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Metabolic memory underlying minimal residual
disease in breast cancer
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Abstract

Tumor relapse from treatment-resistant cells (minimal residual
disease, MRD) underlies most breast cancer-related deaths. Yet,
the molecular characteristics defining their malignancy have
largely remained elusive. Here, we integrated multi-omics data
from a tractable organoid system with a metabolic modeling
approach to uncover the metabolic and regulatory idiosyncrasies
of the MRD. We find that the resistant cells, despite their non-
proliferative phenotype and the absence of oncogenic signaling,
feature increased glycolysis and activity of certain urea cycle
enzyme reminiscent of the tumor. This metabolic distinctiveness
was also evident in a mouse model and in transcriptomic data
from patients following neo-adjuvant therapy. We further identi-
fied a marked similarity in DNA methylation profiles between
tumor and residual cells. Taken together, our data reveal a
metabolic and epigenetic memory of the treatment-resistant
cells. We further demonstrate that the memorized elevated
glycolysis in MRD is crucial for their survival and can be
targeted using a small-molecule inhibitor without impacting
normal cells. The metabolic aberrances of MRD thus offer new
therapeutic opportunities for post-treatment care to prevent
breast tumor recurrence.
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Introduction

Recent advances in drug development and targeted therapy success-

fully manage to silence the tumor driving oncogenes, leading to

tumor regression and treatment success (Varmus et al, 2005; Wein-

stein & Joe, 2008). However, survival of treatment-resistant cancer

cells, which are commonly referred to as minimal residual disease

(MRD), poses a severe problem. MRD is estimated to lead to mostly

incurable relapse in 20–40% of breast cancer patients within a period

from a few years up to decades after the initial treatment (Aguirre-

Ghiso, 2007; Ahmad, 2013). Understanding and tackling MRD is

therefore a major challenge to improving treatment options for

breast cancer survivors (Klein, 2011; Cancer Research UK, 2017).

Minimal residual disease is not accessible for direct functional

analysis in breast cancer patients due to the small number of these

cells and the lack of yet any clear markers to identify them within

the patient tissue (Blatter & Rottenberg, 2015). To access the other-

wise difficult-to-obtain residual cells, a preclinical mouse model of

breast cancer was previously developed, together with a primary

mammary organoid culture obtained from these mice (Moody et al,

2002; Podsypanina et al, 2008; Jechlinger et al, 2009; Jechlinger,

2015; Havas et al, 2017). These models harbor doxycycline-

inducible oncogenes encoding hMyc and Neu/Her2, which allow

controlled tumor induction and regression of tumors toward MRD.

The resulting tractable models were already successfully employed

to compare treatment-resistant cells to normal breast cells and

discovered a de-regulated lipid metabolism together with oxidative

stress as a potential Achilles heel for MRD (Havas et al, 2017). Here,

we build on these results to obtain a detailed molecular understand-

ing of MRD through a comprehensive comparison of the normal,

tumor, and treatment-resistant cell state. We developed assays for

3D cultures that enabled us to define the molecular states of these

three cell populations at epigenetic, transcriptomic, and metabolic
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levels. The 3-way comparison between the normal, tumor, and

resistant cells, together with genome-scale metabolic flux modeling,

provided a holistic view of the metabolic pathophysiology underpin-

ning the malignancy of the MRD.

Results

MRD and the tumor state share characteristic metabolic features

We started with polarized organoids lining a lumen (Fig 1A, referred

to as “normal cells” henceforth) that represent the healthy tissue (Jech-

linger et al, 2009; Havas et al, 2017). The addition of 200 ng/ml doxy-

cycline (Appendix Fig S1A–D) activated oncogene expression (Fig 1A,

right). This expression led to uncontrolled proliferation as well as the

loss of polarity and lumen (Fig 1A), yielding tumor organoids (referred

to as “tumor cells” henceforth). Removal of doxycycline from the

culture medium silenced oncogene expression triggering tumor regres-

sion. Residual organoids (referred to as “residual cells” henceforth)

exhibited a re-polarized epithelium and an absence of hMYC protein

(Fig 1A). Together with a near absence of proliferative cells that was

previously noted (Jechlinger et al, 2009), these observations under-

score the dormant nature of these residual cells.

Despite the phenotypic similarity of the residual and normal orga-

noids (Fig 1A), RNA sequencing data showed that the residual cells

harbor a transcriptional profile distinct from that of the normal cells

(Fig 1B, Appendix Fig S2A). Gene set enrichment analysis comparing

residual and normal cells revealed enrichment of downregulated

genes in categories such as “cell division and cell cycle” and “cell

signaling” (Appendix Table S1, Appendix Fig S2B), again reflecting

the dormancy of residual cells. Genes connected to “cytoskeletal orga-

nization”, “cell adhesion”, and “cell surface receptor signaling and

cytokine production” were upregulated (Appendix Table S2,

Appendix Fig S2C), supporting the re-polarization process upon MRD

establishment. While the three cell populations—normal, tumor, and

residual—were distinct at the overall transcriptomic level (Fig 1B,

Appendix Fig S2D), many differentially expressed genes of the resid-

ual cells were shared with the tumor cells (Appendix Fig S2A, D and

E). Growth-supporting metabolic pathways, such as glycolysis and

the pentose phosphate pathway, were strongly enriched for upregu-

lated genes (Appendix Fig S2C and E), suggesting that treatment-

resistant, residual cells may bemetabolically abnormal.

To detail the metabolic states of the three cell populations, we

embarked on lipidomic profiling as well as untargeted and targeted

metabolomic analyses. Both intracellular and extracellular (culture

supernatant) samples were analyzed to obtain a comprehensive over-

view of metabolic (patho)physiology. Following optimization of the

metabolite extractions from 3D cultures for matrix background noise

reduction (Appendix Fig S3A–C), we used shotgun lipidomics to attest

the close similarity between residual and tumor populations in agree-

ment with our previous work (Fig 1C) (Havas et al, 2017). Beyond

lipids, this similarity was also evident in the untargeted metabolomic

analysis: The residual cells resembled the tumor cells and not the

normal cells (Fig 1D). Importantly, control samples obtained from

wild-typemice lacking the reverse tetracycline-controlled transactiva-

tor (rtTA), but treated with doxycycline (Fig 1D, dark blue), clustered

with the normal cells (Fig 1D, light blue), thus excluding a potential

confounding effect of doxycycline onmetabolism.

Metabolomic analysis targeted at central carbon metabolism

confirmed the results obtained from lipidomics and untargeted

metabolomics (Fig 1E, Appendix Figs S4A and, S5A and B), vali-

dating that dormant residual cells retain key characteristics of their

past tumor state. Notably, residual cells aligned with tumor cells in

terms of a universal cancer metabolic feature: elevated glycolysis.

This alignment was reflected in the decreased glucose levels

concomitant with increased levels of lactic acid in spent medium

from residual cells and tumor cells in comparison with normal cells

(Fig 1F, Appendix Fig S5B). Another prominent metabolic change

shared by the normal and residual cells was an increase in secreted

urea and ornithine levels (Fig 1F, Appendix Fig S5B), suggesting a

dysregulation in urea cycle enzymes. These data are consistent

with recent studies pointing to an aberrant expression in many

tumor types (Lee et al, 2018). Among other metabolic changes

(Appendix Fig S5A and B), metabolites connecting the central

metabolic pathways with the urea cycle, viz., putrescine, proline,

fumarate, and aspartate, were also altered in the intracellular and/

or extracellular environment of both tumor and residual cells

(Appendix Fig S5A and B). Together, the metabolomic data high-

lighted the marked similarity in metabolic aberrations of the tumor

and residual cell populations.

Integrative genome-scale metabolic modeling identifies altered
metabolic pathway activities

As changes in intracellular metabolite pools do not necessarily

reflect flux changes, we next used a novel integrative genome-scale

metabolic modeling approach to combine transcriptomic and extra-

cellular metabolomic data with flux balance analysis. In brief, the

method finds metabolic flux changes that are consistent with mass

balance constraints as well as in optimal concordance with the

changes in gene expression and measured metabolite secretions.

Since proliferation rates are difficult to accurately measure in the

organoid system (especially in the case of the residual cells), the

modeling was performed by assuming a constant total metabolic

flux. While this assumption limits the interpretation at the level of

absolute flux changes between the populations, it allows predicting

relative shifts in the flux distribution between different pathways.

Additionally, we performed a reporter metabolite analysis (Patil

& Nielsen, 2005), which uses gene expression changes and

metabolic-network topology to identify de-regulated metabolites

(suggestive of changes in their turnover rate; Materials and Meth-

ods). Both genome-scale flux estimates and the reporter metabolite

analysis (Fig 2, Appendix Figs S6 and S7) corroborated our metabo-

lite measurements (Fig 1F, Appendix Fig S5), highlighting the upreg-

ulation of glycolysis and urea secretion as major hallmarks of

residual and tumor cells. Additionally, supporting the deregulation

in parts of urea cycle, an increased aspartate production and argi-

nine uptake was predicted for the residual cells (Fig 2, Appendix Fig

S7). The modeling also indicated an increased flux through the

pentose phosphate pathway and an increased glutamine uptake in

tumor and residual cells, the latter being directed into the TCA cycle

in the case of the residual cells (Fig 2, Appendix Figs S6 and S7).

The flux through oxidative phosphorylation (OXPHOS) in relation to

the glycolysis was predicted to be lower in both residual and tumor

cells than in the normal cells. Yet, transcript levels of OXPHOS-

associated genes indicated that the tumor cells harbored higher
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Figure 1. A multi-omics approach reveals characteristic features of residual organoids in vitro and their metabolic resemblance to tumor organoids.

A Representative immunofluorescence staining of normal, tumor, and residual 3D organoids grown from primary mammary cells of a preclinical mouse model of
breast cancer (Materials and Methods). Similar morphology of normal and residual organoids shown on the left with polarity markers ITGA6 (red), ZO-1 (green),
GM-130 (magenta); DAPI (blue). Right: human MYC oncoprotein (green) is expressed only in tumor cells, CDH1 (red). Scale bar: 25 μm.

B, C Principal component (PC) analyses of normal (blue), tumor (orange), and residual (green) cells based on (B) RNA sequencing data (normal, n = 8; tumor and
residual, n = 4 each) and (C) lipidomic data (n = 4).

D Heat map of untargeted metabolomics results showing the clustering of the normal—wild-type (dark blue), normal—uninduced (light blue), tumor (yellow), and
residual (green) populations and the most altered metabolic pathways (n = 4). Hierarchical clustering was based on the complete linkage method using the
Euclidean distance metric. Significance is defined as a false discovery rate < 0.05 vs the normal population, calculated using unpaired two-sided t-tests and
adjusted for multiple hypothesis testing according to Storey’s and Tibshirani’s method (Storey & Tibshirani, 2003) (Materials and Methods). PPP, pentose phosphate
pathway; TCA, tricarboxylic acid cycle; OXPHOS, oxidative phosphorylation; AA, amino acids.

