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Abstract

This article shows how new time series models can used to track the

progress of an epidemic, forecast key variables and evaluate the e¤ects

of policies. The univariate framework of Harvey and Kattuman (2020)

is extended to model the relationship between two or more series, and

the role of common trends is discussed. Data on daily deaths from

Covid-19 in Italy and the UK provides an example of leading indicators

when there is balanced growth. When growth is not balanced, the

model can be extended by including a nonstationary component in the

leading series. The viability of this model is investigated by examining

the relationship between new cases and deaths in the Florida second

wave of summer 2020. The balanced growth framework is then used

as the basis for policy evaluation by showing how some variables can

serve as control groups for a target variable. This approach is used

to investigate the consequences of Sweden�s soft lockdown coronavirus

policy.

KEYWORDS: Balanced growth; Co-integration; Covid-19; Gom-

pertz curve; Kalman �lter; Stochastic trend.
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1 Introduction

The aim of this article1 is to show how time series models2 can be used to

track the progress of an epidemic, forecast key variables and evaluate the

e¤ects of policies. Developing e¤ective techniques to accomplish these tasks

is of some importance, because, as documented by Ioannidis et al (2020), the

performance of many of the methods used to forecast the current Covid-19

epidemic has not been impressive. The new models draw much of their in-

spiration from time series econometrics. However, the characteristics of time

series for epidemics are di¤erent from those of most time series in economics

and these di¤erences need to be taken into account.

Harvey and Kattuman (2020a) - hereafter HK - developed a class of uni-

variate time series models for predicting future values of a variable which

when cumulated is subject to an unknown saturation level. In these models,

the logarithm of the growth rate of the cumulated series depends on a time

trend. Allowing this trend to be time-varying introduces �exibility which,

in the context of an epidemic, enables the e¤ects of changes in policy and

population behaviour to be tracked. Nowcasts and forecasts of the variables

of interest, such as the daily number of cases, its growth rate and the instan-

taneous reproduction number, Rt; can be made. Estimation of the models

is by maximum likelihood and goodness of �t can be assessed by standard

statistical test procedures.

1This is a much revised version of my November 2020 National Institute of Economic
and Social Research discussion paper, NIESR DP 517.

2The application of classical time series methods to data on epidemics is relatively
undeveloped. Most of the emphasis has been on building �semi-mechanistic�models to
simulate the path of an epidemic under di¤erent assumptions about behaviour and policies;
see Avery et al (2020)
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Time series models can also be used to address other questions by ex-

ploring relationships between di¤erent series. One application concerns how

the time path of an epidemic in a country which su¤ers an outbreak be-

fore another can be used as a leading indicator. The rationale for modeling

the logarithm of the growth rate (of the cumulated series) comes from the

properties of a Gompertz growth curve and when two such curves follow

the same time path, but one lags the other, the trends in the series on the

logarithms of the growth rate are a constant distance apart. This suggests

that when the trends are stochastic, the same will be true. This situation,

known as balanced growth, arises in macroeconomics and is a special case of

what econometricians call co-integration; see, for example, Stock and Watson

(1988). The situation is illustrated by showing how the time path of deaths

in the UK in the �rst few months of the coronavirus epidemic follows the

time path of deaths in Italy two weeks earlier.

The requirement that two series exhibit balanced growth, while highly

desirable, is not necessary for one to be a good leading indicator of the other.

The need for additional �exibility is explored with data from the �second

wave�of coronavirus in Florida in the early part of the summer of 2020 where

it is shown how daily new cases can potentially o¤er improved forecasts of

deaths in two to three weeks time. The forecasts are based on a bivariate

unobserved component time series model that combines the dynamic infor-

mation in the two series by a common trend speci�ed as an integrated random

walk but includes an independent random walk component for new cases.

Multivariate time series models can be used to assess the impact of policies

using control groups. The impact of lockdown is explored by developing

the ideas associated with balanced growth to try to estimate the number of

coronavirus deaths in Sweden had a more stringent lockdown been imposed.

