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Abstract

IMPORTANCE Hypertensive disorders in pregnancy (HDPs) are major causes of maternal and fetal
morbidity and are observationally associated with future maternal risk of cardiovascular disease.
However, observational results may be subject to residual confounding and bias.

OBJECTIVE To investigate the association of HDPs with multiple cardiovascular diseases.

DESIGN, SETTING, AND PARTICIPANTS A genome-wide genetic association study using mendelian
randomization (MR) was performed from February 16 to March 4, 2022. Primary analysis was
conducted using inverse-variance-weighted MR. Mediation analyses were performed using a
multivariable MR framework. All studies included patients predominantly of European ancestry.
Female-specific summary-level data from FinnGen (sixth release).

EXPOSURES Uncorrelated (r2<0.001) single-nucleotide variants (SNVs) were selected as
instrumental variants from the FinnGen consortium summary statistics for exposures of any HDP,
gestational hypertension, and preeclampsia or eclampsia.

MAIN OUTCOMES AND MEASURES Genetic association estimates for outcomes were extracted
from genome-wide association studies of 122 733 cases for coronary artery disease, 34 217 cases for
ischemic stroke, 47 309 cases for heart failure, and 60 620 cases for atrial fibrillation.

RESULTS Genetically predicted HDPs were associated with a higher risk of coronary artery disease
(odds ratio [OR], 1.24; 95% CI, 1.08-1.43; P = .002); this association was evident for both gestational
hypertension (OR, 1.08; 95% CI, 1.00-1.17; P = .04) and preeclampsia/eclampsia (OR, 1.06; 95% CI,
1.01-1.12; P = .03). Genetically predicted HDPs were also associated with a higher risk of ischemic
stroke (OR, 1.27; 95% CI, 1.12-1.44; P = 2.87 × 10−4). Mediation analysis revealed a partial attenuation
of the effect of HDPs on coronary artery disease after adjustment for systolic blood pressure (total
effect OR, 1.24; direct effect OR, 1.10; 95% CI, 1.02-1.08; P = .02) and type 2 diabetes (total effect OR,
1.24; direct effect OR, 1.16; 95% CI, 1.04-1.29; P = .008). No associations were noted between
genetically predicted HDPs and heart failure (OR, 0.97; 95% CI, 0.76-1.23; P = .79) or atrial fibrillation
(OR, 1.11; 95% CI, 0.65-1.88; P = .71).

CONCLUSIONS AND RELEVANCE The findings of this study provide genetic evidence supporting
an association between HDPs and higher risk of coronary artery disease and stroke, which is only
partially mediated by cardiometabolic factors. This supports classification of HDPs as risk factors for
cardiovascular disease.
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Key Points
Question Is there evidence for an

association between hypertensive

disorders of pregnancy (HDPs) and long-

term risk of cardiovascular disease?

Findings In this large genome-wide

genetic association study using

mendelian randomization, HDPs were

associated with higher risk of coronary

artery disease and ischemic stroke but

not heart failure or atrial fibrillation.

Mediation analysis revealed a partial

attenuation of the association between

HDPs and coronary artery disease after

adjustment for systolic blood pressure

and type 2 diabetes.

Meaning These results support the

consideration of HDPs as potential risk

factors for cardiovascular disease.
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Introduction

Hypertensive disorders in pregnancy (HDPs) affect nearly 10% of pregnancies and account for
approximately 14% of maternal deaths worldwide.1,2 Globally, HDPs are the second leading cause of
maternal mortality and a major cause of neonatal morbidity.1

The term hypertensive disorders encompasses 3 diagnoses: gestational hypertension,
preeclampsia or eclampsia, and either of these pathologic conditions superimposed on chronic
hypertension.3 Beyond their short-term impact on maternal and fetal outcomes of pregnancy, HDPs
also have implications for long-term maternal health. Observational evidence suggests that women
who experience HDPs have a 2-fold higher long-term risk of future cardiovascular events compared
with women who have normotensive pregnancy.4,5 In addition, recent data from the Nurses’ Health
Study II cohort revealed that women with HDPs had a significantly higher rate of atherosclerosis in
the years following pregnancy.6