E Principal component analysis of normal and WT (blue), tumor (orange), and residual (green) populations based on intracellular metabolomics targeted at central
carbon metabolism (n = 8 each; WT n = 2).

F Selection of the most profoundly altered metabolites in extracellular spent growth medium from normal (normal and WT, n = 4 and n = 2, respectively), tumor
(n = 4), and residual (n = 4) populations, based on metabolomics analysis targeted at central carbon metabolites. Values represent metabolite abundance levels as
quantified by the area under the curve (AUC) of the marker fragment ions/transitions for each metabolite. Statistics were calculated using the limma package in R
(Ritchie et al, 2015). Significant results (marked with *) correspond to a Benjamini–Hochberg-adjusted P-value ≤ 0.05 (residual or tumor compared to normal). ns,
not significant. Box plots: midline, median; box, 25–75th percentile; whisker, minimum to maximum.

Data information: (A–F), Number of replicates corresponds to individual mice used to derive organoids. (B, C, E) Centroids represent the mean, and concentration ellipses
represent one standard deviation (level = 0.68) of an estimated t-distribution based on the first two principal components.
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capacity for OXPHOS than utilized at the flux level (Appendix Fig

S8A and B). The excess capacity of tumors in central metabolic

pathways has been noted before as a buffer in the face of perturba-

tions (Benard et al, 2006; Park et al, 2019). Further, the reporter

metabolite analysis predicted S-adenosyl methionine (SAM)

metabolism-related alterations for both tumor and residual cells,

including DNA and protein methylation as well as DNA replication

and repair related metabolites (Appendix Figs S6 and S7).
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Figure 2. Integrative genome-scale metabolic modeling identifies altered metabolic pathways in residual cells compared with normal cells.

A selection of genes with significantly altered expression (Bonferroni-adjusted P < 0.1; normal, n = 8; tumor and residual, n = 4), targeted metabolites with significantly
altered levels (Benjamini–Hochberg-adjusted P ≤ 0.05; normal, tumor, and residual, n = 8; WT n = 2), and significant reporter metabolites (top 5% with P < 0.1) of core
metabolic processes are presented. A two-sided Wald test with a Negative Binomial GLM (Love et al, 2014) was used as test statistics for gene expression. For metabolite
levels, statistics were calculated using the limma package (Ritchie et al, 2015) in R with the significance threshold corresponding to a Benjamini–Hochberg-adjusted P-
value ≤ 0.05 (residual compared to normal). For the reporter metabolites, a gene set enrichment analysis was performed from a theoretical null distribution using the
reporter method (Varemo et al, 2013). Bonferroni-adjusted P-values of the expression analysis were used as gene-level statistics. Metabolite-gene sets were derived from
a genome-wide human metabolic model (HMR2), with genes mapped to mouse orthologs (Mardinoglu et al, 2014). Flux balance analysis predicted metabolic fluxes,
which are altered in the corresponding (overlaid) pathways. Significantly altered gene expressions and metabolites were used to inform the predictions. Number of
replicates corresponds to individual mice used to derive organoids.
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Together, our transcriptomic data, metabolomic data, and flux

modeling revealed marked metabolic peculiarities of the residual

cell population. Despite the non-proliferative status of residual cells,

these changes center on growth-associated metabolic pathways

strongly reminiscent of the tumor state (compare Appendix Figs S6

and S7). Residual cells thus appear to carry a “metabolic memory”

of the prior tumor state.

Glycolysis and parts of the urea cycle are also found altered in
residual cells in human datasets

We next sought to determine the extent to which the metabolic pecu-

liarities of the residual cells in our organoid system capture the situa-

tion in mice and in patients. Mouse mammary glands taken nine

weeks after oncogene silencing and subsequent tumor regression

were compared with healthy glands from age-matched control

animals. Metabolic changes persisted in the residual cells of the

regressed tissue (Fig 3A), as reflected in elevated extracellular levels

of urea, ornithine, and putrescine (Fig 3B), a higher percentage of

arginase 1-positive cells (Fig 3C, Appendix Fig S9), higher NOS activ-

ity (Fig 3D), and higher glycolytic flux to lactate (Fig 3E). To assess

the metabolic alterations in patients, transcriptomic datasets of breast

tissues after neo-adjuvant treatment were compared with data from

breast tissues from healthy women. Notably, treated patient samples

clustered—based on genes in KEGG pathways de-regulated in cancer

and involving HER2—closely with the residual mouse samples (Fig 3

F) and showed similar alterations in glycolysis and the urea cycle

enzymes (Fig 3G). Additionally, transcriptional alterations in these

two pathways were evident in the patient samples that were classified

as HER2-positive by histological analysis in the clinic (Appendix Fig

S10A), and in samples that clustered closely with the mouse samples

based on genes involved in HER2- or MYC-related KEGG pathways

(Appendix Fig S10B and C). These results corroborate the relevance

of our 3D culture system and point to a de-regulated metabolism, in

particular glycolysis, in the residual cells in patients.

Residual cells require elevated glycolysis for survival

Given that glycolysis appeared as a hallmark of MRD in the 3D

culture system, in the parental mouse model as well as in the

patient data, we hypothesized that targeting this pathway could be a

powerful strategy to counter MRD (DeBerardinis et al, 2008; Ward &

Thompson, 2012). This avenue is particularly attractive because

existing FDA-approved drugs and other approaches targeting tumor

metabolism (Ganapathy-Kanniappan & Geschwind, 2013; Elia et al,

2016; Luengo et al, 2017; Kanarek et al, 2020) could be repurposed

against MRD. Our data further suggest that residual cells are likely

even more sensitive to these drugs than tumor cells, since residual

cell metabolism is overall transcriptionally less perturbed than

tumor cell metabolism relative to the normal cellular metabolism

(401 differentially expressed metabolic genes in the residual-normal

comparison vs 1,322 in the tumor-normal comparison; AppendixFig

S2F); thus, residual cells are likely to be metabolically less flexible

and more reliant on glycolysis than tumor cells. Additionally, our

transcriptional data indicate that cells from MRD have a lower

OXPHOS capacity than tumor cells further sensitizing them to the

loss of glycolysis (Appendix Fig S8A and B). Moreover, residual

cells have less anti-apoptotic signaling pathway activity than tumor

cells (Havas et al, 2017), suggesting an additional vulnerability of

residual cells toward inhibition of key metabolic pathways they over

activate and appear to rely on.

To experimentally test how the inhibition of glycolysis affects

normal, tumor, and residual cells, we treated organoids from these

three cell populations with 3-bromopyruvate (3-BP), a well-

established inhibitor of glycolysis (Fan et al, 2019). This treatment

induced cell death in residual cells that were cultured with silenced

oncogenes for 10 days (Fig 4A, Appendix Fig S11A and B), especially

at a dose of 50 µM, which is commonly used for tissue culture

(Isayev et al, 2014; Chen et al, 2018). In contrast, normal and tumor

cells stayed close to their baseline viability after exposure to 3-BP

(Fig 4A). The cytotoxic effect of glycolytic inhibition was also

reflected in the morphology of the residual organoids, which lost

their defined rim and presented as collapsed, dark spheres (Fig 4B,

lower panel). At the same time, the normal and the tumor organoids

did not appreciably change their appearance compared with the

untreated condition (Fig 4B). These results show that residual cells

are indeed—as hypothesized above—more dependent on glycolysis

than tumor cells at doses of 3-BP that do not affect normal cells.

Increased cell death upon 3-BP treatment also occurred in residual

cells that were passaged to re-establish secondary organoids, and

grew a total of 21 days after oncogene silencing (Fig 4C), reinforcing

the notion of a metabolic memory carried over from the tumor state.

Consistent with the cell death assays (Fig 4A and C), quan-

tification of extracellular metabolite pools showed that glucose

uptake reduction upon 3-BP treatment was most dramatic for the

residual cells, especially at the 50 and 250 µM doses (Fig 4D). In

agreement, we also observed significant alterations in extracellular

lactate levels, as well as in other metabolites (e.g., glutamine) in

residual cells (Appendix Fig S11B). In contrast, normal cells were

affected by 3-BP to a lesser extent (Fig 4D, Appendix Fig S11B). The

higher glycolytic nature of residual cells as compared to normal cells,

and the effects of 3-BP treatment on glycolysis, was further validated

by the differential incorporation of glucose-derived carbons into

lactate (Fig 4D). Together, the differences in cell death and metabo-

lite levels attest the glycolytic nature and dependency of the residual

cells, indicating glycolysis as a potential therapeutic target.

Treatment-resistant cells exhibit DNA methylation profile similar
to the tumor cells

Exploring the basis of the metabolic memory of the residual cell popu-

lation, we observed that several signaling pathways, including the

signaling network of hypoxia-inducible factor 1 (HIF1α), a well-

known master regulator of the glycolytic phenotype in cancers, are

distinctively active in residual cells as assessed by a footprinting-

based activity analysis of transcription factor (TF)-target gene expres-

sion (Appendix Fig S12A–C, Appendix Table S3) (Essaghir et al,

2010; Alvarez et al, 2016; Holland et al, 2020). In particular, glycoly-

sis protein isoforms specific for HIF1α signaling, e.g., GLUT1, HK2,

PFKL, ALDOA, PGK1, ENO1, PKM, and PFKFB3, were overexpressed

(Marin-Hernandez et al, 2009). Further, some of the metabolites that

were more abundant in the residual cell populations compared with

the normal—such as succinate and lactate (Appendix Fig S5A, Fig 3

D)—are known signaling molecules that interface with hypoxic

signaling by inducing HIF1α stabilization even under normoxic

conditions (Selak et al, 2005; King et al, 2006; Tannahill et al, 2013;
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Lee et al, 2015). Additionally, succinate and nitric oxide as well as

other metabolites such as fumarate, all of which are accumulated in

residual cells (Appendix Fig S5A, Fig 3D), are also implicated in

epigenetic modifications through direct inhibition of alpha-

ketoglutarate-dependent demethylases (Xiao et al, 2012; Vasudevan

et al, 2015; Miranda-Goncalves et al, 2018). Concurrent with these

metabolic changes, we found that the DNA methylation profiles of

residual cells closely resembled that of the tumor cells (Fig 4E,

Appendix Fig S4B), thus indicating the mechanistic basis of the meta-

bolic memory of the residual population. Promoter regions of HIF1α
and glycolytic co-activator proteins as well as glycolytic target genes

of HIF1α are consistently demethylated in tumor and residual cells

with isoform-specific demethylations in both populations

(Appendix Fig S13A and B). Together, the persistence of a tumor-

associated metabolic signature in the residual population despite the

absence of continued oncogenic input suggests that the accumulation

◀ Figure 3. Glycolysis and urea cycle components are the main altered metabolic pathways in residual cells in mice and in human datasets.