The methodology draws on the study of control groups in time series by

Harvey and Thiele (2020). It is argued that the fact that death rates in

Sweden were roughly ten times those in neighbouring countries could be
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misleading; the growth paths of the UK and Italy provide more relevant

information. A comparison is made with studies based on the synthetic

control method of Abadie et al (2010, 2015).

2 Growth curves and time series models

This section sets out the basic model in which the logarithm of the growth

rate of the cumulated series consists of a stochastic trend plus an irregular

term. It is then shown how the framework may be extended to model the

relationship between two series.

2.1 Dynamic trend models

The observational model uses data on the time series of the cumulated total

of con�rmed cases or deaths, Yt; t = 0; 1; :::; T; and the daily change, yt =

�Yt = Yt � Yt�1: HK show how the theory of generalized logistic growth

curves suggests models for ln yt and ln gt, where gt = yt=Yt�1 or � lnYt: For

the special case of the Gompertz growth curve

ln yt = lnYt�1 + � � 
t+ "t; 
 > 0; t = 1; :::; T; (1)

and

ln gt = � � 
t+ "t; t = 1; :::; T; (2)

where "t is a random disturbance term.

A stochastic, or time-varying, trend may be introduced into (2), to give

the dynamic trend model

ln gt = �t + "t; "t � NID(0; �2"); t = 1; :::; T; (3)
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where
�t = �t�1 � 
t�1 + �t; �t � NID(0; �2�);


t = 
t�1 + �t; �t � NID(0; �2�);
(4)

and the normally distributed irregular, level and slope disturbances, "t; �t
and �t, respectively, are mutually independent. When �2� is positive, but

�2� = 0; the trend is an integrated random walk (IRW). HK found an IRW

trend to be particularly useful for tracking an epidemic and it will be adopted

in the applications here. The speed with which a trend adapts to a change

depends on the signal-noise ratio, which for the IRW is q� = �2�=�
2
"; the trend

is deterministic when q� = 0:

Allowing 
t to change over time means that the progress of the epidemic

is no longer tied to the proportion of the population infected as it would

be if Yt followed a deterministic growth curve. Instead the model adapts to

movements brought about by changes in behaviour and policies. If 
t falls to

zero, the growth in Yt becomes exponential while a negative 
t means that

the growth rate is increasing.

Additional components, such as day of the week e¤ects, can be added

to (3). These may be deterministic or stochastic. Explanatory variables,

including interventions, can also be included, as may stationary components,

such as autoregressive processes. All these models can be handled using

techniques based on state space models and the Kalman �lter; see Durbin

and Koopman (2012). Here the STAMP package of Koopman et al. (2020)

is used. Estimation of the unknown variance parameters is by maximum

likelihood (ML). Diagnostic tests for normality and residual serial correlation

are based on the one-step ahead prediction errors, vt = ln gt � �tpt�1; t =

3; :::; T:

The KF outputs the estimates and forecasts of the state vector (�t; 
t)
0:

Estimates at time t conditional on information up to and including time t

are denoted (�tpt; 
tpt)
0, while predictions j steps ahead are (�t+jpt; 
t+jpt)

0: The

smoother, which estimates the state at time t based on all T observations in
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the series, is denoted (�tpT ; 
tpT )
0.

Remark 1 When the observations are small, a negative binomial distribu-
tion for yt; conditional on past observations, may be appropriate. HK show

how the model may be modi�ed to deal with this possibility. However, the

numbers in the applications here are big enough to allow yt to be treated as

conditionally lognormal and hence for the conditional distribution of ln gt to

be considered normal.

2.2 Forecasts

The forecasts of the trend in future values of ln gt in the dynamic Gompertz

model are given by �T+`jT = �T jT � 
T jT `; ` = 1; 2; ::; where �T jT and 
T jT
are the KF estimates of �T and 
T at the end of the sample. Forecasts of the

trend in the daily observations are obtained from a recursion for the trend

in their cumulative total, Yt, namely

�T+`jT = �T+`�1jT (1 + gT+`jT ); ` = 1; 2; :: (5)

where gT+`jT = exp �T+`jT and �T jT = YT . The trend in the daily �gures is

then

�y;T+`jT = gT+`jT�T+`�1jT ; ` = 1; 2; :: (6)

Daily e¤ects can be added to �t: In this case forecasts of the observations

themselves, that is byT+`jT and bYT+`jT ; are given by adding the �ltered value
of the daily component to the trend component, �T+`jT .

