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Summary 
It is increasingly becoming clear in the post-genomic era that proteins in a cell do not 
work in isolation but rather work in the context of other proteins and cellular entities 
during their life time. This has lead to the notion that cellular components can be 
visualized as wiring diagrams composed of different molecules like proteins, DNA, 
RNA and metabolites. These systems-approaches for quantitatively and qualitatively 
studying the dynamic biological systems have provided us unprecedented insights at 
varying levels of detail into the cellular organization and the interplay between 
different processes. The work in this thesis attempts to use these systems or 
network-based approaches to understand the design principles governing different 
cellular processes and to elucidate the functional and evolutionary consequences of 
the observed principles. 
 
Chapter 1 is an introduction to the concepts of networks and graph theory 
summarizing the various properties which are frequently studied in biological 
networks along with an overview of different kinds of cellular networks that are 
amenable for graph-theoretical analysis, emphasizing in particular on transcriptional, 
post-transcriptional and functional networks. 
 
In Chapter 2, I address the questions, how and why are genes organized on a 
particular fashion on bacterial genomes and what are the constraints bacterial 
transcriptional regulatory networks impose on their genomic organization. I then 
extend this one step further to unravel the constraints imposed on the network of TF-
TF interactions and relate it to the numerous phenotypes they can impart to growing 
bacterial populations.  
 
Chapter 3 presents an overview of our current understanding of eukaryotic gene 
regulation at different levels and then shows evidence for the existence of a higher-
order organization of genes across and within chromosomes that is constrained by 
transcriptional regulation. The results emphasize that specific organization of genes 
across and within chromosomes that allowed for efficient control of transcription 
within the nuclear space has been selected during evolution. 
 
Chapter 4 first summarizes different computational approaches for inferring the 
function of uncharacterized genes and then discusses network-based approaches 
currently employed for predicting function. I then present an overview of a recent 
high-throughput study performed to provide a ‘systems-wide’ functional blueprint of 
the bacterial model, Escherichia coli K-12, with insights into the biological and 
evolutionary significance of previously uncharacterized proteins. 
 
In Chapter 5, I focus on post-transcriptional regulatory networks formed by RBPs. I 
discuss the sequence attributes and functional processes associated with RBPs, 
methods used for the construction of the networks formed by them and finally 
examine the structure and dynamics of these networks based on recent publicly 
available data. The results obtained here show that RBPs exhibit distinct gene 
expression dynamics compared to other class of proteins in a eukaryotic cell. 
 
Chapter 6 provides a summary of the important aspects of the findings presented in 
this thesis and their practical implications. 
 
Overall, this dissertation presents a framework which can be exploited for the 
investigation of interactions between different cellular entities to understand biological 
processes at different levels of resolution. 
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PREAMBLE 

Reductionism, which has been the paradigm in biological research for more than a 

century, has provided us with a wealth of knowledge about the individual cellular components, 

their functions and mechanisms. Despite its huge success in the last century, post-genomic 

biology has increasingly made it clear that discrete biological function can only rarely be 

attributed to an individual molecule. Instead, most biological outcomes in a cell arise from a 

complex interplay between different cellular entities such as proteins, DNA, RNA and 

metabolites. Therefore, a key challenge for biology in the twenty-first century is to understand 

the structure and dynamics of the complex web of interactions in a cell that contribute to its 

proper functioning. Although, we can not answer this question in full, the analyses, concepts 

and frameworks outlined in this thesis, will help the scientific community to interpret and better 

understanding the logic behind the several layers of complex web of interactions happening in 

the cell. 

In the last few years there has been a rapid development in various high-throughput 

technologies which has lead to the accumulation of a large amount of data from different areas 

of molecular and cellular biology. These developments together with increasing interest in the 

community for gaining a systems-wide understanding of the cellular machinery have provided 

us unprecedented insights into the structure, organization and dynamics of various major 

cellular processes such as transcription, translation, degradation etc. Likewise, efforts to 

understand the interaction of the cell with external environment have generated global 

phenotypic maps such as those due to small-molecule perturbations. Despite the growing 

amount of data representing each of these processes it should be admitted that none of these 

cellular processes work in isolation but rather form an integrated network of different wiring 

diagrams which is responsible for the observed behavior of the cell. In this thesis, I provide 

evidence that each of these networks of associations associated with a particular cellular 

process can be studied in detail to provide meaningful insights into how they contribute to the 

functioning of the cell, factors that constrain their structure and how they influence the genomes 

on which they are encoded. Nevertheless, an open challenge of the contemporary biology is to 

integrate these diverse cellular programs to first understand and model in quantitative terms the 

topological and dynamic properties of such a unified cellular network and then to exploit it for 

the therapeutic benefit of mankind. 

 



Introduction                                                                                                                                                               1-4 

 

 

OUTLINE OF THE INTRODUCTION 

An emerging notion in post-genomic biology is that cellular components can be visualized as a 

network of associations between different molecules like proteins, DNA, RNA and metabolites. 

This has led to the application of network theory and network-based approaches to a wide 

range of biological problems from understanding regulation of gene expression to prediction of 

gene’s function and phenotype to drug discovery settings. In this chapter, I first introduce the 

notion of networks and the basic principles of network biology together with an overview of 

different kinds of networks that are being widely studied in biological sciences at the systems 

level. In particular, I introduce the transcriptional and post-transcriptional networks in which 

trans-acting elements like TFs, RBPs and sigma factors form one set of nodes and their target 

genes or RNAs, of which they control the activity, form the other set of nodes. The links 

between them which have directionality from the trans-acting elements to their target genes, 

controlled by their cis-regulatory elements, form a complex and directional network of 

interactions. In contrast, functional linkage networks constructed in function prediction pipelines 

typically comprise of undirected networks where all the nodes are treated essentially the same 

and there is no directionality between nodes. These networks aim to uncover the broad 

functional role of the uncharacterized genes using the annotations of already characterized 

members to which they are connected to. I then give a brief overview of other classes of 

networks such as small-molecule protein interaction networks which are also referred to as the 

drug-target networks, to extend the generality and applicability of the network-guided 

approaches in understanding biological systems. 
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1.1 BASICS OF GRAPH THEORY AND NETWORKS 

Complex networks describe a wide range of dynamical systems in nature and society. In 

simplistic terms, a network comprises of a set of nodes with connections between them called 

edges. Most real world systems can be visualized in the form of networks also called graphs in 

mathematical literature. Examples include that of internet, World Wide Web (WWW), social 

networks of acquaintances between individuals, food webs, metabolic networks, transcriptional 

networks, signaling networks, neural networks and many others. Although the study of 

networks, in the form of mathematical graph theory, is one of the fundamental areas of discrete 

mathematics, much of our understanding about their underlying organizational principles has 

come to light only recently. While traditionally most complex networks have been modeled as 

random graphs, it is increasingly recognized that the topology and evolution of real networks are 

governed by robust design principles.  

      A number of biological systems ranging from metabolic to neuronal and food webs to 

ecosystems can be usefully represented as networks. More generally, the behavior of most 

complex systems emerges from the orchestrated activity of a many components that interact 

with each other through pairwise interactions. As such at a highly abstract level, the 

components can be reduced to a series of nodes that are connected to each other by edges, 

with each edge representing the interactions between two components. The nodes and links 

together form a network, or in more formal mathematical language, a graph and these 

definitions can be extended to any sub-system of a complex system under study. Since 

understanding the network of cellular interactions as a whole is impractical at the moment for at 

least two major reasons, namely incompleteness of the data representing the wide variety of 

interactions that are possible in a cell and variations in the mode as well as type of interactions. 

Theoreticians have been studying networks by dissecting the biological processes into different 

levels with the most commonly studied being the physical interactions between molecules, such 

as protein-protein, protein-nucleic acids and protein-metabolite, all of which can be 

conceptualized using the node-link nomenclature. Nevertheless, more complex functional 

interactions can also be considered within this representation. A classic example of such a 

representation is the network of metabolic pathways, where in metabolic substrates and 

products are connected with directed edges joining them if a known metabolic reaction exists 

that acts on a given substrate and produces a given product.    

 Depending on the nature of the interactions, networks can be directed or undirected. In 

directed networks, the interaction between any two nodes has a well-defined direction, which 
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represents, for example, the direction of material flow from a substrate to a product in a 

metabolic reaction or the direction of information flow from a transcription factor to the gene that 

it regulates. In undirected networks, the links do not have an assigned direction. For example, in 

protein interaction networks a link represents a mutual binding relationship and hence do not 

have a directionality in their association. 

Another important class of biological networks is the genetic regulatory network. The 

expression of a gene, i.e., the production by transcription and translation of the protein for which 

the gene encodes for, can be controlled by the presence of other proteins called transcription 

factors (TFs) which can control the expression of the gene both positively or negatively. In the 

former case, TFs are considered to act as activators and in the later as repressors. It is due to 

the regulatory network the genome can co-ordinate its response to both external and internal 

stimuli by controlling the expression of thousands of genes in appropriate amounts under 

appropriate conditions and time. Genetic regulatory networks were in fact one of the first 

networked dynamical systems for which large-scale modeling attempts were made. The early 

work on random Boolean nets by Kauffman (Kauffman, 1969; Kauffman, 1971; Kauffman, 1993) 

is a classic in this field before substantial advance has come more recently. The structure of 

transcriptional regulatory networks has been the focus of several recent studies (Babu et al., 

2004; Farkas, 2003; Guelzim et al., 2002; Janga and Collado-Vides, 2007; Thieffry et al., 1998). 

1.1.1 Local level 

A number of properties can be defined for a network representation and these properties can be 

grouped into three major classes namely local, module and global levels. In the following 

sections, I will summarize the major quantitative properties which can be used to define the 

structure of complex networks at each of these three levels. The first of them is at the local level 

and as the name suggests refers to the local properties of a node. For instance, as discussed 

above, networks can be directed or undirected depending on the nature of the interactions and 

as such directed networks comprise of both an out-going degree as well as in-coming degree 

while undirected networks only comprise of one degree associated with their nodes (see Table 

1-1 for a list of local properties of networks). Degree or connectivity of a node in a network 

corresponds to the total number of connections it has with other nodes in the network. As is 

evident, in directed networks degree or connectivity of a node is the sum of in-coming and out-

going degrees. Highly connected nodes i.e, nodes with high degree in biological networks are 
often referred to as hubs in the network. Degree distribution, P(k), is another property derived 

from degree of nodes in a network, which gives the probability that a selected node has exactly  
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Table 1-1. Different local properties which can be defined for a node in complex networks. 
 

Property Definition 

Indegree or incoming 
degree 

In directed networks where directionality of an interaction is taken into 
account, indegree refers to the number of incoming connections to a node 
of interest. In other words, indegree is the number of arrows that flow into 
the node under investigation.  

Outdegree or outgoing 
degree 

Out degree refers to the number of edges which start from a node of 
interest and point to other nodes in the network and is valid for directed 
networks where there is direction associated with each edge represented.  

Degree or Connectivity 

Degree or connectivity of a node refers to the total number of interactions 
it  has in a network – the higher the connectivity (i.e., hub nodes) the more 
the number of targets it interacts with. In directed networks degree simply 
corresponds to the sum of in and out degrees of a node. 

Clustering coefficient  

Clustering coefficient of a node reflects the extent to which the neighbors 
of a given node are interconnected among themselves to what is expected 
theoretically and indicates the cohesiveness or local modularity of the 
network. An extension of this metric to the complete network defined as 
the average clustering coefficient of all nodes, tells whether the network is 
modular or is sparsely connected. 

Betweenness  

Betweenness centrality of a node measures the number of shortest paths 
between all pairs of nodes in the network that pass through a node of 
interest – the higher the number of paths that pass through a node, the 
more important it is. 

Average path length Average length of the shortest paths between all pairs of nodes in the 
network. 

Closeness 

Closeness centrality is defined as the inverse of the average length of all 
the shortest paths from a node of interest to all other nodes in the network 
- note that closeness centrality defined this way implies that higher the 
closeness value, the higher the importance (centrality) of a node. 

Diameter 
The diameter of a network is the length of the longest path among all the 
shortest paths defined between two nodes. It gives an estimation of the 
distance between the farthest nodes in the network. 

Graph density The density of a network is the ratio of the number of edges to the number 
of total possible edges. 

Power law fit (exponent-
alpha) 

Fitting a power-law distribution function to the degree distribution of the 
network to study whether the network is likely to exhibit a scale-free 
network structure.  

 
 
k links. P(k) is obtained by counting the number of nodes N(k) with k=1,2.. links and dividing by 

the total number of nodes N. The degree distribution allows us to distinguish between different 
classes of networks. For example, a poissonian degree distribution is seen when P(k) is plotted 

against k for random networks indicating that most nodes have roughly equal number of links 

with little deviation from the average degree of a node in the network. By contrast, a power-law 

degree distribution indicates that a few nodes interact with numerous other nodes while most 

interact with rather few nodes (see Global Level). 
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Another important property at the local level is the clustering coefficient of a node which 

tells how interconnected are the neighbors of a given node to what is expected if all the 

neighbors are full connected. Mathematically, it is defined as the ratio of the number of 

observed links between the neighbors of a node of interest to the total number of feasible links 

between all the immediate neighbors. Average clustering coefficient of a network calculated as 

the mean of the clustering coefficients of all the nodes in the network gives a measure of 

cohesiveness in the network which is also commonly referred to as the extent of modularity. The 

higher the clustering coefficient greater is the modular nature of the network. To compare the 

extent of cohesiveness in a network often clustering coefficients of the real networks are 

compared with random networks with similar size and degree distribution.    

So far all the properties which are discussed concern the nodes in the network, however 

a number of properties have also been defined for edges in a network. Most important of these 

which needs mention is the path length between two nodes, which refers to the number of 

edges that one needs to traverse between two nodes of interest. Since there can be many 

alternative paths between two nodes, the shortest path i.e, the path with the smallest number of 

links between the selected nodes is often referred to as the path length. In directed networks, 

the path length between two nodes A and B may not be the same as that between nodes B and 

A reflecting the directionality in the network. Another important global property which stems from 

path length is the average or mean path length of a network and refers to the average of all the 

shortest paths between all pairs of nodes and offers a measure of a network’s overall reach. 

In addition to the degree of a node which tells how central or important a node in a 

network is, a number of other centrality measures have also been defined in the literature. 

These include betweenness and closeness centrality among other less popular definitions 

(Junker et al., 2006). Betweenness centrality, which is the number of shortest paths going 

through a node is typically calculated using the brandes algorithm (Brandes, 2001). Closeness, 

is measured as the inverse of the average length of the shortest paths from a node of interest to 

all other nodes in the network. Since the centrality measures, betweenness and closeness use 

the shortest path lengths between all pairs of nodes in a graph, for cases where no path exists 

between a particular pair of nodes, shortest path length is usually taken as one less than the 

maximum number of nodes in the graph. 

 While a number of these properties have been studied in diverse kinds of cellular 

networks and these will be discussed in the respective chapters or as appropriate, I summarize 

below some of the observations to give a flavor of their importance in understanding complex 

networks. Studies on the statistical properties of metabolic networks revealed that the 
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distributions of the outgoing and incoming degrees have been found to follow power law (Jeong 

et al., 2000). It was also shown using undirected versions of these metabolic graphs that they 

have short average path length and a large clustering coefficient (Fell and Wagner, 2000). In 

protein-protein interaction networks it was shown that the degree distribution follows a power 

law and that highly connected proteins are more likely to be lethal than lowly connected ones 

(Jeong et al., 2001) and that links between highly connected proteins tend to be suppressed 

while those between highly connected and low-connected proteins are abundant, which was 

proposed as an attribute of cellular networks to attain robustness and decrease cross talk 

between different functional modules (Maslov and Sneppen, 2002). This property of highly 

connected proteins avoiding interactions with other highly connected proteins in a network has 

been referred to as dissociative property. On the other hand, the observation that most real 

world networks have extremely small average path lengths is referred to as the small world 

effect (Watts and Strogatz, 1998). 

1.1.2 Modular level 

Another important level at which network organization is often studied is that of modules. 

Modules are seen in all kinds of complex systems from groups of friends in social networks, 

websites that are dedicated to similar topics in the internet, to groups of organisms which 

survive in a similar niche in an ecological food web. Modules are also evident in several 

engineered systems, from a simple computer chip to a more sophisticated super computer, 

where in they are employed to create an order and to organize the tasks dedicated to each of 

these fundamental units. Likewise, cellular processes have been proposed to be carried out in a 

highly modular manner (Hartwell et al., 1999). More generally, modules in biological networks 

refer to a group of genes/proteins or other cellular entities that work together to achieve a 

common task for the proper functioning of the cell (Alon, 2003; Hartwell et al., 1999; Ravasz and 

Barabasi, 2003; Ravasz et al., 2002). In fact, there are numerous examples of modules in a 

cellular context such as protein-protein and protein-RNA complexes which form physical 

modules or co-expressed gene clusters which work together in a given biochemical process or 

signaling modules which gather extracellular cues to prepare an organism for variations in the 

environment. Evidence for the existence of modularity in cellular networks has mostly come 

from the calculation of average clustering coefficient (see Table 1-1) of a wide variety of 

networks, which indicates the occurrence of a high number of interconnections between the 

neighbors of a node of interest. Average clustering coefficient which is the mean of the 

clustering coefficients of all the nodes is considered a proxy for modularity in networks. In the 
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absence of modularity, the clustering coefficient of the real and the randomized network are 

comparable. The average clustering coefficient of most real networks is significantly larger than 

that of a random network of equivalent size and degree distribution. For instance, existence of 

modularity defined in this fashion has been convincingly shown for a number of biological 

networks including metabolic, protein-protein and transcriptional (Guelzim et al., 2002; Ravasz 

et al., 2002; Wagner, 2001; Wuchty, 2001). Although there is no definitive agreement on how 

modules in cellular networks can be best identified and what set of genes would constitute a 

module (Wolf and Arkin, 2003), it is now a common knowledge that most biological systems can 

be divided into groups of genes which form discrete biological functions. Part of the problem in 

our ability to precisely determine the components of a module in cellular networks is that 

biological networks are hierarchical and scale-free structures (Ravasz and Barabasi, 2003; 

Ravasz et al., 2002) (see below) and therefore modularity in these settings indicates that the 

network can be split into either many modules each of which containing only few genes or a set 

of few modules where in each module can harbor many genes. It is therefore intuitive that the 

hierarchical modular nature of cellular systems naturally permits the definition of a module to be 

plastic depending the choice of the granularity one wishes to dissect a system into.  

 The high clustering in the cellular networks indicates that they are generally locally 

grouped with various subgraphs of highly interconnected groups of nodes forming the core – 

evidence supporting the occurrence of isolated functional modules. Subgraphs capture specific 

patterns of interconnections that characterize a given network at the modular level. However, 

not all subgraphs are equally significant in real networks, as indicated by a series of recent 

observations (Milo et al., 2002; Shen-Orr et al., 2002).  Some subgraphs or patterns of 

interconnections between nodes in a network appear more often than expected by chance in 

random networks with the same topology and these are often referred to as network motifs. 

Motifs in networks are analogous to sequence motifs in a set of homologous sequences which 

are defined as the patterns of amino acids or DNA stretches which occur more conserved than 

expected by chance. Different networks have been shown to be abundant for various motifs 

(Milo et al., 2002). For instance, transcriptional networks have been shown to harbor the Feed-

Forward Loops (FFLs) as the most abundant motif while protein interaction networks have been 

shown to comprise of fully connected cliques i.e, subgraphs in which all the nodes are 

connected to each other (Shen-Orr et al., 2002; Wuchty et al., 2003). The identification of motifs 

not only provides information about the type of local interconnections in the network but also 

allows one to understand their interplay with the rest of the network.  Several evidences support 

the biological relevance for the occurrence of motifs in networks. For example, the high degree 
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of evolutionary conservation of motif constituents within the yeast protein interaction network 

and the convergent evolution of motifs observed in the transcription regulatory network of 

diverse species all support their biological relevance (Conant and Wagner, 2003; Madan Babu 

et al., 2006; Wuchty et al., 2003).  

 In case of a transcriptional regulatory network, a module is typically defined as a set of 

genes that are regulated by a common set of Transcription Factors (TFs). Under this definition, 

it is intuitive to expect that various cellular processes can be conveniently regulated by discrete 

and separable modules which can coordinate the activities of many genes and carry out 

complex functions. Therefore, identifying transcriptional modules is useful for understanding 

cellular responses to internal and external signals under different cellular conditions. Datasets of 

genome-wide gene expression and location analysis (ChIP-chip) are frequently used to identify 

transcriptional modules controlling a variety of cellular processes (Bar-Joseph et al., 2003; 

Ihmels et al., 2002; Segal et al., 2003; Stuart et al., 2003; Wu et al., 2006). Several of these 

studies have focused on yeast and other model organisms due to the availability of extensive 

datasets on gene expression and transcriptional regulatory interactions together with their 

binding site information. From a computational perspective, typical approaches for module 

discovery involved the use of clustering and motif-discovery algorithms to gene expression data 

to find sets of co-regulated genes with variations in methods to include previously known 

information of cellular functions or promoter sequences. Some studies also used model based 

approaches such as Bayesian networks to infer modules and understand regulatory network 

architectures (Segal et al., 2003). Despite several methods which have been developed to 

identify regulatory modules from expression data, most frequently used implementations take 

into account that genes co-expressed in similar conditions are likely to belong to the same set of 

regulatory modules (Ihmels et al., 2004; Ihmels et al., 2002; Segal et al., 2003) while more 

sophisticated approaches integrate additional data sources like TF binding data, motif 

information or functional annotation (Bar-Joseph et al., 2003; Ihmels et al., 2002; Pilpel et al., 

2001). 

Although there have been several different approaches to identifying modules and have 

provided distinct outcomes in terms of the number and size of the resulting modules, the 

general consensus has been that regulatory networks are highly interconnected and very few 

modules are entirely separable from the rest of the network. Therefore, the major conclusion 

has been that modules are frequently nested within each other in a hierarchical fashion at 

different levels. In fact, an analysis of the distribution of the commonly seen motifs across the 

identified modules in transcriptional networks, suggests that network motifs themselves do not 
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exist in isolation but rather integrate to form part of the modules by sharing some of their edges 

(Dobrin et al., 2004; Resendis-Antonio et al., 2005). Thus, many small, highly connected motifs 

group into a few larger modules, which in turn integrate into even larger ones.  These nested 

modules are interconnected through local regulatory hubs. Such an organization not only 

explains the hierarchical organization, which is seen in other cellular networks (Ravasz and 

Barabasi, 2003) but also intuitively suggests the capacity for rapid regulatory changes through 

regulatory hubs, with integration and fine tuning of the regulatory processes by downstream 

TFs, thereby linking several modules in a hierarchical manner.  

As the components of a specific motif often interact with nodes that are outside the motif, 

it is important to understand how different motifs interact with each other and with the rest of the 

network for different kinds of networks.  While recent work shows that different motifs aggregate 

to form large motif clusters in transcriptional networks, the generality of these findings is still 

under debate. However, since motifs are present in all kinds of biological networks that have 

been examined till date (Milo et al., 2002), it is likely that the aggregation of motifs into motif 

clusters and modules is a generic property of most biological and real world networks. 

1.1.3 Global level 

One of the most important developments in our understanding of complex systems is the 

observation that despite the remarkable diversity in the variety of complex networks in nature, 

their architecture was found to be governed by a few simple principles. For example, most 

complex networks have been long believed to follow the degree distributions like that proposed 
by the Erdos-Renyi model, according to which a plot of the degree distribution, P(k), against the 

degree k of a complex network should follow a poisson distribution. However, it is now clear that 

most real world complex systems including biological networks follow a scale-free topology with 

a power-law degree distribution where in degree distribution, P(k), against the degree k on a 

log-log plot shows a straight line with a negative slope γ which varies between 2 and 3. It has 

also been shown that in both Erdos-Renyi model as well as scale-free model proposed by 

Barabasi and Albert (Barabasi and Albert, 1999), distribution of clustering coefficient was found 

to be independent of the degree (Barabasi and Oltvai, 2004). Nevertheless, a major difference 

between the two network models is that in the former most nodes have approximately equal 

number of links with all of them being close to the average degree in the network - indicative of 

a gaussian/poissonian degree distribution while the later is determined by the presence of a 

large number of nodes which are poorly connected and a relatively small number of nodes 

which are highly connected (also referred to as hubs). Due the scaling nature in the degree 
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distribution Barabasi-Albert or scale-free model exhibits a straight line on a log-log plot between 

the degree distribution and the degree of a node.  

 Yet another class of networks which have been proposed in the literature are the 

hierarchical scale-free networks which comprise of all the properties of scale-free networks and 

in addition also exhibit a slope of -1 when the distribution of clustering coefficient is plotted 

against the degree of a node on a log-log scale, indicating an organization where in sparsely 

connected nodes are part of highly clustered areas, with communication between the different 

highly clustered neighborhoods being maintained by a few hubs. It is increasingly believed that 

most real world complex networks obey this hierarchical scale-free modular structure (Ravasz 

and Barabasi, 2003; Ravasz et al., 2002; Yu and Gerstein, 2006).   

Although the hierarchical nature of networks has not been extensively explored for all 

the cellular networks, there is extensive evidence that most of them including protein-protein, 

transcriptional regulatory to metabolic linkages at least exhibit a scale-free topology (Giot et al., 

2003; Guelzim et al., 2002; Jeong et al., 2001; Wagner, 2001). In such networks, most proteins 

or cellular entities participate in only a few interactions while a few participate in 

disproportionately large number of interactions – a signature of scale-free networks with 

inherent power-law degree distribution. Although a large number of cellular networks have been 

shown to observe the scale-free topology in the recent years, not all of them are scale-free 

graphs. For instance, in the case of transcriptional regulatory networks the incoming 

connectivity which is defined as the number of transcription factors regulating a target gene, 

which quantifies the combinatorial effect of gene regulation, was observed to follow an 

exponential distribution in both Escherichia coli and Saccharomyces cerevisiae (Guelzim et al., 

2002; Thieffry et al., 1998). The exponential behaviour indicates that most target genes are 

regulated by similar number of factors and could reflect the limits on the number of transcription 

factors that can affect a target gene due to the constraints on the intergenic spacing available 

and the number of proteins that can simultaneously effect a promoter region. On the other hand, 

the outgoing connectivity, which is the number of target genes regulated by each transcription 

factor, was found to be distributed according to a power law, contrary to the incoming 

connectivity parameter. This is indicative of a hub-containing network structure, in which a 

select set of transcription factors participate in the regulation of a disproportionately large 

number of target genes. These hubs can be viewed as ‘global regulators’, as opposed to the 

remaining transcription factors that can be considered as ‘fine tuners’.  

In case of transcriptional regulatory networks it has been shown, by both a top-down and 

bottom-up approaches for determining hierarchy, that they possess a multi-layer hierarchical 
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modular structure (Ma et al., 2004; Yu and Gerstein, 2006). Interestingly, transcription networks 

do not seem to possess feedback regulation at the level of transcription meaning transcriptional 

regulation of TFs at the top by TFs at the bottom of this hierarchial structure is not frequent, 

indicating the prevalence for alternative forms of feedback control of transcription. Typically 

such a feedback occurs through the usage of protein-protein interactions at post-translational 

level or due to a complex interplay of cellular entities which control the activity of TFs by 

changing their conformation depending on the continuously varying intra- and extra-cellular 

conditions (Martinez-Antonio et al., 2006; Yu and Gerstein, 2006). It has also been observed 

that the TFs in the middle of this hierarchy (often from the levels 2 and 3 measured from the 

bottom) regulate more direct targets than those at the top suggesting that these middle level 

TFs act as managers and are indeed control-bottlenecks for cellular transcriptional response 

(Yu and Gerstein, 2006). 

While a number of other properties such as diameter, graph density etc of a network 

have also been defined in network biology (see Table 1-1) they would not be of immediate 

relevance to the work discussed in this thesis and hence have not been discussed in detail. 

1.2 NETWORKS IN MOLECULAR BIOLOGY 

1.2.1 Methods to construct transcriptional regulatory networks 

At an abstract level regulatory interactions linking TFs to their transcriptionally controlled target 

genes (TGs) in an organism can be viewed as a directed graph, in which the TFs and TGs 

represent the nodes while the regulatory interactions that connect them as the edges. Typically 

the resulting network is a complex, hierarchical, multilayered graph that can be studied at 

several levels of detail. However at a more fundamental level the organization of transcriptional 

regulatory machinery and the principles involved are considerably different in the two major 

kingdoms of life, bacteria and eukarya. In bacteria, transcription and translation happen in the 

same compartment i.e cytoplasm and transcriptional control can be considered to be mostly at 

the DNA sequence level through the use of cis-regulatory elements and organization of 

contiguous genes on the same strand of DNA into operons. However in eukaryotic genomes, 

the process of transcriptional regulation is highly complex and is co-ordinated at three major 

hierarchical levels. The first is at the DNA sequence level, i.e. the linear organization of 

transcription units and regulatory sequences.  Co-regulated genes organized into clusters in the 

genome constitute part of these individual functional units.  The second is at the chromatin level, 

which allows switching between different functional states, i.e between a state that suppresses 
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transcription and one that is permissive for gene activity. This level involves the changes in the 

chromatin structure that are controlled by the interplay between histone modification, DNA 

methylation, and a variety of repressive and activating mechanisms. This regulatory level is 

linked with the control mechanisms from level one that switch individual genes in the cluster to 

on and off, depending on the properties of the promoter. The third level is the nuclear level, 

which includes the dynamic 3D spatial organization of the genome inside the cell nucleus. The 

nucleus is structurally and functionally compartmentalized and epigenetic regulation of gene 

expression may involve repositioning of loci in the nucleus through changes in large-scale 

chromatin structure. All these differences add a layer of complexity and sophisticated control to 

the inherent structure, functionality and dynamics of transcriptional networks in eukarya in 

comparison to their bacterial counterparts. Despite these fundamental differences several basic 

principles in their organization and structure from a network perspective have been shown to be 

similar in both the kingdoms (Guelzim et al., 2002; Lee et al., 2002; Milo et al., 2002; Shen-Orr 

et al., 2002; Thieffry et al., 1998; Yu and Gerstein, 2006). 

Despite enormous interest in understanding transcriptional networks across organisms 

our knowledge on transcriptional interaction graphs for a genome has been very limited and is 
mostly restricted to model organisms like Escherichia coli and Saccharomyces cerevisiae for 

which extensive information is available (Gama-Castro et al., 2008; Lee et al., 2002). 

Transcriptional interactions in an organism have been traditionally identified from small scale 

assays which are documented in regulatory network databases through extensive manual 

curation efforts (Baumbach et al., 2007; Gama-Castro et al., 2008; Makita et al., 2004; Matys et 

al., 2006) or are obtained from high-throughput screens like ChIP-chip or ChIP-seq which allow 

the identification of regulatory interactions for a vast set of TFs in an organism (Grainger et al., 

2005; Lee et al., 2002). Yet another lower resolution high-throughput approach to screen in the 

whole genome, targets for a TF, is through the knock-out of TF genes and performing a whole 

genome microarray expression analysis (Devaux et al., 2001). Table 1-2 summarizes a list of 

these frequently employed low and high-throughput experimental techniques for the 

identification of regulatory interactions in an organism in an unambiguous manner. 

 
 
 

(Space left for an enhanced layout of the table) 
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Table 1-2. Different low and high-throughput strategies for studying and probing protein-DNA interactions. 
High-throughput technologies such as ChIP-chip, ChIP-seq and PBMs are frequently employed for the 
elucidating of regulatory networks on a genome-wide scale. 
 