A Principal component analysis of extracellular metabolic profiles of isolated healthy (n = 3; blue) and regressed (n = 3; green) mammary glands after cultivation in cell
growth medium for 8 h (Materials and Methods). The metabolomic analysis was targeted to central carbon metabolites. Centroids represent the mean, and
concentration ellipses represent one standard deviation (level = 0.68) of an estimated t-distribution based on the first two principal components.

B Selective secreted metabolites with significant change linked to urea cycle components from healthy (n = 3; blue) and regressed (n = 3; green) mammary glands.
Values represent metabolite abundance levels as quantified by the area under the curve (AUC) of the marker fragment ions/transitions for each metabolite. Values are
plotted on the log2 scale. Statistics were calculated using the limma package (Ritchie et al, 2015) in R with the significance threshold corresponding to a Benjamini–
Hochberg-adjusted P-value ≤ 0.05 (residual compared to normal).

C Left, Quantification of cells expressing ARG1 (top), an enzyme converting arginine to urea and ornithine, and intensity of ARG1 (bottom) in normal cells from healthy
(n = 5, 2,921 cells analyzed; blue) and residual cells from regressed (n = 5, 2,241 cells analyzed; green) mammary gland tissue sections. Statistical differences were
calculated with the Mann–Whitney U-test (Wilcoxon rank-sum test). Right, Representative images of immunofluorescence staining in normal (top) and residual
(bottom) duct stained for ARG1 (green), CDH1 (red), and DAPI (blue). Scale bar: 20 μm.

D Nitric oxide synthase (NOS) activity, an enzyme involved in arginine metabolism, in healthy (n = 3; blue) and in residual (n = 3; green) mouse mammary glands. The
difference is statistically significant by unpaired two-sample t-test.

E Fractional labeling of lactate after cultivation of isolated regressed (n = 3; green) and healthy (n = 3; blue) mouse mammary glands in cell growth medium
supplemented with [U-13C] glucose for 8 h (Materials and Methods). The three-carbon labeled (13C) isotopologue (M + 3) of lactate is depicted and shows enrichment
in the residual cells of the regressed mammary glands. The difference is statistically significant by unpaired two-sample t-test.

F Joint clustering of sample-wise normalized pathway enrichment test statistics (unpaired one-side two-sample t-test) of mouse model (RNA-seq; normal, n = 8;
residual n = 4) and patient (microarray; healthy, n = 10, regressed n = 20). Clustering is based on all genes of human KEGG pathways (or their mouse orthologs) that
involve HER2 and are known to be de-regulated in cancer (Materials and Methods). Hierarchical clustering with the complete linkage method and the Euclidean
distance as a distance metric was used for clustering. For the patient comparison, two independent datasets, one from healthy breast tissue (GSE65194) (Maire et al,
2013; Maubant, Tesson et al, 2015) and one from patient tissues after neo-adjuvant treatment (GSE32072) (Gonzalez-Angulo et al, 2012), were merged.

G Metabolic reactions of glycolysis and the urea cycle; differentially expressed (treated patients vs healthy tissue; Benjamini–Hochberg-adjusted P < 0.1) enzymes are
highlighted in red. An empirical Bayes moderated t-statistic was computed from a gene-wise linear model fit with generalized least squares (Ritchie et al, 2015),
comparing treated patients (n = 4 samples), which cluster closely with the mouse samples (encircled in f), with healthy breast tissue (n = 10 samples). Differential
expression data from mouse in vitro transcriptome data of residual vs normal samples (RNA-seq; normal, n = 8; residual, n = 4) are shown (two-sided Wald test
(Love et al, 2014), Bonferroni-adjusted P < 0.1).

Data information: (A–F), Numbers of replicates correspond to individual mice or humans. (B, C) Box plots: midline, median; box, 25–75th percentile; whisker, minimum to
maximum. (B–E) Numbers marking comparisons (gray lines) show P-values (corresponding statistical tests are described in individual panel legends).

▸Figure 4. Residual cells require elevated glycolysis for survival and maintain a DNA methylation profile similar to that of tumor cells.

A (Top) Experimental design and (bottom) quantification of cell death (Materials and Methods) of normal, tumor, and residual cells after 72-h treatment with 3-BP at
the indicated doses (n = 5 mice per condition). Two-way ANOVA with Tukey’s HSD multiple comparison testing was utilized to calculate statistical significance. Dox,
doxycycline.

B Representative bright-field images of normal (left), tumor (middle), and residual (right) organoids, treated with vehicle (top) or with 50 μM 3-BP (bottom). Scale bar,
100 μm.

C (Top) Experimental design and (bottom) cell death quantification of passaged residual and normal cells after 48 h of treatment with 3-BP (n = 5 mice per condition).
Statistics were calculated with multiple t-tests.

D (Main) Extracellular glucose abundance changes upon treatment with 3-BP in all three populations (n = 4 mice per condition). Values represent the ratio of glucose
abundance in 3-BP-treated vs untreated cells. Statistics were calculated using the limma package (Ritchie et al, 2015) in R with the significance threshold
corresponding to a Benjamini–Hochberg-adjusted P-value ≤ 0.05 (residual compared to normal). (Insert) Fractional labeling of lactate in untreated and 3-BP-treated
normal (n = 2) and residual (n = 2) cells following cultivation in growth medium supplemented with [U-13C] glucose. The three-carbon labeled (13C) isotopologue
(M + 3) of lactate is depicted. Statistics were calculated with unpaired two-sample t-tests.

E DNA methylation profiles (measured by bisulfide sequencing) of normal (n = 2 mice), tumor (n = 3 mice), and residual (n = 3 mice) cell structures, showing a striking
similarity between residual and tumor cells. Plotted are all quantified CpG sides with more than five reads per condition, randomly down-sampled to 10,000,000
sides. Colors in the density plots represent quartiles.

F Summary figure integrating transcriptomics (normal, n = 8 mice; tumor and residual, n = 4 mice each), intracellular (Int.) metabolomics (normal, tumor, and residual,
n = 8 mice each; WT, n = 2 mice), extracellular (Ext.) metabolomics of spent growth medium (normal, n = 4 mice; WT, n = 2 mice; tumor and residual, n = 3 mice
each), and DNA methylomics (normal, n = 2 mice; tumor and residual, n = 3 mice each) from the three populations. Color depth represents the normalized Euclidean
distance of the respective omics layer in reference to normal. Distances between the centers of the three populations correspond to the normalized mean Euclidean
distances across all represented omics layers.

Data information: (A, C, D) Box plots: midline, median; box, 25–75th percentile; whiskers in (A) and (C) minimum to maximum. Number of replicates corresponds to
individual mice used to derive organoids. (A, C, D) Numbers marking comparisons (gray lines) show P-values (corresponding statistical tests are described in individual
panel legends).
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of certain metabolites affords an additional survival advantage for

MRD that is sustained through epigenetic imprinting.

Discussion

Our study offers a first in-depth characterization of MRD derived from

a primary organoid system that is relevant to human disease. We

conducted a comprehensive multi-omics analysis including transcrip-

tomics, untargeted metabolomics, extra- and intracellular metabolo-

mics, lipidomics, and methylomics. A novel metabolic model-based

data integrationmethod allowed us to integrate different omics layers,

from the transcriptome to the metabolome, and thereby gain insights

into flux reorganization underlying the MRD. The method overcomes

the limitation of qualitative predictions from logical network methods

typically applied in this field and instead allows quantitative assess-

ment of flux (re-)distributions. This integrative modeling approach is

broadly applicable to other systems where metabolic flux changes are

central to the disease or other perturbations.

While previous studies have identified some of the metabolic char-

acteristics of residual cells—such as elevated ROS levels—in compar-

ison with tumor material (Viale et al, 2014; Havas et al, 2017; Fox

et al, 2020), the three-way multi-omics comparison in this study

enabled pinpointing the distinctness of residual cells to both normal

cells and tumor cells in a holistic fashion. Although residual cells are

characterized by a dormant and histologically normal phenotype,

they harbor metabolic aberrations that are similar to those of the

tumor cells (Fig 4F). We refer to these changes as “metabolic

memory of the prior tumor state” or “metabolic memory”, which is

reflected in gene transcription, metabolite levels, glycolytic flux, and

DNA methylation. We observe that this memory persists without

active oncogenic signal in residual cells. Since residual cells consti-

tute a treatment-resistant population of dormant cancer cells, these

memorized aberrations offer a unique therapeutic opportunity.

Our in vitro findings based on organoids were validated in vivo

through analyzing residual mammary glands taken from the mouse

model (Fig 3A–E). In addition, data from neo-adjuvant-treated patients

with breast cancer (Fig 3F and G, Appendix Fig S10A–C) support these
conclusions and link the findings to the patient situation. Interference

with one of the commonly de-regulated metabolic nodes in tumor and

residual cells, glycolysis, enabled selective targeting of residual cells

(Fig 4A–C). The identified transcriptional, metabolic, and epigenetic

distinctiveness (Fig 4F) of MRD thus offers targeted treatment options

to counter progression toward tumor relapse.

Materials and Methods

Reagents and Tools table

Reagent/resource Reference or source Identifier or catalog number

Experimental Models

FVB (Mus musculus)
GEMM TetO-cMYC/TetO-Neu/MMTV-rtTA

D’Cruz et al (2001), Gunther et al (2002), Moody
et al (2002)

N/A

Antibodies

Rat anti-integrin alpha-6 Millipore Cat # MAB1378

Rabbit anti-ZO-1 Invitrogen Cat # 61-7300

Mouse anti-GM-130 BD Biosciences Cat # 610823

Rat anti-Cadherin-1 Invitrogen Cat # 131900

Rabbit anti-AR-G1 Novus Biologicals Cat # NBP1-32731

Mouse anti-MT-CO1 Abcam Cat # ab14705

Goat anti-rat IgG (H + L) Alexa Fluor 647 Invitrogen Cat # A-21247

Goat anti-rabbit IgG (H + L) Alexa Fluor 488 Invitrogen Cat # A-11034

Goat anti-mouse IgG (H + L) Alexa Fluor 568 Invitrogen Cat # A-11031

Oligonucleotides and other sequence-based reagents

TetO-MYC https://www.jax.org/Protocol/UrlAsPDF?
stockNumber=019376&protocolID=24553

Table EV1

TetO-Neu Moody et al (2002) Table EV1

MMTV-rtTA Gunther et al (2002) Table EV1

Chemicals, Enzymes, and other reagents

Agarose Sigma-Aldrich A9539

Ethidium bromide Sigma-Aldrich E1510

DMEM:F12 with HEPES, Glucose and L-Glutamine Lonza Cat # BE12-719F

Collagenase Type 3 Worthington Biochemical Cat # LS004183

LiberaseTM Research Grade Roche 05401127001

ª 2021 The Authors Molecular Systems Biology 17: e10141 | 2021 9 of 21

Ksenija Radic Shechter et al Molecular Systems Biology

https://www.jax.org/Protocol/UrlAsPDF?stockNumber=019376&protocolID=24553
https://www.jax.org/Protocol/UrlAsPDF?stockNumber=019376&protocolID=24553