2.3 Comparing di¤erent growth curves

The Gompertz growth curve lies behind the notion of setting up time series

models in which the logarithm of the growth rate of the cumulative total of

a variable follows a trend. It is therefore able to provide insight on how to

formulate and interpret models linking several series.
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Figure 1: Gompertz incidence curves with 
 = 0:15; �1 = 20 for the left
hand curve and �2 = 100 for the right hand curves.

The Gompertz growth curve is

�(t) = � exp(��e�
t); �; 
 > 0; �1 < t <1; (7)

where 
 is a growth rate parameter, � is the upper bound or saturation level

and � re�ects initial conditions. The associated incidence curve is

d�(t)=dt = �0(t) = 
��(t) exp(�
t);

with a peak at t = 
�1 ln�: Figure 1 shows an incidence curve with a peak

at t = 19:97, together with the same curve shifted to the right so the peak

is at 30:71: A curve above the right hand curve is also shown; this is higher

because the value of � is 1400 rather than 1000 as it is for the other two

curves. In all cases 
 = 0:15; but for the left hand curve � is 20 whereas for

the right hand curves it is 100.
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Figure 2: Logarithms of the growth rates for incidence curves in Figure 1;

 = 0:15; �1 = 20 and �2 = 100 (upper line):

Although the right hand curves in Figure 1 clearly lag the left hand one,

it is not immediately evident how to model the relationship. However, the

logarithms of the growth rates of �(t) are

ln g(t) = � � 
t; t � 0; (8)

where � = ln�
; compare (2). Figure 2 shows the two lines for ln g(t) running

in parallel. The distance between them depends on the intercepts, �; which

in turn depend on the initialization parameter, �: The height of the incidence

curve, which depends on the saturation level, �; is irrelevant; as a result the

lines corresponding to the two right hand incidence curves in Figure 1 are

identical. This is important because it means that small populations can be

compared with big ones: size does not matter.
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When two lines are parallel, the upper line lags the lower one by

k =
�2 � �1



=
ln�2 � ln�1



; (9)

where �1 and �2 are the intercepts of the lower and upper lines respectively

and �1 and �2 are the corresponding initial conditions. In Figure 2 the lag

is k = 10: 73:When the 
0s are di¤erent, the epidemic progresses at di¤erent

speeds. The lines for ln g(t) are no longer parallel and the time lag is no

longer constant.

3 A model for leading indicators

Now consider observational models of the form (2) for two time series which

are on the same growth path because 
1 = 
2 but the �rst series leads the

second by k time periods. The observations run from t = 1 to T but when

the �rst series is lagged by k time periods, ln g1;t�k runs from t = k + 1 to

T + k: Subtracting the �rst series from the second gives

ln g2t = � + ln g1;t�k + "t; (10)

where � = ln(�2=�1) and the disturbance term is "t = "2t � "1;t�k. The

equation takes the same form when the trends are stochastic, so long as

there is balanced growth. The disturbance, "t; can replaced by any stationary

process.

When the two series are not on the same growth path, there is no longer a

value of k for the contrast in (10) that makes it stationary. The stationarity

test of Kwiatkowski et al (1992) - the KPSS test- can be used to test for this

possibility.

A bivariate time series model combines the dynamic information in the

target series with that in the leading indicator. It is set up by lagging the

observations on the leading indicator so that they are aligned with the target.

