Min
#genes

Max
#genes

Max
%mito

1
Non-committed progenitors

Committed progenitors
10,000 1,750,000 200 7,500 40

2

Non-committed progenitors

Committed progenitors

HSCs

10,000 2,000,000 200 7,500 40

3

Non-committed progenitors

Committed progenitors

HSCs

MPPs

CMPs

GMPs

MEPs

10,000 1,500,000 200 7,500 40

4

Non-committed progenitors

Committed progenitors

HSCs

MPPs

CMPs

GMPs

MEPs

10,000 2,750,000 200 9,000 40

5
Immature MKs

Mature MKs
10,000 1,750,000 200 9,000 40

6

Non-committed progenitors

Committed progenitors

HSCs

MPPs

CMPs

GMPs

MEPs

10,000 1,500,000 350 7,500 40

7 Bone marrow cells 400 1,750,000 200 7,500 60

8

Endothelial cells

Pro-B cells

Pre-B cells

Mature B

400 1,500,000 200 7,500 60

9

CLPs

GMPs

Monocytes

1,000 2,000,000 200 7,500 40

10 CD-REF cells 1,000 550,000 200 6,000 40

11

ILCs

NK cells

T cells

2,000 1,500,000 200 10,000 40

12

Neutrophils

Eosinophils

Erythrocytes

2,000 1,500,000 200 6,000 40

13

Dendritic cells

Mast cells

Basophils

2,000 1,500,000 200 7,500 40

14 Erythroid progenitors 500 3,000,000 100 4,500 40

15
CD62L- CD52- CD114-

CD125- CD117+
2,000 1,000,000 1,200 7,000 40