Reagents and Tools table (continued)

Reagent/resource Reference or source Identifier or catalog number

Pen Strep Gibco 15140-122

Trypsin-EDTA (0.25%) Gibco Cat # 25200056

Fetal Bovine Serum (FBS), Tetracycline Free Biowest S181T

Deoxyribonuclease I from bovine pancreas Sigma-Aldrich D4527

MEBM Mammary Epithelial Cell Growth Basal Medium Lonza Cat # CC-3151

MEGM Mammary Epithelial Cell Growth Medium
BulletKit

Lonza Cat # CC-3150

Matrigel Matrix Corning 354230

3-D Culture Matrix Rat Collagen I Cultrex Cat # 3447-020-01

Doxycycline hyclate Sigma-Aldrich D9891

Paraformaldehyde Sigma-Aldrich 158127

Sodium phosphate dibasic heptahydrate Sigma-Aldrich S9390

Sodium dihydrogen phosphate monohydrate,
Monosodium phosphate

Sigma-Aldrich S9638

Sodium azide Sigma-Aldrich S8032

Bovine Serum Albumin Sigma-Aldrich A9418

Triton X-100 Sigma-Aldrich T8787

TWEEN 20 Sigma-Aldrich P9416

Normal Goat Serum Jackson ImmunoResearch 005-000-121

VECTASHIELD Hard Set with DAPI Vector Laboratories Cat # H-1500

DAPI Solution Thermo Scientific Cat # 62248

ProLong Gold Antifade Mountant Invitrogen Cat # P36930

Xylenes Sigma-Aldrich 1.08633

Antigen Unmasking Solution Vector Laboratories H-3300

Hydrogen Peroxide Solution Sigma-Aldrich H1009

VECTASTAIN Elite ABC-HRP Kit, Peroxidase (Mouse IgG) Vector Laboratories PK-6102

DAB Substrate Kit, Peroxidase (HRP) Vector Laboratories SK-1400

Hematoxylin QS Counterstain Vector Laboratories H-3404-100

DPX Slide Mounting Medium Sigma 06522

mirVana miRNA Isolation Kit, with phenol Ambion Cat # AM1560

HPLC-grade methanol Biosolve Chimie Cat # 136841

Adonitol Alfa Aesar 488-81-3

Crystal Violet solution Sigma-Aldrich V5265

DMEM, no glucose Gibco Cat # 11966025

D-glucose (U-13C6, 99%) Cambridge Isotope Lab. CLM-1396

DMEM, high glucose, GlutaMAX Supplement Gibco Cat # 10569044

Methoxyamine hydrochloride Alfa Aesar A19188

Pyridine Sigma-Aldrich 437611

N-methyl-trimethylsilyl-trifluoroacetamide Alfa Aesar A13141

N-tert-Butyldimethylsilyl-N-
methyltrifluoroacetamide + 1% tert-
Butyldimethylchlorosilane

Sigma-Aldrich 00942

Nitric Oxide Synthase Activity Assay kit Abcam ab211083

Software

Quantum-Capt1 Vilber Lourmat

LAS AF v.2.7.3.9723 Leica Microsystems

StrataQuest v.5 TissueGnostics
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Reagents and Tools table (continued)

Reagent/resource Reference or source Identifier or catalog number

LAS 3.7 Leica Microsystems

R v3.3.1 R-Core-Team (2016)

Leica Application Suite X Leica Microsystems

GCMS Solution Shimadzu

R v3.5.2 R-Core-Team (2016)

Isotope Correction Toolbox Jungreuthmayer et al (2016)

LipidView Sciex

ShinyLipids BZH, Heidelberg University

Fiji/ImageJ https://imagej.net/software/fiji/

GraphPad Prism Version8 https://www.graphpad.com/data-analysis-
resource-center/

Other

Food pellets with Doxycycline hyclate
(625 mg/kg)

Envigo Teklad N/A

Polypropylene conical tubes (50 and 15 ml) Falcon 352070, 352095

BioCoat Collagen I 6-well Clear Flat Bottom TC-treated
Multiwell Plate, with Lid

Corning 356400

CellBIND 12-well Multiple Well Plates, Flat Bottom,
with Lid, Sterile

Corning 3336

Nunc Lab-Tek II Chambered Coverglass Thermo Scientific 155379

6-well Black/Clear Flat Bottom TC-treated Imaging
Microplate with Lid

Falcon 353219

Deactivated Clear Glass 12 × 32 mm Screw Neck Vial Waters 186000989DV

Leica TCS SP5 microscope Leica Microsystems

TissueFAXS SL TissueGnostics

LMD 7000 microscope Leica Microsystems

DFC310FX digital color cam. Leica Microsystems

2100 Bioanalyzer Instrument Agilent

TruSeq RNA Library Prep Kit Illumina

Biomek FX Automated Workstation Beckman Coulter

Illumina HiSeq 4000 Illumina

Illumina NextSeq 500 Illumina

Genevac EZ-2 Plus SP Scientific

Leica DFC7000T microscope Leica Microsystems

GCMS-TQ8040 Shimadzu

Zebron™ ZB-50, GC Cap. Column
30 m × 0.25 mm × 0.25 µm

Phenomenex

Ultimate 3000 LC coupled to Q-Exactive Plus MS Thermo Scientific

QTRAP 6500+ MS Sciex

HD-D ESI Chip Advion Biosciences

Triversa Nanomate Advion Biosciences

Methods and Protocols

Animals
Breeding and maintenance of the mouse colony was done in the

Laboratory Animal Resources (LAR) facility of EMBL Heidelberg in

accordance with the guidelines of the European Commission,

revised Directive 2010/63/EU and AVMA Guidelines 2007, under

veterinarian supervision. The EMBL Institutional Animal Care and

Use Committee (IACUC) approved the work with these mice (ap-

proval # MJ160070). The animals—TetO-cMYC/TetO-Neu/MMTV-

rtTA (D’Cruz et al, 2001; Gunther et al, 2002; Moody et al, 2002) in

FVB background—were kept on a 12-h light/12-h dark cycle with a
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constant ambient temperature (23 � 1°C) and humidity

(60 � 8%), supplied with food pellets (for tumor induction the

pellets contained doxycycline hyclate, 625 mg/kg; Envigo Teklad)

and water ad libitum.

Genotyping
For genotyping, genomic DNA was extracted by tail-digestion in

75 µl of digestion buffer (NaOH 25 mM + EDTA 0.2 mM) at 98°C
followed by the addition of 75 µl Tris–HCl (40 mM, pH 5.5) and

centrifugation at 1,500 g for 3 min. The sequences of the used

primers can be found in Table EV1. Gel electrophoresis was used

for the detection of PCR products (MYC 630 bp, Neu 386 bp, rtTA

380 bp) on a 1.5% agarose (Sigma, A9539-500G) gel with ethidium

bromide solution (Sigma, E1510-10ML) in a final concentration of

0.5 µg/ml. The products were visualized using the Quantum-Capt1

documentation system (Vilber).

3D cell culture
Primary mammary epithelial cells were obtained from 8-week-old

virgin females of GEMM TetO-cMYC/TetO-Neu/MMTV-rtTA mouse

strains in FVB background. Three-dimensional (3D) cell cultures

were established according to the published protocol (Jechlinger

et al, 2009; Jechlinger, 2015) with some modifications.

1 Reagents that need to be already prepared:

- Digestion media: 500 ml of Dulbecco’s modified Eagle

medium:F12, DMEM:F12 with HEPES (15 mM), 1:1 mixture

with 3.151 g/l glucose, with L-glutamine (Lonza BE12-719F)

supplemented with HEPES to the final concentration of 25 mM

and 5 ml of penicillin/streptomycin (Gibco, 15140-122).

- Collagenase type 3 (Worthington, LS004183) to a working

concentration of 75,000 U/ml in digestion media.

- Liberase (Roche, 05401127001) to a working concentration

of 10 mg/ml in digestion media; -DNaseI (Sigma, D4527) to

a working concentration of 1 mg/ml in digestion media.

- STOP media: 500 ml of Dulbecco’s modified Eagle medium:

F12, DMEM:F12 with HEPES (15 mM), 1:1 mixture with

3.151 g/l glucose, with L-glutamine (Lonza BE12-719F),

supplementedwithHEPES to the final concentration of 25 mM,

5 ml of penicillin/streptomycin (Gibco, 15140-122) and 50 ml

of fetal bovine serum, tetracycline free (Biowest, S181T).

- 500 ml MEBM mammary epithelial cell growth basal

medium (Lonza, CC-3151) supplemented with 2 ml of

bovine pituitary extract, 0.5 ml of hEGF, 0.5 ml of hydrocor-

tisone, 0.5 ml of GA-1000, 0.5 ml insulin from MEGM

mammary epithelial cell growth medium BulletKit (Lonza

CC-3150).*Warm all the described media, PBS, trypsin-

EDTA to 37°C before using.

2 Prepare labeled 50-ml polypropylene conical tube (Falcon,

352070) for each pair of harvested mammary glands and mix

5 ml of digestion media (described in Step 1) with 10 µl colla-
genase and 10 µl liberase into each tube. Warm to 37°C.

3 Harvest mouse mammary glands, transfer to cell culture, and

place them into prepared, warm tubes (described in Step 2).

Digest the glands for 15–16 h at 37°C in 5% (vol/vol) CO2 atmo-

sphere in loosely capped 50-ml polypropylene conical tubes.

4 After 15–16 h, gently disrupt the digested glands by pipetting

and wash them with 45 ml of phosphate-buffered saline (PBS).

Centrifuge at room temperature, 1,000 r.p.m. for 5 min.

Remove the interphase between the upper fat layer and the cell

pellet (leaving around 5 ml of liquid) and add 5 ml of 0.25%

Trypsin-EDTA (Gibco, 25200056) to each tube, gently resus-

pending the pellet. Incubate the suspension for 30–40 min at

37°C, 5% CO2 in loosely capped tubes.

5 Wash with 25 ml of STOP medium (described in Step 1) and

add 7 µl DNase I (per each tube), incubating for 5 min at room

temperature.

6 Centrifuge at room temperature, 1,000 r.p.m. for 5 min and

aspirate the supernatant. Resuspend the pellet of dissociated

cells in MEBM mammary epithelial cell growth basal medium

supplemented with MEGM mammary epithelial cell growth

medium BulletKit (2–3 ml per tube, combining cells from all

tubes per animal and rinsing with MEBM media to obtain

maximum yield). Plate 3 ml per well onto collagen-coated 6-

well plates (Corning, 356400) for the selection of epithelial

cells. Leave the plate for ca. 24 h 37°C, 5% CO2.