9



Hence de�ning g(k)1;t = g1;t�k for t = k + 1; ::; T + k gives

ln g
(k)
1;t = �t +  t + "1t; t = k + 1; ::::; T + k; (11)

ln g2t = � + �t + "2t; t = k + 1; ::::; T:

The k future values of ln g2;T+j; j = 1; ::; k are treated as missing observa-

tions3. The trend, �t; is an IRW that is designed to capture the growth path

of the target series. Its initial level has been (arbitrarily) assigned to the �rst

series; hence the need for a constant term, �; in the second. The role of the

other stochastic component,  t; is to allow for deviations of the leading indi-

cator from the balanced growth path. A convenient speci�cation for it is the

�rst-order autoregressive process,  t = � t�1 + �t; where �t is NID(0; �
2
�):

All disturbances, including "1t and "2t; are Gaussian and assumed to be mu-

tually as well as serially independent. Only a single lag is present in (11).

More lags could be included, but the aim is �nd a viable leading indicator

for movements in the trend rather than to estimate a distributed lag for the

observations. Estimation of (11) is by state space methods. As new observa-

tions become available, nowcasts and forecasts are updated by the Kalman

�lter.

When j�j < 1, the series are co-integrated with balanced growth. In the
absence of balanced growth, the suggestion is to let  t be a random walk,

by setting � = 1. The value of k is then based on experimentation and prior

information about what might constitute a reasonable lag. The hope is that

the RW speci�cation for  t enables its movements to be separated from those

in the IRW trend.

In a univariate model, Harvey and Kattuman (2020b) use �ltered esti-

mates of gy;t; given by gy;tjt = gtjt� 
tjt; to track the progress of an epidemic.
A corresponding estimator of the instantaneous reproduction number, Rt;

can be constructed in a number of ways, as in Wallinga and Lipsitch (2008).

3If the �rst k observations on the second series are reliable they could be used by
treating the �rst k values of the �rst series as missing.
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The most practical for Covid-19 are

eRt;� = 1 + �gy;tjt and eRet;� = exp(�gy;tjt); (12)

where � is the generation interval, which is the number of days that must

elapse before an infected person can transmit the disease; setting � = 4 is a

good choice. In the bivariate leading indicator model, the �ltered estimates,

gtjt and 
tjt; for the second series give the nowcast of gy;tjt at time t = T and

the forecast at t = T + k. Forecasts can also be made beyond t = T + k;

but without the bene�t of corresponding values of the leading indicator. The

Kalman �lter and smoother implicitly weights observations in both series in

order to compute gtjt and 
tjt for the target.

3.1 Italy and the UK

Figure 3 shows the daily deaths in Italy and the UK from March 2nd to

June 20th, 2020; after that the numbers for Italy start to become small.

The �gures are for when the deaths were recorded rather than when they

occured. Series based on date of death would not have the daily pattern but

were di¢ cult to obtain at that time. Data sources are given in the Appendix.

Italy clearly leads the UK but the relationship is captured more precisely

in Figure 4 which shows the logarithms of the growth rates (LDL) of total

deaths. The UK numbers are small at the beginning of March and so there are

missing observations. A lag of 14 is not inconsistent with prior information

and it has the attraction of lining up the days of the week in the two countries.

Figure 5 shows the LDL series with Italy lagged by 14 days together with the

contrast between the two countries obtained by subtracting Italy from the

UK. The contrast series appears to be stationary with a mean close to zero;

without the lag for Italy the values at the end of March and the beginning

of April tend to be higher than the others, re�ecting the later UK lockdown.

Estimating a regression model with daily dummy variables removed most
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Figure 3: Daily deaths in Italy and UK

of the serial correlation and gave a mean of e� = �0:083; with a standard
error on 0:035: The diagnostic statistics were4: r(1) = �0:06; Q(14) = 13:40;
BS = 1:85 and H = 1:24:

Fitting a bivariate time series model of the form (11), starting on March

16th and �nishing on July 5th, gave a slowly changing trend that was close

to being deterministic. The �1t term was excluded but a daily component

was included. The estimate of the daily growth rate of UK deaths 14 days

beyond the �nal observation on June 20th was gy;T+kjT = �0:058; giving a
forecast of eRT+k;4 = 0:77.