Method Description 

Band shift 

Since DNA molecules are more flexible than proteins, they tend to exhibit much 
higher mobility in a polyacrylamide gel. Thus, under favourable conditions, free DNA 
can be distinguished from DNA bound to proteins due to the difference in molecular 
weight (Garner and Revzin, 1981). 

DNA 
footprinting 

In DNA footprinting, a 5’ end labeled double stranded DNA is partially degraded by 
DNAase both in the presence and absence of the TF. Degraded fragments are then 
loaded on to a gel to visualize by autoradiography. Since the region where the protein 
has bound the DNA will be protected from DNAase, no fragments are seen in those 
regions. Therefore, by comparing lanes, one can identify the binding site (Galas and 
Schmitz, 1978). 

FRET based 
binding site 
identification 

In this method a library of double stranded DNA with one of the two fluorophores 
attached to its end is used. Protein binding to two pieces of DNA , one from each 
library where each comprises half of the binding site’s sequence, induces FRET 
signal which can then be used to find protein bound to DNA (Heyduk and Heyduk, 
2002). 

Binding site 
detection 

using 
unnatural base 

analog 

In this approach a library of DNA sequences with an unnatural base analog (one for 
each base) is used. Following selection for protein-bound DNA molecules, the DNA is 
cleaved specifically at the modified base. The site of incorporation can be identified by 
gel electrophoresis by running fragments generated from unbound sample next to the 
fragments generated from the bound sample. Since the presence of an analog in the 
binding site impedes protein binding, this results in a depletion of the protein-bound 
pool (Storek et al., 2002). 

(ChIP-chip) 
and (ChIp-

seq) 
techniques 

The DNA binding protein is tagged with an epitope and is expressed in a cell. The 
bound protein is covalently linked to DNA by using an in vivo cross-linking agent such 
as formaldehyde. After cross-linking, DNA is sheared and the protein–DNA complex 
is pulled down using an antibody for the tag. Reversal of the cross-link releases the 
bound DNA, allowing the sequence of the fragments to be determined by 
hybridization to a microarray (ChIP-chip) or by sequencing (ChIP-seq). In ChIP-chip 
experiments, intergenic regions are spotted on to a microarray chip. Following a 
chromatin immunoprecipitation step, the bound fragments are reverse cross-linked 
and hybridized onto the microarray chip (Lee et al., 2006). In ChIP-seq experiments, 
the bound fragments are directly sequenced using 454/Solexa/Illumina sequencing 
technology. The sequences are then computationally mapped back to the genome 
sequence (Johnson et al., 2007). 

DNA adenine 
methyl 

transferase 
Identification 

(DamID) 

In DamID technique, protein of interest is fused to an E. coli protein, DNA adenine 
methyl transferase (Dam). Dam methylates the N6 position of the adenine in the 
sequence GATC, which occurs at reasonably high frequency in any genome (1 site in 
256 bases). Upon binding DNA, the Dam protein preferentially methylates adenine in 
the vicinity of binding. Subsequently, the genomic DNA is digested by the DpnI and 
DpnII restriction enzymes that cleave within the non-methylated GATC sequence, and 
remove fragments that are not methylated. The remaining methylated fragments are 
amplified by selective PCR and quantified using a microarray (Greil et al., 2006). 

Protein 
binding 

universal DNA 
microarrays 

(PBMs) 

This is an invitro method to probe protein–DNA interactions. A DNA binding protein of 
interest is epitope tagged, purified and bound directly to a double-stranded DNA 
microarray spotted with a large number of potential binding sites. Labeling with 
fluorophore conjugated antibody for the tag allows detection of binding sites from the 
significantly bound spots (Bulyk et al., 2004). 
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1.2.2 Methods to construct functional linkage networks 

Traditionally function of a protein was defined using a number of low-throughput approaches like 

mutagenesis of residues or whole proteins which allowed the identification of the phenotypes for 

follow up analysis. However, it is increasingly becoming clear that this rational is limited in its 

ability to infer the function of proteins; failing for those which exhibit mild phenotype or those 

which are not expressed under standard experimental conditions. In addition, since most 

proteins associate dynamically with a number of other cellular entities during their life time, the 

traditional notion of identifying function of a protein by isolating it from the rest of the cellular 

machinery can be misleading for a majority. This notion followed by the availability of 

experimentally determined protein-protein interaction maps for diverse model organisms have 

given rise to the use of these datasets for delineating the biological processes, pathways and 

complexes that proteins take part in (Aranda et al., ; Bader et al., 2003; Breitkreutz et al., 2008). 

Indeed, there is now observable overlap and informative variation between different types of 

low- and high-throughput experiments (Shoemaker and Panchenko, 2007) which provides a 

convincing reason for exploiting them as complementary approaches in unraveling the functions 

of proteins. Indeed, recent years have seen an explosion in the number of methods and 

databases which provide functional associations (both direct physical and indirect contextual 

interactions) between proteins using both experimental and computational means. I present an 

extensive list of these resources in Table 4-2 of Chapter 4, where in I also provide a more in 

depth discussion of network-based approaches for function prediction. 

Briefly, experimental approaches employed for constructing functional association 

networks mostly comprise of data from protein-protein interaction screens followed by co-

expression networks comprising of gene pairs showing significant correlation in their expression 

profiles across conditions, derived from microarray datasets (Luo et al., 2007; Ruan et al., ; 

Wang et al., 2009).  More recently, genetic interactions- measuring the fitness defects of the 

double mutants compared to that of the individual mutants, are also being employed for 

constructing these functional linkage networks (Butland et al., 2008; Costanzo et al.). These 

high-throughput experimental approaches not only increase the confidence of an association 

but also give cellular context of the protein providing complementary view to the traditional 

functional prediction paradigm. 

In addition to the experimental methods, several computational methods have been 

proposed for constructing protein-protein associations from sequence data alone. These include 

the genome context methods namely gene fusion, gene cluster or gene order conservation, 
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operon arrangements and protein phylogenetic profiles. The gene fusion approach tries to 

detect the fusion of two genes into a single protein coding gene in one of the sequenced 

genomes and thereby links them as a strong functional association (Enright et al., 1999; 

Marcotte et al., 1999a). The method of gene order conservation aims to identify pairs of genes 

which consistently show a tendency to cluster in immediate vicinity in a number of genomes- 

suggesting a strong functional link in prokaryotic genomes which are abundant in operons 

(Dandekar et al., 1998; Overbeek et al., 1999). The method of operon rearrangement tries to 

identify a link between any pair of genes on a genome as long as their orthologs are predicted 

to be organized in an operon with a high confidence in at least one sequenced genome (Janga 

et al., 2005; Rogozin et al., 2002; Snel et al., 2002). The power of this approach depends on the 

predictive quality of operon prediction methods which have been shown to reach ~90% 

accuracy in most sequenced genomes (Brouwer et al., 2008; Moreno-Hagelsieb and Collado-

Vides, 2002). Yet another approach not based on genomic proximity is phylogenetic profiles. In 

this method a vector of presence/absence profile of a gene across all the analyzed genomes is 

constructed and compared to identify genes which show the most correlated profiles, as a 

measure of functional link. The rational here is that two proteins showing similar profiles i.e, 

coordinated in their evolutionary gain and loss, are expected to be functionally related 

(Gaasterland and Ragan, 1998; Pellegrini et al., 1999). Modified versions of this approach take 

into account the phyogenetic signal of the genomes employed and/or the redundancy in the 

genome sequence information (Barker and Pagel, 2005; Date and Marcotte, 2003; Moreno-

Hagelsieb and Janga, 2008). 

Recently, the integration of different types of interaction data into genome-wide 

functional linkage maps has gained much popularity for functional inference as these integrated 

maps not only boost coverage but also confidence of an association when assessing protein 

function. One of the first studies which demonstrated the power of integrating different types of 

interaction data was by Marcotte and colleagues where they have put together diverse kinds of 

computational genome context inferences (Marcotte et al., 1999b). This was followed by a 

number of other methods such as those implemented in the STRING and PROLINKS 

databases, among other focused studies (Bowers et al., 2004; Hu et al., 2009; Jensen et al., 

2009; Massjouni et al., 2006). Typically, in these networks edge weights correspond to the 

integrated interaction probability values obtained by first scoring each of the methods 

independently against a set of gold standard interactions, which are then used in a bayesian 

fashion assuming the scores obtained in each method are independent of each other. More 

complex methods take into account the dependence and correlation between methods to 
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develop a regression model for scoring the integrated interactome (Linghu et al., 2008; Zhao et 

al., 2008). Nevertheless, all of them boil down to constructing a network with either weighted or 

unweighted edges which are then used for propagating annotations to uncharacterized 

members using network-based approaches discussed in Chapter 4. 

1.2.3 Methods to construct post-transcriptional regulatory networks 

Gene expression is a highly controlled process which is known to occur at several levels in 

eukaryotic organisms. Although traditionally messenger RNAs have been viewed as passive 

molecules in the pathway from transcription to translation there is increasing evidence that their 

metabolism is controlled by a class of proteins called RNA-binding proteins (RBPs) (Glisovic et 

al., 2008; Keene, 2007; Mata et al., 2005). In eukaryotes, since transcription and translation 

occur in different compartments, it allows for a plethora of options to control RNA at the post-

transcriptional level, including their splicing, polyadenylation, transport, mRNA stability, 

localization and translational control (Glisovic et al., 2008; Keene, 2007). Although some early 

studies revealed the involvement RBPs in the transport of mRNA from nucleus to the site of 

their translation, increasing evidence now suggests that RBPs regulate almost all of the post-

transcriptional steps.  

Development of several high throughput approaches has increased the amount of data 

for targets of RBPs in diverse organisms (See Table 5-3 in Chapter 5 for a detailed overview of 

these methods and techniques). These techniques have not been discussed here to avoid 

redundancy. This data of RBPs and their targets could be utilized to construct RBP-RNA 

interaction network which is also typically referred to as post-transcriptional regulatory network. 

This post-transcriptional network is represented in the form of a directional network with each 

edge corresponding to a regulatory link between the nodes (RBP and the target RNA) similar to 

directed networks discussed above for transcriptional regulatory networks. In this directed 

network, one set of nodes are RBPs forming the regulatory proteins while the other set of  

nodes are RNAs encoded by either protein-coding or non-protein coding genes referred to as 

the target nodes. These two nodes (regulator node and target node) are joined by an arrow 

starting from regulator node and directing towards target node. The target RNA may belong to 

diverse functional proteins including other RBPs. This network can also contain loops as a link 

starting from RBP and targeting itself, typically referred to as autoregulation of an RBP. This 

loop structure suggests that RBP can bind to its own RNA and control its metabolism at 

transcript level. There are several examples suggesting the auto-regulation of RBPs at post-

transcriptional level. For instance, in humans, RBPs such as AUF1, HuR, KSRP, NF90, TIA-1 
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and TIAR were reported to associate with their own mRNA and other RBPs (Pullmann et al., 

2007).  

Due to the availability of the network of post-transcriptional interactions for a 
considerable fraction of RBPs in model systems such as S. cerevisiae (Hogan et al., 2008), it 

has become possible to address several questions concerning the structure and organization of 

post-transcriptional networks directed by RBPs. Chapter 5 focuses on studying these properties 

by directly analyzing the currently available post-transcriptional regulatory network in the 

budding yeast.  

1.2.4 Methods to construct other classes of cellular and biological 

networks 

Development of several high throughput approaches in the last decade have not only increased 

the amount of information that we could gather to reveal important insights on the 

transcriptional, post-transcriptional or functional organization of an organism but they have also 

enabled us to start our journey to uncover the principles which hold them together. This is 

mainly because of the extent of information that has been possible to be collected by 

interrogating the cell’s environment at different levels of detail. For instance, availability of 

modern techniques now enable us to identify the set of protein-protein interactions, genetic 

interactions, metabolic maps and small molecule interactions at a whole-organism level. While a 

complete discussion of all the methods and techniques used to identify their respective 

interactomes is beyond the scope of this thesis. I outline below some of the commonly 

employed approaches for identifying the interaction graphs for each of these types of 

interactions occurring in the cell.   

Perhaps the most common form of interaction graphs which have been studied since the 

early days of genome sequencing are protein interactions. A number of approaches for studying 

them have been reported in the literature and these include the yeast two hybrid (Y2H) (Fields 

and Song, 1989), protein fragment complementation assay (PCA) (Pelletier et al., 1998), affinity 

purification coupled with mass spectrometry (AP-MS) (Babu et al., 2009a; Babu et al., 2009b; 

Gavin et al., 2002), protein chips (Fasolo and Snyder, 2009; Kung and Snyder, 2006), phage 

display (McCafferty et al., 1990), fluorescence energy transfer (FRET) (Jares-Erijman and Jovin, 

2003) and surface plasmon resonance (SPR) (Slavik and Homola, 2006). For a more extensive 

discussion on the protocols and methods for identifying protein interactions as well as for new 

developments in this area the reader is referred to recent reviews (Levy and Pereira-Leal, 2008; 

Shoemaker and Panchenko, 2007). 
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Another class of networks which are commonly studied is that of metabolic networks. 

They comprise of representing the metabolites and enzymes involved in catalyzing metabolic 

reactions as the nodes and edges in a directed network. Most of the work on understanding 

metabolic networks relies on either manually curated or semi-automated metabolic databases 

such as the kyoto encyclopedia of genes and genomes (KEGG) and Metacyc which are 

available for a wide range of model organisms (Caspi et al., 2008; Grossetete et al., ; Kanehisa 

et al., 2008). In addition to the metabolic maps available for diverse organisms, several groups 

also study and compile the metabolic reactions for a model organism of interest which are then 

used for follow up analysis of the metabolic circuitry (Duarte et al., 2007; Durot et al., 2009; Ma 

et al., 2007).  

 Organisms respond to continuous variations in internal and external cellular conditions 

by orchestrating their responses depending on the environmental challenges they are faced 

with. This involves the usage of a complex network of interactions among different proteins, 

RNA, metabolites and several other cellular entities, which undergo rewiring when perturbed by 

small molecules such as chemicals or drugs. The interaction between different chemicals and 

cellular entities can be represented in the form of a network- so called Drug-Target network. 

Recent years have seen the development of a number of approaches both computational and 

experimental for the identification and elucidation of the molecular targets of a drug on a 

genomic scale (Apsel et al., 2008; Brewerton, 2008; Fabian et al., 2005; Hillenmeyer et al., 

2008; Ho et al., 2009; Jacob and Vert, 2008; Kuhn et al., 2008; Paolini et al., 2006; Whitehurst 

et al., 2007; Yamanishi et al., 2008). This cellular target space which contains the targets of 

drugs, can be considered to predominantly comprise of three components namely protein-

protein, metabolic and transcriptional interaction networks. While the vast majority of the drugs 

target the protein-protein and metabolic components, limited number of targets have been 

identified till date for the transcriptional pool (Brennan et al., 2008; Goh et al., 2007; Lage et al., 

2007; Lee et al., 2008; Yildirim et al., 2007). Indeed, most common therapeutic targets for 

established drugs belong to either protein kinase or receptor families with enzymes and ion 

channels forming the second most predominant class of targets (Wishart et al., 2008). This 

explains the reasons for the increased attention towards understanding the biophysics of 

protein-protein contacts in the context of drug targets as these protein classes form major 

players in protein-protein interactions (Archakov et al., 2003). Table 1-3 shows different 

methods which are used for the construction of Drug-Target networks and can be broadly 

classified into genetics-based, proteomics-based and knowledge-driven approaches. 
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Table 1-3. Different methods available for identifying drug-targets on a genomic scale. Methods can be 
broadly classified into Proteomics-based, Genetics-based and Knowledge-driven. Although most methods 
traditionally are based on experimental screening, there is an increase in the number of computational 
techniques available for small molecule target discovery (grouped as knowledge-driven approaches). 
 
 

Proteomics-based 

Methods 
Description 

Activity based protein 
profiling (ABPP) 

(Speers and Cravatt, 
2004) 

This is a functional proteomic technology that uses chemical probes that react 
with mechanistically related classes of enzymes. The basic unit of ABPP is a 
probe that typically consists of a reactive group (electrophile or a photoreactive 
group) that covalently binds to the active site of an enzyme (nucleophilic 
residue) and a tag. The tag can either be a reporter (i.e. fluorophore, 
radioactive group) or a handle (i.e. affinity tags such as biotin). A tag-free 
strategy for activity-based protein profiling has also been introduced that 
utilizes the copper(I)-catalyzed azide-alkyne cycloaddition reaction (click 
chemistry) and gives the advantage of not interfering with biological activity or 
binding affinities of the probes. The activity-based protein profiling and 
multidimensional protein identification technologies (ABPP-MudPIT) can 
provide profiling of inhibitor selectivity, as the potency of an inhibitor can be 
tested against hundreds of targets simultaneously. (Jessani et al., 2005) 

Affinity 
chromatography 

(Katayama and Oda, 
2007) 

This is a protein separation method based on the interaction between target 
proteins and specific immobilized ligands. Traditionally, the ligand is tethered 
on a solid support via a spacer arm followed by the addition of a cellular lysate 
or tissue extract. Only target proteins binding tightly to the ligand are 
selectively purified, eluted off (denaturation or competition with free ligand) and 
subsequently identified by mass spectroscopy. To minimize the identification of 
nonspecifically bound proteins, the protein profile that is obtained with an 
inactive ligand analogue is also determined and compared with the relevant 
profile, determined with the desired analogue. More recently, an improved 
method for the identification of proteins that can bind to small-molecules and 
drugs has been established which uses quantitative mass spectrometry (MS)-
based proteomics (utilizing stable isotope labeling with amino acids in cell 
culture (SILAC)) and affinity chromatography. (Ong et al., 2009) 

Microarrays 
(Kingsmore, 2006; 
Ma and Horiuchi, 

2006; Salcius et al., 
2007; Wingren and 
Borrebaeck, 2006) 

Microarrays in drug target discovery provide miniaturized high-throughput tools 
to study binding of specific molecules to immobilized proteins or small 
molecules. In protein microarrays, different recombinant proteins or antibodies 
that are immobilized on a solid substrate are exposed to a drug solution to 
identify the target protein(s) which can bind to the small molecule. In chemical 
microarrays, immobilized drug compounds can be screened for candidate 
drug-target interactions with purified proteins (Ma and Horiuchi, 2006). When 
the target protein is known, small molecule arrays can be also used to identify 
off-target interactions that could have implications for side-effects. 

Genetics-based 
Methods 

Description 

Synthetic lethality/ 
Gene knock-out 

(Hillenmeyer et al., 
2008; Ho et al., 2009) 

Single gene knock-out strains on a genomic scale or for a selected set are 
exposed to small molecules at different concentrations to evaluate the fitness 
defects and fitness levels are compared to wild-type populations exposed to 
the same conditions. This provides an easy means to identify targets on a 
large scale. (Hillenmeyer et al., 2008; Ho et al., 2009) 

RNAi 

RNA interference pathways in mammalian systems are used for silencing 
genes and similar approaches as above are employed to study the fitness 
defects of cell lines to identify potential drug targets in higher eukaryotes 
(Turner et al., 2008; Whitehurst et al., 2007) 
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Knowledge-driven 
approaches 

Description 

Literature derived 
interactions. (Chen et 
al., 2008; Frijters et 
al., 2007; Tsui et al., 
2007; Yildirim et al., 

2007) 

In these approaches, manually curated set of interactions are obtained from 
the literature to generate high confidence set of drug-target relationships to 
either study their overall structure (Yildirim et al., 2007) or focus on specific 
disease of interest.  (Chen et al., 2008; Frijters et al., 2007; Tsui et al., 2007; 
Yildirim et al., 2007) 

Network-based 
approaches. (Apsel 

et al., 2008; Hopkins, 
2008) 

In these approaches, literature derived interactions are exploited to predict 
new interactions based on the principles governing the structure of the 
networks so that new disease targets are identified using comparative 
genomics or other informatics-based methods followed possibly by 
experiments to improve the chemicals. (Apsel et al., 2008; Hopkins, 2008) 

in silico 
chemogenomics 
(Rognan, 2007) 

In predictive chemogenomics one predicts relationships between 
genes/proteins and compounds. In silico approaches that are used can be 
classified into ligand-based approaches (ligand comparison for target 
prediction), target-based approaches (target comparison for ligand prediction) 
or ligand-target based approaches (Rognan, 2007) 

 

1.3 OUTLINE OF THE THESIS 

Now that I have summarized the different tools which can quantify the networks at varying levels 

and the numerous kinds of interaction graphs operating in the cell there are enormous 

possibilities to understand a cell’s internal organization and dynamics. In the following chapters, 

I will attempt to address some of these open questions.   

In particular in Chapter 2, I address the questions, how and why are genes organized on 

a particular fashion on bacterial genomes and what are the constraints bacterial transcriptional 

regulatory networks impose on their genomic organization. I then extend this one step further to 

unravel the constraints imposed on the network of TF-TF interactions and relate it to the 

numerous phenotypes they can impart to growing bacterial populations.  

In contrast to prokaryotes, regulation of gene expression in eukaryotes is much more 

complex and is known to occur at many different levels even at the stage of transcription. In 

Chapter 3, I first present an overview of our current understanding of eukaryotic gene regulation 

at different levels and then present evidence for the existence of a higher-order organization of 

genes across and within chromosomes that is constrained by transcriptional regulation. These 

results demonstrate that specific organization of genes across and within chromosomes that 

allowed for efficient control of transcription within the nuclear space has been selected during 

evolution. 

Determining the functions of proteins encoded by genome sequences represents a 

major challenge in contemporary biology. With traditional methods for annotation of a genome 

reaching their saturation there is an increasing need to develop alternate and complementary 
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approaches for solving the genomic function prediction challenge. As a result, alternate 

computational methods for inferring the protein function such as those which exploit the context 

of a protein in protein association networks have come to be sought after. These network-based 

approaches aim to integrate diverse kinds of functional interactions as a means of boosting 

coverage as well as confidence level of an association. In Chapter 4, I first present an overview 

of different computational approaches for inferring the function of uncharacterized genes and 

discuss network-based approaches currently employed for predicting function. I then summarize 

a recent high-throughput study performed to provide a ‘systems-wide’ functional blueprint of the 

bacterial model, Escherichia coli K-12, with insights into the biological and evolutionary 

significance of previously uncharacterized proteins. Given the volume of high-throughput data 

that is being reported for understanding diverse model systems, the network-based approaches 

presented here would become be a useful addition to unravel the functions of an increasing 

number of uncharacterized proteins accumulating in the genomic databases. 

While control of gene expression in eukaryotes first occurs at the level of transcription, 

there is accumulating evidence that RNA-binding proteins play major roles in controlling the 

expression of a protein by regulating expression at post-transcriptional level. In Chapter 5, I 

attempt to provide a comprehensive overview and preliminary insights on this rapidly developing 

area of post-transcriptional regulatory networks formed by RBPs. I discuss the sequence 

attributes and functional processes associated with RBPs, methods used for the construction of 

the networks formed by them and finally discuss the structure and dynamics of these post-

transcriptional networks based on recent publicly available data. The results obtained from this 

study show that RBPs exhibit distinct gene expression dynamics compared to other class of 

proteins in a eukaryotic cell and that these properties are also reflected from an analysis of the 

post-transcriptional networks formed by them. 

In Chapter 6, I first summarize the key findings of all the above chapters and then 

discuss their broader implications in light of recent findings.  
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OUTLINE 

One of the most important developments in our understanding of biological systems in the past 

decade is the application of network theory to biological problems. This is particularly true for 

the case of regulation of gene expression. Taking advantage of the currently available 

transcriptional regulatory networks of the model bacteria, Escherichia coli and Bacillus subtilis, a 

comprehensive genomic and structural analysis was performed. It was found that while the 

mode of regulatory interaction between transcription factors (TFs) is predominantly positive, TFs 

are frequently negatively auto-regulated. Furthermore, feedback loops, regulatory motifs and 

regulatory pathways are unevenly distributed in this network. Short pathways, multiple feed-

forward loops and negative auto-regulatory interactions are particularly predominant in the sub-

network controlling metabolic functions such as the use of alternative carbon sources. In 

contrast, long hierarchical cascades and positive auto-regulatory loops are over-represented in 

the sub-networks controlling developmental processes for biofilm and chemotaxis. We propose 

that these long transcriptional cascades coupled with regulatory switches (positive loops) for 

external sensing enable the coexistence of multiple bacterial phenotypes. We also provide a link 

between the transcriptional hierarchy of regulons (TFs) and their genome organization. We 

show that, to drive the kinetics and concentration gradients, TFs belonging to big and small 

regulons, depending on the number of genes they regulate, organize themselves differently on 

the genome with respect to their targets. We then propose a conceptual model that can explain 

how the hierarchical structure of TRNs might be ultimately governed by the dynamic biophysical 

requirements for targeting DNA-binding sites by transcription factors. Our results suggest that 

the main parameters defining the position of a TF in the network hierarchy are the number and 

chromosomal distances of the genes they regulate and their protein concentration gradients. 

These observations give insights into how the hierarchical structure of transcriptional networks 

can be encoded on the chromosome to drive the kinetics and concentration gradients of TFs 

depending on the number of genes they regulate and could be a common theme valid for other 

prokaryotes, proposing the role of transcriptional regulation in shaping the organization of genes 

on a chromosome. 
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2.1 INTRODUCTION 

One of the most important developments in our understanding of biological systems in the past 

decade is the application of network theory to biological problems. This is particularly true for 

the case of regulation of gene expression. The accumulation of data on many factors that 

control the expression of genes or groups of genes, together with the increased use of high-

throughput techniques, such as DNA arrays and proteomics, has generated an overwhelming 

amount of data that has to be understood to infer relationships between genes, and between 

genes and signals. The reductionist approaches of molecular biology have made it impractical 

to deal with large amounts of information giving rise to the increasing use of the notion of 

networks in biology. Typically in network approaches to understand a biological system, 

elements are represented as nodes in the graph, which are connected by edges that represent 

biological interactions. This approach allows ill-defined descriptions of complexity to be replaced 

by objectively quantifiable, numerical parameters, such as connectivity or strengths of 

interactions (Jeong et al., 2000; Ronen et al., 2002). 

Most network analysis of transcriptional regulatory events in an organism involves 

representing genes and the proteins they encode as nodes. However it should be noted that in 

contrast to protein-protein networks, the links in transcription networks have directionality, 

meaning that connections have a starting node and a target node. Normally, an edge in such a 

network goes from a transcription factor to the genes it regulates. In most cases such regulation 

occurs through a direct effect i.e, the regulator binds the promoter regions upstream of the 

protein coding genes they control the activity off.  More complex representations include the 

incorporation of other entities like small molecules, RNA encoding genes, signal-transduction 

pathways or interacting proteins. However most of our understanding of transcriptional networks 

to date has been limited to the holistic view of Transcription Factors (TFs) and Target Genes 

(TGs) as nodes and the regulatory interactions between them as edges. It is this graph in an 

organism that is usually referred to as the Gene Regulatory Network (GRN). This network is 

also referred to as “Transcriptional Regulatory Network (TRN)” or simply “transcriptional 

network”. 

One of the most important and obvious pieces of information that can be obtained is the 

distribution of connectivity, i.e how many connections a node has and how many nodes have a 

particular number of connections. In the case of transcriptional networks these parameters 

actually have two sides, as incoming and outgoing connections must be considered separately. 

The incoming connectivity is the number of transcription factors regulating a target gene, which 
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gives a sense of the combinatorial effect of gene regulation. The fraction of target genes with a 

given incoming connectivity was observed to follow an exponential distribution in both 

Escherichia coli and Saccharomyces cerevisiae (Guelzim et al., 2002; Thieffry et al., 1998). The 

exponential behaviour indicates that most target genes are regulated by a similar number of 

factors and apparently reflects the limits on the size of the multiprotein complexes that can be 

bound near the promoter as well as by the amount of DNA sequence in upstream regions of 

genes. On the other hand, the outgoing connectivity, which is the number of target genes 

regulated by each transcription factor, was found to be distributed according to a power law, 

contrary to the incoming connectivity distribution. This is indicative of a hub-containing network 

structure, in which a select set of transcription factors participate in the regulation of a 

disproportionately large number of target genes.  

  At a local level, in transcriptional networks certain sub-networks appear more often than 

expected by chance and have been referred to as motifs, analogous to sequence motifs which 
occur repeatedly in sequences. Motifs were originally described in E. coli transcriptional 

regulatory network but were subsequently found in yeast and other organisms (Alon, 2007b; 

Shen-Orr et al., 2002). Three network motifs were found to be predominantly occurring in most 

transcriptional networks: 1) Feed-Forward Loop (FFL), in which a transcription factor regulates 

the expression of another transcription factor which, in turn, regulates a gene that is also 

regulated by the first transcription factor; 2) Single-Input Module (SIM), in which a single 

transcription factor regulates several genes, which is usually also called a simple regulon 

(Gutierrez-Rios et al., 2003); 3) Dense Overlapping Regulons (DORs) in which several TFs 

regulate overlapping sets of genes and these groups are also called a complex regulon. FFL 

appears to be the most abundant motif among the best studied transcriptional networks. FFLs 

have been further classified into eight motif sub-types and two of them namely coherent type-1 

and incoherent type-1 FFL appear to be much more predominant than others (Alon, 2007b; 

Mangan and Alon, 2003). The former was shown to act as a sign-sensitive delay element and a 

persistence detector while the later was demonstrated to function as a pulse generator and 

response accelerator (Mangan et al., 2006; Mangan et al., 2003). Although motifs form over-

represented sub-graphs in the entire network of transcriptional regulation, they do not appear 

independently but rather integrate to form super-structures or modules that carry out a common 

biological function by sharing some of their edges (Dobrin et al., 2004a; Resendis-Antonio et al., 

2005).  

At a global level, transcriptional regulatory networks have been shown to possess a 

scalefree multi-layer hierarchical modular structure using both, a top-down and bottom-up, 
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approaches for determining hierarchy (Ma et al., 2004a; Yu and Gerstein, 2006). Interestingly, 

transcription networks do not seem to possess feedback regulation at the level of transcription 

meaning transcriptional regulation of TFs at the top by TFs at the bottom of this hierarchial 

structure is not frequent, indicating the prevalence for alternative forms of feedback control of 

transcription. Typically such a feedback occurs through the usage of protein-protein interactions 

at post-translational level or due to a complex interplay of cellular entities which control the 

activity of TFs by changing their conformation depending on the continuously varying intra- and 

extra-cellular conditions (Martinez-Antonio et al., 2006a; Yu and Gerstein, 2006). The pyramid 

shaped multi-layer hierarchical transcriptional networks builds the basis for modules and motifs 

which have been determined using a number of approaches for decomposing the regulatory 

networks (Bar-Joseph et al., 2003; Dobrin et al., 2004a; Ihmels et al., 2004; Ihmels et al., 2002; 

Ma et al., 2004a; Milo et al., 2002; Resendis-Antonio et al., 2005; Segal et al., 2003; Shen-Orr 

et al., 2002; Wu et al., 2006) (see Figure 2-1 below for a summary of these properties). 

 

Basic unit
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transcriptional

interaction

Motifs
(Local level)
patterns of
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Transcription
factor

Target gene

Scale free hierarchical network
(Global level)

all transcriptional
interactions in a cell

Target gene

Modules
(Intermediate level)
Interconnections of 

motifs

A B C D

 
Figure 2-1: Structure of the transcriptional regulatory network. Nodes represent transcription factors (red 
nodes) or target genes (black nodes) and directed edge indicates a regulatory interaction between the 
two. (A) Components of a regulatory interaction (B) Local structure of the network consists of patterns of 
inter-connections called network motifs. The three frequently occurring motifs are the feed-forward motif 
(top), single input motif (middle) and multiple input motif (bottom) (C) Motifs are interconnected to form 
groups of highly connected genes, referred to as regulatory modules (dashed circles) (D) the set of all 
regulatory interactions in a cell is referred to as the transcriptional network.  