7 On the next day, wash the cells with PBS (each well with 2–
3 ml). Remove PBS and treat the remaining cells with 500 µl of
0.25% trypsin-EDTA per well (3–5 min, 37°C, 5% CO2) until

detachment.

8 Inactivate trypsin by adding 2 ml of STOP media (described in

Step 1) to each well, mix well, and pool cell suspensions from

wells per animal into a 15-ml tube (Falcon, 352095). Rinse the

wells with STOP media and add rinses, making up the volume to

10–12 ml per tube. Centrifuge at room temperature, 1,000 r.p.m.

for 5 min. Remove the supernatant as much as possible and

resuspend the cell pellets in MEBM (depends on the pellet size,

use 100–500 µl). Count the cells in the single cell suspension.

9 Prepare Matrigel-collagen mixture (for number of gels to be

seeded)—Matrigel Matrix (Corning, 354230) and 3D culture

Matrix Rat Collagen I (Cultrex, 3447-020-01) on ice: mix

Matrigel, Collagen I and PBS in the ratio of 4:1:1. Mix the

components in the following order: cold PBS, Collagen I and

Matrigel, compensating volumes for 10% error due to pipetting

and mixing gently by pipetting, avoiding air bubbles.

10 Add the prepared Matrigel (volume of 100 µl) into cell suspen-

sion (12,000 primary mouse mammary epithelial cells), mix

gently, and dispense into flat bottom wells (CellBIND 12 Well

Clear Multiple Well Plates, Corning 3336) or chambered cover-

glass slides for imaging (Nunc LabTek II Chambered Coverglass,

Thermo Fisher Scientific, 155379). Leave the plates in the incu-

bator at 37°C, 5% CO2 for 30–40 min, for gels to solidify.

11 Add 1.5 ml of MEBM medium supplemented with BulletKit

(described in Step 1).

For experiments based on biochemical assays, a suspension of 500

cells and PBS was mixed with Matrigel in a ratio of 1:4 for 5 µl gels
that were seeded in the black TC-treated imaging 96-well plates (Fal-

con, 353219) with clear flat bottom and left to solidify for 15 min at

37°C, followed by the addition of 100 µl of MEBM medium.

Subsequently, the cells were grown for 7 days at 37°C, 5% CO2 in a

humidified incubator until the 3D organoid culture had established

including the formation of polarized acini. The experiments were

started by the addition of doxycycline (Doxycycline hyclate, Sigma,

D9891) to the cell culture medium in a concentration of 200 ng/ml,

initiating the transcription of the oncogenes and rapid cell proliferation.
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For subset of experiments based on biochemical assays involving

secondary organoids (grown 21 days after oncogene silencing time-

point), passaging of cells was done in the following manner: Gels

(volume of 100 µl containing 12,000 cells per gel) were digested by

adding 3 µl collagenase and 3 µl liberase to the wells with media,

with incubation for 1–1.5 h at 37°C, 5% CO2. Disintegrated gels

were collected to Falcon tube (wells from same samples were

pooled) and washed with PBS, then centrifuged at 1,000 r.p.m. for

5 min. PBS was aspirated, and trypsin/EDTA was added to the cells,

with incubation for 5–10 min and pipetting at the end to mechani-

cally break up the structures. Deactivation was done with 10 ml

STOP media, with DNase added (described in Step 1). Samples were

centrifuged at 1,000 r.p.m. for 5 min and resuspended in PBS for

counting and seeding, which was done by the protocol described

above, for 5 µl gels.
For the RNA sequencing experiments, tumor samples were

harvested 5 days after oncogene induction. Subsequently, doxycy-

cline was removed from the cell culture medium, which resulted in

a silencing of the oncogenes followed by tumor regression. Residual

samples were harvested 7 days after de-induction. Non-induced

structures were grown in medium without the addition of doxycy-

cline and sampled in parallel to the above described timepoints. The

medium was changed every second day with the exception of the

doxycycline-induced cultures, when it was changed daily between

third to fifth day (for tumor organoids) and between the first and

third day upon de-induction (residual organoids).

For metabolic experiments, media was changed daily. Induction

and de-induction timepoints were planned in such a way that

metabolites were collected and processed in parallel, at the same

time for all three conditions (normal, tumor, and residual).

Immunofluorescence
3D culture gels for immunofluorescence staining were washed 2× in

PBS and transferred to the IF deactivated clear glass screw neck

vials (Waters, 186000989DV).

1 Fix with 4% paraformaldehyde (Sigma-Aldrich, 158127) for 7–
10 min, remove, and subsequently wash three times 10 min

with PBS and once in freshly made 1× IF buffer (pH 7.4):

containing NaCl, Na2HPO4*7H2O (Sigma-Aldrich, S9390),

NaH2PO4*H2O (Sigma-Aldrich, S9638), NaN3 (Sigma-Aldrich,

S8032), BSA (Sigma-Aldrich, A9418), Triton X-100 (Sigma-

Aldrich, T8787), Tween-20 (Sigma-Aldrich, P9416).

2 Block for 1.5 h using 1× IF buffer with 10% goat serum (Jack-

son ImmunoResearch, 005-000-121).

3 Dilute primary antibodies in primary block (as described in

Step 2) and incubate overnight at 4°C.
4 Wash the next day in 1× IF buffer (described in Step 1) for

three times, 15 min each.

5 Incubate with secondary antibodies and 40, 60-diamino-2-

phenylindole (DAPI) diluted in the primary block (described in

Step 2) for 1 h.

6 Wash the gels with 1× IF buffer and 1× PBS for two times,

10 min each.

7 Mount the gels with VECTASHIELD Antifade mounting

medium (Vector Laboratories, H-1500) into LabTek II chamber

slide (Nunc LabTek II Chambered Coverglass, Thermo Fisher

Scientific, 155379).

Gels were imaged on a Leica SP5 confocal microscope (Leica TCS

SP5, Leica Microsystems) using a 63× water lens and Leica Applica-

tion Suite Advanced Fluorescence imaging software (LAS AF, Leica

Microsystems). Fiji (Schindelin et al, 2012) was used for image anal-

ysis (merged images, projection through the acinus from subsequent

5–6 stacks, adjusted color channels—parameters provided in the

Source Data). The following antibodies were used for the 3D

cultures: alpha-6-integrin (Millipore, MAB1378), diluted 1:80), ZO-1

(Invitrogen 61-7300, diluted 1:500), GM-130 (BD Biosciences,

BDB610823, diluted 1:100), and E-cadherin (Invitrogen, 13-1900,

diluted 1:200). Nuclei were stained with DAPI (Invitrogen, 62248,

diluted 1:1,000). Anti-rabbit, anti-mouse, and anti-rat antibodies

coupled with Alexa Fluor dyes were purchased from Invitrogen (A-

21247, A-11034, A-11031, diluted 1:500).

FFPE tissue sections were stained using the standard protocols

for ARG1 (Novus, NBP1-32731, diluted 1:250) antibody. Sections

were mounted using ProLong Gold Antifade Mountant (Invitrogen,

P36930), imaged on Leica TCS SP5 (Leica Microsystems) using a

63× water lens, LAS AF (Leica Microsystems) imaging software and

analyzed in Fiji (merged images, adjusted color channels—parame-

ters provided in the Source Data); scanned using a TissueFAXS

Slides system (TissueGnostics). Quantification was done using Stra-

taQuest Analysis Software (TissueGnostics). Regressed (n = 5) and

healthy (n = 5) mouse mammary gland tissue sections, 70

mammary ducts per section, were analyzed to obtain the total cell

count (nuclei-DAPI), count of GFP-positive cells, and GFP mean

intensity in the GFP-positive cells within each duct. To obtain

summary statistics for the sections, the cell counts were summed

across all ducts of a section and the section mean of the duct-mean

GFP intensities was taken. Mann–Whitney test was used to calculate

significance in the comparison of regressed and healthy mammary

gland tissue sections.

Immunohistochemistry
MT-CO1 antibody (Abcam, ab14705) staining was done on FFPE

tissue sections following the standard IHC protocol, with modifi-

cations from M.O.M. kit protocol:

1 Deparaffinization—wash paraffin-embedded tissue sections

gradually in: Xylenes (Sigma-Aldrich, 1.08298) and decreasing

concentrations of Ethanol (100–96–70%) and then rinse slides

in running water for 5 min. Wash in PBS-Tween (Sigma-

Aldrich, P9416) 0.1% for 10 min.

2 Antigen retrieval—place slides in prepared citric acid-based

antigen unmasking solution (Vector Laboratories, H-3300) in

250 ml of water and boil for 30 min in a pre-heated steamer or

20 min in a microwave. Let the slides cool at room tempera-

ture, below 50°C, then rinse in running water for 5 min.

3 Permeabilization—incubate slides in PBS-Triton X-100 0.3%

(Sigma-Aldrich, T8787) 10 min and then in PBS-Tween (0.1%)

for 10 min.

4 Inactivation of endogenous hydrogen peroxidase activity—
incubate slides with prepared 3% H2O2 aqueous solution from

30% stock (Sigma-Aldrich, H1009) for 10 min, rinse in PBS

2×, 10 min.

5 Blocking: prepare and use Blocking Reagent solution from

M.O.M. kit (VECTASTAIN Elite ABC-HRP Kit, Peroxidase, Mouse

IgG, Vector Laboratories, PK-6102) and incubate for 1 h.
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6 Incubate slides with M.O.M. Diluent (from M.O.M. kit) for

5 min; tip-off diluent and incubate with primary antibody (MT-

CO1 diluted 1:500 in M.O.M. Diluent) at 4°C overnight.

7 Rinse the slides for 5 min 2×, using 1× PBS and incubate with

biotinylated secondary antibody solution (Anti-Mouse IgG

reagent in M.O.M. Diluent, prepared according to kit protocol)

for 10 min at room temperature.

8 Wash in PBS for 2 min, 2×. Incubate with ABC reagent (pre-

pared by protocol from M.O.M. kit) for 30 min at room temper-

ature. Rinse in PBS for 5 min, 2×.

Detection was done using DAB Peroxidase (HRP) Substrate Kit

(Vector Laboratories, SK-4100). Counter-staining was done using

Hematoxylin QS (Vector laboratories, H-3404), after which the

sections were dehydrated, mounted with DPX Mountant for histol-

ogy (Sigma-Aldrich, 06522), and analyzed using LMD 7000 micro-

scope (Leica Microsystems) equipped with Leica DFC310FX digital

color camera and LASV3.7 (Leica Microsystems) software.

RNA collection and extraction
The RNA was harvested from a pool of two 3D gels per experi-

mental condition using 900 µl of mirVana lysis buffer. The RNA

extraction was done using a mirVana miRNA Isolation Kit with

phenol (Ambion, AM1560). After assessing the RNA quality and

concentration on an Agilent 2100 Bioanalyzer (G2939BA), the

cDNA libraries were prepared using Illumina’s TrueSeq library

preparation kit and a Beckman Biomek FX laboratory automation

workstation. The libraries were multiplexed and sequenced in the

Genomics Core Facility at EMBL Heidelberg on an Illumina HiSeq

4000 as well as an Illumina NextSeq 500 platform, generating

strand-specific single end reads with a read length of 75 or

85 bp, respectively.