However, causal inference cannot be drawn from such observational associations due to the
potential residual impact of confounding. This is particularly important for HDPs, as there are many
potential common causes of HDPs and cardiovascular disease. These include clinical factors, such as
diabetes7 and obesity,7,8 and socioeconomic and behavioral factors that are extremely difficult to
quantify and account for in an observational setting.9,10

Mendelian randomization (MR) is a method that uses genetic risk of disease as a proxy for the
disease itself to use in an instrumental variant analysis framework.11 Like randomization to treatment
in a clinical trial, genetic variants are randomly assigned at the time of gamete formation and
conception, independent of external influences. This leads to effective randomization to either high
or low genetic risk of a disease, mitigating the potential for confounding and reverse causation similar
to a randomized clinical trial. Under a set of assumptions, MR estimates can be interpreted as the
estimated effect of the exposure on the outcome.

The aim of this study was to use MR to investigate the association of HDPs (when considered as
a whole and as the individual diagnoses of gestational hypertension and preeclampsia or eclampsia)
with the risk of coronary artery disease (CAD), ischemic stroke, heart failure, and atrial fibrillation.
Furthermore, we explored the role of traditional cardiovascular risk factors as potential mediators of
this association.

Methods

Study Data
All data used in this genome-wide genetic association study using mendelian randomization are
deidentified publicly available. All cited data sources obtained participant informed consent and
relevant ethical approval. The study was conducted from February 16 to March 4, 2022. Details of the
studies used as data sources are outlined in eTable 1 in Supplement 1. This study is reported following
recommendations by the Strengthening the Reporting of Observational Studies in Epidemiology
Using Mendelian Randomization (STROBE-MR) reporting guideline.12

Instrumental Variants for Exposures
This study considered 3 exposures: HDPs as a whole and its 2 subtypes of gestational hypertension
and preeclampsia/eclampsia. Genetic association estimates were extracted from the FinnGen
consortium’s sixth data release of genome-wide association study (GWAS) summary data, released
on January 24, 2022.13 This included 10 736 cases and 136 325 controls for any HDPs, 5240 cases and
136 325 controls for gestational hypertension, and 4743 cases and 136 325 controls for
preeclampsia/eclampsia, with a mean age at first event between 29.06 and 30.08 years.

Instrumental variants were selected if they were associated with each exposure at a genome-
wide significance threshold of P < 5 × 10−8. No single-nucleotide variants (SNVs) were available at
this threshold for preeclampsia/eclampsia, so the threshold was increased by a factor of 10 until at
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least 1 variant was available, resulting in a final P value threshold for preeclampsia/eclampsia of
P < 5 × 10−6. A list of instrumental variants used in the analysis for the exposures can be found in
eTable 3, eTable 4, and eTable 5 in Supplement 1.

Genetic Associations for Outcomes
Genetic association estimates for the outcome of CAD were obtained from the van der Harst and
Verweij14 study of 122 733 cases and 424 528 controls. Genetic association estimates for ischemic
stroke (IS) were obtained from the Malik et al15 study of 34 217 cases and 406 111 controls. Genetic
association estimates were obtained from the Shah et al16 investigation of 47 309 cases and 930 014
controls for heart failure (HF) and the Nielsen et al17 study of 60 620 cases and 970 216 controls for
atrial fibrillation (AF). All studies were carried out in European ancestry populations, and genetic
association estimates were adjusted for participant sex. Further details on population characteristics
are available in the original publications and eTable 1 in Supplement 1.