 

Chromosomal proximity of functionally related genes has been observed as early as 

1960 when Jacob and Monod first reported that genes in bacteria are organized into 

polycistronic messenger RNAs (Jacob et al., 1960) suggesting the importance of chromosomal 

organization. It is now known that genes in bacterial genomes are largely organized into 

operons in order to enable co-regulation (Price et al., 2005) and it is due to this reason that the 

conservation of gene order in prokaryotic genomes is highly non-random (Ermolaeva et al., 
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2001; Korbel et al., 2004). However our progress in understanding, how and what governs the 

organization of these functional modules on bacterial chromosomes has been very limited, 

despite the enormous number of bacterial genomes that have been sequenced in recent years. 

In particular, these observations lead to several unanswered basic questions like, is 

transcriptional regulation constraining genome structure beyond local operon structure? Are 

their constraints on the organization and evolution of transcriptional networks? 

Products of genes have different functional roles and hence not all genes are used at the 

same time and for the same purpose. This explains why groups of genes are differentially 

expressed. For instance, genes encoding for enzymes in krebs’s cycle are constitutively 

expressed in response to most growing conditions while genes responsible for using alternative 

carbon sources are sporadically required. The decision about which genes should be turned on 

or off is executed by transcription factors (TFs) that use metabolites/signals as input information 

from the environmental state and give a transcriptional response as output (Jacob, 1970; 

Martinez-Antonio et al., 2006b; Ptashne and Gann, 1997). As a result, the notion that TFs are 

expressed in varying concentrations came into existence. For instance, LacI, a repressor of the 

operon for lactose consumption, is expressed in the order of tens’ of molecules per cell, while 

global regulators such as CRP (cAMP receptor protein) or IHF (integration host factor) occur in 

the order of thousands of molecules in the course of the cell cycle (Elf et al., 2007; Luijsterburg 

et al., 2006). In bacterial cells, where transcription and translation are coupled to happen in the 

same compartment these considerations become especially important for regulating gene 

expression. During transcription, regulatory proteins (TFs) should find and bind to specific DNA 

sequences on the operator region of their target genes to repress or induce their transcription 

(Browning and Busby, 2004). The protein-DNA interaction is a critical step in gene regulation as 

TFs find their DNA-binding sites as result of a passive process. Furthermore, TFs do not use 

energy (e.g. ATP hydrolysis) to get DNA-sequence information (Hu et al., 2008), which forces 

these systems to use additional strategies for the optimal performance of different TFs. In the 

early era of molecular biology, brownian diffusion was thought to be the determining step in 

DNA-binding site recognition by TFs. However, this assumption was challenged when it was 

reported that the LacI repressor finds its DNA-targets 90-100 times faster than that predicted by 

a mere diffusive mechanism (Riggs et al., 1970; Wang et al., 2006). This observation led to the 

suggestion of ‘facilitated diffusion’ mechanism. In such a mechanism, TFs alternate between a 

three dimensional (3-D) diffusion in the cell jumping between DNA-strands and one-dimensional 

(1-D) sliding along the DNA to rapidly locate their binding sites (Berg et al., 1981; Richter and 

Eigen, 1974; Winter et al., 1981). This hypothesis was corroborated by several works mostly 
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with single molecule studies in which the authors visualized individual TFs interacting with the 

DNA (Elf et al., 2007; Shimamoto, 1999; Wang et al., 2006; Xie et al., 2008). Several groups 

have also mathematically modeled the sliding process along the DNA and shown it to be a 

plausible way of making the search significantly faster than 3-D diffusion alone, in particular for 

TFs in low cellular concentrations (Cherstvy et al., 2008; Gowers et al., 2005; Hu et al., 2008; 

Murugan, 2007). However, it is unclear what factors govern a TF to adopt one or the other 

strategy discussed above and if there is an interplay between nucleoid structure, genome 

organization and the biophysical aspects of transcriptional regulation in bacterial systems. In 

what follows, I will present a summary of the work that was performed to understand the 

functional and structural constraints that are imposed on bacterial transcriptional networks. 

2.2 RESULTS 

2.2.1 Constraints imposed on the network of transcription factors in 

bacteria 

In bacteria, coupling of gene expression with external conditions is achieved through two 

molecular functions; (i) association of transcription factors (TFs) at specific sites in the genome 

and (ii) recognition of a relevant effector signal or metabolite (Jacob, 1970; Martinez-Antonio et 

al., 2006b). Typically these functions are performed by different domains of a single polypeptide, 

but there are also cases where two interacting proteins are responsible for these functions, as in 

two-component systems (Ulrich et al., 2005).  

At the phenotypic level, there are evidences for the coexistence of multiple phenotypes 

in bacterial cultures, e.g., of cells with different morphological and physiological abilities like 

motility, biofilm formation, drug-resistance etc (Balaban et al., 2004; Ehrlich et al., 2005). In 

particular, biofilm formation and chemotaxis are considered as multi-stage developmental 

processes and, in mature biofilms, a mixture of bacterial population from different 

developmental-stages coexist (O'Toole et al., 2000; Stoodley et al., 2002). In an attempt to 

understand whether these distinct phenotypes in growing populations of bacteria can be linked 

and explained in the context of transcriptional regulation, wealth of experimental data on 

transcriptional regulation for the best-characterized bacterium, Escherichia coli, was analyzed 

(Gama-Castro et al., 2008; Martinez-Antonio et al., 2008). In particular, a detailed analysis of 

the structure of the transcriptional regulatory network of transcription factors allowed us to 

unravel several constraints imposed on this network. In the following sections, I summarize the 

results of this published study where we performed a comprehensive analysis of regulatory 
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interactions between all the experimentally characterized TFs (defined as cross-regulatory 
network) in E. coli (Martinez-Antonio et al., 2008). Our structural analysis of the transcriptional 

cross-regulatory network in Escherichia coli suggests that, regulatory interactions between TFs 

are predominantly positive while auto-regulatory interactions are mostly negative. However, this 

general trend seems to be reversed in the case of most downstream TFs involved in the 

regulation of biofilm/chemotaxis modules.  

Martinez-Antonio A, Janga SC, Thieffry D, 2008, JMB

Regulation of the 
metabolism of alternative 

carbon sources

Master regulator  for 
motility and chemotaxis

Master switch   
between biofilm and 

chemotaxis

Master regulator for 
biofilm formation

Master regulators for 
respiration modes

 
Figure 2-2: Core transcriptional regulatory network of E. coli. Light blue and pink nodes represent genes 
encoding for transcription factors and sigma factors, respectively; edges represent regulatory interactions 
among TFs and sigma factors (green for activation, red for repression, blue for dual interactions and 
yellow for sigma transcription), whereas loops represent transcriptional auto-regulation. Specific sub-
networks responsible for the regulation different processes are delimitated with a dashed line including 
the section showing the regulation of carbon sources.  
 

We also note that, there are striking topological differences between the sub-networks 

controlling carbon metabolism and developmental processes; the former compose of many 

parallel short transcriptional cascades, encompassing multiple feed-forward loops, each 

enabling the use of one alternative carbon source, while the later involve long and intertwined 

regulatory cascades (see Figure 2-2). These long transcriptional cascades typically include 

multiple auto-activated intermediate TFs, as well as regulatory circuits between TFs and sigma 

factors. We further observe that transcription factors acting at the end of these regulatory 

cascades often belong to two-component systems. This topology suggests that on one hand, 

cell homeostasy is maintained through multiple regulatory cascades with commonly auto-
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repressed TFs, while the regulatory memory is preserved by the sequential activation of TFs at 

the core of the network. On the other hand, downstream of the hierarchical network, two-

component systems can memorise transient external signals through auto-activation loops, thus 

acting as molecular switches enabling the coexistence of alternative phenotypes. 

2.2.1.1 Topology of Escherichia coli cross-regulatory transcriptional 

network 

Available experimental data point to more than 3000 regulatory interactions between TFs and 
their regulated genes in E. coli. This information is integrated and documented in a specialised 

database called RegulonDB (Salgado et al., 2006). Global analyses of this huge network have 

already been published, emphasizing a hierarchical organisation and statistically over-

represented regulatory motifs (Dobrin et al., 2004b; Ma et al., 2004b; Shen-Orr et al., 2002). 

However, our aim here is to analyse the flow of regulatory information within the network of 

transcriptional interactions among TFs and sigmas (defined here as the E. coli transcriptional 

cross-regulatory network). This network encompasses 115 TFs and 7 sigma factors, i.e., around 

one third of the total predicted TF proteins in this bacterium (Figure 2-2) (Madan Babu and 

Teichmann, 2003; Perez-Rueda and Collado-Vides, 2000). On average, every TF is connected 

to two other TFs (i.e., more technically, the mean degree of the regulatory graph is 2.74). 

However, the connectivity distribution of TFs is not uniform, with a small fraction of global TFs 

with high out-degrees dominating the network (Martinez-Antonio and Collado-Vides, 2003).  

In order to better visualise the informational flow through the network, the following 

graphical conventions have been used in this figure (see also legend): (i) the size of the nodes 

representing TFs is proportional to the number of genes they regulate (e.g., CRP regulates 413 

genes and is represented by the second biggest node, after the housekeeping sigma factor 

rpoD ); (ii) arrows and colours refer to the direction and sign of the regulatory interaction; (iii) 

arrow thickness is proportional to the impact of the interaction, computed as the number of 

genes thereby (in)directly regulated. 

Majority of the TFs in this network are auto-regulated (~70%), of which about two-third 

account for negative loops (Table 2-1). This finding is consistent with the results of an analysis 

performed with a much smaller number of TFs more than ten years ago (Thieffry et al., 1998). 

This predominance of negative auto-regulatory loops contrasts with the predominance of 

positive arcs between different TFs (about 54%, see Table 2-1). The dominance of positive 

regulatory interactions in the regulatory network of E. coli is not limited to those among TFs, as 

a comparison of the regulation of all the target genes (3017 arcs/edges) shows that about 54% 
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(1630) are positively regulated, 40% (1206) of them are repressed while about 6% (171) are 

dual regulated. This is especially interesting because majority of the TFs in bacteria have been 

reported to act as repressors (Moreno-Campuzano et al., 2006; Perez-Rueda and Collado-

Vides, 2000; Struhl, 1999). The conventions used in Figure 2-2 clearly display the hierarchical 

organisation of the network, with master regulators such as CRP, FNR or IHF each (in)directly 

regulating a large number of other transcription factors. Furthermore, the layout emphasises 

important variations regarding the length of the transcriptional cascades. 

 
Table 2-1. Distributions of positive, negative and dual (auto-) regulatory interactions and mean path 
length computed for the E. coli transcriptional cross-regulatory network displayed in Figure 2-2 and for the 
sub-networks controlling the regulation of alternative carbon sources as well as biofilm and chemotaxis 
development processes. Note that arcs are synonymous to edges in the network. 
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1.53 
 

Biofilm & 
motility3  

 
32 

18  
(56%) 

9  
(50%) 

9 
(50%) 
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1Regulatory interactions from TFs to others TFs or towards sigma factors 
2Average path lengths in the (sub-)network(s) were calculated with the ViSANT program (Hu et al., 2007)  
3Only the TFs forming cascades ending on biofilm and chemotaxis modules were computed, the 
autoregulation of CRP was included in the carbon sources module. 

 

Although functional annotations on transcription factors are still limited, it is possible to 

classify the cross-regulating TFs into broad categories according to the physiological functions 

of the target structural genes: carbohydrate initial catabolism, respiration, biofilm formation and 

chemotaxis, etc,. As shown in this figure, these broad classes correspond to different local 

network topologies. Due to their contrasting topologies, in what follows, we will focus our 

discussion on short regulatory cascades observed in the case of carbohydrate catabolism as 

opposed to long regulatory cascades seen in the case of biofilm and chemotaxis pathways 

(marked in the figure and shown in table). CRP resides at the top of both sub-networks. CRP is 

the only global TF acting hierarchically over local TFs for the usage of carbohydrates, whereas 

CRP’s activity is comparable to the activity of other global regulators in the rest of the network. 



Constraints imposed on bacterial transcriptional networks                                                                                     2-13 

 

 

Note that the concentration of its effector metabolite, cAMP (cyclic adenosine monophosphate), 

is at par with that of ATP, (adenosine triphosphate), which acts as the energetic currency of the 

cell (Bettenbrock et al., 2007). This suggests that CRP not only regulates the use of these 

substrates for producing ATP, but also senses the energetic status of the cell to decide the 

execution of other cellular programs.  

While it is evident from this figure and the table that there are differences in the topologies of the 

subnetworks controlling metabolism versus motility and chemotaxis, which will be the focus of 

the following sections, there are other subnetworks which are also worth mentioning. In 

particular, all 9 TFs controlling the expression of genes for amino acid biosynthesis seem to be 

expressed constitutively by sigma 70. Each TF regulates the transcription of the required genes 

for producing different amino acids. At high concentrations of the amino acids, allosteric 

modifications of TFs follow binding to their respective amino acids, resulting in TF auto-

repression, as well as to the repression of the corresponding biosynthetic genes. Interestingly, 

the logic behind negative autoregulation in this case is different to that of the catabolism of 

carbohydrates. While in the latter case TFs are autorepressed until the substrate is available, in 

the case of amino acids, TFs are autorepressed only in the presence of an excess of the 

synthesized final product. Another interesting subnetwork is that for alleviating the stresses by 

drugs, solvents and weak organic acids. The regulatory logic in this complex subnetwork is 

peculiar as their components form multi-element circuits and their inputs are directed by Rob 

and SoxR, two small proteins constitutively expressed but with very short half lives (1-2 min). 

Their stability/degradation depends on the presence/absence of their effector signals (Griffith 

and Wolf, 2004; Martin et al., 2000; Shah and Wolf, 2004). 

2.2.1.2 Multiple parallel feed-forward loops regulate the use of 

different carbon sources 

Cellular feeding, which includes the uptake of carbon and energy sources and their metabolism, 

can be considered as one of the main physiological processes in bacterial systems. The 

regulation of these processes directly affects cellular fitness. The selection of carbon sources is 

regulated by CRP and about 20 more specific TFs (Figure 2-2). The hierarchical organisation of 

the corresponding sub-network is characterized by a short average path length (Table 2-1). 

Regulatory interactions between CRP and the specific TFs result in the occurrence of multiple 

Feed-Forward Loops (FFL) for the use of alternative sugar sources. FFL is a network motif 

recurrently found in transcriptional networks and is defined as a three-gene pattern composed of 

two input transcription factors, one of which regulates the other, both jointly regulating a target 
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gene (Mangan and Alon, 2003; Shen-Orr et al., 2002). Based on the mode of regulation of each 

TF, this motif is sub-divided into 8 different sub-types (Mangan and Alon, 2003). Coherent FFL 

type 1 corresponds to all the regulatory interactions in the motif being positive while in 

incoherent type 1 FFL the first TF regulates positively both the targets although second TF 

represses the expression of the target gene, thereby reversing the final effect. Majority of the 

feed-forward loops present in the subnetwork for carbon catabolism belong to coherent and 

incoherent type 1 groups (Mangan and Alon, 2003), with both TFs working cooperatively, as a 

result of a persistent signal (in this case, cyclic adenosine monophosphate) affecting the global 

TF and the presence of a signal affecting a TF corresponding to a sugar alternative to glucose 

(Alon, 2007b; Janga et al., 2007b; Mangan and Alon, 2003). This motif structure enables the 

filtering of short pulses of the signal affecting the global TF (cAMP) in case of transient glucose 

deprivation. Consequently, the target structural genes are activated only in the persistent 

absence of glucose and in the presence of an alternative carbon source. 

The phosphotransferase system (PTS) system typically transports and phosphorylates 

certain sugars, including glucose, a preferred carbon source for E. coli, and this condition 

ultimately results in low levels of cAMP. Consequently, CRP does not activate the transcription 

of the genes responsible for the degradation of alternative sugars. Note that most structural 

genes involved in the transport and initial catabolism of alternative carbon sources are encoded 

in operons, each specifically repressed in the absence of the inducing sugar. However, when 

glucose is lacking, cAMP level increases and CRP can activate the transcription of genes 

responsible for degrading alternative carbon sources (Deutscher et al., 2006). Simultaneously, 

sugars (or processed variant thereof) present in the cell bind their specific TF; allosteric 

interactions then result in TF unbinding from DNA, alleviating the repression and permitting the 

transcription of the corresponding target genes. This organisation involving multiple parallel 

feed-forward loops coupled to PTS activity appears optimal to enable rapid transcriptional 

responses to sudden lack of glucose in the presence of alternative carbon sources in the milieu 

(Dekel et al., 2005; Mangan et al., 2005). 

2.2.1.3 Long hierarchical cascades regulate developmental processes 

Biofilm formation and bacterial mobility can be seen as the outcome of specialised cell 

differentiation pathways. Biofilm formation involves subsequent cellular changes at the 

morphological and physiological levels resulting in bacterial populations with multiple 

phenotypes (Ehrlich et al., 2005; Hooshangi et al., 2005; Shapiro, 1998). Furthermore, bacteria 

living in biofilm communities are present in different developmental stages (at least four defined 
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stages) as has been observed in Cryptoccocus, Pseudomonas, Staphylococcus, Xanthomonas, 

etc. (Aldridge and Hughes, 2002; Chantratita et al., 2007; Guerrero et al., 2006; Handke et al., 

2004; Kamoun and Kado, 1990; Massey et al., 2001). The part of E. coli transcriptional cross-

regulatory network involved in the control of biofilm formation and motility exhibits a relatively 

complex topology with several long cascades from CRP, IHF and FNR to downstream 

specialised TFs (Table 2-1 and Figure 2-2). Several of these cascades converge on the master 

regulators for motility and biofilm formation in the downstream (FhlCD and CsgD, respectively). 

For instance, CsgD, the master regulator for biofilm formation, is directly involved in several long 

circuits, suggesting a particular tight coupling of CsgD activity with the intracellular status. In 

contrast, FlhCD, the master compound regulator for motility and chemotaxis, is known to be 

regulated by nine other TFs but has not yet been reported to regulate any other TF. In fact, a 

relatively high proportion of the downstream specialised transcription factors also auto-activate 

themselves, a feature which is rare at the level of the whole transcriptional network.     

Note that the motility module has its own sigma factor, FliA, regulated by FlhCD. FliA is 

required for the transcription of the genes required for the last part of flagella development and 

for chemotaxis machinery (Kalir and Alon, 2004; Kalir et al., 2001). In contrast, the genes for 

biofilm development are transcribed by the housekeeping sigma 70 and RpoS, the sigma factor 

expressed in response to general stress (Hengge-Aronis, 2002).   

The execution of such long regulatory cascades requires time. Indeed, complete flagella 

assembly may take a generation time or longer (Aizawa and Kubori, 1998; Macnab, 2003; Pruss 

and Matsumura, 1997). The occurrence of positively auto-regulated TFs at several intermediate 

steps enables informed decisions about the cellular/environmental condition. In some 

conditions, cellular duplication might be faster than the conclusion of a long regulatory cascade. 

This implies that bacterial populations likely consist of mixture of bacteria with transcriptional 

programs at different levels in long regulatory cascades.  

2.2.2 Constraints imposed on bacterial genome organization by 

transcriptional network 

Simple regulons comprise of transcription factors (TFs) and the set of genes they regulate and 

were defined as early as 1964 (Maas et al., 1964). The functional properties of these set of 

genes can be diverse, vary in number and be encoded dispersedly on the chromosome. 

However, it is unclear if there is any relationship between regulon size and the chromosomal 

positioning of their genetic components, nor is it known how TFs, constituting large and small 

regulons, coordinate their activity in the context of regulatory networks.  
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It is now well accepted that most biological networks are scale-free in their structure 

(Barabasi and Albert, 1999; Cases and de Lorenzo, 2005) and modular in their function 

(Hartwell et al., 1999; Kashtan and Alon, 2005; Resendis-Antonio et al., 2005; Slonim et al., 

2006; Snel and Huynen, 2004) but our understanding on how this scale-free structure is 

reflected on the chromosomal organization is very limited. Thus, addressing the design behind 

these architectures in the context of genome organization can provide important insights to a 

better understanding of genome structure and function. In bacterial genomes where 

transcription and translation occur in the same compartment these questions become especially 

important ,as the positioning of TFs on the chromosome could depend on concentration (Cai et 

al., 2006; Golding et al., 2005; Yu et al., 2006). Recent works have suggested the importance of 

chromosomal distance in bacterial genomes from diverse perspectives; from transcription units 

and operon organization to divergent and convergent transcriptional control (Janga et al., 

2007a; Korbel et al., 2004; Menchaca-Mendez et al., 2005; Warren and ten Wolde, 2004), 

however no analysis has focused on a link between regulon sizes, their genome organization 

and how this relates to the hierarchical transcriptional network structure (Lagomarsino et al., 

2007; Ma et al., 2004a; Yu and Gerstein, 2006). In a attempt to address the question of how 

these factors interplay and relate in the larger context of transcriptional networks of bacteria, 

currently available TRNs of best characterised gram-negative bacterial model, Escherichia coli 

(Salgado et al., 2006) and the not as well-characterized gram-positive representative, Bacillus 

subtilis (Makita et al., 2004) were used.    

In short, we studied the dependency between regulon sizes and their chromosomal 

positioning and show that regulons can be classified into 3 distinct groups based on average 

chromosomal distance between TFs and their respective target genes (Janga et al., 2007a) into 

big, intermediate and small regulons (Figure 2-3). We note that regulatory flux is generally 
driven from big to small regulons in both E. coli and B. subtilis. Finally, using data from two 

independently reported studies we show that the higher a TF is in the transcriptional hierarchy, 

more are its detected number of mRNA molecules per cell reflecting their need to be expressed 

in higher concentrations to regulate targets located distantly on the chromosome. In contrast to 

big regulons, local or dedicated TFs (lower in the network hierarchy) were found to be 

expressed in much lower concentrations explaining the reasons for their proximity on the 

chromosome to their target genes. These observations show how scale-free structure of 

transcriptional networks can be encoded on the chromosome to drive the kinetics and 

concentration gradients of TFs depending on the number of genes they regulate and could 

facilitate the horizontal transfer of local environment-specific transcriptional modules.  
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Figure 2-3: Relationship between size (defined as the number of target genes) and average chromosomal 
distance for all known regulons in (A) E. coli  and (B) B. subtilis. Regulon size is plotted on Y-axis and is 
normalized with respect to size of the biggest regulon in each genome for the sake of comparison across 
genomes and the average chromosomal distance between the TF encoding gene and their respective 
target genes is shown on X-axis. Chromosomal distances were calculated as defined earlier (Janga et al., 
2007a) with the maximum distance being half the number of protein coding genes on a circular 
chromosome. Note that both regulon sizes and average chromosomal distances are normalized with 
respect to the maximum and both the axes are shown on a logarithmic scale. Flow of regulatory 
interactions between the TFs heading the regulons, grouped according to their size and chromosomal 
distance in (C)  E. coli and (D) B. subtilis; it can be noted that the regulatory flux among TFs typically 
follows the order, big to intermediate to small regulons, coloured respectively in red (big), green 
(intermediate) and blue (small). 
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2.2.2.1 Genomic co-localization of TFs and target genes is observed in 

small regulons 

In a previous study we reported a distinct organization of genes coding for transcription factors 

(TFs) and their effector genes (whose products control TFs), depending on whether the effector 

proteins sense signals from endogenous or exogenous origin in Escherichia coli (Janga et al., 

2007a). In this study, we analyze if this observed distance, when extended to all members of a 

regulon, shows any trends depending on the size of the regulon. It should be noted that there is 

a clear distinction between TF-effector gene pairs and TF-target gene pairs. While the product 

of the former controls the activity of the TFs the later correspond to the set of genes 

transcriptionally regulated by the TF (forming part of a regulon). In this work our interest is to 

understand how the chromosomal distances (measured as number of intervening protein coding 

genes on a circular genome) between TF and its target genes in different regulons can explain 

or reflect the network structure. To address these questions, we obtained all regulons wherein 
transcription factors regulate at least two genes (excluding auto-regulation) in E. coli and in B. 

subtilis, taken from regulonDB (Salgado et al., 2006) and DBTBS (Ishii et al., 2001), 

respectively. We included heterodimeric TFs and excluded auto regulatory interactions. In E. 

coli K12, our final dataset contained 141 regulons comprising of 1597 regulatory interactions 

between TFs and their regulated genes; in B. subtilis the dataset contained 54 regulons 

comprising of 499 genes. First we asked if there is any link between regulon size (number of 

regulated genes by each TF) and the average chromosomal distance (calculated as the number 

of intervening protein coding genes on the circular chromosome as described earlier (Janga et 

al., 2007a)) between the TF and its target genes in each case. As a result of clustering (see 

Methods), regulons in both organisms can be grouped into three main categories (see Figure 2-

3 panel A, B and Table 2-2): (A) a few big regulons (10 in E. coli and 7 in B. subtilis) regulating 

more that 50% of the genes in their transcriptional networks (group A in the Figure). (B) An 

intermediate and heterogeneous group of regulons consisting of varying regulon sizes and 

chromosomal distances (group B); and (C) a group of small regulons having short chromosomal 

distances (group C). Notably, small regulons (group C) are smaller than the biggest operons of 
E. coli (15 genes) and B. subtilus (22 genes), possibly suggesting limitations on their sizes to 

act as functional modules either in the context of co-expression or for horizontal transfer (Korbel 
et al., 2004; Pal et al., 2005). The group of 10 TFs in E. coli having the most number of 

regulated genes, all are classified as global regulators according to one or more previous 

studies (Martinez-Antonio and Collado-Vides, 2003) while most of the TFs constituting small 
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regulons were found to sense external fluctuant signals resembling local genetic modules 

(Martinez-Antonio et al., 2006b). In particular, we found that highly connected TFs were either 

Nucleoid Associated Proteins (NAPs) like IHF, FIS, HNS or growth condition specific regulators 

like Crp (aerobic), Fnr and NarL (anaerobic), central intermediary regulators like Lrp, ferric 

uptake regulator (Fur) or developmental pathway associated factors like FlhDC responsible for 

biofilm formation, suggesting that these regulators indeed have key functional roles in 

controlling the transcriptional responses of the cell depending on the condition of growth. It is 

interesting to note that several NAPs which are known to act as bacterial analogs of chromatin 

remodeling factors are enriched in this class (see below). Similarly, a functional analysis of the 

TFs from group B suggested that several of them are involved in basic cellular activities like 

regulation of the biosynthesis of amino acids, regulation of cell division and repair, regulation of 

the uptake of elements, cellular stress and response to antibiotics, indicating a limited functional 

role of these TFs compared to those from group A. Finally, an analysis of TFs from group C 

suggested that they are involved in the uptake of carbon sources, degradation of small 

molecules and are abundant in two component response regulators. To estimate if the average 

chromosomal distance seen in each group is significant, we compared this distance against 

those seen in randomly generated sets as described in Methods. We found that the observed 

distances for each of the three groups are significantly smaller than expected by chance, with 

regulons from group C being the closest (Table 2-2). 

 
Table 2-2. Properties of the main groups of regulons identified in the regulatory network of E. coli, based 
on average chromosomal distance between TF and its target genes. 
 
Regulon 
group 

Number of 
regulons  
(% of total 
regulons) 

Regulon size 
(average no. of 
genes/regulon) 

Total number of 
regulated genes  
(% of total regulated 
genes) 

Average distance 
(in gene numbers) 
between the TF 
and the target 
genes 

P-value 
significance  
(Z-score) 

A 10 (7%) 76-399 (159) 1595 (99) 1059.45 P< 0.001  
(-9.98) 

B 73 (52%) 2-48 (13) 953 (59) 889.69 P< 0.001  
(-10.74) 

C 58 (41%) <12 (4.8) 281 (17.5) 2.42 P< 0.001  
(-20.44) 

 

2.2.2.2 Transcriptional regulatory flow in the network of TFs 

To find out if there is any coordination between the TFs heading the different groups of regulons 

identified above, we analyzed the regulatory flow among the TFs constituting the regulatory 
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network (Dobrin et al., 2004b; Ma et al., 2004a; Yu and Gerstein, 2006). Figures 2-3C and 2-3D 
show the regulatory interactions present between at least two TFs in E. coli and B. subtilis. Note 

that, all the TFs of group A are at the top of the network hierarchy initiating the regulatory 

interactions in the network of TFs. The regulatory flow follows an order, from TF members of 

group A to B to C, and there are no regulatory interactions from members of group C directed to 

B or A, indicating no feedback at the level of transcriptional regulation from the bottom to the 

top. However, there are some regulatory interactions between members of the same group and 

from members of group B towards members of group A. Other approaches for constructing 

hierarchical networks, such as the bottom-up strategy (Yu and Gerstein, 2006), using TF-TF 

network did not change our observations that group A shows a preference to occur at the top of 

the hierarchy while group C appears at the bottom of the hierarchical network. The partitioning 

of transcriptional network into big, intermediate and small regulons illustrates how the network 

components could be structured on a chromosome in a scale-free distribution, observed in 

various biological networks (Barabasi and Albert, 1999; Hartwell et al., 1999).  It is possible to 

generalize from our observations, that the TFs at the bottom of this hierarchy often correspond 

to very specific functional roles like those sensing specific environmental conditions 

(Lagomarsino et al., 2007). 

2.2.2.3 Absolute and average mRNA abundance of TFs suggests 

correlation with regulon size and network hierarchy in E. coli 

It is believed that global regulators should be present in higher concentrations in the cell 

compared to local or dedicated TFs (Elf et al., 2007). In fact, it is known to be valid for nucleoid-

associated proteins and other global regulators like CRP, Lrp and Fur in E. coli, whose protein 

concentrations reach more than 1000 units per cell (Chen et al., 2001; Luijsterburg et al., 2006). 

On the other hand, the number of TF proteins  of LacI, a dedicated TF for lactose utilization, 

rises from around 5 to a maximum of 20 upon induction of lactose (Droge and Muller-Hill, 2001). 