Analysis of raw RNA sequencing data
After assessing the quality of the raw RNA sequencing reads by

FastQC version 0.11.3 (Andrews, 2010), adapter trimming using

Cutadapt version 1.9.1 (Martin, 2011) with default options provid-

ing the standard Illumina TrueSeq Index adapters was done. FaQCs

version 1.34 (Lo & Chain, 2014) was used for subsequent quality

trimming and filtering applying the following parameters: -q 20 -

min_L 30 -n 5 -discard 1. The total reads per sample after trimming

and filtering ranged from 34.1 to 52.0 million. Sequencing reads

were aligned to the M. musculus reference genome (GRCm38.p4)

(NCBI, 2015), which included the sequence for human cMYC and

rat HER2, using Tophat2 version 2.0.10 (Hamdi et al, 2017) with

the following parameters: -G -T -x 20 -M --microexon-search --no-

coverage-search --no-novel-juncs --mate-std-dev 100 -r 50 --min-

segment-intron 20 -i 30 -a 6. Gene-level count tables were obtained

using the count script of the HTSeq python library version 0.6.1p1

(Anders et al, 2015) with default options. Only reads with unique

mappings were considered. All remaining reads mapped in total to

19,500 to 20,800 genes across all samples. For performing dimen-

sionality reduction by principal component analysis (PCA) and

hierarchical clustering, normalized rlog transcript counts were

utilized, which had been transformed with the “rlog” function of

the Bioconductor package DESeq2 version 1.12.4 (Love et al,

2014). R version 3.3.1 (R-Core-Team, 2016) was used for conduct-

ing biostatistical analyses.

Differential expression analysis
The statistical analysis for differential expression was mainly done

with the Bioconductor package DESeq2 version 1.12.4 (Love et al,

2014). Size-factor-based normalization was performed to control for

batch effects and inter-sample variability. Genes with less than 10

counts across all samples were filtered to increase the sensitivity of

the detection of differential gene expression. Package defaults were

used for dispersion estimation and differential expression analysis

with the function “Deseq”, which includes independent filtering,

cooks cutoff (Anders & Huber, 2010) for outlier detection and the

performance of a Wald test. The animal was included as a

confounder variable in the model design. Subsequently, adjusted P-

values were computed from the DESeq2 calculated P-values by

applying a Bonferroni correction for multiple testing. Genes with a

Padj-value < 0.1 were considered as significantly differentially

expressed (DE). R version 3.3.1 (R-Core-Team, 2016) was used for

conducting biostatistical analyses.

Gene set enrichment analysis
2,039 differentially expressed genes in residual (compared to never

induced control; q-value < 0.1) and 6,411 differentially expressed

genes in tumor cells (compared to never induced, q-value < 0.1)

were taken for gene ontology (GO) enrichment analysis. GO enrich-

ment analysis was performed using Fisher’s exact test with a fore-

ground of all respective differentially expressed genes and a

background, which was composed of a unique set of five randomly

picked genes per foreground gene exhibiting a similar expression

mean over all samples. The analysis was done separately for upreg-

ulated and downregulated genes. The chosen cutoff for significant

GO terms was P-value < 0.001. Further, a gene set enrichment anal-

ysis of significantly enriched KEGG pathways was performed using

the function “gage” of the likewise called R package with version

2.32.1 (Luo et al, 2009). The function was utilized to calculate

sample-wise test statistics with an unpaired one-sided two-sample t-

test using annotations from “org.Mm.eg.db” version 3.7.0. (Carlson,

2018). KEGG pathways with a P-value < 0.05 were considered

significantly enriched. Log2 fold changes from the differential gene

expression analysis (normal/healthy in comparison with residual/

regressed) were used as an input for the test.

Additionally, a reporter metabolite analysis was performed to iden-

tify metabolites or metabolic pathways that are likely to be de-

regulated. Therefore, the q-values and log2 fold changes (FC) of the

respective differentially expressed genes were used to calculate P-

values from a theoretical null distribution (10,000 permutations)

utilizing the reporter metabolite algorithm from the piano R package

(Varemo et al, 2013). Multiple testing adjustment was applied using

the Benjamini–Hochberg procedure. The threshold for significance

was Padj-value < 0.01 for the non-directional class, the distinct-

directional class, and the mixed-directional class, but maximally the

top 5% of the total list of tested metabolites considering each class

equally. Pathway enrichment was calculated for gene sets of 1 gene

per group or bigger. The gene set was obtained from a revised version

of the HMR2 model (Mardinoglu et al, 2014), whose gene–protein–
reaction annotations were translated to mouse orthologs with the

Bioconductor package biomaRt version 2.38.0 (Durinck et al, 2009)

using the ensembl database with the archived human and mouse

datasets version “jul2016.archive.ensembl.org”. R version 3.3.1 (R-

Core-Team, 2016) was used for conducting biostatistical analyses.
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Footprinting-based analysis of transcription factor activities
Transcription factor activities were assessed with a footprinting-

based enrichment method using the gene expression of TF targets

as an estimate for TF activity. The “dorothea” collection (available

on bioconductor, version 1.1.2) of mouse regulons (regulated target

genes) was used with confidence levels “A” and “B” as TF-target

gene association input (Holland et al, 2020). The Wald statistic

(two-sided Wald test) of all genes of the respective comparison

between populations was used as a gene statistic input for the

msVIPER algorithm to calculate the (enrichment-based) TF activity

score with parameters set to minsize = 4 and ges.filter = F. Alterna-

tively, the genome-wide normalized rlog-transformed transcript

counts (described in “Analysis of raw RNA sequencing data”) were

used as input for the VIPER algorithm to calculate a TF enrichment

of the residual cell population against a combined normal and

tumor population using the following parameters: minsize = 4, ges.

filter = F, method = “ttest”. Subsequently, a two-sided Student’s

t-test was performed to calculate each TF’s Student t-statistic

and P-value as a proxy for activity. The R package viper version

1.24.0 was used for the “MsViper” and “viper” algorithms (Alvarez

et al, 2016). For both analyses, TFs with a Benjamini–Hochberg-
adjusted P ≤ 0.01 were considered significant. The Bioconductor

package biomaRt version 2.38.0 (Durinck et al, 2009) using the

archived ensembl mouse dataset version "jul2016.archive.en-

sembl.org" was used to translate ensemble gene ids to mgi gene

symbols. R version 3.3.1 (R-Core-Team, 2016) was used for

conducting biostatistical analyses.

Integration of transcriptomic data into flux balance analysis
Differential gene expression data were integrated into flux balance

analysis (FBA) using a new simulation method, metabolic analysis

with relative gene expression (MARGE). This method aims to over-

come some limitations identified in other previously published

methods (Machado & Herrgard, 2014). In particular, it avoids

making assumptions on any direct proportionality between tran-

script levels and reaction rates; instead, it uses relative expression

between two conditions, as an indication of the direction and

magnitude of the flux control exerted on a metabolic pathway

through transcriptional regulation. The implementation is based on

a previously proposed extension of FBA that integrates gene–
protein–reaction (GPR) association rules into the stoichiometric

matrix of the metabolic network, allowing the computation of

enzyme-specific flux rates (Machado et al, 2016), and is formulated

as two-step linear optimization problem. The first step optimizes

the agreement between relative enzyme usage and relative gene

expression, and the second adds a parsimonious enzyme usage

criterion. Metabolite measurements can optionally be input as addi-

tional relative (between experimental conditions) or absolute

constraints (for each experimental condition separately) at this step

of optimization.
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where a and b are two experimental conditions, ea and eb are the

gene expression in each condition, va and vb are reaction flux

vectors, ua and ub are enzyme usage vectors, Sext is the extended

stoichiometric matrix, umin is a flux activation threshold (set to

0.001), and ɛ is a relaxation term with regard to the first objective

(set to 0.1).

Genome-scale metabolic modeling
Transcriptomic and extracellular GC-MS metabolomic data from

this study were used as model inputs to refine the phenotype

predictions performed with flux balance analysis. The transcrip-

tomic data were provided as log2 fold changes in significantly dif-

ferentially expressed metabolic genes (q-value < 0.1) between the

two experimental conditions. The metabolomic data were used to

constrain the metabolite uptake/secretion rates in the model, both

in terms of absolute rates per condition, and relative rates between

conditions. The fold change in significantly changed extracellular

metabolite profiles (Padj-value < 0.001) between conditions was

calculated and imposed as relative constraints in the model with a

deviation tolerance of 50% to account for measurement errors. The

media base line was therefore subtracted from the measurements of

the experimental conditions. The measurements of the pure

medium additionally allowed the distinction between an active

secretion into the medium or an uptake from the medium for all

conditions. Thus, for all conditions, for which the metabolite levels

changed significantly in comparison to the media, absolute uptake/

secretion constraints (1% of the maximum uptake rate) were

imposed to ensure a minimum level of metabolite uptake/secretion

in accordance with the data.

A revised version of the human genome-scale metabolic model

HMR2 (Mardinoglu et al, 2014) was used for simulations. The gene–
protein–reaction (GPR) annotations were translated to mouse gene

orthologs with the Bioconductor package biomaRt version 2.38.0

(Durinck et al, 2009) using the ensembl database with the archived

human and mouse datasets version "jul2016.archive.ensembl.org".

The GPR annotations as well as the model itself had been updated

and corrected to yield more accurate flux predictions. In brief, this

included the introduction of a mitochondrial intra-membrane space

(adapted from Swainston et al, 2016) to improve the prediction of
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respiratory ATP synthesis, the revision of reactions from the beta-

oxidation pathway and auxiliary enzymes, the introduction of ATP

maintenance costs, and the adaption of model uptakes and releases

of metabolites from experimental data (Jain et al, 2012). Further,

atomically unbalanced reactions were removed and the directional-

ity of reactions was constraint where infeasible.

The import/export of SBML files was obtained through the

libSBML API (Bornstein et al, 2008) using the load_cbmodel of

reframed. The simulations were performed using the ReFramed

python package version 1.0.0 (https://github.com/cdanielmachado/

reframed). In particular, we used the MARGE function (implementa-

tion of the method described above) with the following parameter

settings: growth_frac_a=0.8, growth_frac_b=0.8, activation_

frac=0.001, step2_tol=0.1. The IBM ILOG CPLEX Optimizer version

12.8.0 was used for solving the MILP problems. All simulations

were conducted with Python 3.6.9.

The metabolic model, the modeling parameters, and the analysis

can be found on (https://github.com/katharinazirngibl/Minimal

ResidualDisease/).