Harmonization and Clumping
Estimates of the effect of instrumental variant SNVs for each exposure were harmonized with effect
estimates of the SNVs for outcomes, separately for each exposure-outcome pair. If there were no
matching SNVs for an instrumental variant in the outcome summary statistics, proxies were sought
that were in linkage disequilibrium with an r2 value greater than 0.8. Clumping was performed after
harmonization of data using the TwoSampleMR package in R software at r2 less than 0.001. The
flowchart to show data sources, instrumental variant selection, and statistical analysis is shown in
Figure 1.

Statistical Analysis
The primary method used for analysis was inverse-variance-weighted MR with multiplicative random
effects18 in all instances when 4 or more SNVs were available. If 2 or 3 SNVs were available, inverse-
variance-weighted MR with fixed random effects was used. If only 1 instrumental SNV was available,
the Wald ratio was used. Heterogeneity in inverse-variance-weighted analyses was estimated using
the Cochran Q statistic.

Single SNV analyses were performed using the Wald ratio method, and leave-1-out analyses
were also conducted by performing multiple analyses after sequentially removing 1 SNV from the
instrumental variant set. This could only be carried out when 3 or more instrumental variants
were present.

Additional sensitivity analyses were performed to assess and address the key MR assumptions
regarding instrumental variants, described in further detail in the eMethods in Supplement 1. The first
assumption was explored by quantifying the strength of instruments using R2 and F statistics.19

Weighted median MR,20 MR-Egger regression,21 and MR-PRESSO22 were performed to identify and
account for potential horizontal pleiotropy.23 All statistical analysis was conducted in R, version 4.1.2
(R Foundation for Statistical Computing) using TwoSampleMR24 and Mendelianrandomization
packages.25

For any exposure-outcome associations significant in primary analysis, mediation analysis was
performed using multivariable MR.26 The putative mediators considered included body mass index27

(434 749 individuals of European ancestry), systolic blood pressure28 (757 601 individuals of
European ancestry), and type 2 diabetes 29 (80 154 individuals and 853 816 controls of European
ancestry). These were chosen on the basis of a large, recent observational study that reported
different trajectories in these factors among women with HDPs.6

A step-wise approach was used. First, statistically significant (P < .05) exposure-outcome
associations were identified. Second, exposure-mediator associations were tested using univariable
inverse-variance-weighted MR. Only putative mediators that were associated with the exposure
(downstream, at a less conservative statistical significance level of P < .10) were carried forward. We
opted for a less stringent threshold here since, in some conditions, mediation can be true despite
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not finding an association between the exposure and mediator.30 In addition, the direct effect of the
exposure on the outcome, conditional on the mediator, was calculated using multivariable MR. Since
the outcomes in our MR investigation are common and since binary variables and genetic association
estimates are in log(OR) scale, which is noncollapsible in the setting of a common outcome, the
indirect effect was not reported. Instead, by qualitatively comparing the direct and total effects, any
significant attenuation of the odds ratios (ORs) after conditioning on a mediator was taken to indicate
the presence of a mediating pathway.31 The conditional F statistic was calculated to assess the
strength of instruments in multivariable MR analysis.32

Results are presented as ORs with 95% (CIs). Statistical significance was considered at a 2-sided
α level threshold of P < .05. Post hoc power calculations for univariable primary analyses were
performed using the online mRnd calculator to estimate the minimum effect size that we had at least
80% power to detect.33