Indeed, early genomic approaches to study gene expression patterns on a genomic scale which 

exploited the codon frequency bias of highly expressed cellular machinery like ribosomal, 

transcription and cheparone associated classes, have shown that sequence specific TFs are 

generally poorly expressed (Karlin and Mrazek, 2000). However, so far, no global analysis has 

been performed to compare TF protein concentration with their connectivity and network 

hierarchy. Therefore to address this, we used mRNA profile data from two experiments 

performed in the M9+glucose medium, in which the absolute number of mRNA molecules were 

quantified (Covert et al., 2004; Liu et al., 2005; Lu et al., 2007). We obtained the number of  
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Figure 2-4:  A) Relationship between mRNA abundance and out-degree of a TF in the regulatory network 
of E. coli. TFs are colored as per their grouping in Figure 2-3 with big regulons in red, intermediate ones 
in green and small regulons in blue. Bigger the regulon, stronger is its tendency to be expressed in higher 
concentrations. B) Relationship between out-degree of a TF and its average mRNA level, calculated after 
processing and normalizing the expression data according to RMA normalization, as reported by the 
authors (Faith et al., 2007). 
 

mRNA molecules (per cell) of genes encoding for TFs from this dataset, to see if it correlates 

with their connectivity and grouping as identified in Figure 2-3 (see Figure 2-4). We found that 

TFs higher in the network hierarchy had greater number of mRNA molecules per cell associated 

with them, suggesting that more protein molecules are produced (Figure 2-4A). To investigate 

further, the relationship between concentration of a TF and its network hierarchy, we compared 

TF’s outdegree against its average gene expression using a large compendium of E. coli 

microarrays reported recently (Faith et al., 2007). We found that TF’s outdegree and its average 

mRNA level across experiments follows the hierarchy described above (Figure 2-4B). Our 
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results suggest that several regulators from group C identified in Figure 2-3A are poorly 

expressed, consistent with previous observations that two-component systems which are 

enriched in group C and are proximal on the chromosome show poor predicted expression 

values using codon usage measures (Janga et al., 2007a; Karlin and Mrazek, 2000).  If we 

assume that mRNA formation is a determining step in protein synthesis, these data might 

correspond to the absolute protein concentrations of the respective TFs per bacterial cell 

implying a correlation between a TF’s out-degree and its concentration, extending upon 

previous studies (Lozada-Chavez et al., 2008; Martinez-Antonio et al., 2008; Seshasayee et al., 

2009).These observations clearly indicate that the concentration of a TF is related to the way it 

is encoded on the chromosome with respect to its target genes, with local TFs regulating few 

genes present in physical proximity to their target genes and global TFs facilitating the 

regulation of many genes by increasing their cellular concentration. Indeed it has been 

postulated using simulations that low copy number TFs need to colocalize with their targets to 

enable a rapid and reliable gene regulation, confirming the need to place low copy local TFs in 

physical proximity to their targets in the genome (Kolesov et al., 2007). Proteome profiles for 

TFs were limited to a countable number until recently when two massive proteomic experiments 
were reported for E. coli (Ishihama et al., 2008; Lu et al., 2007). Excluding the nucleoid-

associated proteins which are discussed below, we could obtain protein concentrations for 25 
TFs belonging to different levels of E. coli network from these experiments (Figure 2-5). 

Consistent with our observations at mRNA level, TFs with high intracellular levels corresponded 

with high out-degree when their protein concentration is plotted as a function of the number of 

target genes. With respect to NAPs, these high-throughput experiments confirm their high 

abundance reported almost ten years ago using quantitative western blot analyses (Ali Azam et 

al., 1999). Indeed, a closer look at the peak expression by the same authors suggested that the 

production of these NAPs is distributed along the bacterial growth-phases (see Figure 2-6). The 

high cellular levels of these proteins  with concentrations varying from 20000 and 50000 units 

made it possible to estimate that on an average each monomer may bind every 500 bp along 

the genomic DNA (Ali Azam et al., 1999). In summary, in agreement with the data for mRNAs, 

we observe that protein abundance correlates with the out-degree of a TF in the network, with 

NAPs being particularly abundant and expressed in a growth-phase dependent manner, 

possibly to re-structure the nucleoid, facilitating the running of particular transcriptional 

programs depending on growth phase status (see below), (Ali Azam et al., 1999; Luijsterburg et 

al., 2006; Marr et al., 2008). Therefore, one can hypothesize from these results that the 

scalefree structure of bacterial transcriptional regulatory networks is encoded in the 
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chromosome itself and that genome organization of bacterial chromosomes might indeed be 

influenced by their TRNs. 
 
Figure 2-5: Number of proteins/cell 
for TFs, as a function of the number 
of genes transcriptionally regulated 
by it (excluding NAPs as their protein 
levels are shown in Figure 2-6D and 
ArcA and NarL which are known to 
be poorly expressed in aerobic 
condition where the experiment is 
performed). Note that the proteomic 
data is available for only 25 TFs.   
 

 

2.2.2.4 A conceptual model for the structuring of regulatory networks 

in bacteria 

In the integrated model we propose here (Figure 2-6), the biophysical aspects of TFs for 

reaching their DNA-binding sites might be the main driving force for structuring the regulatory 

networks in bacteria as we know presently. This conceptual model is supported by the following 

observations and evidences:  

1) TFs governing small regulons are located close to their regulated genes on the chromosome 

and this spatial arrangement together with the fact that transcription and translational 

mechanisms occur simultaneously, should favor that the newly synthesized protein can contact 

quickly its target DNA through the sliding and hopping mechanism as was shown in the case of 

LacI (Elf et al., 2007; Wang et al., 2006) (Figure 2-6C). These local regulators are normally 

expressed in lower cellular concentrations as they would be required sporadically to regulate 

few operons whose products have dedicated functions. For instance, regulation of alternative 

carbon sources in E. coli is mainly governed by the global regulator CRP and a group of local 

TFs controlling small regulons which are located proximally on the chromosome with respect to 

their target genes (Figure 2-6B). The role of the products encoded in these small regulons is to 

transport and carry out the first catabolic steps of alternative sugars until their catabolism 

converges in the glycolysis pathway. Additionally, note that most of these TFs in bacteria are 

autoregulated (Martinez-Antonio et al., 2008). Thus, this sliding mechanism could be a 

generalized strategy for a quicker and tighter control of TFs over their own expression (Alon, 

2007a).  
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Figure 2-6: Integrated model of transcriptional regulatory network in bacteria (A) combined model 
representing various factors involved (B) activity and mechanistic basis for the functioning of local TFs (C) 
an example of global and local TFs co-regulating genes involved in the uptake of carbon sources in E. 
coli (D) protein abundance of different nucleoid-associated proteins along the growth-phases, acting as 
analog regulators. 
 

2) In contrast, global regulators which are distantly located with respect to the large number of 

genes they regulate employ a different strategy. Targeting DNA seems to be accurately 

managed by raising the concentration of the respective TFs and the actual mechanism used for 

binding DNA would be 3-D diffusion and jumping between the DNA strands (Figure 2-6A and 

CRP path in Figure 2-6B). The large cellular concentrations of these proteins might be 

maintained, in part, given that most global regulators are autoregulated in both positive and 

negative manner (Martinez-Antonio et al., 2008). Such a mechanism would also make sure that 

the concentrations of these proteins are maintained at high intracellular levels. 
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3) A third major player for gene regulation in bacteria is the way the DNA molecule is packed 

into nucleoids (Ali Azam et al., 1999; Luijsterburg et al., 2006; Zimmerman, 2006). Recent 

studies provide evidence that the DNA molecule is organized into loops of different lengths (10-

100 kbp) which make it possible for some DNA regions to be spatially proximal which would 

otherwise be distant on a linear molecule of DNA (Kepes, 2004; Marenduzzo et al., 2007; 

Postow et al., 2004; Riva et al., 2008). Although the exact co-ordinates of these DNA-loops is 

yet to be unveiled even in well-studied systems like E. coli, it is known that nucleoid associated 

proteins (NAPs) are specifically engaged in structuring DNA depending on the growth condition. 

These proteins bridge or bend the DNA molecule facilitating DNA loops and nucleoid´s 

structuring (Luijsterburg et al., 2006; Zimmerman, 2006). In particular, NAPs are shown to 

express in growth-phase dependent manner with FIS at the beginning of stationary phase, HNS 

in the mid-exponential and IHF in the arrested phase (see Figure 2-6D) (Ali Azam et al., 1999). 

These observations suggest that NAPs might structure the DNA molecule in a different way 

depending on the growth phase and this action should facilitate or predispose off only a section 

of the DNA-template for the activity of global and local regulators and the running of specific 

transcriptional programs. Accordingly, it has been suggested that NAPs act as analog regulators 

whereas the rest of the TFs responding to specific conditions (e.g. by binding signal effectors) 

act as digital regulators (Marr et al., 2008; Travers and Muskhelishvili, 2007) (Figure 2-6C).  

2.3 DISCUSSION & CONCLUSION 

Our structural analysis of the transcriptional cross-regulatory network in E. coli suggests that 

regulatory interactions between TFs are predominantly positive, while autoregulatory 

interactions are mostly negative. We also note that there are striking topological differences 

between the subnetworks controlling metabolic activities, such as carbon metabolism, and that 

controlling developmental processes; the former encompasses many parallel short 

transcriptional cascades and multiple FFLs, each enabling the use of one alternative carbon 

source, while the latter involves long and intertwined regulatory cascades. These long 

transcriptional cascades typically include multiple autoactivated intermediate TFs, as well as 

regulatory circuits between TFs and sigma factors in the case of biofilm formation. 

We further observe that TFs acting at the end of these regulatory cascades often belong 

to two-component systems. This topology suggests that cell homeostasy is maintained through 

multiple regulatory cascades with commonly autorepressed TFs, while the regulatory memory 

within the network is preserved by the sequential activation of TFs and by multi-element circuits 

at the core of the network. Downstream of the hierarchical network, two-component systems 
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can memorise transient external signals through autoactivation loops, thus acting as molecular 

switches enabling the coexistence of alternative phenotypes. 

As shown in a recent study, the E. coli cross-regulatory network appears to be robust to 

tolerate the rewiring between members high and low in the network hierarchy (Isalan et al., 

2008). This study also indicated that the allosteric signals are the mandatory input elements for 

network function. Thus, TFs present in a condition different from the natural one(s) would have 

limited activity due to the absence of their effector signals. In this respect, a proper global 
understanding of the organisation of the E. coli transcriptional network (combining sigma and 

TFs) could contribute to the interpretation of network-rewiring experiments as well as foster 

more efficient design of synthetic regulatory circuits. 

It is important to note that the generality of the observed organization of the E. coli 

transcriptional cross-regulatory network remains to be assessed. Nevertheless, a more 

comprehensive picture of the network organisation in bacteria will progressively be drawn as 

additional regulatory elements such as small RNAs, anti-sigma factors and riboswitches are 

integrated (Gama-Castro et al., 2008). In addition, the combination of transcriptional and 

metabolic networks should provide important insights by linking effector metabolites and 

regulatory elements. Clearly, variations in regulatory network topology might be expected in the 

case of bacteria with asymmetric cell division (mostly alpha-proteobacteria), where the offspring 

asymmetric cells cause a transient genetic asymmetry that triggers different developmental 

processes, such as the formation of stalked and swarmer cells in Caulabacter or vegetative and 

spore-forming cells in Bacillus (Ausmees and Jacobs-Wagner, 2003; Dworkin, 2003; Dworkin 

and Losick, 2001; Hilbert and Piggot, 2004; Yudkin and Clarkson, 2005). Future comparisons 

between network topologies for different model systems should further enhance our 

understanding of regulatory network organization and its conservation or variations among 

different bacterial phyla. 

Our analysis linking the transcriptional hierarchy, genome organization and expression 

dynamics of TFs suggest that TFs high up in the hierarchy are detected in higher mRNA and 

protein molecules per cell, reflecting their need to be expressed in higher concentrations to 

regulate target genes located dispersedly on the chromosome. In contrast to big regulons, local 

or dedicated TFs (lower in the network hierarchy) were found to be expressed in much lower 

concentrations explaining the reasons for their proximity on the chromosome to their target 

genes. These observations give insights into how the scale-free structure of transcriptional 

networks can be encoded on the chromosome to drive the kinetics and concentration gradients 

of TFs, depending on the number of genes they regulate and could facilitate the horizontal 
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transfer of local environment-specific transcriptional modules. Although our distance 

calculations do not take into account the three dimensional topology of the chromosome under a 

given cellular condition, it is easy to note that the chromosomal proximity of TFs to their targets 

in the case of small regulons can not be explained due to chance alone. While in the case of 

global TFs one can argue that as they regulate several genes, their average linear 

chromosomal distance could be an over-estimation of intracellular proximity considering the 

dynamic nature of the nucleoid. However, global TFs with their fuzzy binding sites in contrast to 

local TFs could complement their affinity to targets by increasing their concentrations to a 

sufficient degree when needed (Kolesov et al., 2007; Lozada-Chavez et al., 2008).  Thus, our 

results suggest that transcriptional regulatory networks play an important role in genome 

organization by shaping the organization of genes in genomes. These observations illustrate 

how bacteria as simple biological systems fit predicted theoretical principles in order to optimize 

their cellular performance in a compacted genome.  

2.4 METHODS 

2.4.1 Identification of regulon groups 

To identify the different regulon groups based on normalized regulon size and normalized 

average chromosomal distance between TF and its TGs in a regulon, we used K-means 

clustering implemented in cluster (de Hoon et al., 2004). To find the number of distinct clusters 

present in the data we first varied the number of clusters (parameter - number of clusters in K-

means clustering) to identify how many times the optimal solution has been found in 1000 runs 

using euclidean distance as the similarity metric. We found that when the number of clusters 

was set to 3 the optimal solution was found in 350 times out of 1000 runs while when the 

numbers of clusters was set to 2,4,5 the optimal solution was reached in 120, 167 and 84 times 

respectively, suggesting that the number of clusters in the set is indeed 3. Similar approaches 

have been used by others in calculating the significance of clusters with other clustering 

approaches, as principled clustering frequently results in suboptimal solutions in a single run 

(Slonim et al., 2006). 

To determine the composition of the clusters, we ran the K-means clustering algorithm 

using 3 as the number of clusters and 1000 as the number of runs. However, since different 

runs of the k-means clustering algorithm may not give the same final clustering solution, we 

repeated this experiment 10 times and finally took a consensus of the groupings identified in 

these runs. We repeated the whole approach to identify the distinct clusters in B. subtilis. 
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2.4.2 Estimating the statistical significance of the regulon groups 

To calculate the probability of expecting the chromosomal distances seen in each regulon group 

by chance, we compared the average chromosomal distance observed in each regulon group 

against the average chromosomal distances seen in 1000 randomly generated regulon groups 

obtained by preserving the number of regulatory interactions for each TF in a regulon group. 

Such a randomization preserves the number of TFs and the interactions in a regulon group but 

still associates to randomly selected genes in the complete genome thus preserving the 

topology of the regulon group while shuffling the genomic organization of the targets with 

respect to their regulating TF. 

Statistical significance was assessed based on (i) Z-score, calculated as the number of 

standard deviations the observed value is away from the randomly expected mean. This is 

obtained as the ratio between the differences of the observed, x,  and random expected, μ, 

values to the standard deviation, σ i.e., Z = (x– μ)/ σ) and (ii) p-values, defined as the fraction of 

the 1000 random trails which showed a value ≥ what was observed in the real dataset.  
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OUTLINE 

Recent advances in molecular techniques and high-resolution imaging are beginning to provide 

exciting insights into the higher order chromatin organization within the cell nucleus and its 

influence on eukaryotic gene regulation. This improved understanding of gene regulation also 

raises fundamental questions about how spatial features might have constrained the 

organization of genes on eukaryotic chromosomes and how re-arrangements that affect these 

processes might contribute to disease conditions. In this chapter, I discuss recent studies that 

highlight the role of spatial components in gene regulation and their impact on genome 

evolution. I then present evidence for the existence of a higher-order organization of genes 

across and within chromosomes that is constrained by transcriptional regulation. In particular, I 

show that the target genes of transcription factors for the yeast, Saccharomyces cerevisiae, are 

encoded in a highly ordered manner both across and within the sixteen chromosomes by 

demonstrating that the target genes of a (i) majority of the TFs are not randomly distributed 

across chromosomes but show a strong preference to be encoded on specific chromosomes, 

(ii) significant fraction of the TFs are not randomly distributed within a chromosome, but display 

a strong preference (or avoidance) to be encoded in regions containing particular chromosomal 

landmarks such as telomeres and centromeres (iii) majority of the TFs are not randomly 

scattered but are positionally clustered within a chromosome. These results demonstrate that 

specific organization of genes that allowed for efficient control of transcription within the nuclear 

space has been selected during evolution. The framework developed here can be exploited to 

uncover such higher-order organizational principles in other eukaryotes to provide insights into 

chromosomal territories, their role in cellular differentiation and transformation, and will have 

implications for understanding disease conditions that involve chromosomal aberrations. 
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3.1 INTRODUCTION 

Since the discovery of chromatin in 1974 (Kornberg, 1974; Olins and Olins, 1974), it is now well 

known that eukaryotic genomes are compactly packed into chromatin, the fundamental unit of 

which is the nucleosome. Such an organization appears to serve two important purposes: (i) 

they allow for compaction to fit the DNA in the nucleus and (ii) they avoid unnecessary 

transcription of genes by preventing the RNA polymerase from accessing the promoter regions 

of genes. Apart from these general functions, chromatin structure is also known to play an 

important role in DNA replication and repair (Loizou et al., 2006). Nucleosomes consists of ~146 

bp of DNA wrapped twice around the core histone octamer (Luger et al., 1997) whose 

components and additional chromatin proteins can interact to form higher order chromosomal 

structures. Apart from providing a structural basis, components of the histone octamer could 

themselves be post-translationally modified by several different proteins. For instance, a class of 

proteins called the nucleosome remodeling enzymes, either remove the histone octamer from 

the nucleosome by chemically modifying them or by physically changing the position of the 

nucleosome to provide access. Importantly, several studies (both recently and in the past) have 

shown that the individual subunits of the histone octamer in a nucleosome could be chemically 

modified by an acetyl group, methyl (mono, di, or tri) group, phosphorylation, ADP ribosylation, 

ubiquitinylation, and sumoylation (Allfrey et al., 1964; Millar and Grunstein, 2006; Nightingale et 

al., 2006). Hence, such an organization of DNA into nucleosomes and the plethora of 

combinatorial possibilities of the modified state of the nucleosome is believed to provide an 

opportunity to regulate expression of relevant genes in a more sophisticated way, resulting in 

discrete biological outcomes. This combination of modification states that results in distinct 

effects in a cell has been conventionally referred to as the histone code (Turner, 1993; Turner, 

2007). Thus, nucleosomes are critical to the organization and maintenance of genetic material 

and their position and modification state can profoundly influence genetic activities such as 

regulation of gene expression (Kouzarides, 2002; Narlikar et al., 2002). 

More generally, the eukaryotic genome compared to its bacterial counterpart is a highly 

complex system, which is regulated at three major hierarchical levels (Lee and Young, 2000; 

van Driel et al., 2003). The first is at the DNA sequence level, i.e. the linear organization of 

transcription units and regulatory sequences. Co-regulated genes organized into clusters in the 

genome constitute part of these individual functional units.  The second is at the chromatin level, 

which allows switching between different functional states. This level involves the changes in 

the chromatin structure that are controlled by the interplay of histones and remodeling factors 
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along with a variety of repressive and activating mechanisms. This regulatory level is linked with 

the control mechanisms from level one that switch individual genes in the cluster to on and off, 

depending on the properties of the promoter. The third level is the nuclear level, which includes 

the dynamic 3D spatial organization of the genome inside the cell nucleus. The nucleus is 

structurally and functionally compartmentalized and epigenetic regulation of gene expression 

may involve repositioning of loci in the nucleus through changes in large-scale chromatin 

structure. There is increasing evidence that such a higher order organization of chromatin 

arrangement contributes essentially to the regulation of gene expression and other nuclear 

functions (see (Cremer and Cremer, 2001; Lanctot et al., 2007; van Driel et al., 2003; Zinner et 

al., 2006)). The territorial organization of chromosomes was known from very early experiments, 

in which damaged regions of micro-irradiated cell nuclei, visualized in the subsequently 

prepared metaphase chromosomes, were found to be locally clustered (Zorn et al., 1979). The 

chromosome territories were later visualized directly by means of in situ hybridization in 

interspecies somatic hybrid cells (Manuelidis, 1985).  There is now convincing evidence that 

chromosomes in most eukaryotic nuclei occupy distinct volumes in the nuclear space called 

chromosomal territories separated by intra-chromosomal regions providing evidence for the 

dynamic nature of the positions occupied by the chromosomes (Cremer et al., 2000; Gasser, 

2002; Heun et al., 2001; Kurz et al., 1996; Taddei et al., 2004). Hence, the cross-talk between 

different chromosomes and genes located within them in the context of metabolic, 

transcriptional and signaling mechanisms could provide additional layer of complexity to our 

understanding of the proper functioning of the cell.  

Apart from the three dimensional architecture of cell nucleus discussed above (and 

shown in Figure 3-1) a number of regulatory mechanisms control the movement, organization 

and regulation of different loci with in the nucleus.  Functions and our current understanding of 

some of these regulatory elements responsible for the regulation at different levels have been 

discussed in detail in the first half of this chapter. All these observations raise some fundamental 

questions: has the requirement for transcriptional regulation and their spatial considerations 

constrained the way in which genes are organized on chromosomes? If yes, in what ways does 

it affect genome evolution? In the second half of this chapter I discuss the investigations 

involving the understanding of constraints placed by transcriptional regulation on the 

organization of genes on the chromosomes in eukaryotic organisms. 

 

(Space left for an enhanced layout of the figure) 
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Figure 3-1: (A) Hierarchical organization of eukaryotic genetic material. DNA is wrapped into 
nucleosomes, which form the chromatin and is ultimately packaged into a chromosome that resides within 
the nucleus. The first level of regulation includes regulatory elements (e.g., enhancers and insulators), 
DNA methylation and DNA structure. The second level includes post-translational modification of 
nucleosomes and remodelling of nucleosomes. The third level of regulation includes chromosomal 
organization and the nuclear architecture. Features of genome architecture in 3D showing (B) DNA is 
shown as a black line, a gene is represented as an arrow and the different classes of regulatory elements 
are shown in various shapes and colors. Insulator elements (blue rectangles) block spread of 
heterochromatin (red circles) and prevent inappropriate interaction between enhancers (green oval) and 
unrelated genes. Enhancers can facilitate regulation of nearby genes that may still be a few kilobases 
away. Locus control region (gray oval) can bring genomic loci that are several kilobases away close to 
each other to co-ordinate gene expression. The bottommost panel shows various aspects of the spatial 
component in eukaryotic gene regulation. The nucleus is shown in the center. (C) Different active regions 
of the same or different chromosomes can associate with the same transcription factory. (D) Enhancers 
from one chromosome may regulate the expression of genes present on another chromosome via inter-
chromosomal interactions. (E) Chromosomes occupy defined volume within the nucleus, called as 
chromosome territories which are depicted in different colours with significant intermingling mostly at the 
edges. (F) Genetic material residing near the nuclear periphery has been correlated with gene silencing. 
One theme which stands out is that regions of the chromosome that interact with lamin and the nuclear 
inner membrane are largely inactive, in both mammals and yeast, whereas loci that interact with the 
components of the nuclear pore appear to be transcriptionally active, mostly observed in Drosophila and 
yeast. 
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3.2 RESULTS 

3.2.1 Eukaryotic genome organization and transcriptional regulation 

Though we observe an amazing diversity in the number of chromosomes that eukaryotic 

organisms encode (e.g., 32 chromosomes in yeast, over 200 in butterflies and 46 in humans), 

they are packaged in similar ways: each DNA molecule is wrapped around histone proteins to 

form nucleosomes, which are then condensed in a complex hierarchical manner to make up an 

entire chromosome (Figure 3-1A). Such an intricate organization of genetic material within the 

eukaryotic nucleus provides ample opportunities to regulate expression of the encoded genes at 

many different hierarchical levels. For instance, eukaryotic transcription is dynamically regulated 

at least at three major levels as shown in Figure 3-1A. The first is at the level of DNA sequence 

where DNA binding proteins (e.g., transcription factors; TFs) associate with cis-regulatory 

elements (e.g., TF binding sites) to regulate transcription. The second is at the level of 

chromatin, which allows segments within a chromosomal arm to switch between different 

transcriptional states, i.e., those that suppress transcription (heterochromatin) and those that 

allow for gene activation (euchromatin). This involves changes in chromatin structure and 

nucleosome occupancy, both of which are controlled by the interplay between several factors 

such as nucleosome remodeling complexes, histone modifications, and a variety of repressive 

and activating mechanisms (Millar and Grunstein, 2006; Razin et al., 2007). The third is at the 

level of the entire chromosome (Figure 3-1A) and includes positioning of chromosomes within 

the nuclear space (e.g., closer to the nuclear periphery or next to internal nuclear 

compartments) and spatial organization of specific chromosomal loci within the nucleus, both of 

which are known to influence gene expression (de Laat and Grosveld, 2007; Fraser and 

Bickmore, 2007; Misteli, 2007; Pombo and Branco, 2007; Schneider and Grosschedl, 2007).  

Several studies have investigated these mechanisms in detail and have revealed that 

such processes involve extensive physical and spatial association between distantly located 

genomic elements and widespread crosstalk between the different levels. Advancements in 

molecular techniques and high-resolution imaging (see Table 3-1) have facilitated investigation 

of the role of spatial component in gene regulation and have provided valuable insights into its 

importance in gene regulation (de Laat and Grosveld, 2007; Fraser and Bickmore, 2007; Misteli, 

2007; Pombo and Branco, 2007; Schneider and Grosschedl, 2007). In this chapter I first discuss 

recent studies that highlight the importance of spatial component in gene regulation and then 

present a detailed analysis that addresses how the requirements for gene regulation could have 

constrained genome organization. Finally, I discuss implications and outline open questions.  
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Table 3-1: Experimental and computational approaches to study eukaryotic transcriptional regulation. 

Experimental 
approaches 

Description 

ChIP-chip 

Chromatin-bound proteins are covalently linked to DNA by using an in vivo 
crosslinking agent such as formaldehyde (histones can be detected in unfixed 
chromatin preparations in native ChIP). Chromatin is then sheared and 
immunoprecipitated (ChIP) using an antibody for a native protein, a tagged 
version, or a specific post-translational modification. Reversal of the crosslink 
releases the bound DNA, allowing the enrichment of specific DNA fragments, 
whose identity is determined by hybridization to a microarray (chip).  

ChIP-seq 

In ChIP-seq experiments, the immunoprecipitated DNA is directly sequenced 
using high-throughput sequencing technologies (e.g., Solexa or 454). The 
sequences are then computationally mapped back to the reference genome. 
Fragments that were bound by the protein will be more abundant and sequenced 
several times, providing a direct measure of enrichment. 

DamID 

The DNA binding protein of interest is fused to an E. coli protein, Dam. Dam 
methylates the N6 position of the adenine in the sequence GATC, which is 
expected to occur once in every ~256 bases. Upon binding DNA, the Dam 
protein preferentially methylates adenine in the vicinity of binding. The DNA is 
digested by DpnI and DpnII restriction enzymes, which cleave within the non-
methylated GATC sequence, and remove fragments that are not methylated. 
The remaining methylated fragments are amplified by selective PCR and 
quantified using a microarray.  

RNA-TRAP 
Newly-made transcripts are detected in crosslinked cells by RNA-FISH using 
biotinylated probes and probe-RNA-chromatin complexes are amplified with 
tyramide or directly immunoprecipitated, before PCR analyses.  

Chromosome 
Confirmation 
Capture (3C) 

3C is used to determine which DNA sequences lie close together in 3D space in 
fixed cells. This typically involves fixation to crosslink DNA sequences that lie 
next to each other (usually through DNA–protein–DNA links), before cutting with 
a restriction enzyme, dilution and ligation at low concentration. This favours the 
ligation of pairs of DNA sequences that are crosslinked after which the reversing 
of crosslinks allows the ligated DNA to be detected by PCR.  

4C 
4C technology [chromosome conformation capture on chip (3C-on-chip) or 
circular chromosome conformation capture (circular-3C)] allows for an unbiased 
genome-wide search for DNA loci that contact a given locus. 

5C 

Chromosome Conformation Capture Carbon Copy (5C) is a massively parallel 
technique, which involves mapping physical interactions between genomic 
elements and sequencing or microarray analysis of the ligated end products of 
the 3C technique. 3C typically converts physical chromatin interactions into 
specific ligation products, which are quantified using high-throughput microarrays 
or quantitative DNA sequencing using 454-technology as detection methods. 

6C 
Combines ChIP for a specific chromatin bound protein with 3C-based methods 
to correlate specific long-range chromatin interactions with the presence of a 
specific bound protein. 

FISH 

Fluorescent in situ hybridization (FISH) detects specific DNA sequences and 
localizes them on cytogenetic preparations of chromosomes or interphase cell 
nuclei. Cells are hypotonically swollen and dropped on glass slides before 
hybridization, such that fine structural details might be lost. It uses tagged probes 
amplified from specific DNA fragments up to single chromosomes, to detect the 
target sequences. The genomic regions bound by the probe are visualized by 
fluorescence microscopy.  

3D-FISH 
A modified FISH procedure that improves the preservation of 3D nuclear 
structure (3D-FISH), important for spatial mapping of the position of specific 
genomic sequences within the interphase nuclei. This technique can be slow as 
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it requires imaging of multiple image stacks on a small number of nuclei and 3D 
reconstruction. It can also be combined with protein and RNA localization. 

Cryo-FISH 

A modified FISH procedure that uses ultra-thin cryosections from sucrose-
embedded fixed samples. Sections are 100-200 nm thick. Preservation of 
ultrastructure is optimized, signal-to-noise ratios are improved and imaging 
artifacts are minimized. It is ideal for imaging short-range interactions between 
specific loci or their associations with specific landmarks with higher resolution 
and faster data collection. Specific cells in their tissue context can be easily 
investigated. It is not suitable to measure general 3D genomic positioning over 
large distances. 

Single Molecule 
Imaging 

(Fluorescence 
Microscopy) 

In Single Molecule Imaging (SMI) of live cells, the molecules of interest are 
conjugated with fluorophores and introduced into cells. The behavior of multiple 
fluorescent molecules in cells is then visualized using high-sensitivity video 
microscopy. The observables in SMI are the position or movement of the 
fluorescent spots, the fluorescence intensity of individual spots, the fluorescence 
spectrum or color of individual spots, and the number and distribution of the 
spots.  

Lac-binding-site 
array 

In this approach, in vivo visualization of chromatin dynamics is based on lac 
repressor recognition of direct repeats of the lac operator. The method allows 
tagging of specific chromosomal sites and thus in situ localization in vivo. 
Detection by light microscopy, using GFP-lac-repressor fusion proteins or 
immunofluorescence, can be complemented by higher-resolution electron 
microscopy using immunogold staining. This method facilitates the investigation 
of interphase chromosome dynamics, as well as chromosome segregation 
during cell division in organisms that lack cytologically condensed chromosomes.

Computational 
approaches Description 

Boolean modelling 

In qualitative modelling, kinetic processes are simulated by tracking over discrete 
time, the state of the system, defined in terms of a coarse range for each 
variable. The weak specification of such models conserves computer resources 
needed to explore the space of possible behaviours. Moreover, it provides high-
level predictions applying to a whole family of systems. Although simulation of 
qualitative models can be fast, even a rough exploration of parameter space can 
become intractable as the size of the system increases, highlighting the need for 
increasing computer resources and methods to accelerate the parameters’ 
search space. For genes that are naturally found in only two states (e.g., on or 
off), the trade-off in accuracy may not be high. On the other hand, simple models 
can, in some cases, predict behaviours that are far from reality. 

Deterministic 
modelling 

Deterministic modeling falls into the class of quantitative models. The most 
popular formalism is the deterministic ordinary differential equations (ODEs) 
which, when extended to model space, is referred to as partial differential 
equations (PDEs). Each equation in a set typically represents the rate of change 
of a species' continuous concentration as a sum or product of, more or less, 
empirical terms. This accounts for the effect of biological events on the 
concentration of the species. By definition, the initial state of the system in a 
deterministic model uniquely sets all future states. As analytical solutions seldom 
exist, numerical solutions need to be computed (once for each set of parameter 
values and initial conditions explored). 

Stochastic 
modelling 

Molecular interactions involving a small number of objects in a large volume are 
intrinsically random and cellular behaviour itself sometimes seems to reflect this 
randomness. Indeed, occurrences of “noise” have been found to be exploited by 
cells—for instance, to survive a variety of environmental changes or to increase 
sensitivity in signal transduction processes. To model such stochastic systems, 
two main methods are used. The first comprises using stochastic differential 
equations (SDEs; derived from ODEs by adding noise terms to the equations), 
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the solutions for which can be numerically obtained either by computing many 
trajectories (Monte Carlo methods) or approximating their probability distribution 
and then calculating statistical measures (such as mean and variance). The 
second is an exact method which can cope with different reaction time-scales or 
spaces. Within this approach, molecules are modelled individually and reaction 
events are calculated by their probability.  