4r(1) is the autocorrelation at lag one, Q(P) is Box-Ljung statistic with P autocorrela-
tions, BS is the Bowman-Shenton normality statistic and H is a heteroscedasticity statistic
constructed as the ratio of the sum of squares in the last third of the sample to the sum
of squares in the �rst third.
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Figure 4: Logarithms of the growth rates (LDL) of total deaths in UK and
Italy
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Figure 5: LDL series from March 16th to June 20th with Italy lagged by 14
days together with the contrast LDLUK-LDLItaly
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3.2 Deaths and New Cases in Florida

Daily cases of Covid-19 in the US state of Florida peaked in early April.

There was then a decline following a lockdown during April. After April

restrictions were eased and there was a leveling out in May, followed by a

sharp rise in June. This second wave poses a challenge for a model in which

new cases are used as a leading indicator for deaths. The model deals with

the second wave by allowing 
tjt to become negative; estimates of Rt can still

be obtained from gy;tjt; as in (12).

Aside from the model having to deal with a situation where new cases

and deaths rise and fall, there is the problem that the basis on which new

cases are recorded changes over time. At the beginning of the pandemic,

new cases in many countries were primarily hospital admissions, but over

time testing became more widespread. A balanced growth model assumes

that the growth rate in deaths is the same as the growth rate in new cases.

When this does not hold the inclusion of a stochastic trend in the model

o¤ers a way of dealing with the discrepancy. In the case of Florida there was

an increase in testing in May, although the growth rate in tests was roughly

constant from the end of May onwards. This suggests that the growth rate

of con�rmed new cases may still be a good indicator of the path of new

infections.

The observations, particularly deaths, have a strong weekly pattern. A

clearer impression of the underlying trend is given by Figure 6 which shows

a seven day moving average of the logarithms of the growth rates of total

new cases and deaths from March 29th to July 19th 2020 inclusive. The fact

that cases are leading is clear with the gap increasing over time because of

increased testing. New cases peak some time before the end of the sample

whereas deaths appear to be at their peak, something con�rmed by later

observations.

The lag in (11) is chosen so as to get maximum bene�t for new cases as

a leading indicator. It is not trying to model the distribution of days from
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Figure 6: Seven day MA of LDL Deaths in Florida, New Cases and New
Cases lagged 18 days (dotted line)

infection to death although the choice of k may be roughly aligned with the

mean time to death. After some experimentation it was decided to �x the

lag at 18.

The model, including day of the week variables, was �tted to the Florida

data from March 29th till July 19th, with the new cases shifted forward

18 days so as to end on August 6th; thus k = 18 in (11). Specifying  t
as a �rst-order autoregressive process gave an estimated � of 0.998, so a

RW seems appropriate. The smoothed estimates of the daily component for

deaths and the RW are shown in Figure 7; the high variation in the daily

component coincides with relatively low numbers of deaths. The size and

variability of the daily component in deaths was much bigger than for new

cases. Similarly the prediction error variance of 0.115 for new cases was less

than half the 0.253 obtained for deaths. Little serial correlation remained in

the residuals for deaths: the Box-Ljung Q-statistic for the �rst 18 residual
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Figure 7: Additional RW component in cases and daily component in deaths

autocorrelations was 8.16, while the corresponding �gure for cases was a

little higher5 at 25.01. The signal-noise ratio was estimated as 0.00037, so

the trend changes relatively slowly but is still able to adapt to changes in

direction.

Figure 8 shows the forecasts of of the logarithm of the growth rate deaths,

obtained by using the leading indicator, together with the actual observations

from July 20th to August 6th. The dotted line is the trend in deaths. As

can be seen, the model forsees the turning point.