Results

Coronary Artery Disease
Genetically predicted HDPs (OR, 1.24; 95% CI, 1.08-1.43; P = .002), genetically predicted gestational
hypertension (OR, 1.08; 95% CI, 1.00-1.17; P = .04), and genetically predicted preeclampsia/
eclampsia (OR, 1.06; 95% CI, 1.01-1.12; P = .03) were associated with a higher risk of CAD, as
illustrated in Figure 2 and Table 1. Sensitivity analyses revealed no evidence of directional pleiotropy
for either genetically predicted gestational hypertension (MR-Egger intercept P = .33) or genetically
predicted preeclampsia/eclampsia (MR-Egger intercept P = .71), although some heterogeneity was
noted (HDPs Q statistic = 13.6; P = .001; gestational hypertension Q statistic = 3.8; P = .15; and
preeclampsia/eclampsia Q statistic = 32.3; P = .004). MR-PRESSO did not identify a significant
impact of outliers on results but could only be done for preeclampsia/eclampsia as the analysis
requires more than 3 SNVs. Sensitivity analyses could not be carried out for genetically predicted
HDPs, as only 1 SNV was available for analysis. The results of single SNV analysis are reported in
eFigure 1 in Supplement 1, and leave-1-out analyses are reported in eTable 6 in Supplement 1.

Ischemic Stroke
As shown in Figure 2 and Table 1, genetically predicted HDPs were associated with a higher risk of IS
(OR, 1.27; 95% CI, 1.12-1.44; P = 2.86 × 10−4). However, neither subgroups of genetically predicted
gestational hypertension (OR, 1.12; 95% CI, 0.93-1.36; P = .23) nor genetically predicted
preeclampsia/eclampsia (OR, 1.04; 95% CI, 0.97-1.12; P = .22) showed any association with IS.

Sensitivity analyses revealed no evidence of directional pleiotropy for genetically predicted
preeclampsia/eclampsia (MR-Egger P = .65). Sensitivity analyses could not be carried out for HDPs
and gestational hypertension because there were insufficient SNVs available for analysis. The full
results are given in Table 1. Some heterogeneity was noted for gestational hypertension (Q
statistic = 5.4; P = .02) and preeclampsia/eclampsia (Q statistic = 23.8; P = .01) but not for HDPs (Q
statistic = 2.0; P = .37). The results of single SNV analysis are reported in eFigure 2 in Supplement 1,
and leave-1-out analyses are noted in eTable 6 in Supplement 1.

Heart Failure
Genetically predicted HDPs (OR, 0.97; 95% CI, 0.76-1.23; P = .79), genetically predicted gestational
hypertension (OR, 1.05; 95% CI, 0.98-1.12; P = .17), and genetically predicted preeclampsia/eclampsia
(OR, 1.05; 95% CI, 1.00-1.10; P = .07) were not associated with HF, as displayed in Figure 2 and
Table 1. Some heterogeneity was noted for HDPs (Q statistic = 11.8; P = .008) but not for gestational
hypertension (Q statistic = 1.5; P = .48) and preeclampsia/eclampsia (Q statistic = 23.5; P = .10). The
results of single SNV analysis are reported in eFigure 3 in Supplement 1, and leave-1-out analyses are
given in eTable 6 in Supplement 1.
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Atrial Fibrillation
As shown in Figure 2 and Table 1, genetically predicted HDPs (OR, 1.11; 95% CI, 0.65-1.88; P = .71),
genetically predicted gestational hypertension (OR, 1.08; 95% CI, 0.99-1.19; P = .10), and genetically
predicted preeclampsia/eclampsia (OR, 1.01; 95% CI, 0.95-1.07; P = .77) were not associated with
AF. Significant heterogeneity was noted for HDPs (Q statistic = 33.0; P = 6.75 × 10−8) and
preeclampsia/eclampsia (Q statistic = 50.0; P = 1.23 × 10−5) but not for gestational hypertension (Q
statistic = 5.8; P = .06). The results of single SNV analysis are reported in eFigure 4 in Supplement 1,
and the results of leave-1-out analyses are reported in eTable 6 in Supplement 1.

Statistical Power
For each of the outcomes, the relative risk increase that the analyses had at least 80% power to
detect is displayed in Table 2. For the exposure of HDPs, there was at least 80% power to detect a
relative risk increase of 8.8% for CAD, 15.2% for IS, 11.1% for HF, and 11.3% for AF. For the exposure of
gestational hypertension, there was at least 80% power to detect a relative risk increase of 6.9% for
CAD, 14.2% for IS, 9.8% for HF, and 8.7% for AF. For the exposure of preeclampsia/eclampsia, there
was at least 80% power to detect a relative risk increase of 3.5% for CAD, 6.8% for IS, 4.7% for HF,
and 4.3% for AF.