Monte Carlo 
simulation 

Monte Carlo methods are a class of computational algorithms that rely on 
repeated random sampling to compute their results. Monte Carlo methods are 
often used when simulating physical and mathematical systems. Because of 
their reliance on repeated computation and random or pseudo-random numbers, 
Monte Carlo methods are most suited for computer simulations and tend to be 
used when it is infeasible or impossible to compute an exact result with a 
deterministic algorithm. There is no single Monte Carlo method; instead, the term 
describes a large and widely-used class of approaches. 

Multi-scale 
modelling 

Multi-scale modeling refers to the modeling of a system at several levels of detail 
to increase the accuracy and representation of the system as close to reality. For 
instance, modeling of a chromatin unit, a nucleosome, using a simplified model 
for rapid discrete molecular dynamics simulations and an all-atom model for 
detailed structural investigation, would correspond to this class of modelling.  

Statistical 
correlations 

Statistical models search for patterns in experimental data. Correlation, 
regression and cluster analysis are all powerful statistical tools that can identify 
relationships among measured variables that probably are not attributable to 
chance. Statistics is also a powerful tool for uncovering the prevalence of a 
phenomena and evidence for potentially new mechanisms.  

Spatial modelling 

Spatial modelling takes into account that biological processes take place in 
heterogeneous and highly structured environments regulating cellular processes 
in both space and time. While recent technological advances are addressing the 
dearth of spatial data, theoretical advances are improving computational 
methods, making it now possible to simulate spatio-temporal models of biological 
processes in coarse-grained or realistic geometries.  

Kinetic modelling 

Kinetic modelling supports quantitative hypothesis testing by first translating a 
diagram into a mechanistic kinetic model. Diagrams typically consist of 
molecules, complexes, cellular locations and processes. As molecules and 
complexes can exist in several locations, it is often necessary to define several 
states for a single molecule — each state is a set of chemical species in a 
physical place.  

Comparative 
genomics 

Comparative genomics permits addressing questions at the sequence level both 
within and across organisms and their variations across diverse phylogenetic 
groups. Evolutionary aspects of several cellular elements from genes, regulatory 
elements, organellar macromolecular complexes to their chromosomal 
organization can be addressed using computational genome-scale approaches. 

Network based 
approaches 

In a network approach, objects are represented as nodes and interactions 
between objects are represented as links. This permits representation of 
genome-scale information in a convenient way to identify interesting topological 
features. One of the features is the presence of hub nodes which are objects 
connected to an extremely high number of other objects in a system. With the 
amount of data from several high-throughput technologies, representing 
interactions between biological molecules as networks has provided us with a 
general framework to address fundamental biological questions at a systems 
level. Examples of molecular interactions represented as networks include 
protein-DNA (transcription network), protein-RNA (post-transcriptional network), 
protein-protein (post-translational network, signaling and protein complexes) and 
protein-metabolite (metabolic network) interactions. 
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and discuss how computational approaches can be helpful in investigating the prevalence of 

spatial regulatory mechanisms and in understanding their impact on genome evolution. It is 

important to note that the studies discussed have been carried out in different model systems 

and that further research is necessary to assess whether particular spatial mechanisms are 

universal or specific to each system. 

3.2.1.1 Long-range interactions involving distal regulatory elements 

Regulatory elements in eukaryotes can be spread over several kilobases away from the 

associated gene. These include binding sites for specific TFs, enhancer elements, locus control 

regions (LCRs) and insulator elements (Figure 3-1B). TF binding sites are generally close to 

promoter regions, but enhancer elements, LCRs and insulator elements can be present far 

away on the chromosome and may influence the expression of more than one gene 

simultaneously. Enhancers affect expression of nearby genes, whereas LCRs can affect several 

genes that are distantly located within a genomic locus spanning several kilobases (Dean, 

2006). Insulator elements can block promiscuous enhancer-promoter interaction or act as a 

barrier against the spreading of heterochromatin. The former class of insulators function by 

forming genomic loops via long-range interactions and the latter class prevents inappropriate 

gene expression by recruiting nucleosome modifying enzymes (Dorman et al., 2007).  

The formation of loops mediated by proteins bound to specific elements along a 

chromosome appears to have a central role in several processes as it can affect the expression 

of several genes in a neighborhood (O'Sullivan et al., 2004). Although only a few loops have 

been analyzed in detail and the nature of the molecular forces that maintain them remain 

unclear, recent evidence suggests that they are found in several eukaryotes (Dean, 2006) and 

that the transcriptional machinery itself could be a molecular tie (Grimaud et al., 2006; 

Marenduzzo et al., 2007; Osborne et al., 2004) (Figure 3-1C). Several studies that have used 

3D-FISH, chromosome conformation capture (3C) (Dekker et al., 2002) and its variants 4C, 5C 

and 6C (Simonis et al., 2007) and live-cell imaging (Muller et al., 2007) support the idea that 

active transcription units are in close contact within the nuclear space (Osborne et al., 2004; 

Pombo et al., 1999; Pombo et al., 2000) (see Table 3-1). The results are consistent with a 

model for genome organization in which active polymerases cluster into transcription ‘factories’ 

bringing together distal genes (Figure 3-1C) and where active genes are dynamically organized 

into shared nuclear subcompartments (Muller et al., 2007; Osborne et al., 2004; Pombo et al., 

1999; Pombo et al., 2000). They are also consistent with these cis-regulatory elements 

functioning as insulators, enhancers or LCRs, depending on their positions relative to other 
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genes. Interestingly, in a recent study, it has been shown that specific ‘factories’ produce only a 

particular kind of transcript depending on the promoter type and whether or not the gene 

contains an intron, supporting the presence of ‘specialized’ transcription factories (Pombo et al., 

1999; Pombo et al., 2000; Xu and Cook, 2008). 

The genomic loops involving regulatory elements are dynamic, depend on the 

transcriptional status of a gene, vary between cell-types in the same organism and may involve 

several proteins. The beta-globin locus in mouse is the most studied and involves the Hbb-b1 

gene (which encodes beta-globin), its LCR and the Eraf gene (encoding an alpha-globin-

stabilizing protein) on the same chromosome. This LCR is thought to nucleate a chromatin hub 

which correlates with expression of globin-related genes. It has been confirmed, by 3C, 4C and 

RNA-TRAP that the contacts between Hbb-b1, the LCR and Eraf are seen only in erythroid 

nuclei (in which all three are transcribed) but not in brain cell nuclei (in which Hbb-b1 is inactive) 

(Carter et al., 2002; Osborne et al., 2004; Simonis et al., 2006). Moreover, the contacts that 

Hbb-b1 makes with other genomic regions depend on its transcriptional activity; in erythroid 

nuclei, 80% of contacts are with other active genes, but, in brain cells, this falls to only 13% 

(Simonis et al., 2006). Interestingly, the LCR region itself is also transcribed and this might even 

be required for its function (Ho et al., 2006). A range of TFs have been implicated in mediating 

genomic loops in the case of the Hbb-b1 locus and these include Eklf (erythroid Kruppel-like 

factor; aka Klf1), Gata1 (GATA-binding protein 1) and the zinc-finger protein Fog1 (aka Zfpm1) 

(Drissen et al., 2004; Vakoc et al., 2005). 

3.2.1.2 Inter-chromosomal interactions 

While long-range regulatory interactions involving loci from the same chromosome have been 

known for some time, it is only recently that inter-chromosomal regulatory interactions (trans-

interactions) were discovered (Figure 3-1D). Inter-chromosomal interactions may involve 

enhancer elements and genes from different chromosomes and can be cell-type specific. The 

first example of a trans-interaction between chromosomes in mammals (identified by 3C and 

FISH) is the association between the T helper 2 cytokine locus on mouse chromosome 11 and 

the promoter of IFN-gamma gene on chromosome 10 in the nuclei of naïve CD4+ T-cells  

(Spilianakis et al., 2005). This interaction is thought to hold the two loci in a poised state and 

might facilitate a quicker response upon T-cell activation to differentiate into Th1 and Th2 

lineages by expression of either gene-locus. Another interesting example is the regulation of 

olfactory receptor genes. Dual RNA and DNA FISH revealed that the expression of a specific 

olfactory gene is accompanied by inter- or intra-chromosomal interactions between the active 
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gene and a genomic region on chromosome 14 containing an enhancer sequence, referred to 

as the H element (Lomvardas et al., 2006).  

  Recently, two different studies showed that inter-chromosomal interactions may involve 

several factors and can be induced upon exposure to specific stimuli or upon viral infection. The 

dynamics of gene association with transcription factories was investigated during immediate 

early gene induction in mouse B lymphocytes and was shown to result in a rapid relocation of 

the Myc proto-oncogene on chromosome 15 to the same factory that transcribed the Igh gene 

located on chromosome 12 (Osborne et al., 2007). The study on the investigation of the 

Interferon (IFN-beta) gene locus upon viral infection reported that the stochastic and monoallelic 

expression of the IFN-beta gene depends on inter-chromosomal associations with distinct 

genetic loci that could mediate binding of the transcription factor NF-kappaB to the IFN-beta 

enhancer, thus triggering transcription from this allele (Apostolou and Thanos, 2008). 

Another prominent example comes from the mammalian X-chromosome inactivation 

process, which involves a specific trans-association of the X-inactivation center (Xic) between 

the X chromosomes during early development. Female cells carry two X chromosomes, one of 

which is mostly silenced so that expression levels of X-linked genes are comparable to those in 

male cells. Recent studies detected a transient co-localization of the X inactivation centers of 

the homologous chromosomes that precedes the initiation of inactivation of one of the two 

chromosomes (Augui et al., 2007) and that the chromatin insulator protein (CTCF) is involved in 

mediating this interaction (Xu et al., 2007). CTCF also colocalizes with cohesin at specific sites 

in human and mouse chromosomes (Parelho et al., 2008) and raises the possibility that protein-

chromatin interaction involving genomic loci from different chromosomes could possibly 

stabilize, at least transiently, a network of inter-chromosomal interactions within the cell nucleus. 

3.2.1.3 Chromosomal territories, movement and nuclear organization 

Despite the growing evidence on inter-chromosomal interactions, it is known that chromosomes 

occupy territories with preferred and non-random positions in the nucleus of mammalian cells, 

so-called chromosome territories (CTs) (Cremer et al., 2006; Meaburn and Misteli, 2007) 

(Figure 3-1E). FISH experiments have revealed the relocation of chromatin domains containing 

activated genes to substantial distances outside their chromosome territory, suggesting that 

positional organization of chromatin domains within the nucleus could impinge on the regulation 

of gene expression. This finding, together with the observation of extensive intermingling of 

DNA from different chromosomes (Branco and Pombo, 2006) raises the issues of how and why 

genes move relative to their chromosome territories and whether the looping out regulates, or is 
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regulated by transcriptional activity. Evidences in favour of a role for looping out in the regulation 

of gene expression has come from studies that show the colocalization of genes in the nucleus 

for co-expression or co-regulation (reviewed in (Fraser and Bickmore, 2007)). Active genes on 

decondensed chromatin loops extend outside chromosome territories and can colocalize both in 

cis and in trans at sites within the nucleus to share the same transcription factories (Osborne et 

al., 2004; Osborne et al., 2007) or to sites adjacent to splicing-factor enriched speckles (Chuang 

et al., 2006) or Cajal bodies (Dundr et al., 2007). Extensive relocalization of large genomic 

regions in response to gene activation can depend on actin (Chuang et al., 2006; Dundr et al., 

2007) and myosin (Chuang et al., 2006), suggesting that intranuclear movements of genomic 

regions are, at least in some cases, more directed than previously thought (Kumaran et al., 

2008). 

The spatial organization of chromosome territories in mammalian cells can be described 

by their radial positioning relative to the center of the nucleus, as was recently done for the 

three-dimensional (3D) map of all chromosomes in human male fibroblast nuclei (Bolzer et al., 

2005). The radial positioning of chromosomes correlates with their gene density in spherical 

nuclei such as lymphocytes (Kupper et al., 2007) and is evolutionarily conserved (Mora et al., 

2006; Neusser et al., 2007) but nevertheless tissue-specific to a certain degree (Parada et al., 

2004). Gene-rich regions tend to occupy more interior positions, while gene-poor and late-

replication regions tend to be associated with the nuclear periphery (Kupper et al., 2007; 

Neusser et al., 2007). In addition, similar non-random chromatin arrangements with respect to 

the local gene density or GC content have been observed for different cell types (e.g., 

fibroblasts, bone-marrow cells and cell lines) from several eukaryotic lineages such as 

amphibians, reptiles, birds and mammals (Federico et al., 2006; Neusser et al., 2007). 

Surprisingly, a detailed analysis of the position of chromosomes in mouse lymphocytes has 

shown that chromosomes are more likely to form ‘heterologous’ neighbourhoods, where 

homologous chromosomes are preferentially separated from each other, which might facilitate 

more extensive trans-interactions between heterologous chromosomes (Khalil et al., 2007). 

Though the general patterns appear to be evolutionarily conserved, they are 

nevertheless dynamic and are altered during cellular differentiation. Changes in the 

transcriptional program of a cell correlate with specific changes in the organization of individual 

CTs, at the level of intermingling, CT volume and radial position during lymphocyte activation 

(Branco et al., 2008), possibly reflecting an adaptation to the new transcriptional program. 

Similarly, other recent studies have shown that the architecture of chromosome territories 
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changes during differentiation (e.g., human adipocyte differentiation (Kuroda et al., 2004) and 

mouse T-cell differentiation (Kim et al., 2004)). 

3.2.1.4 Association of the genomic loci with the nuclear periphery 

In metazoan nuclei, the nuclear envelope is underlaid by a continuous meshwork of lamins and 

lamin-associated proteins, which preferentially associate with inactive chromatin regions and 

facilitate chromatin organization (Akhtar and Gasser, 2007). Pickersgill et al (Pickersgill et al., 

2006) characterised the regions that interacted with the nuclear lamina in Drosophila 

melanogaster and showed an enrichment for gene-poor regions and repressed genes. More 

recently, Guelen et al (Guelen et al., 2008a) mapped the interaction sites of the entire genome 

with the nuclear lamina components in human fibroblasts and described over 1,300 lamina-

associated-domains (LAD) which were again enriched for genes with low expression levels. 

Though an association of silenced genes with the nuclear periphery is demonstrated, what was 

unclear from these studies was whether the requirement for gene repression causes association 

or if repression is an effect of association with the nuclear lamina. Experimentally induced 

repositioning of human chromosomal regions to the nuclear periphery in Finlan et al (Finlan et 

al., 2008) suggests a causative role of the nuclear periphery in suppressing the expression of 

some (but not all) genes as repositioning to the periphery is still compatible with active 

transcription. Another study investigating the consequences of repositioning the immunoglobulin 

loci in mouse fibroblasts to the nuclear periphery supports the notion that such molecular 

interactions may be a mechanism to limit the accessibility to proteins that facilitate 

recombination or transcription (Reddy et al., 2008). 

While the nuclear periphery has been generally associated with repressed genes, 

several studies have shown a correlation with active genes being associated with components 

of the nuclear pore complexes (NPCs), which serve as gates for the transport of molecules 

between the nucleus and cytoplasm. ChIP experiments in yeast for NPC components revealed 

an enrichment for active genes (Casolari et al., 2004).  Several inducible genes such as INO1, 

HXK1, GAL1, GAL2, and HSP104 become stably positioned at the nuclear periphery when 

activated and remain there after transcription is shut off (Brickner et al., 2007; Cabal et al., 

2006; Casolari et al., 2004; Taddei et al., 2006). In the case of Gal1 and Ino1, the relocalization 

to pores was found to be dependent upon the SAGA acetyl-transferase complex (Brickner and 

Walter, 2004; Cabal et al., 2006). In humans and Drosophila, the MSL complex can recruit 

transcriptionally active loci to the nuclear pore (Mendjan et al., 2006), although another study 

revealed that the association of silent genes is just as likely as for active genes (Brown et al., 
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2008). Most of these results have to be reconciled with the observation that many (if not most) 

transcribed genes, in both yeast (Gartenberg et al., 2004) and mammals (Janicki et al., 2004), 

do not associate stably with pores. Despite this, one common theme that is emerging is a 

tendency for the inner nuclear membrane to be associated with less active genes, whereas the 

NPCs tend to associate with transcriptionally active loci, at least in yeast, possibly in order to 

facilitate efficient transport of mRNAs (Figure 3-1F). 

3.2.2 Transcriptional regulation constrains genome organization 

Unlike in prokaryotes, where the genetic material is primarily packaged in a single circular 

chromosome, the genome of eukaryotes is contained in the nucleus, condensed in a complex, 

hierarchical manner and is encoded in several different linear chromosomes. These distinctions, 

together with the fact that the transcriptional apparatus are largely different, enforce very 

different ways by which genes are transcribed from the chromosomes. In the case of most 

prokaryotes, the absence of a nucleus and the organization of functionally related genes into 

operons facilitate coupled transcription and translation of polycistronic transcripts. In contrast, 

the presence of a nucleus in eukaryotes imposes the constraint that the transcribed 

monocistronic mRNA needs to be transported to the cytoplasm before translation can occur. 

Although transcription in both prokaryotes and eukaryotes involves the evolutionarily 

conserved core RNA polymerase subunit, the whole process of transcriptional regulation is 

fundamentally different. In contrast to prokaryotes where transcription primarily relies on the cis-

regulatory DNA sequences alone (Browning and Busby, 2004), eukaryotic transcription is 

regulated at many levels (Lee and Young, 2000; van Driel et al., 2003). Therefore unlike in 

prokaryotes, transcription in eukaryotes is an energy-intensive, multi-step process, involving a 

large number of molecular events to be coordinated both in space and time. Given the intricacy 

involved in a single transcriptional regulatory interaction, one can ask whether or not the 

complexity of the whole network of transcriptional interactions has imposed a significant 

constraint on the organization of genes across the different eukaryotic chromosomes. This 

becomes particularly interesting in the light of a recent work, which demonstrated that tuning the 

expression level of a single gene can provide an enormous fitness advantage to an individual in 

a population of cells (Dekel and Alon, 2005). Thus one could extrapolate that optimization of 

transcriptional regulation on a global scale, such as the efficient expression of relevant genes 

under specific conditions, would have significant advantage on the fitness of an individual in a 

genetically heterogeneous population. 
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Though several studies have described that genes with similar expression pattern 

cluster on the genome and that gene order is conserved, no study has investigated how genes 

are organized across and within the chromosomes: given that eukaryotes contain several 

chromosomes, are the set of genes regulated by a given TF (i) randomly distributed across 

different chromosomes or encoded on specific chromosomes? (ii) distributed in an unbiased 

manner within a chromosomal arm or display preference to be encoded in regions containing 

particular chromosomal landmarks? (iii) positionally clustered within a chromosome or not? 

Here, we investigate these questions by using the recently available genome-scale data on 

13,853 high-confidence regulatory interactions (see Materials and Methods). This data covers 

156 TFs and 4495 target genes for the model eukaryote Saccharomyces cerevisiae, whose 

genetic material is organized into 16 linear chromosomes. 

3.2.2.1 The majority of TFs show a strong preference to regulate 

genes on specific chromosomes 

Several elegant studies have elucidated that the organization of chromosomes within the 

eukaryotic cell nucleus is non-random and that they occupy distinct volumes called 

chromosomal territories (Cremer and Cremer, 2001; Gasser, 2002). In yeast, in addition to the 

ordered movements during cell division, it has been demonstrated that interphase 

chromosomes undergo large rapid movements (over 0.5 μm in a 10 seconds interval; nuclear 

diameter of ~2μm) and that such movements could reflect the metabolic state of the cell (refs 

(Akhtar and Gasser, 2007; Gasser, 2002) and references therein). These observations have 

suggested that the non-random organization of the chromosomes could (i) allow functional 

compartmentalization of the nuclear space, thus potentially enhancing or repressing expression 

of specific genes and (ii) bring co-regulated genes into physical proximity in order to co-ordinate 

gene expression. The above-mentioned observations (also see previous sections) on the non-

random nuclear architecture and chromosomal dynamics together with the fact that 

transcriptional regulation in eukaryotes is an energy-intensive, highly coordinated and time-

intensive process motivated us to ask if such considerations have constrained the positioning of 

genes in specific chromosomes during the course of evolution.  

Given that eukaryotes encode several linear chromosomes, we first investigated if the 

targets of TFs tend to be preferentially encoded on specific chromosomes, or randomly 

distributed on different chromosomes. We therefore analyzed the chromosomal location of the 

targets for each TF in the currently available map of protein-DNA interactions for yeast (see 

Figure 3-2A and methods). We first created a ‘chromosome preference profile’ for every TF, 
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which is a vector that contains the number of target genes on each of the 16 chromosomes. By 

comparing this vector to what is expected by chance (see Methods), we identified the TFs which 

displayed a significant preference to have their targets on specific chromosomes more often 

than what is expected by chance. 
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Figure 3-2: Schematic showing the methods employed to estimate the significance for (A) chromosomal 
preference (B) regional preference and (C) clustering of target genes. Please see methods for details. x: 
observed value; μ mean: σ standard deviation. 
 

Since the null model is critical to obtain statistical significance, we ensured that the 

random networks are as close as possible to the real network in terms of the topology and the 

gene distribution on the chromosomes. The random networks were therefore obtained by 

employing a re-wiring procedure, preserving the connectivity distribution and the inherent 

chromosomal distribution of the genes. In other words, the number of targets for each TF and 

the number of TFs regulating a given target gene (TG) in the random networks will be the same 
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as what is seen in the real network but the interactions between them are randomly re-wired. As 

this procedure does not randomize the chromosomal position of a gene, any inherent, non-

random clustering of genes on the genome is explicitly maintained. Furthermore, this procedure 

treats every chromosome independently by maintaining the same gene density and the same 

number of genes as seen in the real yeast chromosomes. This therefore allows us to assess 

any preference for binding by the TFs. For all observations reported here, statistical significance 

was assessed based on p-value and Z-score. Only TFs with p ≤ 10-3 and |Z| ≥ 3 were 

considered to show a significant difference in comparison to the null model. To correct for 

multiple testing, we calculated q-values as a measure of significance using the q-value package 

in R. We estimate a false discovery rate (FDR) of 0.3% when calling all p ≤ 10-3 as significant. 

Through this analysis, we found that a majority of the TFs (84 TFs, p < 10-3 and Z ≥ 3) 

showed a striking preference to encode a significant fraction of target genes on at least one 

particular chromosome. Of these, 78% (66 TFs) showed preference to only one chromosome, 

18% (15 TFs) showed preference to two chromosomes and a smaller fraction (4%) of the TFs 

showed preference to three or more chromosomes. Figure 3-3A shows all the 16 chromosomes 

of S. cerevesiae along with the TFs which have been identified to preferentially bind to the 

target loci on them. Our investigation identified several TFs to have a strong preference to 

regulate genes on specific chromosomes. Some of these include (i) the global regulatory hub 

Sok2p, showing a significant preference for binding to chromosome 15 (observed, x: 67, 

expected, μ: 32, Z: 6.7, p < 10-3), regulating genes important for pseudohyphal differentiation 

and vesicle trafficking, (ii) Phd1p, showing a preference for binding to chromosome 5 (x: 52, μ: 

23, Z: 7.0, p < 10-3) and chromosome 9 (x: 32, μ: 14, Z: 5.1, p < 10-3), controlling expression of 

genes required for differentiation and (iii) Msn4p, showing preference for chromosome 13 (x: 32, 

μ: 13, Z: 5.4, p < 10-3), regulating expression of genes involved in stress response. While it is 

interesting to note that all of the 16 chromosomes have a preferred set of TFs binding them 

(Figure 3-3B), the number of TFs showing preference to a particular chromosome does not 

correlate with the physical size of the chromosome (in bp), gene content or the gene density. 

Taken together, these observations indicate that the targets of most TFs are not randomly 

distributed across the different chromosomes. Instead, they are highly ordered and show a 

preference to be encoded on specific chromosomes, independent of the size and the gene 

density of the chromosome. 

Our finding that such a pattern of organization exists for the distribution of targets of TFs 

motivated us to methodically analyze (i) if the TFs themselves show a preference to be encoded 

on specific chromosomes, and in particular, if global regulatory proteins show any such 
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preference and (ii) if there are any patterns of higher-order organization of regulatory 

interactions between chromosomes. Our investigation on the first question unambiguously 

revealed that TFs and particularly the global regulatory hubs do not show any preference to be 

encoded on specific chromosomes. Instead the distribution was similar to what is expected by 

chance. However, we identified the existence of a higher-order organization of regulatory 

interactions wherein several TFs which are encoded on specific chromosomes tend to 

preferentially regulate or avoid regulating genes on distinct chromosomes. Figure 3-3C shows 

the links between chromosomes which display statistically significant tendency to either interact 

(red line; p <10-3; Z ≥ 3) or avoid interaction (blue line; p < 10-3; Z ≤ -3) in the context of 

transcriptional regulation. These observations suggest that TFs encoded in specific 

chromosomes can show distinct preferences to regulate targets encoded on particular 

chromosomes and might reflect a coordinated and possibly a combinatorial, effect between TFs 

that are encoded in the same chromosome. 

 

 

 

 

 

 

 

 

 

 

(Space left for an enhanced layout of the figure) 
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Figure 3-3: Chromosomal preference for binding by TFs. (A) Each column in the matrix represents one of 
the 16 chromosomes. Each row represents the Z-score significance profile of a particular TF to have its 
targets on the different chromosomes. The top 75 TFs (selected by p-value and higher Z-scores) are 
ordered after hierarchically clustering their Z-score profiles. The number of target genes is shown next to 
the gene name (B) TFs with target preference for each of the 16 chromosomes. Only those TFs which 
show significant preference and regulate more than 16 genes are shown. Each chromosome has a set of 
TFs that tend to preferentially bind them. The thickness of the red line is proportional to the absolute 
number of target genes for that TF on the chromosome. (C) Higher order organization of regulatory 
interactions. The top and bottom columns denote the chromosomes where the TFs and TGs. Red and 
blue lines connecting the two chromosomes mean that TFs originating from a specific chromosome tend 
to preferentially encode or avoid targets on a particular chromosome, respectively. The thickness is 
proportional to the Z-score.  
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3.2.2.2 A significant fraction of the TFs tend to have targets on specific 

regions of the chromosomal arm 

Apart from the fact that the nucleus is organized into sub-compartments, creating 

microenvironments that facilitate distinct nuclear functions, several studies that visualized 

precise chromosomal loci have revealed that specific regions of the chromosomes display 

restricted displacement to varying degrees (Akhtar and Gasser, 2007; Gasser, 2002). For 

instance, in yeast, chromosomal ‘landmarks’ such as the telomeres and centromeres show 

marked constraints in their movements within the nuclear space when compared to other 

chromosomal loci. In addition, live microscopy studies have revealed that centromeres tend to 

cluster near the spindle pole body (SPB) whereas the telomeres tend to be tethered to the 

nuclear envelope (Akhtar and Gasser, 2007; Gasser, 2002). Moreover it has been shown that 

yeast chromosomes form chromosomal loops, where the telomeric ends come closer to each 

other than to the centromeres. Such anchoring of chromosomal regions is thought to be 

reversible and is known to involve microtubules that associate with the SPB (for centromeres) 

and the yKu heterodimeric protein, Esc1p and Sir4p (for telomeres)(Akhtar and Gasser, 2007; 

Gasser, 2002). This phenomenon of periodic attachment of distinct regions of the chromosomal 

arms to the nuclear periphery appears to be a conserved mechanism and is believed to regulate 

patterned gene expression, possibly by separating transcriptionally active and inactive 

chromosomal domains (Finlan et al., 2008; Guelen et al., 2008b). These observations motivated 

us to assess if such phenomena, during the course of evolution, could have constrained the 

target genes of TFs to be encoded within distinct regions of the chromosomal arm. 

In particular, we asked if TFs tend to preferentially bind or avoid specific regions on the 

linear chromosomes, such as regions closer to the centromere, the telomere, or the regions in-

between. To investigate this question, we first divided each chromosomal arm into three equal 

regions (in bp): C, containing the centromere, M, the middle region and T, containing the 

telomere. For each TF, we then created a ‘regional preference profile’, which contains the 

number of targets in each of the three regions. Comparing these results with random 

expectation by performing the same calculations on 1000 random networks allowed us to 

assess the statistical significance (see Figure 3-2B and Methods). This enabled the discovery of 

TFs which display a significant bias to bind to particular regions of the chromosomal arm 

independent of the specific chromosome. We found that 29 TFs (Figure 3-4A) showed a 

statistically significant preference (p < 10-3; Z ≥ 3 at a FDR of 0.5%) to bind to a particular region 

over others, thus providing the first evidence for the prevalence for such an effect. We show that 
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several TFs display a strong preference to bind specific regions on chromosomal arms. For 

instance, Hsf1p, the trimeric heat shock regulatory protein and Msn2p, the multicopy suppressor 

of SNF1 mutation protein tend to preferentially regulate genes that are encoded in regions 

closer to the centromere, whereas the bZIP domain containing TFs Yap5p and Yap6p which are 

required under stress conditions tend to bind to regions closer to the telomere. Additional 

evidence which reinforced our observations that certain TFs do show preference to bind to 

specific regions on the chromosome came from our inspection of the TFs which avoided binding 

to a particular region (Figure 3-4B). We found that certain TFs like the osmosis dependent 

regulator Skn7p and Msn2p clearly avoided binding to the T-region (containing the telomere) 

while the pleiotropic drug regulator Pdr1p and Smp1p avoided regulating genes in the C-region 

(containing the centromere). Interestingly, the suppressor of kinase Sok2p, which regulates 

genes involved in cellular differentiation, avoids binding to both the C and M regions of the 

chromosomes, displaying a clear preference to bind to the region containing the telomere. 

Taken together, these observations suggest that events which allowed clustering of certain 

functionally related genes, based on their usage, accessibility and transcriptional activity, have 

been selected during evolution. Consistent with this proposal, it is interesting to note that 

regions that cluster at the nuclear periphery such as the telomeres, as well as the mating-type 

loci are generally transcriptionally silent, whereas internally located regions encoding metabolic 

enzymes on the chromosomal arm get recruited to nuclear pores upon transcriptional activation 

(Cabal et al., 2006; Casolari et al., 2004; Ishii et al., 2002; Taddei et al., 2006).  

We then investigated if (i) the loci encoding TFs, and in particular global regulatory 

proteins, show any regional preference and (ii) there are patterns of higher-order organization of 

regulatory interactions involving specific chromosomal regions, i.e., if TFs encoded in specific 

regions tend to preferentially regulate genes on other chromosomal regions. Though our 

investigation along these lines revealed the absence of any such preferential organizational 

pattern for the loci encoding TFs, we discovered that genes encoding global regulatory hubs 

tend to strongly avoid being encoded in regions closer to the telomere (p = 0.004). 