An estimate of the growth rate of the epidemic based on deaths can be

computed from the estimates of the level and slope of the LDL Death series on

August 6th. These were�3:945 and�0:0105 respectively giving an estimated
growth rate, gy; of exp(�3:945)�0:0105 = 0:0089 and, correspondly, Retjt;4 =
1: 036: It can be seen from the graph that the growth rate of LDLFlDeath

5The suggestion in the STAMP manual is to test against a chi-square variable with
allowance made for the loss in degrees of freedom due to estimated parameters which here
is six. Thus the chi-square may be taken to have 12 degrees of freedom
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Figure 8: Forecasts and trend of the logarithm of the growth rate of deaths
(dots), obtained by using the leading indicator, together with the actual
observations from July 20th to August 6th; observations before July 20th
shown by thick line.

on July 19th is still positive, and estimating a univariate model up to this

point gave Retjt;4 = 1:287 with the forecasts contining on a upward path,

overshooting the actual observations.

4 Policy interventions and control groups

The balanced growth framework can be used as the basis for policy evalua-

tion by showing how some variables can serve as control groups for a target

variable. This approach is used to investigate the consequences of Sweden�s

soft lockdown coronavirus policy in the early part of 2020. A comparison is

then made with studies based on the method of synthetic control.
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Figure 9: Seven day moving averages of the logarithms of the growth rate
from March 18th to July 22nd

4.1 Fewer deaths in Sweden with a full lockdown ?

Sweden did not opt for the full lockdown that other European countries

imposed in March. Restrictions were minimal: the government recommended

frequent handwashing, working from home, self-isolation for those who felt ill

or were over 70 and social distancing6; see, for example, Kamerlin and Kasson

(2020). Did this policy lead to the number of deaths being signi�cantly higher

than it might have been under a full lockdown? To answer this question

we need to determine the growth path that Sweden would most likely have

followed under a hard lockdown.

The analysis is based on daily deaths in Sweden, UK and Italy (lagged

14 days) from 18th March to 22nd July; by the end of July numbers had

become small. A comparison of actual and potential growth paths is best

6Carl Bildt, a former prime minister, was quoted as saying �Swedes, especially of the
older generation, have a genetic disposition to social distancing anyway.�
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carried out with the logarithms of growth rates of the cumulative total for

the reasons discussed earlier. Although Sweden is much smaller than the UK

and Italy, there is no need to take deaths per 100,000 because it follows from

the discussion in sub-section 2.3 that standardizing in this way leaves the

the growth rate, gt; unchanged. Because the day of the week e¤ect is very

strong, particularly in the UK, the logarithms of growth rates were smoothed

with a seven day moving average, centred on the fourth day. The graph in

Figure 9 shows that Sweden initially fell at the same rate as the UK and

Italy but then started to diverge7 around 24th April, about a month after

the UK lockdown began on March 23rd.

If Sweden had kept on the same growth path as the UK and Italy there

would have been fewer deaths. An estimate of the number of deaths under

this alternative scenario is given by reference to the forecasting equations in

sub-section 2.2. Let t = m denote the date of divergence and let b�t denote the
values of �t estimated for the lockdown growth path using the data on UK

and Italy. Since the moving averages are quite smooth, b�t was constructed as
a simple average of the two countries, rather than by restricted least squares

(RLS) as8 in Harvey and Thiele (2020). Then

b�m+j = b�m+j�1(1 + bgm+j) ' b�m+j�1 expb�m+j; j = 1; 2; ::; T �m: (13)

The initial value is b�m = Ym; or a weighted average around that point.

7The growth path of deaths in the UK and Italy di¤ers somewhat from the growth path
of new cases. The growth rate of ln gt for new cases, that is 
t; drops signi�cantly within
a little over two weeks from the start of lockdown; HK estimate the UK fall by �tting
intervention variables. A corresponding sharp drop in 
t is less evident in the deaths data.
The divergence of Sweden from Italy and the UK is more a consequence of the Swedish 
t
increasing, rather than the 
0ts falling for the other countries.

8The general methodology is to select a set of controls from a donor pool by using the
KPSS test to determine which series are on a balanced growth path with the target. The
control group weighting is then determined by RLS. The complication here is that when
there is an intervention balanced growth may require lagging some of the series.
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Solving the recursion gives

bYT = b�T = Ym

T�mY
j=1

(1 + bgm+j) ' Ym exp

T�mX
j=1

b�m+j (14)

as the estimated total number of deaths, up to time T; under the lockdown

scenario. The estimated number of deaths after time m is bYT �Ym while the
actual is YT � Ym: Here T is July 22nd; the number of deaths after that is

relatively small.