Figure 2. Mendelian Randomization Analysis of Hypertensive Disorders of Pregnancy
and Cardiovascular Outcomes

P value

1.41.31.21.10.8 0.9 1
OR (95% CI)

OR (95% CI)

Coronary artery diseaseA

.002Any hypertensive disorder in pregnancy 1.24 (1.08-1.43)

.04Gestational hypertension 1.08 (1.00-1.17)

.03Preeclampsia or eclampsia 1.06 (1.01-1.12)

P value

1.41.31.21.10.8 0.9 1
OR (95% CI)

OR (95% CI)

Ischemic strokeB

<.001Any hypertensive disorder in pregnancy 1.27 (1.12-1.44)

.23Gestational hypertension 1.12 (0.93-1.36)

.22Preeclampsia or eclampsia 1.04 (0.97-1.12)

P value

1.41.31.21.10.8 0.9 1
OR (95% CI)

OR (95% CI)

Heart failureC

.79Any hypertensive disorder in pregnancy 0.97 (0.76-1.23)

.17Gestational hypertension 1.05 (0.98-1.12)

.07Preeclampsia or eclampsia 1.05 (1.00-1.10)

P value

1.41.31.21.10.8 0.9 1
OR (95% CI)

OR (95% CI)

Atrial fibrillationD

.71Any hypertensive disorder in pregnancy 1.11 (0.65-1.88)

.10Gestational hypertension 1.08 (0.99-1.19)

.77Preeclampsia or eclampsia 1.01 (0.95-1.07)

Mendelian randomization estimates for the association
of any hypertensive disorder in pregnancy, gestational
hypertension, and preeclampsia/eclampsia with the
outcomes of (A) coronary artery disease, (B) acute
ischemic stroke, (C) heart failure, and (D) atrial
fibrillation. OR indicates odds ratio.
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Mediation Analysis
The results of the univariable analyses used to select potential mediators are reported in eTable 2 in
Supplement 1. There were insufficient instruments to assess the exposure-mediator associations for
preeclampsia/eclampsia and CAD. Mediation analysis could not be done for the association between
HDPs and IS due to insufficient genetic variants.

Mediation analysis for the association between HDPs and CAD revealed a partial attenuation of
effect estimates after adjustment for systolic blood pressure (total effect OR, 1.24; 95% CI, 1.08-1.43;
direct effect OR, 1.10; 95% CI, 1.02-1.08; P = .02) and type 2 diabetes (total effect OR, 1.24; direct
effect OR, 1.16; 95% CI, 1.04-1.29; P = .008). Residual significant associations of HDPs with CAD were
evident in both cases, as noted in Table 3. This suggests that systolic blood pressure and type 2
diabetes partially mediate the association between HDPs and CAD. Conditional F statistics for HDPs
on CAD were 3.08 after accounting for systolic blood pressure and 16.7 after accounting for type 2
diabetes. This suggests that the instruments for the mediation analysis for systolic blood pressure
were relatively weak, and therefore the mediating effect of systolic blood pressure might have some
bias due to weak instruments.