Human breast cancer transcriptome comparison
Microarray gene expression datasets from breast cancer patients

pre- and post-treatment (Gonzalez-Angulo et al, 2012) and control

breast tissue from healthy women (Maire et al, 2013) were down-

loaded from Gene Expression Omnibus (GEO) (Cong et al, 2013).

Each dataset was first analyzed independently, which included fil-

tering for sample outliers, normalization, background correction,

minimal intensity filtering of genes, and the annotation of genes

from probe set IDs with the removal of multiple mappings of tran-

script cluster identifiers. The sample outliers were identified with

the function “arrayQualityMetrics” of the likewise called R package

with version 3.38.0 (Kauffmann et al, 2009). Normalization and

background correction were done using the “rma” function of the

R package oligo version 1.46.0 carvalho (Carvalho & Irizarry,

2010). The minimal intensity threshold for gene filtering was

determined by fitting a null model to the whole data set and

taking the lower 5% boarder as a cutoff. The two datasets were

then combined and processed together a second time (normaliza-

tion, outlier removal, intensity filtering). In order to address the

batch effect of the joined data stemming from the two experimen-

tal settings, the first principal component was removed from the

data set. In addition, the “normal-like” tumor subtype of the

patients’ dataset was removed due to the poorly defined diagnostic

category and high biological variability. For the differential gene

expression, a gene-wise linear model was fitted to the dataset

using generalized least squares and including the tumor subtype

as a confounder variable if applicable. Next, an empirical Bayes

moderated t-statistic and log-odds were computed with the

“eBayes” function of the limma package version 3.38.3 (Smyth,

2004; Ritchie et al, 2015) using the package defaults. All genes

with a Benjamini–Hochberg-adjusted P-value < 0.1 were consid-

ered differentially expressed. For the joint clustering with the

mouse transcriptome data, the mouse genes were translated to

human orthologs using the Bioconductor package biomaRt version

2.38.0 (Durinck et al, 2009) and the ensembl database with the

archived mouse and human datasets version "jul2016.archive.en-

sembl.org". R version 3.3.1 (R-Core-Team, 2016) was used for

conducting biostatistical analyses.

Intracellular and extracellular sample harvest and metabolite
extraction from 3D organoids
For metabolomic experiments, matrix (volume of 100 µl) was mixed

with 12,000 primary mouse mammary epithelial cells and dispensed

into flat bottom wells (CellBIND 12 Well Clear Multiple Well Plates,

Corning 3336). Cells were cultivated for 7 days, with media change

on every second day, before oncogene induction. Upon that point,

media was changed daily for all the three conditions (normal,

tumor, and residual). Timepoints of induction and de-induction

were designed to allow collection and processing of the samples

from normal, tumor, and residual organoids simultaneously. The

samples (two technical replicates, per condition) were pooled, initi-

ally from 6, then from 3 wells, as the signal was strong enough to

quantify metabolites. Prior to the harvest of organoids for metabolo-

mics, 50 µl of spent growth media was snap-frozen and stored at

−80°C until the extraction of metabolites for extracellular metabolo-

mics. Subsequently, the organoid structures were freed from the

Matrigel by adding liberase and collagenase for 1.5 h at 37°C to the

remaining medium. Following this incubation, the medium was

aspirated, and the organoids were washed with room temperature

PBS and centrifuged (1,000 r.p.m., 2 min, room temperature). This

step was performed three times until the addition of 200 µl cold

(−80°C) HPLC-grade methanol (Biosolve Chimie, 136841). For

metabolite extraction, adonitol (Alfa Aesar, 488-81-3) was added as

an internal standard to the mixture of organoids/methanol. The

samples were incubated at 72°C for 15 min followed by addition of

200 μl ice-old Milli-Q water. Following centrifugation (12,500 g,

10 min, 4°C), the supernatants were collected and dried using a

GeneVac EZ-2 plus evaporating system (SP Scientific). The dried

metabolite extracts were stored at −80°C until metabolomic analy-

sis. Metabolite extraction from the spent growth media was

performed as described above by adjusting the volume of the extrac-

tion solvents to 100 µl of HPLC-grade methanol and 100 µl of Milli-

Q water. Finally, 50 µl from the initial pure growth medium and

from the last washing step with PBS were collected and extracted as

the spent growth media samples. The last washing step was

employed as control to validate the effective washing of the orga-

noids from the extracellular medium before quenching.

For experiments following extracellular glucose change after

3 BP treatment, seeding, cell cultivation, oncogene induction, media

change, and harvesting for metabolic analyses were done as

described above. Prior to collection, cells were incubated for 5 h

with 3-BP, at the doses 50 and 250 µM. Samples from four and two

biological replicates were analyzed for unlabeled and labeled experi-

ments, respectively.

In vivo and ex vivo mammary glands experiments
For experiments that allowed for tumorigenesis and regression

in vivo, food pellets supplemented with doxycycline (625 mg/kg)

were used for tumor induction in mice, which were weekly moni-

tored for tumor detection and their overall health. Full blown

tumors developed in the period of 4–6 weeks and when burden was

too large (d = 2 cm), animals were given food without doxycycline

which resulted in the fast tumor regression to a non-palpable state.

At the timepoint of the complete tumor regression (9 weeks after

oncogenes deactivation), mammary glands were harvested from

these mice, along with the wild-type (non-inducible) siblings, which

had the same treatment. Before harvesting, vaginal lavage to check
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for the phase of estrous cycle was obtained, according to the modi-

fied protocol (McLean et al, 2012): Slides were dried at room

temperature, fixed in 10% formalin, washed in 1× PBS, stained with

crystal violet solution (Sigma, V5265) followed by wash in water

and analyzed using Leica Application Suite X and Leica DFC7000 T

microscope (Leica Microsystems).

For the [U-13C]glucose tracing experiment, the harvested

mammary glands were dissected, minced, and digested for 1.5–2 h

at 37°C using collagenase and liberase enzymes, then cultured for

8 h at 37°C in 5% (vol/vol) CO2 atmosphere, in DMEM glucose- and

pyruvate-free medium (Thermo Fisher Scientific, 11966025) supple-

mented with 4.5 g/l labeled D-glucose U-13C, 99% (Cambridge

Isotope Laboratories, Inc., CLM-1396) and components from MEGM

BulletKit (Lonza, CC-3150). For the non-labeled metabolomic exper-

iment, the harvested mammary glands were dissected and cultured

for 8 h at 37°C in 5% (vol/vol) CO2 atmosphere, in DMEM, high

glucose (4.5 g/l glucose) GlutaMAX (Gibco, 10569044) supple-

mented with components from MEGM BulletKit (Lonza, CC-3150).

For both the isotope tracing and unlabeled experiments, 50 µl from
the spent growth media was collected following the 8 h of incuba-

tion period. For intracellular metabolomics, the mammary glands

were collected following the 8 h of incubation period, washed with

room temperature PBS, and centrifuged (1,000 r.p.m., 2 min, room

temperature). The washing procedure was performed three times

before the addition of 200 µl cold (−80°C) HPLC-grade methanol.

Subsequently, the metabolite extraction was performed as described

in “Intracellular and extracellular sample harvest and metabolite

extraction from 3D organoids”.

Targeted metabolomic analysis with gas chromatography—mass
spectrometry
Dried metabolite extracts were derivatized with 50 µl of 20 mg/ml

methoxyamine hydrochloride (Alfa Aesar, A19188) solution in pyri-

dine (Sigma-Aldrich, 437611) for 90 min at 40°C, followed by addi-

tion of 100 µl N-methyl-trimethylsilyl-trifluoroacetamide (MSTFA;

Alfa Aesar, A13141) for 12 h at room temperature (Kanani & Klapa,

2007; Kanani et al, 2008). GC-MS analysis was performed using a

Shimadzu TQ8040 GC-(triple quadrupole) MS system (Shimadzu

Corp.) equipped with a 30 m × 0.25 mm × 0.25 μm ZB-50 capillary

column (7HG-G004-11; Phenomenex). One microliter of sample was

injected in split mode (split ratio = 1:10) at 250°C using helium as a

carrier gas with a flow rate of 1 ml/min. GC oven temperature was

held at 100°C for 4 min followed by an increase to 320°C with a rate

of 10°C/min, and a final constant temperature period at 320°C for

11 min. The interface and the ion source were held at 280 and

230°C, respectively. The detector was operated both in scanning

mode (recording in the range of 50–600 m/z) and in MRM mode

(for specified metabolites). For peak annotation, the GC-MS solution

software (Shimadzu Corp.) was utilized. The metabolite identifi-

cation was based on an in-house database with analytical standards

being utilized to define the retention time, the mass spectrum, and

marker ion fragments for all the quantified metabolites. The

metabolite quantification was carried out by integrating the area

under the curve of the MRM transition of each metabolite. The data

were further normalized to the area under the curve of the MRM

transition of adonitol and to total metabolite levels. To identify the

statistically significant altered metabolites, the limma package

(Ritchie et al, 2015) (version 3.36.5) in R (version 3.5.2) was

utilized with the significance threshold corresponding to a

Benjamini–Hochberg adjusted P-value ≤ 0.05.

Isotope tracing analysis
For the [U-13C] glucose tracing experiments, dried metabolite

extracts were derivatized with 50 µl of 20 mg/ml methoxyamine

hydrochloride (Alfa Aesar, A19188) solution in pyridine (Sigma-

Aldrich, 437611) for 90 min at 40°C, followed by addition of 100 µl
N-tert-Butyldimethylsilyl-N-methyltrifluoroacetamide + 1% tert-

Butyldimethylchlorosilane (Sigma-Aldrich, 00942) for 1 h at 60°C.
The samples remained at room temperature for 5 h and then

analyzed by GC-MS. The GC-MS was operated as described in

“Targeted metabolomic analysis with gas chromatography—mass

spectrometry” with the following difference: GC oven temperature

was held at 100°C for 3 min followed by an increase to 300°C with a

rate of 3.5°C/min and a final constant temperature period at 300°C
for 10 min. The detector was operated in single ion monitoring

(SIM) mode for the ion fragments m/z 261, 262, 263, and 264 which

correspond to all possible mass isotopologues of lactate. Mass

isotopologue distributions were determined by integrating the area

under the curve of the ion fragments. The data were corrected for

natural isotope abundance using the Isotope Correction Toolbox

(ICT) (Jungreuthmayer et al, 2016). Significance was calculated by

unpaired two-sample t-test following assessment of normality and

equal variance using the Shapiro–Wilk’s test and F test, respectively.