Investigations to uncover the presence of higher-order interactions between specific 

chromosomal regions revealed that TFs encoded elsewhere in the genome regulate genes 

within the T-region whereas TFs within the T-region appear to preferentially avoid regulating 

genes in the same region (p = 0.007; Figure 3-4C). These observations are consistent with the 

fact that genes on telomeric and sub-telomeric regions are largely repressed. Given the 

dynamic nature of the different chromosomal regions and the differential transcriptional activity 

associated with specific regions, such organization of loci encoding TFs within specific regions 
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Figure 3-4: TFs showing significant regional preference or avoidance for binding on the chromosomes 
(see Figure 3-2B). (A) TFs which show a strong tendency to have their targets on the C-region 
(containing the centromere), M-region (containing the middle region) or T-region (containing the telomere) 
on the chromosome. (B) TFs which show a strong avoidance to have their targets on the three regions. 
Green boxes highlight the group of TFs which show significant regional avoidance for one of the three 
regions. In the cartoon next to the matrices, thick black lines indicate preference and broken black lines 
indicate avoidance. Only TFs with p < 10-3 and |Z | ≥ 3 are shown in both cases. (C) Higher order 
organization of regulatory interactions. The top column denotes regions on the chromosomal arm where 
the TFs are encoded and the bottom column denotes the regions where the targets are encoded. Lines 
connecting the two regions mean that TFs originating from a specific region tend to preferentially have 
(red lines) or avoid (blue lines) targets on a particular region of the chromosome. The thickness is 
proportional to the Z-score. 
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of the chromosomes, and patterns of higher order regulatory interactions may have been 

selected during evolution. Taken together, the findings reported here strongly suggest that such 

regional preferences are not only seen for the targets of specific TFs, but also for global 

regulatory hubs and the regulatory interactions affecting expression of genes in specific 

chromosomal regions. 

3.2.2.3 Most TFs show a strong preference to positionally cluster their 

targets within a chromosome 

Though we report the prevalence of chromosomal preference and regional bias in the 

distribution of the targets of a large fraction of the TFs, it does not answer if the regulated genes 

are proximal to each other on the chromosome or if they are relatively far apart within the same 

region. While several studies have revealed that genes with similar expression profiles (co-

expressed genes) cluster on the chromosome (Cohen et al., 2000; Hurst et al., 2004; Spellman 

and Rubin, 2002), no study has addressed if the targets of the same TF, cluster on the 

chromosome on a genomic scale. Although previous studies have unambiguously revealed the 

existence of chromosomal domains that contain genes with similar expression pattern (co-

expressed genes), it should be kept in mind that clustering of co-expressed genes need not 

always imply regulation by the same TF because co-expressed genes maybe clustered due to 

several reasons such as mechanisms involving chromatin remodeling, transcriptional read-

through, regulation of genes by the same TF or regulation by different TFs in the same 

transcriptionally active euchromatinic domain (Batada et al., 2007). Therefore, we initiated a 

systematic investigation and analyzed if the targets of most TFs display positional clustering on 

a given chromosome or not. 

 We first defined and calculated the Target Proximity Index (TPI) for each TF (see 

methods and Figure 3-2C). In short, the TPI for a TF represents the fraction of all the regulated 

genes that show proximal clustering on the chromosome. In our study we defined proximity, D, 

as the number of genes that separate two targets of a TF. We then compared the TPI values for 

the observed and the random networks to obtain the statistical significance. From our analysis, 

we found that most TFs (>75%) showed high TPI values (TPI > 0.6, p < 10-3; at a FDR of 0.1% 

for D ≤ 20), suggesting a strong preference for target genes to be clustered within a distance 

range of ~20 genes. On the contrary, TPI values in random networks for the same distance 

threshold were found to be significantly lower than 0.2. To ensure that the observations are (i) 

not biased by tandem gene duplications controlled by the same TF or (ii) not biased by 

divergent, bi-directional genes which could artificially increase the TPI score, relevant control 



Constraints imposed by eukaryotic transcriptional control                                                                                      3-27 

 

 

     

0

5

10

15

20

25

30

35

40

45

50

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Target Proximity Index

%
 o

f T
ra

ns
cr

ip
tio

n 
Fa

ct
or

s D<=1(real) D<=2(real) D<=3(real) D<=4(real) D<=5(real)

D<=1(random) D<=2(random) D<=3(random) D<=4(random) D<=5(random)

0

5

10

15

20
25

30

35

40

45

50

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Target Proximity Index

%
 o

f T
ra

ns
cr

ip
tio

n 
Fa

ct
or

s

D<=5(real) D<=10(real) D<=15(real) D<=20(real) D<=30(real)

D<=5(random) D<=10(random) D<=15(random) D<=20(random) D<=30(random)

0

5
10

15
20

25

30
35

40
45

50

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Target Proximity Index

%
 o

f T
ra

ns
cr

ip
tio

n 
Fa

ct
or

s D<=40(real) D<=60(real) D<=80(real) D<=100(real) D<=200(real)

D<=40(random) D<=60(random) D<=80(random) D<=100(random) D<=200(random)

N=11

C=2 C=10

N=11

Target Proximity Index (TPI)

TPI =
2
11

TPI =
10
11

A

B

C

1 ≤ D ≤ 5

5 ≤ D ≤ 30

40 ≤ D ≤ 200

 
Figure 3-5: Frequency distribution of TPI values. Distribution of Target Proximity Index (TPI) for all TFs in 
the real and randomly constructed networks at different proximity values i.e., D values (see Methods) are 
shown in (A) D ≤ 1 to D ≤ 5; (B) D ≤ 5 to D ≤ 30 and (C) D ≤ 40 to D ≤ 200. Note that in the real network, 
the maximum proportion of TFs have TPI values which are much higher than what is seen for the random 
networks (at around 0.8 for real network and 0.2 for random networks at D ≤ 20), demonstrating that most 
TFs show clustering of their targets in this distance range. 
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calculations were performed. In the filtered network, we removed (i) all tandem duplicates from 

our dataset and (ii) randomly chose a target gene from a divergent, bi-directional gene pair and 

calculated the TPI score. Our results did not change after controlling for tandem duplicates and 

bi-directionally transcribed genes, suggesting that what we observe are truly attributable to 

positional clustering of targets on a chromosome. An investigation of how many genes are 

positionally clustered within the window of 20 genes revealed that on an average, such a 

window only contains 2.6 genes regulated by the same TF. This is striking and suggests that all 

three mechanisms, i.e., (a) chromatin remodeling, (b) regulation by different TFs in the same 

euchromatinic domain and (c) regulation by the same TF within a euchromatinic domain, may 

contribute to the previously observed domains of co-expressed genes. 

In order to validate the robustness of our definition of proximity on the TPI values, we 

systematically varied this parameter (D) from 1 to 200 and compared them against what was 

obtained in random networks (Figure 3-5). We found that significant separation between real 

data and random networks occurred for the definition of proximity (D) as being less than 20 

genes, suggesting that this could reflect the average size of a possible open euchromatinic 

domain that is available for transcription in yeast. Our results therefore suggest that evolution 

might have favored certain recombination events which allowed genes that need to be regulated 

by the same TF to be encoded close to each other. Another distinct possibility given that 

transcriptional regulatory networks are likely to be plastic (Borneman et al., 2007) would be that 

selection could have first driven clustering of genes that need to be co-regulated and then new 

transcriptional regulatory interactions could have evolved afterwards. Regardless of the driving 

force, the evolutionary advantages are clear: such a clustering of targets would not demand 

high concentrations of TFs in the nucleus which are generally expressed in low quantities and 

prevent inappropriate regulation of unrelated target genes. Such an organization has the added 

advantage of minimizing noise in expression levels, which has been recently proposed to be an 

additional driving force for gene order conservation (Batada and Hurst, 2007). 

3.3 DISCUSSION & CONCLUSION 

In conclusion, our study demonstrates that the complexity of transcriptional regulation 

constrains genome organization at several levels. Our findings beyond those discussed in detail 

here, such as TFs encoded in specific chromosomes and within distinct regions show a strong 

preference to regulate genes on distinct chromosomes and regions open up several questions 

and expand our need to understand eukaryotic gene regulation at a higher level. The findings 

reported here are consistent with several molecular mechanisms, such as the genome-wide 
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loop model of chromosomes (Francastel et al., 2000), the presence of expression hubs (Kosak 

and Groudine, 2004) and transcription factories (Cook, 1999; Osborne et al., 2004) and the 

nuclear gating hypothesis (Blobel, 1985). 

With the development of experimental methods such as 3D chromosome capture, 4C 

and 5C and the availability of genome-scale data on protein-DNA interactions from high-

throughput experiments in other eukaryotes (shown in Table 3-1), our work provides a 

fundamental framework by which such questions can be systematically studied for higher 

eukaryotes. In fact, a preliminary analysis in mammalian systems using stem cell differentiation 

factors Sox2, Oct4 and Nanog have indeed revealed a striking preference for these TFs to 

encode their targets on specific chromosomes (SCJ, MMB, Unpublished). We therefore believe 

that our work, which demonstrates that gene organization is constrained by the process of 

transcriptional regulation in yeast, is likely to be a paradigm that is also applicable to other 

eukaryotes.  

The findings reported here has several direct applications. For instance, the map that we 

describe for yeast in this study can serve as a guide and be exploited in genetic engineering 

experiments for identifying the most appropriate region (on the 16 chromosomes) to incorporate 

a gene of interest – particularly if it has to be regulated under the control of a specific TF. 

Describing such maps for higher eukaryotes will have implications in gene therapy and in 

rationally identifying suitable sites to incorporate reporter genes while producing transgenic 

organisms. We anticipate that revealing the presence of such patterns of organization of genes 

within the linear chromosomes of eukaryotes, such as humans, would have significant 

implications in our understanding of transcriptional regulation, chromosomal territories, their role 

in cellular differentiation and of specific chromosomal disorders, such as recombination events 

and copy number variations that are prevalent in diverse diseases such as cancer. 

3.4 MATERIALS AND METHODS 

3.4.1 Dataset of Transcription factors in S. cerevisiae and their 

regulatory interactions 

The transcriptional regulatory network for S. cerevisiae was assembled from the results of 

literature curation, and ChIP-chip experiments (Harbison et al., 2004; Horak et al., 2002; Lee et 

al., 2002; Svetlov and Cooper, 1995). This network consists of 4527 genes, which include 156 

DNA-binding TFs, 4495 target genes and 13,853 regulatory interactions. 31 TFs qualified as 

hubs, which were defined as the top 20% of the TFs with high out-going connectivity. 
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Chromosomal positions of all the protein coding genes on the yeast genome were obtained from 

http://www.yeastgenome.org. Tandem duplicates and bi-directionally transcribed genes were 

identified by employing pair-wise blast using an e-value cut-off of 10-2 and using chromosomal 

position of the genes in the network. 

3.4.2 Estimation of statistical significance 

To estimate statistical significance of the properties described here, the reported values for the 

real network of protein-DNA interactions were compared against 1000 randomly generated 

networks obtained by employing the re-wiring procedure. The re-wiring procedure randomly 

reconnects TFs with target genes but ensures that any inherent gene distribution on the 

chromosome and the overall connectivity distribution of the network is maintained. As this 

procedure does not randomize the chromosomal position of a gene, any inherent, non-random 

clustering of genes on the genome is explicitly maintained. Furthermore, it is important to note 

that this procedure maintains the same gene density and the same number of genes on a 

chromosome as what is seen in the real yeast chromosomes. This therefore allows us to assess 

any preference for binding by the TFs reported in our study. To assess if TFs and hubs were 

preferentially encoded in different chromosomes, we carried out 1000 trials, where we randomly 

picked the same number of genes as the number of TFs and hubs seen in the real network and 

analyzed the chromosomal distribution of them. For all observations reported in our study, 

statistical significance was assessed based on (i) p-value, defined as the fraction of the 1000 

random networks which showed a value ≥ what was observed in the real network and (ii) Z-

score, calculated as the number of standard deviations the observed value is away from the 

mean of the 1000 random networks. This is obtained as the ratio of the difference between the 

observed, x, and random expected, σ, values to the standard deviation, σ i.e., Z = (x–σ)/σ. TFs 

with p ≤ 10-3 and |Z-scores| ≥ 3 (unless stated otherwise) were considered to show a significant 

difference in comparison to the null model described above. All significance values were 

corrected for multiple testing using the q-value package in R (Arava et al., 2003). In particular, 

the Benjamini & Hochberg step-wise p-value method implemented in the package was used. 

The same package was used to assess the False Discovery Rate (FDR) at a p-value threshold 

of 10-3 and to estimate the corresponding q-values.  

3.4.3 Calculation of chromosomal preference 

To test whether a TF has a preference to bind a specific chromosome more often than expected 

by chance, we first constructed a ‘chromosomal binding profile’. This is a 16 dimensional (one 
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for each chromosome) vector describing the number of binding events in each chromosome. 

We then obtained an expected ‘chromosomal binding profile’ by using 1000 randomly re-wired 

networks, and taking it through a similar procedure. The preference for a TF to bind a particular 

chromosome was measured using p-value and Z-score profiles. The p-value for each TF for 

each chromosome was estimated as the fraction of the 1000 random networks that showed an 

equal or higher number of binding events than in the real network. The p-value profile was 

obtained in a similar manner across the different chromosomes for all TFs. The Z-score profile 

was calculated based on average binding frequency and standard deviation from the 1000 

random networks (see Figure 3-2A). Only those TFs which showed a preference to bind to at 

least one chromosome with p ≤ 10-3 and Z ≥ 3 were considered significant. A p-value cut-off of 

10-3 results in an estimated FDR of 0.3%. 

3.4.4 Calculation of regional preference 

To assess if TFs preferentially bind to specific regions of the chromosomes more often than 

expected by chance, we first obtained a ‘regional binding profile’. Every chromosomal arm was 

divided into three regions of equal size (in bp, see Figure 3-2B) to obtain the C-region 

(containing the centromere), M-region (in the middle) and the T-region (containing the 

telomere). Thus the ‘regional binding profile’ is a 3 dimensional (one for each region) vector that 

captures the number of binding events of a TF on all the chromosomes. We then obtained the 

expected ‘regional binding profile’ by using the 1000 randomly re-wired networks and taking it 

through the same set of calculations. The p-value and Z-score profiles were obtained as 

described above. Only those TFs with p ≤ 10-3 were considered to show regional preference (or 

avoidance) for binding. We estimate a FDR of 0.5% at a p-value threshold of 10-3 for TFs 

showing regional preference.  

3.4.5 Calculation of target proximity 

To assess the positional clustering of targets of a given TF across chromosomes, we calculated 

the Target Proximity Index (TPI) for each TF. This is defined as the ratio of the number of the 

targets that are within a particular distance (proximity is measured as D, the number of genes 

that physically separate two genes regulated by the same TF on the chromosome) to the total 

number of targets regulate by that TF (see Figure 3-2C). The TPI values lie between 0 and 1 

where TFs with high TPI values would indicate high clustering of their targets. In order to test 

the significance of clustering of targets for each TF, we obtained the expected TPI values by 

computing the same for 1000 randomly re-wired networks. P-values and Z-score were 
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computed as described above. TFs were considered to display a preference to cluster their 

binding sites if p ≤ 10-3 and Z ≥ 3. At these thresholds we estimated a FDR of 0.1%. Since most 

TFs were found to show significant clustering of targets, the TPI score distribution of all the TFs 

was used to demonstrate the differences between the observed and expected behavior.  
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OUTLINE 

Determining the functions of proteins encoded by genome sequences represents a major 

challenge in modern biology. Whole-genome sequencing projects are a major source of proteins 

of unknown function. Annotation of a genome involves assignment of functions to gene 

products, in most cases on the basis of amino-acid sequence alone. Structure-based 

identification of homologues often succeed where sequence-alone-based methods fail, due to 

the conservation of folding patterns long after sequence similarity becomes undetectable. 

Nevertheless, prediction of protein function from sequence and structure is still a difficult 

problem, because homologous proteins often have different functions and these traditional 

approaches have already started to reach an optimum. As a result, alternative computational 

methods for inferring the protein function such as those which exploit the context of a protein in 

protein association networks have come to be sought after. These methods, often referred to as 

network-based functional inference techniques, provide a first hand guess of the functional role 

and provide complementary insights to traditional methods in understanding the function of 

uncharacterized proteins. Most recent network-based approaches aim to integrate diverse kinds 

of functional interactions as it not only boosts coverage but also confidence level of an 

association, thereby improving the assessment of protein function. In a recent study we 
attempted to characterize one-third of the 4,225 protein-coding genes of Escherichia coli K-12 

which remain functionally unannotated (functional orphans). In particular, to elucidate their 
biological roles, we performed an extensive proteomic survey using affinity-tagged E. coli strains 

and generated comprehensive genomic context inferences to derive a high-confidence 

compendium for virtually the entire proteome consisting of 5,993 putative physical interactions 

and 74,776 putative functional associations, most of which are novel. Clustering of the 

respective probabilistic networks revealed putative orphan membership in discrete multiprotein 

complexes and functional modules, while a machine-learning strategy based on network 

integration implicated the orphans in specific biological processes. In the second half of this 

chapter, I highlight this resource which provides a ‘systems-wide’ functional blueprint of a model 

microbe, with insights into the biological and evolutionary significance of previously 

uncharacterized proteins. Given the volume of high-throughput data that is being reported for 

understanding diverse model systems the time is ripe to employ these network-based 

approaches which can be used on a whole-organism level to unravel the functions of an 

increasing number of proteins accumulating in the genomic databases. 
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understanding genome-context functional associations, analyzing raw protein-protein interaction 

data generated by Dr. Emili’s group, integrating data using computational approaches and 
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4.1 INTRODUCTION 

Determining the functions of proteins encoded by genome sequences represents a major 

challenge in modern biology. As of March 23, 2010, the TrEMBL database contained 

10,618,387 sequences (http://www.ebi.ac.uk/uniprot/TrEMBLstats/). The GOLD database 

(http://www.genomesonline.org) reports more than 1000 published genomes with over 3700 

genome projects underway; the database also reports more than 100 metagenome projects  

with the venter’s marine microbial communities project alone contributing more than 6,000,000 

proteins to the already accumulating list of protein repertoire. Although the pace at which 

sequencing technologies are able to generate the genome sequence data is increasing, our 

ability to unravel the functional roles of the encoded proteins in these genomes has been rather 

limited.  

Historically proteins identified from genome sequencing projects were annotated mostly 

using the aid of BLAST (Altschul et al., 1997) or other sequence comparison tools followed by 

manual intervention (Gotoh, 1999; Pearson, 1995; Procter et al.). A principal reason behind 

researchers BLASTing protein sequences against databases is to learn about some aspect of 

their function. The researcher aims to answer this question by finding a significant sequence 

similarity to another protein that is already in the database and whose function was 

experimentally characterized. This is essentially the most widely used form of computational 

function prediction and is commonly referred to as annotation transfer by sequence similarity or 

simply homology-based transfer. The rationale behind homology-based annotation transfer is 

that, if two sequences have a high degree of similarity, then they have evolved from a common 

ancestor and they have similar, if not identical functions. This might appear an obvious 

statement however with increasing number of sequences as well as duplications observed in 

different lineages, the power of homology-based annotation transfer is being challenged. Adding 

to this is the problem of errors in annotation even in human curated databases, which spread 

mis-annotations when homology-based approaches are used. All these factors have made it 

evident that the traditional approaches for annotating genes with their functional descriptions is 

nearly impossible with the exponential increase in the number of proteins. In addition, most of 

the newly identified proteins do not show a high sequence similarity with an already 

characterized protein leading to the failure or rather saturation of the homology-based 

approaches and making it impossible to keep up with the influx of data for manually curated 

annotation. All of these factors have been responsible for an increase in a varied number of 

automated function inference approaches in the recent years (see Table 4-1) (Godzik et al., 
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2007; Han et al., 2006; Rentzsch and Orengo, 2009; Zhao et al., 2008a). These automated 

function inference methods are based on a number of features, starting from nucleotide or 

amino acid sequence, sequence patterns/profiles and protein structure patterns to chromosomal 

location, phylogenetic information, expression profiles, molecular interaction data, functional 

associations and gene co-evolution and are summarized in Table 4-1.   

4.2 RESULTS 

4.2.1 Overview of network-based function prediction 

The very definition of biological function is ambiguous with its exact meaning depending on the 

context in which it is used and the classification it is based on (Rison et al., 2000; Whisstock and 

Lesk, 2003). It is obvious in the post-genomic era that biological function has many aspects 

associated with it. For instance, a protein kinase; in the biochemical context can simply be 

defined as an enzyme or more precisely a kinase’s function would be the phosphorylation of the 

hydroxyl group of a specific substrate. While the former gives a very coarse annotation of the 

protein under study the later gives finer details about its function. A totally different way to 

understand the role of a protein with in the cell is to ask where exactly it occurs in the cell. This 

aspect is equally important information especially for entities which occur with in a cell as they 

can potentially occur in a number of sub-cellular localizations. In this particular case, kinases 

can be identified either in the cytoplasm or nucleus and this information is crucial in gathering its 

role and interactions with other proteins with in the cellular environment. Likewise, a mutation in 

the kinase can be associated with a disease phenotype. Therefore, it is increasingly becoming 

clear that when speaking of a protein’s function, we must always specify the aspect or aspects 

of the functional description. In particular, when setting out to develop a function prediction tool 

we must keep in mind which functional aspect or aspects we are trying to predict and use the 

appropriate vocabulary. 

Once functional aspects of a protein are defined, the question is how function can be 

interpreted in computational terms. For instance, protein sequences for a long time have been 

represented as character strings that enable their use for many computational tasks including 

pairwise comparisons and multiple sequence alignments, motif searching, database searching 

and several other tasks aimed at extracting biological information from the sequence. In fact, 

our ability to express protein sequence information as a character string amenable for 

computational processing followed by the availability of algorithms which can exploit this 

information for meaningful interpretation has changed our view and understanding of cellular  
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Table 4-1. Resources currently available for protein function prediction grouped according to the 
predominant method or approach implemented in them. Note that the list may be incomplete as some 
resources which are not directly relevant to the methods discussed here might have escaped their 
mention in this table. 
 

Approach Resource Webpage 

Sequence similarity 
based 

GOtcha http://www.compbio.dundee.ac.uk/gotcha/gotcha.php 
PFP http://dragon.bio.purdue.edu/pfp/ 
GOsling https://www.sapac.edu.au/gosling/ 
OntoBlast http://functionalgenomics.de/ontogate/ 
GOblet http://goblet.molgen.mpg.de 
Blast2GO http://www.blast2go.de 

Phylogenomics 
based 

SIFTER http://sifter.berkeley.edu 
AFAWE http://bioinfo.mpiz-koeln.mpg.de/afawe/ 
RIO http://www.rio.wustl.edu/ 
OrthoStrapper http://www.cgb.ki.se/OrthoGUI 

Domain/pattern/prof
ile based 

InterProScan http://www.ebi.ac.uk/tools/interproscan/ 
Pfam http://pfam.sanger.ac.uk 
SUPERFAMILY http://supfam.cs.bris.ac.uk/superfamily/ 
PROSITE http://www.expasy.ch/prosite/ 
PRINTS http://www.bioinf.manchester.ac.uk/dbbrowser/PRINTS/ 
SMART http://smart.embl-heidelberg.de/ 
Gene3D http://gene3d.biochem.ucl.ac.uk/gene3d/ 
PANTHER http://www.pantherdb.org/ 
TIGRFAMs http://www.tigr.org/TIGRFAMs/ 
SCOP http://scop.mrc-lmb.cam.ac.uk/scop/ 
CATH http://www.cathdb.info/ 
CatFam http://www.bhsai.org/downloads/catfam.tar.gz 

Sequence 
clustering based  

ProtoNet http://www.protonet.cs.huji.ac.il/ 
CluSTr http://www.ebi.ac.uk/clustr/ 
eggNOG http://eggnog.embl.de 
COGs http://www.ncbi.nlm.nih.gov/COG/ 
InParanoid http://inparanoid.sbc.su.se/cgi-bin/index.cgi 
MultiParanoid http://multiparanoid.sbe.su.se/index.html 
OrthoMCL http://www.orthomcl.org/cgi-bin/OrthoMclWeb.cgi 

Machine Learning 
based 

ProtoFun http://www.cbs.dtu.dk/services/ProtFun/ 

GOPET http://genius.embnet.dkfz-
heidelberg.de/menu/biounit/open-husar 

SVM-Prot http://jing.cz3.nus.edu.sg/cgi-bin/svmprot.cgi 
ffPred http://bioinf.cs.ucl.ac.uk/ffpred/ 
EzyPred http://www.csbio.sjtu.edu.cn/bioinf/EzyPred/ 

Network based 

MCODE http://baderlab.org/Software/MCODE 
MCL http://www.micans.org/mcl/ 
SAMBA http://acgt.cs.tau.ac.il/samba/ 
PRODISTIN http://crfb.univ-mrs.fr/webdistin/ 
Cytoscape http://www.cytoscape.org/ 
STRING http://string.embl.de/ 
VisANT http://visant.bu.edu/ 
VIRGO http://whipple.cs.vt.edu/virgo/welcome.cgi 
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entities. However, in contrast to sequence information, the annotation of a protein until recently 

has been written in human language, conveying the complex descriptions and intricacies of its 

function as well as experimental evidence in support of it, in terms of custom non-standard 

format varying between different groups. As a result, vocabulary went on to be invented and re-

invented, with many terms being synonymous. This synonymy not only raises confusion among 

human curators (re)annotating the annotations but also increases the chances of additional 

errors due to a non-standard format for annotating the function. Therefore, over the years a 

need to convey this information in a more controlled and well-defined fashion has emerged 

especially due to the requirements to make the annotations processed automatically. One of the 

first group of people who appreciated this were the biochemists to come up with the Enzyme 

Commission (EC) classification (Tipton, 1994). EC classifies metabolic reactions in a four-level 

hierarchy which are noted by a four-position identifier, going from the most general in the first 

position to the most specific function of the enzyme in the last position. This classification not 

only addresses the need for a controlled vocabulary but also a well-defined relationship 

between terms thereby allowing the comparison between annotations. While enzymes form one 

of the most commonly occurring protein classes in the cell, they are definitely not the only kind, 

so these definitions are not sufficient for annotating functions of all the proteins in a cell. 

Therefore, following this classification, Monica riley and colleagues in 1993 came up with the 
Riley or Multifun classification system for E. coli (Riley, 1993; Serres and Riley, 2000). Other 

annotation systems came into existence following this which include Clusters of Orthologous 

Groups (COG) (Tatusov et al., 1997) – based on manual annotation of a group of orthologous 

proteins by hierarchically organizing the functional descriptions, swissprot annotations based on 

human curation efforts on well-annotated proteins (Apweiler, 2001; Kretschmann et al., 2001), 

and more recently Gene Ontology (GO) (Ashburner et al., 2000). The common theme among 

these schemes is the establishment of a controlled vocabulary and in many cases a 

categorization that proceeds from the general to the specific. The Gene Ontology (GO) currently 

serves as the dominant cross-specie approach for machine-legible functional annotation and 

covers three major aspects of gene products’ function, namely molecular function, biological 

process and cellular component. Each ontology is implemented as a directed acyclic graph 

(DAG) where terms are represented as nodes in the graph and are arranged from the general to 

the specific. The DAG arrangement means that each node may have more than a single parent 

which enables the description of functions that are associated with more than one biological 

activity or process. By standardizing an annotation and defining the relationships between terms 

using a graph, annotations can be computationally processed. For instance, given a GO-
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annotated genome a researcher can computationally identify the set of all genes with a given 

annotation and likewise one can predict functional labels of proteins using such a controlled 

vocabulary. Naturally, such standardized annotations also limit the flexibility in the amount of 

detail an annotation can be made. 

Having defined function and the means of describing function, one can start discussing 

function prediction. In particular, function prediction using network-based approaches which is 

the topic of this chapter essentially requires two seed components: a) a network of functional 

associations which are amenable for graph theory analysis b) a network-based function 

prediction algorithm for predicting functional labels for uncharacterized genes in the graph. In 

what follows, I will first discuss different approaches for constructing and integrating functional 

association networks and then outline currently available computational methods for inferring 

function based on them.      

4.2.1.1 Methods and databases for constructing functional association 

networks 

Traditionally function of a protein was defined using a number of low-throughput approaches like 

mutagenesis of residues or whole proteins which allowed the identification of the phenotypes for 

follow up analysis. However, it is increasingly becoming clear that this rational is limited in its 

ability to infer the function of proteins; failing for those which exhibit mild phenotype or those 

which are not expressed under standard experimental conditions. In addition, since most 

proteins associate dynamically with a number of other cellular entities during their life time, the 

traditional notion of identifying function of a protein by isolating it from the rest of the cellular 

machinery can be misleading for a majority. This notion followed by the availability of 

experimentally determined protein-protein interaction maps for diverse model organisms have 

given rise to the use of these datasets for delineating the biological processes, pathways and 

complexes that proteins take part in (Aranda et al., ; Bader et al., 2003; Breitkreutz et al., 2008). 

Indeed, there is now observable overlap and informative variation between different types of 

low- and high-throughput experiments (Shoemaker and Panchenko, 2007a) which provides a 

convincing reason for exploiting them as complementary approaches in unraveling the functions 

of proteins. Indeed, recent years have seen an explosion in the number of methods and 

databases which provide functional associations (both direct physical and indirect contextual 

interactions) between proteins using both experimental and computational means (Table 4-2). 

 
(Space left for an enhanced layout of the table) 
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Table 4-2. Different approaches for generating functional linkage maps or networks. Typically, these 
networks either independently or integrated versions of them form the input for network-based functional 
inference algorithms.  
 

Approach Description Data sources 

Protein-protein 
interactions 

Physical interactions between proteins 
identified either by mass spectrometry or 
one of the hybrid approaches are used to 
generate protein interaction maps on a 
large-scale which are used as input for 
function prediction 
algorithms.(Shoemaker and Panchenko, 
2007a) 

HPRD (http://www.hprd.org) 
IntAct 
(http://www.ebi.ac.uk/intact/site/index.jsf) 
MINT 
(http://cbm.bio.uniroma2.it/mint/index.html) 
BioGRID (http://www.thebiogrid.org) 
DIP 
(http://dip.doe-mbi.ucla.edu/dip/Main.cgi) 
MPPI (http:// mips.gsf.de/proj/ppi) 

Co-expression 
networks 

In these approaches gene co-expression 
above a significant correlation threshold 
is considered as a presence of a 
functional linkage between genes. 
Genome-wide inspection of these gene 
co-expression networks provides an 
intuitive way to represent complex co-
expression patterns between many 
genes providing functional insights into 
uncharacterized processes. (Aoki et al., 
2007; Huber et al., 2007) 

GEO (http://www.ncbi.nlm.nih.gov/geo) 
SMD (http://genome-www5.stanford.edu) 
ArrayExpress 
(http://www.ebi.ac.uk/arrayexpress) 
caArray 
(http://caarraydb.nci.nih.gov/caarray) 
M3D (http://m3d.bu.edu/) 

Genetic 
interaction 
networks 

(Lasko, 2000) In these approaches 
interactions between genes are 
constructed by linking gene pairs which 
show significantly reduced fitness when 
both the genes are knocked out 
compared to when each gene is knocked 
out independently. These lethality 
assays are carried out on a high-
throughput scale to construct genome-
scale interactions. (Butland et al., 2008; 
Costanzo et al.) 

BioGRID (http://www.thebiogrid.org) 
DRYGIN (http://drygin.ccbr.utoronto.ca) 
IM Browser 
(http://proteome.wayne.edu/PIMdb.html) 

Genome 
context 
networks 

These approaches include the gene 
fusion, gene cluster or gene order 
conservation, phylogenetic profile and 
operon rearrangement methods 
(Dandekar et al., 1998; Enright et al., 
1999; Janga et al., 2005; Pellegrini et al., 
1999). See text for further discussion. 