Table 1. MR Estimates for the Effect of Any Hypertension in Pregnancy, Gestational Hypertension,
and Preeclampsia/Eclampsia on CAD, IS, HF, and AF

Exposure and outcome MR method No. of SNVs OR (95% CI) P value
Any hypertensive disorder
in pregnancy

CAD Wald ratio 1 1.24 (1.08-1.43) .002

IS IVW 2 1.27 (1.12-1.44) 2.86 × 10−4

HF IVW 2 0.97 (0.76-1.23) .79

AF IVW 2 1.11 (0.65-1.88) .71

Gestational hypertension

CAD IVW 3 1.08 (1.00-1.17) .04

Weighted median 3 1.10 (1.02-1.18) .01

MR-Eggera 3 0.98 (0.87-1.11) .83

IS IVW 2 1.12 (0.93-1.36) .23

HF IVW 3 1.05 (0.98-1.12) .17

Weighted median 3 1.06 (0.98-1.15) .16

MR-Eggerb 3 0.97 (0.84-1.12) .78

AF IVW 3 1.08 (0.99-1.19) .10

Weighted median 3 1.07 (1.00-1.15) .08

MR-Eggerc 3 0.95 (0.84-1.07) .54

Preeclampsia/eclampsia

CAD IVW 13 1.06 (1.01-1.12) .03

Weighted median 13 1.03 (0.97-1.09) .38

MR-Eggerd 13 1.05 (0.94-1.17) .44

MR PRESSO 1.07 (1.01-1.13) .046

IS IVW 12 1.04 (0.97-1.12) .22

Weighted median 12 1.01 (0.94-1.08) .79

MR-Eggere 12 1.00 (0.82-1.22) .99

MR PRESSO 1.02 (0.96-1.07) .57

HF IVW 16 1.05 (1.00-1.10) .07

Weighted median 16 1.04 (0.98-1.11) .17

MR-Eggerf 16 1.06 (0.94-1.18) .37

MR PRESSO 1.04 (1.00-1.10) .09

AF IVW 16 1.01 (0.95-1.07) .77

Weighted median 16 1.01 (0.96-1.07) .63

MR-Eggerg 16 1.12 (1.01-1.24) .05

MR PRESSO 1.00 (0.96-1.04) .91

Abbreviations: AF, atrial fibrillation; CAD, coronary
artery disease; HF, heart failure; IS, ischemic stroke;
IVW, inverse-variance-weighted with mixed random
effects; MR, mendelian randomization; OR, odds ratio;
SNV, single-nucleotide variant.
a The MR-Egger intercept (SE) was 0.020 (0.011);

P = .33.
b The MR-Egger intercept (SE) was 0.015 (0.013);

P = .47.
c The MR-Egger intercept (SE) was 0.028 (0.011);

P = .25.
d The MR-Egger intercept (SE) was 0.004 (0.010);

P = .71.
e The MR-Egger intercept (SE) was 0.007 (0.016);

P = .65.
f The MR-Egger intercept (SE) was −0.002 (0.009);

P = .85.
g The MR-Egger intercept (SE) was −0.022 (0.009);

P = .04.
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Discussion

By using genetic data, we explored the relevance of HDPs on risk of 4 major cardiovascular diseases.
Genetically predicted HDPs were associated with higher risk of both CAD and IS. A partial attenuation
of effect estimates for the association of HDPs and CAD was seen after adjustment for systolic blood
pressure and type 2 diabetes. Furthermore, both HDP subtypes of gestational hypertension and
preeclampsia/eclampsia displayed consistent associations with higher risk of CAD. No associations
were noted between HDPs and the outcomes of HF or AF. The results of this study add to current
literature by providing evidence supporting an association between HDPs and higher risk of
atherosclerotic cardiovascular disease.

Main Findings in Context
There has been growing interest in evaluating the role of HDPs in future maternal cardiovascular risk.
Recently, Stuart et al6 demonstrated a risk of cardiovascular disease in women with HDPs compared
with normotensive controls. In addition, higher rates of subclinical coronary atherosclerosis in
women with a history of HDPs have been reported.34 However, it is difficult to confidently draw
causal inference from observational data due to the potential residual impact of imperfectly or
incompletely measured confounding and bias. Our study adds to existing literature through the use
of mendelian randomization. Due to the limited impact of confounding and bias in MR, the
associations reported support a potentially causal pathway. Our results support the growing
acceptance of HDPs as sex-specific risk factors for cardiovascular disease.