Untargeted metabolomics by flow injection mass spectrometry
Untargeted metabolomic analysis was performed based on a previ-

ously published approach (Fuhrer et al, 2011). Briefly, samples were

analyzed on a LC-MS platform consisting of a Thermo Scientific Ulti-

mate 3000 liquid chromatography system with autosampler temper-

ature set to 10°C coupled to a Thermo Scientific Q-Exactive Plus

mass spectrometer equipped with a heated electrospray ion source

and operated in negative ionization mode. The isocratic flow rate

was 150 μl/min of mobile phase consisting of 60:40% (v/v) isopro-

panol:water buffered with 1 mM ammonium fluoride at pH 9 and

containing 10 nM taurocholic acid and 20 nM homotaurine as lock

masses. Mass spectra were recorded in profile mode from 50 to

1,000 m/z with the following instrument settings: sheath gas, 35

a.u.; aux gas, 10 a.u.; aux gas heater, 200°C; sweep gas, 1 a.u.;

spray voltage, −3 kV; capillary temperature, 250°C; S-lens RF level,

50 a.u; resolution, 70k @ 200 m/z; AGC target, 3 × 106 ions, max.

inject time, 120 ms; and acquisition duration, 60 s. Spectral data

processing was performed using an automated pipeline in R.

Detected ions were tentatively annotated as metabolites based on

matching accurate masses of assumed [M-H] and [M-2H] ions with

either no, one, or two 12C to 13C exchanges within a tolerance of

5 mDa to compounds in the Human Metabolome database as refer-

ence (Wishart et al, 2018), with the method-inherent limitation of

being unable to distinguish between isomers. Hierarchical clustering

of the ions was performed with the complete linkage method and

the Euclidean distance as a distance metric. Only ions with non-zero

intensity and unique annotation including no assumed mass shift

were used for the clustering analysis. For the visualization, ions

with a false discovery rate < 0.05 as determine by unpaired two-

sided t-tests and subsequent multiple hypothesis testing correction

according to Storey’s and Tibshirani’s method (Storey & Tibshirani,

2003) were considered as significantly changed.
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Lipidomics
Acidic extractions were performed as described (Ozbalci et al, 2013)

in the presence of an internal lipid standard mix containing 50 pmol

phosphatidylcholine (13:0/13:0, 14:0/14:0, 20:0/20:0; 21:0/21:0,

Avanti Polar Lipids), 50 pmol sphingomyelin (d18:1 with N-acylated

13:0, 17:0, 25:0), 100 pmol D6-cholesterol (Cambridge Isotope Labo-

ratory), 25 pmol phosphatidylinositol (16:0/ 16:0, Avanti Polar

Lipids), 25 pmol phosphatidylethanolamine and 25 pmol phos-

phatidylserine (both 14:1/14:1, 20:1/20:1, 22:1/22:1), 25 pmol

diacylglycerol (17:0/17:0, Larodan), 25 pmol cholesteryl ester (9:0,

19:0, Sigma), 24 pmol triacylglycerol (D5-Mix, LM-6000/D5-17:0/

17:1/17:1, Avanti Polar Lipids), 5 pmol ceramide and 5 pmol gluco-

sylceramide (both d18:1 with N-acylated 15:0, 17:0, 25:0), 5 pmol

lactosylceramide (d18:1 with N-acylated C17 fatty acid, Avanti Polar

Lipids), 10 pmol phosphatidic acid (21:0/22:6, Avanti Polar Lipids),

10 pmol phosphatidylglycerol (14:1/14:1, 20:1/20:1, 22:1/22:1),

10 pmol lyso-phosphatidylcholine (17:1, Avanti Polar Lipids),

50 pmol cardiolipin (14:1/14:1/14:1/15:1, Avanti Polar Lipids), and

50 pmol monolysocardiolipin (16:0/16:0/16:0, Avanti Polar Lipids).

Neutral extractions were performed as described (Ozbalci et al,

2013) containing a phosphatidylethanolamine plasmalogen (PE P-)-

standard mix which was spiked with 16.5 pmol PE P-Mix 1 (16:0p/

15:0, 16:0p/19:0, 16:0p/ 25:0), 23.25 pmol PE P-Mix 2 (18:0p/15:0,

18:0p/19:0, 18:0p/25:0), and 32.25 pmol PE P-Mix 3 (18:1p/15:0,

18:1p/19:0, 18:1p/25:0). Lipid standard preparations were done as

described in Ozbalci et al (2013). Lipid extracts were resuspended in

60 µl methanol, and samples were analyzed on a QTRAP 6500+
mass spectrometer (Sciex) with chip-based (HD-D ESI Chip, Advion

Biosciences, USA) nano-electrospray infusion and ionization via a

Triversa Nanomate (Advion Biosciences, Ithaca, USA) as previously

described (Ozbalci et al, 2013; Mucksch et al, 2019). Data evalua-

tion was done using LipidView (Sciex) and an in-house-developed

software (ShinyLipids). Since triacylglycerol (TAG) could not be

reliably measured, it was excluded from the downstream analysis.

NOS enzymatic assay
Mammary glands were dissected and homogenized in NOS assay

buffer and further processed following the Nitric Oxide Synthase

Activity Assay Kit (Abcam, ab211083) protocol for measuring enzy-

matic activity of nitric oxide synthase (NOS). Statistics were calcu-

lated by unpaired two-sample t-test followed by the assessment of

normality and equal variance using the Shapiro–Wilk’s test and F

test, respectively.

Glycolysis inhibition experiments
Cells were seeded in 3D conditions (5 µl of 80% Matrigel droplet)

in black TC-treated imaging 96-well plates (Falcon, 353219) with

clear flat bottom. 3-bromopyruvate (Sigma-Aldrich, 16490) was

added to the cell medium, whereby the following doses (µM) were

tested: 250, 50, 25, 10, 2, 0 (vehicle, water). A CellTox Green Cyto-

toxicity Assay (Promega, G8741) was performed according to the

manufacturer instructions to measure cell death after 72 or 48 h of

treatment. Green fluorescence was measured using an EnVision

plate reader (PerkinElmer), Resorufin/Amplex Red FP 535 for exci-

tation, and an Europium 615 emission filter. Data analysis was

performed using GraphPad Prism 8, and fold changes were calcu-

lated by normalization to the untreated control using a transform

function. Y values were transformed using Y = Y/K with a different

K for each dataset and K being the mean of the untreated control

for normal, tumor, and residual separately. For quantification of

cell death of normal, tumor, and residual cells after 72-h treatment

with 3-BP, two-way ANOVA test was used to calculate the signifi-

cance. Tukey HSD was computed for multiple pairwise compar-

isons between the means of the groups. For cell death

quantification of passaged residual and normal cells after 48 h of

treatment with 3-BP, significance was calculated using multiple t-

tests, one unpaired t-test per row.

All experiments were reproduced two or three times; the number

of biological replicates is depicted in the figure legends, and for each

biological replicate, there were 5–6 technical replicates of which

an average was taken.

Images were taken over the time-course of the experiment using

the high-throughput Olympus ScanR microscope in transmission

mode. Each well of the 96-well plate was imaged using 1 ROI with

21 Z-stacks (100 µm distance between the stacks) at 4× magnifi-

cation in a chamber with standard conditions (37°C, 5% CO2). The

projections of z-stacks and image stitching were done using the Fiji

software.

DNA methylation profiles
The cells for the DNA extraction were harvested from three 3D gels

per experimental condition by the digestion of the matrix with colla-

genase and liberase for 1.5 h at 37°C. Subsequently, the individually

digested gels were pooled, washed three times with PBS and STOP

medium (Dulbecco’s modified eagle medium:F12, DMEM:F12 with

HEPES (15 mM), 1:1 mixture with 3.151 g/l glucose, with L-

glutamine, supplemented with HEPES to the final concentration of

25 mM and 10% of fetal bovine serum, tetracycline free) and centri-

fuged shortly (1,000 r.p.m., 2 min, at room temperature). The DNA

extraction from the harvested cells was done following the Qiagen

protocol for cultured cells (Qiagen Blood & Cell Culture DNA Mini

kit, 13323). The libraries for enzymatic methyl-seq (EM-seq) were

prepared with the NEBNext enzymatic Methyl-seq Kit (NEW

ENGLAND BioLabs Inc.) from 100 ng of sheared DNA. According to

the protocol’s recommendations, 2 ng of lambda phage DNA and

0.1 ng of pUC19 plasmid DNA were spiked-in per 100 ng sample

DNA prior to fragmentation. The fragmentation of the DNA mix was

done using a Covaris S2-focused ultrasonicator. Bisulfite-free

NEBNext EM-seq libraries were sequenced in the Genomics Core

Facility at EMBL Heidelberg on an Illumina HiSeq 2500 platform

generating directional paired-end reads with a read length of

135 bp. Each sample was sequenced on a single lane. The total

reads per sample ranged from 229.8 to 250.6 million. The sequenc-

ing reads were aligned with the “qAlign” function of the R package

QuasR version 1.22.1 (Gaidatzis et al, 2015) using the reference

genome sequence for M. musculus from the R package BSgenome.

Mmusculus.UCSC.mm10 version 1.4.0, (The-Bioconductor-Dev-Team,

2014) the R bowtie wrapper Rbowtie version 1.22.0 (Hahne et al;

Langmead et al, 2009), and the parameter setting modifications:

bisulfite=“undir”. The average coverage ranged from 9.4 to 14.5

reads per CpG site. The DNA methylation percentage was quantified

genome-wide for all cytosine nucleotides in CpG context with the

function “qMeth” from QuasR using the information from both

strands combined.

The visualization of methylation percentages and promoters at

their genomic location was done with the R packages trackViewer
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version 1.26.2 (Ou & Zhu, 2019) and rtracklayer version 1.50.0

(Lawrence et al, 2009) as well as the annotation from the R package

"TxDb. Mmusculus.UCSC.mm10.knownGene" version 3.10.0 (BC

Team, 2019).

R version 3.5.1 (R-Core-Team, 2016) was used for conducting

biostatistical analyses.

Data availability

RNA-seq data generated and analyzed during the current study are

available at ArrayExpress (https://www.ebi.ac.uk/arrayexpress/)

under accession number E-MTAB-8834 (http://www.ebi.ac.uk/

arrayexpress/experiments/E-MTAB-8834).

Enzymatic Methyl-seq (EM-seq) data generated and analyzed

during the current study were submitted to ArrayExpress (https://

www.ebi.ac.uk/arrayexpress/) under accession number E-MTAB-

10979 (http://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-10979).

GC-MS data generated and analyzed during the current study are

available at MetaboLights Database as MTBLS1507. Access: https://

www.ebi.ac.uk/metabolights/MTBLS1507.

Lipidomics, targeted metabolomic data, and untargeted metabo-

lomics (FIA-MS) data generated and analyzed during the current

study are available at Mendeley (https://data.mendeley.com/datasets/

8gby9dxh83/draft?a=fb9d4bd8-0acd-47d9-bb27-607b56e89d63).

The human genome-scale metabolic model HMR2 revised during

the current study and used for simulation https://github.com/

katharinazirngibl/MinimalResidualDisease/.

Source Data for all main and Appendix figures are available at

BioStudies https://www.ebi.ac.uk/biostudies/studies/S-BSST713,

Identifier: S-BSST713.

Expanded View for this article is available online.
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