The total on April 24th was 2236 and using formula (14) gives an estimate

of 4062 for July 22nd as opposed to an actual �gure of 5722, a di¤erence of

1660. The sensitivity to the initial value can be gauged by noting that the

estimates using the totals two days before and two days after April 24th are

3808 and 4378 respectively.

One way of reducing the dependence on the starting value is to estimate

the underlying total for Sweden using formula (14) with bgm+j replaced by
the actual Swedish values. This gave a total of 5657. The ratio of bYT for
the lockdown control group to that of Sweden is 1:816=2:530 = 0:718: ForbYT � Ym it is 0:816=1:530 = 0:533: This implies that the actual increase

from April 24th, which was 3486, could have been 1902. The �rst method

gave 4062� 2236 = 1826: The overall conclusion is that, between April 24th
and July 22nd, there were perhaps forty to forty-�ve per cent more deaths

than there might have been under a more stringent lockdown of the kind

implemented in the UK and Italy.

It is worth noting that although Sweden may have had more deaths under

its soft lockdown, this does not mean a higher death rate than countries which

had a hard lockdown. On Sept 4th, the �gures for deaths per one million

for Sweden were 577 as against 611 for the UK and 587 for Italy. The rates

for Denmark, Norway and Finland were 108, 49 and 61 respectively, but this

should not lead one to infer that the soft Swedish lockdown resulted in a

death rate of perhaps ten times what it might have been.
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The number of deaths in Denmark is too small to allow a full analysis

based on the logarithms of growth rates. The variability is high and after

mid-May there are often days when no deaths occur. Numbers in Norway

and Finland are lower still. However, up to the end of April the logarithm of

the growth rate for Denmark is informative. Figure 10 shows the logarithms

of the growth rates for Sweden, Italy, UK and Denmark. Denmark is on a

similar growth path to that of the other countries but it is lower than the UK

because coronavirus may have arrived earlier and lockdown was imposed on

March 13th; the gap is consistent with Denmark leading the UK by about

a week. During this period deaths in Denmark were much lower than in

Sweden even though they were on the same growth path until close to the

end of April. This di¤erence therefore seems to be for reasons not directly

connected to the policies of the two countries on lockdown.

On April 30th 2714 deaths had been recorded in Sweden as against 443

in Denmark, a ratio of 6.13. On April 24th the �gures were 2236 and 394, a

ratio of 5.68. (But bear in mind that the population of Sweden is 1.76 times

that of Denmark so in per capita terms the ratio is closer to three.) On July

22nd the ratio of Swedish to Danish deaths had risen to 9.36. However, the

ratio of the lockdown estimate of 4062 to the 611 Danish deaths is only 6.64

which is not far from the ratio at the end of April. Thus the estimate of

the number of deaths obtained using the control group seems quite plausible.

The conclusion is that for reasons unconnected with lockdown policy the

death rate per head in Sweden was about three and a half times that in

Denmark. The less stringent lockdown then raised this ratio to nearly �ve

and a half.

4.2 Synthetic control

A number of researchers have anaysed the Swedish experience using the

method of synthetic control (SC). The recent paper by Cho (2020) is a care-

ful and thoughtful analysis, containing a number of references to earlier pa-
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Figure 10: Seven day moving averages of the logarithms of the growth rate
from March 18th to April 30th.

pers on the topic. Cho uses daily infection case data per million people to

construct a synthetic control variable for Sweden using observations from

February 29th to March 24th. The countries and their SC weights were:

Finland (0.49), Greece (0.24), Norway (0.22), Denmark (0.03) and Estonia

(0.02). The choice of these countries, with the exception of Greece, is not

unexpected9. Cho concludes that, for the 75 days post-lockdown days, from

March 25th until early June, synthetic Sweden is 75% lower than actual

Sweden. The SC method cannot be applied directly to deaths because, as

note above, the numbers for the key control group candidates are too small

so Cho goes on to examine excess deaths by combining the analysis of new

cases with weekly data on excess mortality. He concludes that excess deaths

were about 25% less in synthetic Sweden as compared with actual Sweden.