The associations with CAD reported in this study appear to be more evident in the global
exposure of HDPs and trend toward lower strength for gestational hypertension and even lower
strength for preeclampsia and eclampsia, although the findings are still statistically significant. There
are a number of potential explanations for this. First, the exposure of HDPs (but neither of the others)
included preexistent hypertension; thus, there might be an underlying biological mechanism by

Table 2. Post Hoc Power Calculations for Instrumental Variants

Exposure and outcome

%

IV F statistic RRI with 80% power, %ar2 for exposure I2 for exposure
Any hypertensive disorder in pregnancy

CAD 1.09 0.97 118 8.8

IS 1.09 0.97 118 15.2

HF 1.43 0.97 156 11.1

AF 1.09 0.97 118 11.3

Gestational hypertension

CAD 1.82 0.50 97.1 6.9

IS 1.26 0.50 66.6 14.2

HF 1.82 0.50 97.1 9.8

AF 1.82 0.50 97.1 8.7

Preeclampsia/eclampsia

CAD 7.01 0.95 357 3.5

IS 5.57 0.95 279 6.8

HF 7.99 0.95 410 4.7

AF 7.48 0.95 382 4.3

Abbreviations: AF, atrial fibrillation; CAD, coronary
artery disease; HF, heart failure; IS, ischemic stroke; IV
instrumental variant; RRI, relative risk increase.
a The lowest RRI that the analysis had at least 80%

power to detect is reported based on the variance in
the exposure phenotype explained by the single-
nucleotide variants (R2), the sample size of the
outcome study, and a 2-sided α value of .05.

Table 3. Multivariable Mendelian Randomization for the Association of Any Hypertensive Disorder in Pregancy
With Coronary Artery Diseasea

Mediator OR (95% CI) P value
None 1.24 (1.08-1.43) .002

Systolic blood pressure 1.10 (1.02-1.18) .02

Type 2 diabetes 1.16 (1.04-1.29) .008

Abbreviation: OR, odds ratio.
a Evidence of attenuation of the effect estimate

toward the null is taken to indicate potential
mediation by the factor included in the multivariable
analysis.
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which the association is at least in part affected by this subgroup of patients. However, it is difficult
to interpret this trend in detail; the methods used across different analyses as well as their underlying
power vary significantly across exposures, and therefore differences in apparent strengths of
association might be expected.

We did not identify an association between HDPs and HF or AF. In contrast, some observational
studies have identified that HDPs, particularly preeclampsia, are associated with higher rates of HF
in later life35,36 as well as peripartum cardiomyopathy.37 The null results may be due to multiple
reasons. First, the GWAS data16 included all types of HF, and the resulting heterogeneity in the
outcome may have reduced the power of our study.38 Second, the true effect of HDPs on HF might
simply be smaller than what we had the power to detect: we only had 80% or more power to identify
an association if there is a true underlying RRI of 11% for HDPs, 10% for gestational hypertension, and
5% for preeclampsia/eclampsia on HF. In addition, the discrepancy might arise from residual
confounding in the observational setting. This is particularly true for preeclampsia, which is known to
have extensive sociobehavioral and multifactorial influences.39,40

Mediation Analysis
Beyond demonstrating the association of HDPs with cardiovascular disease, it is important to
consider underlying biological mechanisms with the aim of identifying actionable treatment targets.
We performed mediation analysis using multivariable MR to explore the role of potential mediators
of the association between HDPs and CAD. The results revealed only partial mediation by systolic
blood pressure and type 2 diabetes. This has important implications: first, it identifies substantial
actionable targets for primary prevention, and second, it identifies the presence of a key residual
mechanism that is of an unclear source, representing an important target for future research.