STRING (http://string.embl.de) 
ProLinks (http://prolinks.mbi.ucla.edu/) 
VisANT (http://visant.bu.edu) 

Integration of 
data sources 

These approaches integrate different 
kinds of functional association data using 
machine learning techniques and then 
construct high-confidence functional 
linkage networks which are then used for 
function prediction (Hu et al., 2009; 
Linghu et al., 2008; Marcotte et al., 
1999b; Zhao et al., 2008b). 

STRING (http://string.embl.de) 
ProLinks (http://prolinks.mbi.ucla.edu/) 
VisANT (http://visant.bu.edu) 
Virgo (http://whipple.cs.vt.edu:8080/virgo) 
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To summarize, experimental approaches employed for constructing functional 

association networks mostly comprise of data from protein-protein interaction screens followed 

by co-expression networks comprising of gene pairs showing significant correlation in their 

expression profiles across conditions, derived from microarray datasets (Luo et al., 2007; Ruan 

et al., ; Wang et al., 2009).  More recently, genetic interactions- measuring the fitness defects of 

the double mutants compared to that of the individual mutants, are also being employed for 

constructing these functional linkage networks (Butland et al., 2008; Costanzo et al.). These 

high-throughput experimental approaches not only increase the confidence of an association 

but also give cellular context of the protein providing complementary view to the traditional 

functional prediction paradigm. 

In addition to the experimental methods, several computational methods have been 

proposed for constructing protein-protein associations from sequence data alone. These include 

the so-called genome context methods namely gene fusion, gene cluster or gene order 

conservation, operon arrangements and protein phylogenetic profiles. The gene fusion 

approach tries to detect the fusion of two genes into a single protein coding gene in one of the 

sequenced genomes and thereby links them as a strong functional association (Enright et al., 

1999; Marcotte et al., 1999a). The method of gene order conservation aims to identify pairs of 

genes which consistently show a tendency to cluster in immediate vicinity in a number of 

genomes- suggesting a strong functional link in prokaryotic genomes which are abundant in 

operons (Dandekar et al., 1998; Overbeek et al., 1999). The method of operon rearrangement 

tries to identify a link between any pair of genes on a genome as long as their orthologs are 

predicted to be organized in an operon with a high confidence in at least one sequenced 

genome (Janga et al., 2005; Rogozin et al., 2002; Snel et al., 2002). The power of this approach 

depends on the predictive quality of operon prediction methods which have been shown to 

reach ~90% accuracy in most sequenced genomes (Brouwer et al., 2008; Moreno-Hagelsieb 

and Collado-Vides, 2002). Yet another approach not based on genomic proximity is 

phylogenetic profiles. In this method a vector of presence/absence profile of a gene across all 

the analyzed genomes is constructed and compared to identify genes which show the most 

correlated profiles, as a measure of functional link. The rational here is that two proteins 

showing similar profiles i.e, coordinated in their evolutionary gain and loss, are expected to be 

functionally related (Gaasterland and Ragan, 1998; Pellegrini et al., 1999). Modified versions of 

this approach take into account the phyogenetic signal of the genomes employed and/or the 

redundancy in the genome sequence information (Barker and Pagel, 2005; Date and Marcotte, 

2003; Moreno-Hagelsieb and Janga, 2008). 
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Recently, the integration of different types of interaction data into genome-wide 

functional linkage maps has gained much popularity for functional inference as these integrated 

maps not only boost coverage but also confidence of an association when assessing protein 

function. One of the first studies which demonstrated the power of integrating different types of 

interaction data was by Marcotte and colleagues where they have put together diverse kinds of 

computational genome context inferences (Marcotte et al., 1999b). This was followed by a 

number of other methods such as those implemented in the STRING and PROLINKS 

databases, among other focused studies (Bowers et al., 2004; Hu et al., 2009; Jensen et al., 

2009; Massjouni et al., 2006). Typically, in these networks edge weights correspond to the 

integrated interaction probability values obtained by first scoring each of the methods 

independently against a set of gold standard interactions, which are then used in a bayesian 

fashion assuming the scores obtained in each method are independent of each other. More 

complex methods take into account the dependence and correlation between methods to 

develop a regression model for scoring the integrated interactome (Linghu et al., 2008; Zhao et 

al., 2008b). Nevertheless, all of them boil down to constructing a network with either weighted or 

unweighted edges which are then used for propagating annotations to uncharacterized 

members using approaches discussed in the section below.     

4.2.1.2 Computational methods for predicting function from network 

context 

Any set of functional associations, whether experimentally derived or predicted by the above 

methods can be depicted as a network of nodes connected by edges, with nodes representing 

proteins and edges denoting the interactions between these nodes. As such most network-

based functional inference algorithms work under the premise that the closer the two nodes are 

in the network higher is the functional similarity between them (Sharan et al., 2007). Indeed, 

most computational approaches for predicting function from network simply exploit the context 

of a protein with in the local or global network-neighborhood analogous to traditional sequence 

or genomic context methods. These approaches also generally tend to infer the broader 

function such as biological process a protein is in involved in, as opposed to the molecular 

function which is typically inferred by homology-based approaches – making network-based 

approaches complementary methods for annotating genomes. These methods can be grouped 

into two major classes namely those which use direct network-context and those which are 

assisted by module prediction. The former infer the function of a protein based on its 

connections (direct or indirect) in the network while the later first identify the modules of related 
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proteins and then annotate each protein in the module based on the known functions of its 

members using one of the direct methods (see Table 4-3 for a summary of the methods 

belonging to either class). 

 
Table 4-3. Different methods currently available for network-based function prediction.  
 

Method Description References 

Direct 

In simpler versions of these methods function of 
a protein is assigned based on the number of 
annotated protein neighbors in the immediate 
network neighborhood which are associated with 
a particular function. Advanced approaches take 
into account overall network topology and are 
able to give confidence scores for predictions. 
Techniques such as flow simulation and graph 
theoretic based have shown to yield high 
accuracies on some model systems.  Other 
methods in this category involve the use of 
probabilistic markov random models.  

(Chua et al., 2006; Deng et al., 
2003; Hishigaki et al., 2001; 
Karaoz et al., 2004; Letovsky and 
Kasif, 2003; Nabieva et al., 2005; 
Schwikowski et al., 2000; 
Vazquez et al., 2003) 

Module based 

In these approaches, two major steps are 
involved: 1) Identification of modules which are 
functionally coherent using any clustering 
technique 2) predicting function of 
uncharacterized members in a cluster using any 
of the direct methods or by computing 
enrichment for characterized functions in a given 
module and then transferring the annotations to 
other members. The first step follows the notion 
that genes which work in the same biological 
process should be homogenous in their 
functional roles and hence plays a crucial role in 
these methods. So majority of the methods in 
this category differ in the approach taken to 
identify modules. 

(Altaf-Ul-Amin et al., 2006; Bader 
and Hogue, 2003; Brun et al., 
2003; King et al., 2004; Pereira-
Leal et al., 2004; Rives and 
Galitski, 2003; Samanta and 
Liang, 2003; Spirin and Mirny, 
2003) 

 

 Among the direct methods, the simplest and perhaps the most intuitive method for 

function prediction determines the function of a protein based on the known function of proteins 

lying in the immediate neighborhood and is commonly referred to as the majority consensus or 

Guilt-By-Association (GBA) method (Schwikowski et al., 2000). Although simple and can be 

effective for dense networks, the method does not take into account the complete topology of 

the network and neither does provide a score for predicted functional label. Therefore, over the 

years more sophisticated methods like those developed by Hishigaki et. al, (Hishigaki et al., 

2001) and Chua et. al, (Chua et al., 2006) tried to address these limitations. Other direct 
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methods involve the use of graph theoretical principles such as cuts and flow-simulation in the 

networks in order to take advantage of the global and/or local topology of the network under 

consideration (Karaoz et al., 2004; Nabieva et al., 2005; Vazquez et al., 2003). In doing so, 

these methods also aim at maximizing the number of edges (for a protein of interest) which 

connect to other proteins assigned with the same function. Some authors also employed 

probabilistic approaches to address the caveats of the original methods and follow the premise 

that the function of a protein is independent of all other proteins given the functions of its 

immediate neighbors- thereby leading to the use of markov random field models for solving the 

problem of function prediction (Deng et al., 2003; Letovsky and Kasif, 2003)(also see (Sharan et 

al., 2007) ). 

 Biological systems are inherently modular in their functions with groups of genes being 

associated with a particular biological process/pathway (Hartwell et al., 1999). This has resulted 

in the development of module-based functional inference approaches. In these approaches, first 

coherent groups’ of genes which are predicted to work together to achieve a common biological 

task are identified by clustering methods and then the functions of genes with in the group are 

assigned. Once modules are identified, simple methods like GBA or hypergeometric enrichment 

computed for every function associated with the module are used for transferring the 

annotations to the uncharacterized members. Therefore, in these approaches the initial 

clustering method employed is crucial in determining the quality of the functional predictions. As 

a result, different module-assisted techniques differ in the module detection technique 

employed. Module finding algorithms typically depend on the network topology information 

which is used as a distance metric, resulting in the use of clustering techniques for identifying 
either a defined number of clusters, as in k-means clustering or some times hierarchical 

clustering of the data. Some of the module detection techniques also have the ability to detect 

overlapping clusters as a means of revealing the inherent plasticity in biological systems. Table 

4-3 summarizes some of the module-assisted techniques employed for functional inference. 

4.2.2 Uncovering the cellular roles of functional orphans in E. coli 

Because of its central position in the microbial research community, the Gram-negative 
bacterium Escherichia coli plays a leading role in investigations of the fundamental molecular 

biology of bacteria (Arifuzzaman et al., 2006; Baba et al., 2006; Barrett et al., 2005; Butland et 

al., 2005; Faith et al., 2007; Feist et al., 2007; Joyce et al., 2006; Riley et al., 2006). This 

experimentally-tractable microbe is a workhorse in basic and applied research aimed at 

elucidating the mechanistic basis of prokaryotic processes and traits, including those of 
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pathogens. The ever-expanding availability of genomic resources makes E. coli particularly well-

suited to systematic investigations of microbial protein components and functional relationships 

on a global scale. These include a genome-wide collection of single gene deletion strains (Baba 

et al., 2006) along with extensive knowledge of regulatory circuits (Barrett et al., 2005; Faith et 

al., 2007; Gama-Castro et al., 2008; Joyce et al., 2006) and metabolic pathways (Feist et al., 

2007; Kanehisa and Goto, 2000; Keseler et al., 2005).  

 Yet despite being the most highly studied model bacterium, a recent comprehensive 

community annotation effort for the fully sequenced reference K-12 laboratory strains (Riley et 

al., 2006) indicated that only half (~54%) of the protein-coding gene products of E. coli currently 

have experimental evidence indicative of a biological role. The remaining genes have either only 

generic, homology-derived functional attributes (e.g. ‘predicted DNA-binding’) or no discernable 

physiological significance. Some of these functional ‘orphans’ (not to be confused with 

‘ORFans’, which are genes present within only single or closely-related species) may have 

eluded characterization in part because they exhibit mild mutant phenotypes, are expressed at 

low or undetectable levels, or have limited homology to annotated genes. 

A key feature of the molecular organization of all organisms, including bacteria, is the 

tendency of gene products to associate into macromolecular complexes, biochemical pathways 

and functional modules that in turn mediate all the major cellular processes. Elaboration of 

these interaction networks via proteomic, genomic and bioinformatic approaches can reveal 

previously overlooked components and unanticipated functional associations (Hawkins and 

Kihara, 2007). For example, a recent integrative analysis of phenotypic, phylogenetic and 

physical interaction data led to the discovery of an evolutionarily conserved set of novel 

bacterial motility-related proteins (Rajagopala et al., 2007). However, while systematic 

integration of diverse high-throughput interaction datasets is routinely performed to reveal new 

functional relationships in model eukaryotes such as yeast, worm and fly (Bandyopadhyay et al., 

2008; Gunsalus et al., 2005; Lee et al., 2008; Myers et al., 2005; Reguly et al., 2006; Sharan 
and Ideker, 2006), few analogous studies of the global functional architecture of E. coli, and any 

prokaryote for that matter, have been reported to date (Campillos et al., 2006; Slonim et al., 

2006; Yellaboina et al., 2007).  

 To this end, we have combined complementary, highly-sensitive computational and 

experimental procedures to derive extensive high-quality maps of the functional interactions 

inferred by genomic context (GC) methods and physical interactions (PI) deduced by 
proteomics of E. coli. Our results indicate that many previously unannotated bacterial proteins 

are components of functionally cohesive modules and multiprotein complexes linked to well 
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known biological processes. A substantive fraction of these associations could be verified by 

independent experimentation and were found to be broadly conserved across prokaryotic phyla, 

indicating homologous systems in other microbes, while others are seemingly restricted to the 
E. coli lineage. However, in what follows I present a summary of this large-scale study where in 

we characterize the broad biological processes of these functional orphans using an integration 

of computational and experimental means. The entire data collection is publicly accessible via a 

searchable web-browser interface (http://ecoli.med.utoronto.ca/) to stimulate exploration of both 

conserved and specialized bacterial proteins within the context of biological processes of 

particular interest. 

4.2.2.1 The extent of existing functional annotation for E. coli proteins 

Since the functional characterization of E. coli, and bacteria in general, has largely been guided 

historically by scientific interests and technical considerations, some bias is expected in terms of 

the coverage and depth of existing biological knowledge as reflected in current gene 

annotations. This biased coverage is likely due to multiple reasons, ranging from the low 

expression of certain proteins to the lack of homologs in other organisms including humans. To 

evaluate the degree to which the physiological functions of the 4,225 putative protein-coding 
sequences of E. coli K-12 are characterized presently, we examined the scope of literature 

reference records curated in the UniProt annotation system (Apweiler et al., 2004). After 

excluding PubMed references corresponding to genomic mapping studies, the average total 

number of papers associated with each of the proteins of E. coli K-12 is surprisingly limited 

(Figure 4-1A), with many proteins apparently still uncited.  

 We next examined recent E. coli K-12 (sub-strains W3110 and MG1655) gene 

annotations in the public databases RefSeq (Pruitt et al., 2005), MultiFun (Serres et al., 2004), 

and EcoCyc (Keseler et al., 2005). Since W3110 is commonly used for high-throughput studies, 

we devoted the bulk of our subsequent analysis to this sub-strain. In total, we found that 2,794 

(66%) of E. coli’s proteins had either proper mnemonic names (Rudd, 1998), experimentally-

derived annotations in the MultiFun multifunction schema, or literature documentation to a well-

defined pathway or multiprotein complex in EcoCyc (Figure 4-1B). This left 1,431 proteins (34%) 

as currently functionally uncharacterized (which constitute our ‘orphans’ set). Of these, 446 

(31%) have at least one putative molecular function defined on the basis of sequence (such as 

the presence of a predicted DNA-binding domain or an enzymatic motif) in the Clusters of 

Orthologous Groups of proteins (COGs) catalog (Tatusov et al., 1997). 



Functional landscape of E. coli proteins                                                                                                                   4-17 

 

 

4.2.2.2 Properties of the functional orphans of E. coli 

        
Figure 4-1. Annotated and functional orphan genes of the E. coli K-12 reference strain 

(A) Frequency distribution of supporting publications per E. coli protein-coding gene. (B) Summary of 
existing annotations for E. coli, showing proteins of unknown function (orphans) lacking proper names or 
functional annotations in MultiFun or EcoCyc. (C) Although the functional orphans are encoded by 
transcripts with half-lives comparable to those of annotated genes, they tend to be expressed at lower 
levels based on (D) microarray analysis of mRNA and (E) Codon Adaptation Index scores, and (F) have 
lower molecular weights on average. Orthologs of orphans are also less prevalent in sequenced genomes 
than those of annotated genes (G). However, examination of environmental metagenomic libraries (H) 
indicates that the orphans are not necessarily exclusive to the Escherichia lineage. AMO: methane 
oxidizing Archaea; Anammox: anaerobic ammonium oxidation bacteria. t, T-test; p, P-value; NS, not 
statistically significant. 
 

The genes lacking annotation appear to be translated into bona fide proteins as their 

corresponding transcripts (Selinger et al., 2003) were not significantly (p = 0.36) less stable than 

the products of annotated genes (Figure 4-1C). However, some differences were evident in 

terms of their biophysical attributes and evolutionary scope relative to annotated genes. Most 

notably, only 21 orphans (1.5%) are required for viability under standard laboratory conditions 

(Baba et al., 2006) in contrast with the 280 annotated genes (10%) previously deemed 

essential. The orphans were also significantly (p < 1e-10) less abundant at both the transcript 

[Figure 4-1D; avg. normalized mRNA expression over 400 microarray experiments (Faith et al., 

2007): 8.0 (orphans) vs. 8.9 (annotated)] and protein levels (Figure 4-1E; avg. codon adaptation 

index: 0.41 vs. 0.47). Furthermore, they tend to encode somewhat smaller proteins (Figure 4-
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1F; avg. MW: 29.4 vs. 38.2 kDa; p < 1e-10) with fewer domain assignments (44%) than for 

annotated proteins (74%) according to the SUPERFAMILY database (Madera et al., 2004).  

Orphans also generally find fewer orthologs in a non-redundant genome dataset, defined 

by filtering at 90% similarity based on the frequency of shared orthologs among genomes 

(Figure 4-1G), with an average of 0.22 as compared with 0.48 for annotated genes (p < 1e-10) 

using a maximum-score E-value cutoff of 1x10-6 for BLAST bi-directional best hits (BDBHs). 

Nevertheless, broader sequence comparisons against currently available metagenomes (Figure 

4-1H) indicated that orphan homologs (one way BLAST hits) are often widely distributed in 

diverse environments (See online protocols accompanying this published study for more 

detailed description of the Materials and Methods); for example, a high proportion (0.80) of 

orphans have homologs present in marine metagenomes, anaerobic bacterial populations (farm 

silage, 0.51; whalefall, 0.50; sludges, 0.49), and even in the residents of the mammalian gut 

(union of human and mouse, 0.35), implying participation in core bacterial processes. 

Furthermore, the same high proportion (~99%) of orphan and annotated genes have orthologs 

in the other sequenced E. coli isolates, including pathogenic variants and closely-related 

Shigella strains. Taken together, this argues that the functional significance of the orphans is 

more pervasive than the current annotations suggest. 

4.2.2.3 A systematic approach to elucidate biological function 

The scarce existing knowledge regarding the biological roles of the orphans is likely due to 

multiple reasons, ranging from the lower expression, non-essentiality, or smaller sizes of certain 

orphan proteins to their lack of obvious homologs in other organisms including humans. 

Accordingly, integration of multiple data sources is warranted to decipher the specific biological 

roles of this uncharacterized repertory. Since the elucidation of physical and functional 

interaction networks can provide insights into bacterial protein function based on the concept of 

guilt-by-association (Yao and Ruzzo, 2006), we took a multi-pronged approach. We performed 

large-scale proteomic analysis to determine orphan participation as components of stable 

multimeric protein complexes, and inferred functional relationships based on genomic context 

inference, which exploits the patterns of gene conservation across bacterial genomes 

(Shoemaker and Panchenko, 2007b; von Mering et al., 2005). We then predicted the functions 

of the orphans using an integrative machine-learning procedure. Finally, independent low-

throughput experiments were also performed to validate a subset of high confidence predictions 

related to core biological processes which will not be discussed in here. Key steps (mostly 

computational) in this pipeline are outlined schematically in Figure 4-2.  
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Figure 4-2. Generation, integration of different networks and orphan function prediction   

 
(A) Construction of a PI network based on protein co-purification and detection by mass spectrometry. 
For the confidence scoring by logistic regression, datasets consisting of PI from low-throughput studies 
curated in DIP, BIND and IntAct (gold positives) and proteins in different subcellular localizations (gold 
negatives) were used for benchmarking. The resulting PI network, with edge weights corresponding to 
likelihood ratios, was clustered using MCL to delimit ‘multiprotein complexes’. (B) Integration of four GC 
methods into a single functional interaction network using a probabilistic model (von Mering et al., 2005), 
whose resulting scores (edge weights) were inputted to MCL to delimit ‘functional modules’. (C) Orphan 
function prediction was conducted using a ‘guilt-by-association’ procedure. After integration of PI and GC 
interactions into a single probabilistic network, a machine learning algorithm (StepPLR) newly developed 
for this study was used to assign functions based on the binary associations of orphans with annotated 
proteins, the respective interaction edge weights and the overall network topology. Correlations between 
vectors of these function predictions (orphans) and the annotations were then used as input to delimit 
‘functional neighborhoods’ by clustering using MCL. 
 

4.2.2.4 Experimental definition of the physical interaction network of 

the soluble proteome 

We performed systematic large-scale tandem-affinity purifications of all endogenous soluble 
orphan and annotated proteins detectably expressed in E. coli W3110 under standard culture 

conditions [see Materials and Methods below and protocols linked with the manuscript for 

further details]. We used an optimized Sequential Peptide Affinity (SPA)-tagging system to 
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isolate multiprotein complexes (Zeghouf et al., 2004). This procedure is based on the integration 

of marker cassette bearing a dual-affinity tag, consisting of three FLAG sequences and a 

calmodulin binding peptide separated by a protease cleavage site, fused to the C-termini of 
targeted open reading frames in E. coli DY330 (W3110 background) via  λ-phage “Red” 

mediated homologous recombination. This system enables recovery of native bacterial protein 

complexes at near-endogenous levels (Butland et al., 2005), minimizing spurious non-specific 

protein associations. Stably interacting polypeptides were subsequently detected using a highly-

sensitive combination of tandem mass spectrometry (LCMS) and peptide mass fingerprinting 

procedures (MALDI) to increase detection coverage and accuracy, just as had been previously 
done in a focused investigation for highly-conserved essential E. coli proteins by my 

collaborators (Butland et al., 2005). We successfully chromosomally-tagged 1,241 new baits, 

aiming to verify putative interactions by reciprocal tagging where possible, for a total of 1,476 

large-scale protein purifications (after including the 235 reported previously), of which 552 

represented orphans. 

 Since proteomic datasets typically contain noise in the form of non-specific associations, 

we performed a careful statistical analysis and quality filtering to determine biologically 

meaningful physical interactions. We considered that the specificity and affinity between any two 

putatively interacting proteins should be correlated with the consistency of co-purification over 

all the experiments in which the proteins were identified (i.e. co-complexed). We therefore used 

an established co-purification metric (Zhang et al., 2008) to assess interaction specificity based 

on the similarity of the protein co-purification patterns. We then generated a single consolidated 

confidence score for each putative pair-wise physical interaction based on the co-purification 

metric together with the primary interaction evidence to penalize inconsistent or promiscuous 

binders (i.e. possible false-positives) using alternatively a logistic regression model and 

bayesian inference (Suthram et al., 2006). 

 The logistic regression model was trained using a reference set of curated gold-standard 

Protein Interactions (PIs), which represents the union of experimentally-verified physical 

interactions derived from low-throughput experiments extracted from the Database of Interacting 

Proteins (DIP) (Xenarios et al., 2000), the Biomolecular Interaction Network Database (BIND) 

(Bader et al., 2003) and the IntAct database (Kerrien et al., 2007). For the negative gold 

standards, we compiled pairs of proteins annotated with different subcellular localizations (i.e. 

one cytoplasmic, the other periplasmic or outer membrane-bound (Diaz-Mejia et al., 2009). 

 Despite its relative simplicity, the logistic regression model offered better performance 

than the Bayesian method (see Figure 4-3A). We therefore applied the former to our global PI 
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network, assigning a probabilistic confidence score for each pair of putatively interacting 

proteins. To minimize false positives without incurring excessive false negatives, we further 

filtered our network using a stringent minimum confidence cutoff of ≥ 0.75 as a high proportion 

(71%) of PI verified by reciprocal purification had likelihood scores at or above this threshold. 

Finally, we removed from consideration the ten most-highly connected ‘hub’ proteins which were 

deemed particularly abundant non-specific contaminants.  

The resulting final network consisted of 5,993 high-confidence, non-redundant pair-wise 
interactions among 1,757 distinct E. coli proteins, including 451 orphans, or roughly two thirds of 

the predicted soluble cytoplasmic proteome. As summarized in Figure 4-3B, most (3,193, or 

53%) of these physical interactions are novel, while only 47% were already reported in either 

the DIP, BIND or IntAct interaction databases, or previous large-scale proteomic studies 

(Arifuzzaman et al., 2006; Butland et al., 2005). Importantly, our filtered dataset had a 

comparable level of accuracy as for the much smaller set of 716 ‘validated’ PI reported 

previously (Butland et al., 2005) and a genome-scale dataset of 7,123 PI (median confidence of 

0.69) generated using an analogous affinity purification schema in yeast (Krogan et al., 2006). 

The reliability of this dataset was also evident by two additional independent criteria. 

First, the mRNA expression patterns of the putatively interacting proteins were nearly as highly 

correlated as those of the presumably more abundant curated protein pairs determined by low-

throughput experiments (Figure 4-3C). Second, despite the more limited evolutionary 

distribution of the orphans, the putatively interacting proteins exhibited an elevated degree of 

co-occurrence of the respective orthologs across other bacterial species, evident from the high 

mutual information of the corresponding phylogenetic profiles (see Methods), again comparable 

to that of interacting pairs derived from low-throughput experiments (Figure 4-3D). Collectively, 

these results indicate that our physical interaction network is very likely to be informative about 

orphan protein function. 

4.2.2.5 Orphan membership within multiple protein complexes 

Since macromolecular assemblies mediate biological function in cells, we partitioned our high 

confidence physical interaction network using the Markov clustering algorithm (MCL; see 

Materials and Methods) to define orphan membership as subunits of discrete multiprotein 

complexes. MCL simulates random walks (i.e. flux) to delimit highly connected sub-networks 

based on both the connectivity and the weight of the graph edges (Enright et al., 2002). In this 

case, the weights reflect the interaction likelihood ratios obtained by logistic regression (Figure 

4-2A). The higher the flux within in a region, the more likely MCL will delimit the region as a  



Functional landscape of E. coli proteins                                                                                                                   4-22 

 

 

 
Figure 4-3. High-confidence physical interactions and putative multiprotein complexes  
 
(A) Benchmarking of the experimentally-derived PI network in E. coli against positive and negative gold 
standards by ROC-curve analysis. (B) Overlap of PI identified in this study with previous proteomic 
reports (Arifuzzaman et al., 2006; Butland et al., 2005) and low-throughput PI obtained from DIP, BIND 
and IntAct. (C) Putatively interacting proteins have highly-correlated gene expression patterns and (D) 
similar phylogenetic profiles based on mutual information as for low-throughput curated PI and in contrast 
to control protein pairs derived from different sub-cellular compartments.. (E) Graphical schematic of 
putative stable, soluble multiprotein complexes using the GenePRO Cytoscape plugin (Vlasblom et al., 
2006). Each node represents a complex, whose size reflects the number of contained proteins; edge 
widths reflect the number of interactions between subunits of different complexes. (F) Multiprotein 
complexes implicated in the bacterial translation apparatus; orphans mentioned in the main text are 
highlighted in bold. (G) Reduced rate of total protein synthesis in a strain lacking ybcJ relative to wild-type 
cells (WT). (H) Perturbed ribosome profiles in an yfgB deletion strain. (I) Elevated rates of frame-shifting 
and stop-codon readthrough in yfgB and ybcJ deletion strains relative to wild-type (WT). β-gal activity is 
only produced after the corresponding translational defect has occurred; error bars indicate standard 
deviation. 
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cluster (in this case, a putative multimeric protein complex). A recent comparative study (Brohee 

and van Helden, 2006) found that MCL is often superior to other clustering algorithms in 

identifying functionally-related groupings in probabilistic molecular interaction graphs and is 

remarkably resilient to spurious graph perturbations (e.g. missing edges). 

We optimized the MCL parameters (see Materials and Methods) to partition the 5,993 PI 

network, generating a set of 443 putative multiprotein complexes (Figure 4-3E), most of which 

consist of 2-4 polypeptides. In agreement with previous reports (Brohee and van Helden, 2006), 

alternative clustering algorithms comparable to MCL in terms of accuracy, like Restricted 

Neighborhood Search Cluster algorithm (King et al., 2004), produced similar groupings (data not 

shown). Moreover, as was found in a proteomic survey of yeast multiprotein complexes (Krogan 

et al., 2006), both the subunit number and degree connectivity of the MCL clusters followed a 
power-law distribution. In particular, two hundred and forty four (55%) of these E. coli 

multiprotein complexes contained at least one orphan as a putative subunit, with mechanistically 

suggestive linkages suggestive of a concerted biological function (Figure 4-3E). The complexes 

also showed a significant (p < 0.001) enrichment in terms of functional homogeneity implying 

that both the annotated components and the associated orphans tend to participate in the same 

biological processes.  

For example, 25 orphans were detected as part of a large sub-network of putative 

complexes involved in protein synthesis (Figure 4-3F). These include the orphans YbcJ and 

YncE, which physically interacted with the pseudouridylate synthase RluB, the RNA helicases 

SrmB and DeaD, the exoribonucleases E (Rne) and R (Rnr), and other components of the 

ribonucleolytic ‘degradosome’ responsible for mRNA degradation, suggesting a probable role in 

RNA processing and/or turnover. Likewise, YfgB co-purified with three translation-related 

complexes, including the ribosome. Consistent with these observations, the expression of YncE, 
which has similarity to the non-ribosomal peptide synthase AfuA of Aspergillus fumigatus, is 

reduced >9-fold upon exposure of E. coli to the translational inhibitor puromycin (Sabina et al., 

2003). We also determined that deletion of ybcJ results in a significant reduction in the 

incorporation of 35S- labeled methionine in vivo relative to wild-type (Figure 4-3G), indicating a 

decrease in the global rate of protein synthesis. Similarly, ribosome profile analysis (Figure 4-

3H) showed that inactivation of yfgB decreased the level of mature polysomes actively engaged 

in mRNA translation and altered the cellular ratios of 30S and 50S ribosomal subunits relative to 

70S monosomes. Moreover, both the ybcJ and yfgB mutants exhibited reduced translation 

fidelity (Figure 4-3I) as assayed by four reporter plasmids that measure the frequency of 

frameshifts and stop codon readthrough.  
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 Other orphans is this translation sub-network include YibL, which co-purified both with 

YfgB and YbcJ, and with RNA processing factors involved in ribosome biogenesis, such as the 

RNA pseudouridine synthetases RluB/RluC and the RNA helicase DeaD, and with RppH 

(formerly NudH), which was recently identified as a regulator of 5'-end-dependent mRNA 

degradation (Barkan et al., 2007; Deana et al., 2008; Jiang et al., 2006). Similarly, the orphan 

YdhQ co-purified with translation elongation factor Tu, while YagJ interacted with lysine tRNA 

synthetase (LysU), and YjcF, which has similarity to phenylalanyl-tRNA synthetase PheT of 
Bacteroides vulgatus, bound ribosomal release factor 2 and another orphan, YbeB, which in 

turn was found to associate with the 50S ribosome subunit, as recently reported (Jiang et al., 

2007). These results confirm that our high-confidence physical interaction network is informative 

about the function of at least certain orphans. 