What is striking is that in the balanced growth analysis the reduction in

9In an earlier study, Born et al (2020) selected a somewhat di¤erent group, namely the
Netherlands (0.39), Denmark (0.26), Finland (0.19), Norway (0.15) and Portugal (0.01).
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deaths is quite close, at 29%, and converting to excess deaths might end up

with a �gure that is closer still.

Cho, in common with other SC researchers like Born et al (2020), uses

raw cases numbers, standardized for population. However, the logarithm of

the growth rate could also be used and since this yields better behaved time

series it is the more appropriate path to take. It would be interesting to see

if it yields the same SC group. This seems unlikely. Overall the balanced

growth approach is simpler and more transparent. Harvey and Thiele (2020)

reach the same conclusion in their analysis of the seminal SC applications in

Abadie et al (2010, 2015).

5 Conclusion

The aim of this article has been to provide a methodological framework for

the statistical analysis of the relationship between time series of the kind

that are relevant for tracking and forecasting epidemics and analysing the

e¤ects of policy. The examples illustrate how the methods may be applied

in practice, although a degree of caution is needed in interpreting the results

because of data revisisions and di¤erent de�nitions of what constitutes a

Covid-19 death.

The growth path of an epidemic is best captured by �tting a stochastic

trend to the logarithm of the growth rate of the cumulated series. When

two series are on a balanced growth path, the di¤erence between them is

stationary. The relationship between deaths from coronavirus in the UK and

Italy in the �rst half of 2020 is a good example of balanced growth, with

deaths in Italy fourteen days earlier providing a leading indicator for deaths

in the UK. A bivariate state space model takes full account of the dynamics in

both series and, by extracting the common underlying trend, yields estimates

of the daily growth rate of an epidemic and the associated value of Rt:

The balanced growth model was extended by including a random walk
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component. This allows the growth path of the leading indicator to deviate

from the growth path of the target series. A model of this kind linking

deaths to new cases in Florida was estimated for the period covering the

second wave in early summer 2020. The forecasts made for deaths while

they were still rising are remarkably successful in picking up the subsequent

downward movement.

Policy evaluation can be carried out by using some series as control groups

for others. A common trend or, better still, balanced growth is the key

ingredient. The Swedish policy response to coronavirus provides an example

of the methodology. It is shown that the average of the growth paths of deaths

in the UK and Italy yields a suitable control group for deaths in Sweden. The

Swedish growth path is initially the same as those of the UK and Italy but it

diverges towards the end of April. The di¤erence in the growth paths then

enables the implications of the Swedish soft lockdown policy to be assessed.

The analysis suggests that, between April 24th and July 22nd, there were

perhaps forty to forty-�ve per cent more deaths than there might have been

under a more stringent lockdown of the kind implemented in the UK and

Italy.
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A Data sources

The data for European countries was obtained from the European Centre for

Disease Prevention and Control (ECDC) website, https://www.ecdc.europa.eu/en/publications-

data/download-todays-data-geographic-distribution-covid-19-cases-worldwide,.

For Florida the source was : https://covidtracking.com/data. The data were

obtained at the end of August and the beginning of September. Data can be

subject to revisions. For example the UK de�nition of deaths was changed

in August to include only people who had a laboratory-con�rmed positive

COVID-19 test and had died within 28 days of the date the test result was

reported. Before that it included anybody who had ever tested positive for
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COVID-19 no matter how long before the actual death.

Case-fatality statistics in Italy are based on de�ning COVID-19�related

deaths as those occurring in patients who test positive for SARS-CoV-2

viaRTPCR, independently of pre-existing diseases that may have caused

death. This method may have resulted in overestimation; see Onder (2020).
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