The effect of HDPs on CAD was attenuated after adjustment for type 2 diabetes and systolic
blood pressure. Timely and effective treatment of these factors is therefore a key strategy to
attenuate the higher risk of CAD conferred by HDPs and should be a fundamental clinical priority for
patients with a history of HDP. Currently, international guidelines from the American College of
Obstetrics and Gynecology,41 European Society of Cardiology,42 and American Heart Association and
American College of Cardiology43 highlight the importance of timely screening for cardiovascular risk
factors and disease post partum in women with HDP in pregnancy. However, there is little past
research evaluating the impact of active primary preventive strategy (eg, continuation of
antihypertensive therapy). In addition to this, the implementation of recommendations remains low,
with a recent study estimating that only 58% of women with HDP had a follow-up visit with a
continuity clinician post partum.44 The results of our study may encourage further elucidation of
optimal prevention strategies and improved implementation of care pathways in this high-
risk cohort.

In this study, the association between HDPs and CAD was only partially mediated by traditional
cardiovascular disease risk factors. This suggests that HDPs might increase the risk of CAD through
additional mechanisms. There are multiple potential candidate mechanisms that might underpin this
residual effect. Preeclamptic placentas have been shown to have an imbalance of reactive oxygen
species and circulating angiogenic factors that are associated with endothelial dysfunction.45 The
resultant endothelial dysfunction might lead to damage that persists after pregnancy and creates a
substrate for atherosclerotic plaque formation. Alternatively, the endothelial dysfunction itself might
persist subclinically after pregnancy and confer a higher risk of atherosclerosis through ongoing
endothelial damage. This is corroborated by the well-known association between HDPs and risk of
subsequent hypertension.46 Further research in this field is required, as elucidation of mechanisms is
a key step to help targeted clinical management and drug development.

Limitations
Our MR study addresses multiple important limitations of conventional observational studies.
Nevertheless, we acknowledge some limitations. First, the GWAS summary data used in this study
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were from European populations. Second, the analyses only had power to detect differences of a
certain size, which we estimated and reported. In addition, although sex-specific GWAS data were
used for the exposure, the outcome data were extracted from GWAS summary statistics on both men
and women, which was nevertheless sex-adjusted. Also, MR-Egger testing is known to be of limited
scope in the setting of few instrumental variants, as was the case for HDPs and gestational
hypertension. For this reason, we used multiple sensitivity analyses methods to corroborate the
presence or absence of pleiotropy. In the mediation analysis we could not verify that the occurrence
of the mediator followed the exposure. Nonetheless, even if these cardiometabolic factors exert
their effects on cardiovascular outcomes upstream of HDPs, the fact that the associations remained
after adjustment demonstrates that they do not globally account for the association. Finally, it has
been shown that for genetic variants whose association with the exposure changes with time, such
as systolic blood pressure and body mass index, the MR estimate may not provide a holistic estimate
of the lifetime effect.47 However, since systolic blood pressure and body mass index were not treated
as primary exposures in the study, their impact on the results is minimized.

Conclusions

We explored the association between HDPs and maternal risk for major cardiovascular diseases.
Hypertensive disorders in pregnancy were associated with a higher risk of atherosclerotic
cardiovascular diseases, specifically CAD and IS. Cardiometabolic factors mediated part of the
association between HDPs and CAD, highlighting key monitoring and treatment targets, but also
highlighting a residual effect of a currently unclear source. Broadly, these results support emerging
recommendations to consider HDPs as important sex-specific risk factors for atherosclerotic
cardiovascular disease.

Hypertensive disorders of pregnancy are associated with CAD and IS. Given that some of this
risk is mediated by blood pressure and diabetes, these modifiable risk factors are important targets
for primary prevention in women with past HDPs.

Future studies should focus on evaluating the mechanism underlying the direct association
between HDPs and CAD. Efforts should also focus on increasing genetic studies of obstetric
complications in pregnancy to enable comprehensive assessment of the importance of obstetric
morbidity on long-term maternal outcomes.
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