4.2.2.6 Functional interactions predicted by genomic-context methods 

Although we attempted to tag and purify the entire soluble E. coli interactome, we failed to 

detect 469 orphan proteins by MALDI or LCMS, presumably because they are both membrane-

associated (~35%) and hence not soluble, or are of particularly low in abundance (~40). To 

bypass this limitation, we applied computational methods to discern a network of high-
confidence pair-wise functional interactions for all E. coli proteins, including those not detectable 

by proteomic methods, by examining the natural chromosomal clustering of bacterial genes. As 

illustrated in Figure 4-2B, we used four different genomic context (GC) methods, namely: (i) 

Gene Fusions (Enright et al., 1999; Marcotte et al., 1999a); (ii) similarity between Phylogenetic 

Profiles (Gaasterland and Ragan, 1998; Pellegrini et al., 1999; Tatusov et al., 1997); (iii) 

evolutionary conservation of Gene Order (Dandekar et al., 1998; Janga and Moreno-Hagelsieb, 

2004; Overbeek et al., 1999); and (iv) Intergenic Distances (Janga et al., 2005; Rogozin et al., 

2002; Snel et al., 2002) (see Materials and Methods for details). The latter two methods are 

independent approaches to detect operons and their subsequent rearrangements across 

prokaryotic genomes. In particular, the Intergenic Distances method, leads to considerably more 

high-quality predicted functional associations compared with the first three classic GC methods 

(Janga et al., 2005), and does not depend critically on the detection of orthologs in evolutionarily 

distant genomes, making it potentially better suited for detecting functional interactions involving 

orphans. 

 The pair-wise interactions generated by each of these prediction methods were 

independently evaluated by benchmarking using gold standards. Positive gold standards were 

defined as pairs of E. coli genes belonging to the same biological pathway as defined in 
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EcoCyc, while the negative gold standards represented pairs of annotated E. coli genes whose 

products participate in different pathways. The results of each GC method were subsequently 

combined to create a single unified functional association score (Figure 4-2B). Although 

different data integration algorithms have been developed (Chua et al., 2006; Lee et al., 2004; 

Nabieva et al., 2005; von Mering et al., 2005), most of these have a similar probabilistic basis 

and assumptions. For this study, we opted for the integration procedure used by Bork and 

colleagues (von Mering et al., 2005) to construct the Search Tool for the Retrieval of Interacting 

Genes/Proteins (STRING) database. This approach treated the reliability of the associations 

generated by each GC method as independent probabilities, such that the likelihood of an 

interaction is proportional to the number of times it was observed and the degree to which each 

GC method contributed to the overall network reliability. Finally, we applied a stringent filter to 

the unified functional network to obtain a set of 74,776 high-confidence (probabilities ≥  0.80) 

non-redundant interactions (Figure 4-4A).  

Despite the tendency of the orphans to exhibit more limited conservation notwithstanding 

the dependency of GC methods on homologs in multiple species (except for operon predictions 

based on intergenic distances (Janga et al., 2005)), our combined GC network implicated 

virtually all (1,367, or 96%) of the orphans in 23,365 pair-wise functional interactions. Moreover, 

relatively few (<18%) of our predicted interactions appear to have been reported previously 

(Figure 4-4B). While we could not meaningfully compare our results to an alternate set of 

putative functional links generated recently (Yellaboina et al., 2007) because of a lack of publicly 

accessible dataset scores, we found that less than 5% (3,368) of our predicted interactions are 

listed in the PROLINKS comparative genomics databank (Bowers et al., 2004) while only ~16% 

(11,842, of which only 2,613 involve an orphan) were present in STRING (v. 7.1) at a more 

liberal 0.7 confidence threshold. More critically, greater than 85% of our predicted orphan 
interactions involve a functionally-annotated E. coli protein, indicating a good potential to make 

functional inferences. The fact that PROLINKS has 1,657 predictions not attained by our 

integrative approach may reflect our use of a higher confidence threshold as well as differences 

in implementation of the GC measures and the identification of putative orthologs. For instance, 

whereas we used BLAST-BDBHs as criteria to detect orthologs between pairs of genomes, 

STRING uses COG-based definitions of orthology, while PROLINKS uses one-way BLAST hits 

(not necessarily orthologs). Conversely, most of the 16,585 predictions exclusive to the STRING 

database were compiled using text mining or alternate experimental criteria such as protein-

protein interactions, whereas the highest numbers of predictions exclusive to our GC datasets 

come from operon rearrangements (Janga et al., 2005). 
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Figure 4-4. High-confidence genomic context associations and putative functional modules 
(A) Benchmarking of unified GC interactions in E. coli against positive and negative gold standards by 
receiver operating characteristic (ROC)-curve analysis; cumulative area-under-the-curve (AUC) is shown 
as an overall performance measure. (B) Overlap of high-confidence functional interactions predicted in 
this study with two other public GC databases. (C) Even after eliminating adjacent gene pairs to control 
for known and predicted E. coli operons, functionally-linked genes have highly-correlated patterns of 
mRNA expression comparable to components of the same curated EcoCyc pathways rather than different 
pathways. (D) Functionally-linked genes are enriched for annotations to the same COG functional 
categories. (E) Graphical representation of putative E. coli functional modules; node size and colors are 
proportional to the number and fraction of orphan and annotated subunits, respectively, while lines 
represent interactions connecting modules. (F) Putative fimbriae-related module. (G) Defective motility of 
mutant strains deleted for orphans linked to fimbriae (as in panel F); single dashes indicate moderately 
impaired motility, while double dashes represent strong repression. Other mutants displaying a normal 
phenotype comparable to the wild-type strain BW25113 (WT) are not shown. (H) Defective biofilm 
formation by mutants deleted for fimbriae-related orphans (as in panel F); significant differences (T-test) 
in cell adhesion (absorbance) between mutant and WT strains are denoted by asterisks (single, p < 0.01;  
double , p < 0.0001); LB, Luria Bertani medium; CFA, colonization factor antigen medium. (I) Metabolic 
modules mentioned in main text. (J) Mutants auxotrophic for shikimic-acid and aromatic amino acids; 
growth on minimal 'drop-out' media is indicated. 
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The reliability of our unified functional association network was independently 

corroborated based on the high correlations of expression among putatively interacting gene 

pairs (Figure 4-4C), which was comparable to that observed for components of the same 

curated EcoCyc pathway even after eliminating all pairs of genes belonging to an 

experimentally-characterized operon or those which form contiguous gene pairs in E. coli 

(Figure 4-4C). We also observed a marked enrichment for interactions among proteins 

annotated to the same curated Clusters of Orthologous Group (COG) functional categories 

(Figure 4-4D), implicating by extension any associated orphans in these same processes. 

4.2.2.7 Defining the participation of orphans as the components of 

functional modules 

Groups of functionally interacting genes form functional modules centered on a common 

process or biochemical pathway(s). To define orphan participation as components of such 

modules, we partitioned the high-confidence GC network using MCL, generating a total of 507 

putative functional modules consisting of two or more components (Figure 4-4E). Examination 

of the functional homogeneity of these predicted modules (see Materials and Methods) 
indicated, as for our putative multiprotein complexes, that they were highly-enriched (p <0.0001 

compared with null random models) for concerted annotated biological processes, again 

implicating the associated orphans in these same roles. Module membership followed a 

characteristic power law distribution with most modules having between 2 and 10 components. 

Two hundred and eighty nine (57%) of the modules had at least one of a total of 1,189 

different orphans. One notable example is shown in Figure 4-4F. Diverse lines of experimental 

and bioinformatic evidence support the involvement of this putative module in the biogenesis 

and/or activity of fimbriae, appendages or pili that are shorter than the characteristic flagellum of 

gram-negative bacteria, which mediate cell adhesion, biofilm formation, motility and host 

invasion (Fronzes et al., 2008; Hahn et al., 2002). For instance, 12 of the 13 orphan 

components possess sequence characteristics of bacterial adhesins and chaperone/Usher pili 

protein families (Madera et al., 2004; Nuccio and Baumler, 2007). Gene expression profiling 

studies (Domka et al., 2007; Domka et al., 2006) have previously established that most of these 

orphans are also coordinately induced during biofilm formation. Perhaps most compellingly, we 

found that single gene E. coli knock-out mutants of 6 of the 13 orphans display markedly 

reduced swarming capabilities in semi solid agar (Figure 4-4G), while 11 out of 13 mutants were 

significantly impaired for biofilm formation in vitro as compared with a wild type control (Figure 
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4-4H). Taken together, these observations strongly implicate this set of orphans in the formation 
and/or proper function of fimbriae. 

 Several other prominent modules are shown in Figure 4-4I. These comprise the orphans 

YdiN, YdiL and YdiM predicted (based on operon rearrangements) to functionally interact with 

several members of the Aro- operon known to participate in the metabolism of shikimate, a 
precursor of aromatic amino acids. Consistent with this, ydiN, aroD and ydiB are reportedly 

over-expressed when E. coli is grown in media containing shikimate as the sole carbon source 

(Johansson and Liden, 2006). Moreover, we found that deletion of either ydiN or ydiB resulted in 

phenotypic auxotrophy for shikimatic- and aromatic amino acids, comparable to that observed 
after loss of known aromatic amino biosynthetic genes (e.g., aroA and aroD). 

 Other functional modules include frlA / frlB, part of the Frl operon of E. coli responsible 

for the import and metabolism of the alternative carbon source fructoselysine, together with the 

orphan YifK, which has sequence characteristics of a transporter (Diaz-Mejia et al., 2009), 

implicating it in electrochemical potential-driven uptake of this sugar. Conversely, two orphans, 

YecC and YecS, had functional associations consistent with linkages to amino acid biosynthesis 

and nucleotide metabolism, four (YagU, YqeG, YhaO and YhaM) were linked to a putative 

module involved in transport and metabolism of threonine and serine, while three others (YjjI, 

YeiM, and YjjJ) were found in a module enriched for factors involved in nucleotide transport and 

degradation of deoxyribonucleosides. Taken as a whole, these results suggest discrete 

functional relationships for many previously unannotated proteins, even implicating certain 

orphans within specific pathways. 

4.2.2.8 Improved functional inference within an integrated network 

framework 

Examination of the extent of overlap between our physical and functional networks, both in 

terms of common binary interactions and shared components among the derived complexes 

(from PI) and modules (from GC), indicated that they are largely complementary. Since a 
similar trend was also evident comparing other existing curated E. coli physical interaction 

datasets (derived from either low- throughput or other high-throughput studies) with 

independent functional predictions (e.g. GC inferences from STRING;), this presumably stems 

in part from the incomplete coverage obtained by these different approaches. Regardless, 

these observations imply that the union of PI and GC networks is necessary to capture the 

widest spectrum of biologically-relevant interactions. Indeed, it has been shown previously that 

combination of physical interactions with functional genomic inferences, each statistically-
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weighted according to dataset quality, can markedly improve both functional coverage and 

accuracy (Beyer et al., 2007; Ideker and Sharan, 2008; Lee et al., 2004; Myers and 

Troyanskaya, 2007; von Mering et al., 2005). We therefore merged our experimental and 

predicted associations with the same method used to generate the unified GC network (Figure 

4-2C; see Materials and Methods).  

 The resulting combined probabilistic network consisted of 80,370 high-confidence 

(probability ≥ 75%) putative pair -wise interactions encompassing virtually the entire proteome 
of E. coli, including 2,769 (99%) annotated proteins and 1,375 (96%) functional orphans. 

Graph analysis of this final integrated network indicated that the orphans tended to have a 

lower overall connectivity and betweenness centrality, measured as the number of shortest 

paths going through a given node, relative to annotated components, suggesting more 

peripheral positions in the integrated networks. However, the orphans also exhibited lower 

average closeness, defined as the average length of shortest paths between any two nodes, 

and had similar overall clustering coefficients, indicating that in general the orphans are 

functionally connected rather than isolated from the annotated gene products. These 

observations implied that consideration of both the individual associations and overall 

placement of the orphans within the integrated interaction network would facilitate functional 

deduction.  

 We therefore devised a new network-based function prediction method (termed 

StepPLR; see Figure 2C and Materials and Methods) to exploit the global topological similarity 

among all the protein pairs and their corresponding functional annotations in the integrated 

network. Our method assigns functions to unannotated orphans based on the functional 

information from their first-order (direct) and second-order (indirect) annotated neighbors in 

the integrated functional association network using penalized logistic regression models and a 

stepwise variable selection procedure to deduce optimal functional profiles (see 

supplementary methods accompanying the manuscript for a detailed protocol). We based our 

classifications on the discrete COG functional categories and on the hierarchical, 

multifunctional terms of the Gene Ontology (GO)(Ashburner et al., 2000; Camon et al., 2004) 

and MultiFun classification schemas (Serres et al., 2004). To avoid potential sources of false 

predictions, we removed any proteins labeled with the evidence codes IPI (for ‘inferred from 

protein interaction’) and IGC (for ‘inferred from genomic context method’) when generating the 

GO reference set, as well as proteins in poorly characterized categories in COGs and 

MultiFun. 



Functional landscape of E. coli proteins                                                                                                                   4-30 

 

 

 We found that StepPLR had better precision and recall compared to several other widely 

used guilt-by-association procedures tested, such as majority-counting and chi-squared-based 

methods. Although the performance achieved for the different functional categories varied, our 

approach generated AUC values of 0.8 or higher for most of the COG (83%), GO (67%) and 

MultiFun (53%) categories and was relatively insensitive to the number of annotated proteins 

per function. Moreover, since our method exploited the correlation among the different 

categories, most orphans had multiple biologically-consistent predicted functions. 

4.2.2.9 Functional neighborhoods 

As displayed graphically in Figure 4-5A, our prediction procedure ultimately linked many of the 

orphans to specific, functionally-related protein ‘neighborhoods’. We again made use of the 

MCL algorithm to objectively delimit functionally highly homogeneous (p < 0.0001) protein 

groupings based on the profile similarity of annotations and predictions shown in this figure. One 

notable example is the protein translation machinery (Figure 4-5B), which has 23 associated 

orphans. To independently verify the functional relevance of these assignments, we examined 

the effects of deleting the corresponding genes in terms of conferring sensitivity to drugs that 

inhibit protein synthesis. Consistent with expectation of a direct role in protein synthesis, and 
similar to loss of bona fide annotated translation factors and tRNA synthetases, the mutant 

strains exhibited statistically significant (p < 0.05) differential sensitivity as compared to wild type 

and unrelated gene mutants to a variety of antibiotics that selectively block protein translation 

(Figure 4-5C).  

We also examined an alternate group of orphans (YafP, YiaD and YbcM) associated 

with the flagellar biogenesis and motility apparatus (Figure 4-5D). Single-gene knockout 

mutants annotated components in this neighborhood exhibit decreased motility in semi-solid 

agar as compared to wild-type E. coli strains (Rajagopala et al., 2007). Consistent with our 

functional predictions, we likewise found that deletion of yafP ablated cell motility in vitro (Figure 

4-5E), similar to mutants lacking core flagellum motor proteins (e.g. FliH, FliM), while loss of 

yiaD and ybcM reduced swarming (i.e. decreased halo formation) to an extent comparable to 

perturbation of other established flagellar components (e.g. flgJ and fliR). A previous study 

(Bresolin et al., 2006) using phenotypic complementation analysis had suggested that a ybcM-

ortholog in Yersinia enterocolitica is likely an AraC-type regulatory protein involved in controlling 

bacterial motility. These results suggest that, akin to several other recently discovered novel 

motility components (Girgis et al., 2007; Rajagopala et al., 2007), these orphans are required for 

the proper assembly and/or subsequent locomotion of the E. coli flagella. 
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Figure 4-5. The functional neighborhoods of E. coli 
 
(A) A ‘clustergram’ displaying existing annotations (orange) and the predicted functions (this study; blue) 
for all the protein-coding genes of E. coli (x-axis) and their associated biological processes (y-
axis)(descriptions from different functional schemas i.e, COG, Multifun and GO not shown due to lack of 
space). Proteins were clustered using MCL based on the paired similarity of the functional annotations 
and predictions in this matrix to delimit ‘functional neighborhoods’. (B) Putative functional neighborhood 
showing high-confidence integrated (combined PI and GC networks) interactions of select orphans with 
the protein synthesis machinery. For clarity, individual names of ribosomal proteins and tRNA synthetases 
are not shown. (C) Heatmap showing the differential sensitivity of orphan deletion strains to antibiotics 
targeting protein synthesis relative to the colony size in the absence of drug. Mutants deleted for 
annotated proteins from this neighborhood are shown as positive controls , while deletion mutants lacking 
genes not contained within this neighborhood are shown as negative controls; . (D) Neighborhood with 
three orphans putatively involved in flagellum assembly and motility. (E) Deletions of the corresponding 
components reduce swarming capability; single dash, moderately impaired motility; double dash, strong 
repression. (F) Sub-network of orphans associated with DNA enzymes. (G) Deletion of the orphan yhcG 
results in synthetic lethality when combined with hypomorphic alleles (*) of three essential DNA replication 
factors (parE, dnaN, dnaB). 
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Many other orphans were predicted to have roles in other conserved biological systems, 

such as DNA replication. For example, as shown in Figure 4-5F, we identified the orphan YhcG 

in association with DNA processing enzymes, including the restriction complexes HsdMRS and 

McrABC, the integrases IntF and IntS, and the recombinase PinE. YhcG has sequence 

characteristics of the PD-(D/E)XK superfamily of nucleases involved in DNA recombination and 
repair (Kosinski et al., 2005). Consistent with these observations, we found that deletion of yhcG 

results in a synthetic-lethal phenotype (Figure 4-5G) when combined with hypomorphic alleles 
of the replicative primosome (dnaB), DNA polymerase III (dnaN), and DNA topoisomerase IV 

(parE), consistent with a direct role in DNA replication or the resolution of critical intermediates. 

4.3 DISCUSSION & CONCLUSION 

Defining the precise biological roles and relationships of bacterial gene products in an often 

dynamically changing physiological context is a challenging proposition. Historically, systematic 

assessments of protein function in bacteria have tended to rely on molecular inferences based 

on sequence alignments and domain architectures, while experimental characterization has 

traditionally been driven by specific scientific interests rather than with the aim of providing the 

broader community with unbiased collections of functionally-related proteins and phenotypes. 

Since the biological role of a protein is not necessarily reflected in its primary sequence, the 

elucidation of molecular interaction networks can provide an alternate perspective even in the 

absence of detailed phenotypic data (Ideker and Sharan, 2008; Lee et al., 2008). Here, we have 

opted to view a model microbial cell mechanistically as a series of modular molecular interaction 

networks that underlie the major biochemical processes that mediate cell homeostasis and 

proliferation, wherein the functional attributes of particular gene products are reflected in their 

overall patterns of associations.  

 To this end, we have generated an extensive compendium of physical and functional 
linkages covering almost the entire protein-coding complement of E. coli. This led to the 

elucidation of hundreds of putative soluble multiprotein complexes and functional modules 

encompassing virtually all the many gene products currently lacking public annotations. While 

existing integrative probabilistic interaction databases like STRING (von Mering et al., 2005) and 

EcID (Andres-Leon et al., 2009) provide valuable additional binary interactions that are 

potentially useful for protein function prediction or as complementary evidence to those reported 

in this study, our machine learning strategy goes beyond describing binary interactions by 

explicitly describing the most probable biological functions of the orphans. Of particular 

noteworthiness, our functional predictions and phylogenetic projections associate a sizeable 
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fraction of the functional orphans with core bacterial processes, suggesting they may have 

previously eluded detection in part due to prior analytical biases.  

 Since the various methods used in this study discover different types of molecular 

relationships and each has its own intrinsic bias, complementary information was obtained 

through data integration. The limited overlap between the high-confidence physical and 

functional interaction networks presumably stems in part from to the incomplete coverage 

typically achieved by high-throughput experiments and their methodological differences 

(Rajagopala et al., 2007; Yu et al., 2008). For example, certain orphans were difficult to evaluate 

by GC methods due to a lack of apparent orthologs at medium-to-high evolutionary distances, 

which hinders comparative genomic inferences. Likewise, although we performed large-scale 

tandem affinity tagging and purification under near-native physiological conditions to generate 

highly purified preparations of stable, endogenous multiprotein complexes, we did not achieve 

complete coverage of the proteome. We did not attempt to purify a large number of membrane-

associated proteins, which require specialized solubilization procedures, while the soluble 

proteins that we failed to tag or detect by mass spectrometry were presumably either of very low 

abundance or not expressed in our growth conditions.   

Comparison of our physical interaction network with analogous public datasets produced 

for other model species, such as worm, fly, yeast and even the bacterium H. pylori, revealed 

very limited (<1%) overlap. These observations are congruent with recent findings by Uetz and 

colleagues (Rajagopala et al., 2007) showing that only a third (49) of the 173 experimentally-
derived PI in the cell motility network of the spirochete Treponema pallidum are predicted to 

occur in the ε-proteobacteria Campylobacter jejuni on the basis of orthology could subsequently 

be confirmed by targeted two-hybrid testing. The limited overlap between proteomic datasets 

presumably reflects a combination of incomplete coverage by various experimental assays, 

methodological differences and imperfect conservation. 

The observation that the intersection of functional genomics inferences with low-

throughput curated physical interaction data is somewhat higher might be explained by two non-

mutually exclusive ways: first, protein-protein interactions reported in the literature based on 

traditional biochemical methods might be biased towards the most evolutionarily conserved 

multiprotein complexes, which tend to be enriched for essential components with broadly 

distributed phylogenetic profiles that are more easily and accurately predicted by GC methods; 

second, the relatively high sensitivity of the two complementary forms of protein mass 

spectrometry used in this study may have resulted in the detection of lower abundance orphan 

proteins that have previously not been studied in depth.  
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The last point is consistent with the notion that different proteomic methods capture 

different physical interaction types (Yu et al., 2008). Hence, alternate proteomic methods, such 

as two-hybrid screens (Parrish et al., 2007; Rain et al., 2001; Rajagopala et al., 2007; Titz et al., 
2008) or in vivo protein-fragment complementation assays (Tarassov et al., 2008), may be 

better suited for detecting certain physical interactions currently underrepresented in our 

dataset. In a similar vein, additional functional relationships will undoubtedly be uncovered by 

different experimental and computational procedures, such as high-throughput comparative 

analysis of mutant cellular phenotypes (Baba et al., 2006), genome-wide genetic interaction 

screens (Butland et al., 2008; Typas et al., 2008), and automated text mining (Hoffmann and 

Valencia, 2004; Rzhetsky et al., 2008).  

The topological properties inherent to biological networks (e.g. their hierarchical 

organization and degree distributions) combined with incomplete interactome coverage make 

establishing definitive functional groupings difficult (Sharan et al., 2007). Our approach was to 

take into account both the correlations among functional categories and the overall topological 

structure of the integrated network to generate a more balanced probabilistic model. While 

alternate methods may provide enhanced interpretations of the organizational properties of the 

PI and GC networks, the functional enrichment and experimental validations established here 

suggest that our network-based computational inferences provide a reasonable perspective for 

exploring bacterial protein function.  Similar strategies have resulted in powerful predictors of 

protein function in Eukaryotes (Marcotte et al., 1999a; McDermott et al., 2005; Murali et al., 

2006; Myers and Troyanskaya, 2007; Schwikowski et al., 2000). The potential trade-off is that 

additional error or uncertainty may have occasionally been introduced by assuming functional 

similarity among more loosely connected proteins. Moreover, the probabilities associated with 

particular functional terms may not be directly comparable. Functional orphans associated with 

very well-characterized biological processes are more likely to be correctly assigned by 

computational methods (Myers and Troyanskaya, 2007) while those associated with relatively 

poorly studied proteins will tend to remain obscure. Nonetheless, they can be grouped together 

on the basis of specific PI, GC or even other functional associations and hence serve as 

functional groupings rather than isolated entities. 

 In general, the high confidence functional relationships we inferred for E. coli could be 

validated by independent experimental tests, and can be extrapolated to other bacterial species, 

including pathogens. Over 35% of the orphans find orthologs as far away as Archaea, and 
hence are likely associated with the same basic housekeeping processes we predict for E. coli, 

such as formation of the cell wall and protein synthesis. Conversely, our systematic 
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comparisons also revealed some unique aspects of the orphans in the evolutionary history of E. 

coli, such as the potential fimbriael factors that appear to be restricted to Enterobacteriaceae. 

One interpretation is that orphans with limited phylogenetic distributions contribute to fine tuning 

of adaptive physiological responses upon changing environmental conditions, as previously 

suggested for peripheral metabolic genes acquired by horizontal transfer (Pal et al., 2005). 

Alternatively, some orphans might belong to the well conserved biological systems which still 

need to be characterized for their functional role. 

4.4 MATERIALS AND METHODS 

4.4.1 PI network generation 

Large-scale SPA tagging and purifications were performed essentially as previously described 

(Butland et al., 2005; Zeghouf et al., 2004). Briefly, a DNA cassette encoding the SPA-tag and a 

selectable marker flanked by gene-specific targeting sequences was amplified by PCR using 

primers with homology to a selected locus. The cassette was then transformed and integrated 
using homologous recombination in the lysogenic E. coli strain DY330 (W3110 background), 

which harbors the highly efficient λ-phage-encoded homologous recombination enzymes exo, 

bet, and gam under the control of the temperature-sensitive CI857 repressor (the “Red” 

system)(2), to create a C-terminal fusion with the protein of interest. Strains in which the PCR 

product has integrated were subjected to antibiotic selection, and tagged protein expression 

was confirmed by Western blotting. 

Two complementary mass spectrometry techniques (gel-based MALDI peptide mass 

fingerprinting and gel-free LCMS shotgun sequencing) were used to detect physically interacting 

proteins. Details about the large-scale strain culture, protein extraction and purification, and 

protein identification procedures are provided as supplementary protocols accompanying the 

published manuscript. Scoring of tentative PI from the LCMS and MALDI assays was conducted 

using a logistic regression model using reference PI obtained by low-throughput experiments 

curated in the DIP, BIND and IntAct databases (Bader et al., 2003; Kerrien et al., 2007; 

Xenarios et al., 2000) as a positive training set. Our negative training set consisted of pairs of 

proteins in which one component was experimentally determined or predicted with high 

confidence to be cytoplasmic and the other residing in the outer membrane or the periplasm 

(Diaz-Mejia et al., 2009); inner membrane proteins were discarded from this negative dataset 

since they are in physical proximity (and hence could potentially physically interact) to 

cytoplasmic and periplasmic proteins. Our logistic regression procedure also took into account 



Functional landscape of E. coli proteins                                                                                                                   4-36 

 

 

the degree of consistency of co-purifying protein pairs, balancing the tradeoff between “spoke” 

and “matrix” representation models of interactions within co-purified groups of proteins to 

decrease the false discovery rate. We then combined the scores derived from LCMS and 

MALDI into a a single PI network using a previously established procedure for integrating 

probabilistic networks (von Mering et al., 2005), which assumes the reliabilities of associations 

generated by these methods are independent. To facilitate independent critical evaluation, all 

our processed interaction data is available through the website in HUPO-PSI molecular 

interaction reporting format (standard level 2.5). 

4.4.2 GC network generation 

The four GC methods used to predict functional interactions among E. coli proteins were based 

on: (i) functional linkages among genes which fuse to form a single open reading frame in at 

least one other genome i.e. Gene Fusion (Enright et al., 1999); (ii) the mutual information of the 

coordinated presence or absence of pairs of genes across a set of 440 non-redundant genomes 

i.e. Phylogenetic Profiles (Moreno-Hagelsieb and Janga, 2008; Pellegrini et al., 1999); and (iii) 

the natural chromosomal association of bacterial genes in operons as detected by two 

alternative methods, namely (a) the tendency of genes forming operons to show small 

Intergenic Distances (Moreno-Hagelsieb and Collado-Vides, 2002; Salgado et al., 2000), and 

(b) the conservation of Gene Order, in which a confidence value for each adjacent pair of genes 

present in the same strand was used as indicator that those genes likely form an operon as 

compared with the conservation of adjacent genes found in opposite strands (Janga and 

Moreno-Hagelsieb, 2004). For the last two methods, subsequent Operon Rearrangements were 

also detected by genomic mapping of orthologs across 440 non-redundant bacterial genomes 

(Janga et al., 2005).  

 For all four GC methods, we used the BLAST BDBHs as an operational definition of 

orthology. To avoid circularity, the prediction scores of the four GC methods were benchmarked 

separately using as positive reference set proteins belonging to the same metabolic pathway 

according to EcoCyc (Keseler et al., 2005), and as negatives proteins in different pathways. A 

single, unified high-confidence functional association network was then constructed by 

integrating the interaction predictions generated by the four genomic context methods using a 

the same scoring model (von Mering et al., 2005) used to integrate the MALDI and LCMS data.  

 

(Space left for an enhanced layout of the text) 
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4.4.3 Clustering 

Protein clusters were generated from three different networks using MCL (Enright et al., 2002): 

(i) the PI network (generating protein complexes), (ii) the unified GC network (generating 

functional modules); and (iii) the function prediction/annotation profiles derived from the 

integration of PI and GC networks (generating functional neighborhoods). The core idea of MCL 

is to simulate random walks (i.e. flux) among the proteins (nodes) within each network to delimit 

regions with high flux, taking into account the connectivity and weight of interaction edges. In 

this work, edge weights correspond to the likelihood of pairwise protein interactions in each 

network. In each case, the global MCL inflation parameter, which tunes the granularity of the 

delimited clusters, was optimized by balancing the mass fraction of clusters and efficiency of 

partitions. The resulting clusters were individually assessed for functional homogeneity in terms 

of COG annotations as described previously (Loganantharaj et al., 2006). 

4.4.4 Network-based function prediction and benchmarking 

Our algorithm (StepPLR) for assigning biological functions is essentially a network topology-

based method in which the functions of the orphans are predicted based on the functions of 

their associated annotated proteins in the immediate (direct) and adjacent (indirect) network 

vicinity. Briefly, a single network integrating the high-confidence PI and GC probabilistic 

networks was first created using the same scoring model (von Mering et al., 2005) used to 

integrate the PI data and the four GC networks. Then the weighted topological overlap (Zhang 

and Horvath, 2005) between each pair of protein nodes in the integrated network was calculated 

to determine the correlated functional profiles based on a penalized logistic regression model. 

Finally, a stepwise variable selection procedure to optimize function profiles in the final logistic 
regression was used. Only functional categories with at least 15 annotated E. coli proteins were 

used in our integrated functional association network: 18 COG classes, corresponding to 

widespread bacterial protein functions; 19 biological classes from MultiFun, in which the 

proteins can have multiple annotations based on different classification criteria; and 51 

biological process classes in GO. Other guilt-by-association representative methods (e.g. 

majority-counting and chi-squared-based) were also evaluated (results not shown). 
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OUTLINE 

Gene expression is a highly controlled process which is known to occur at several levels in 

eukaryotic organisms. Although traditionally messenger RNAs have been viewed as passive 

molecules in the pathway from transcription to translation there is increasing evidence that their 

metabolism is controlled by a class of proteins called RNA-binding proteins (RBPs). In this 

chapter, I provide an overview of the recent developments in our understanding of the repertoire 

of RBPs across diverse model systems and discuss the approaches currently available for the 

construction of post-transcriptional networks governed by them. I also present the first analysis 

of the network properties of a post-transcriptional system in a model eukaryote using currently 

available data and discuss the implications of understanding the dynamic properties of this 

important class of regulatory molecules as more data detailing their dynamic, spatial and tissue-

specific maps across diverse model systems accumulates. I argue that such developments 

would not only allow us to gain a deeper understanding of regulation at a level which has been 

under-appreciated over the past decades but would also us to use the newly developed high-

throughput approaches to interrogate the prevalence of these phenomena in different states and 

thereby study their relevance to physiology and disease across organisms.  

CONTRIBUTION TO THE WORK IN THIS CHAPTER 

Please note that the work presented in this chapter is the result of the following two publications 

and my contribution to the work excludes the organization of the post-transcriptional network in 

yeast and the calculations performed on understanding the expression dynamics of RBPs, 

which were all performed by Nitish Mittal. I performed all other analyses. 

 

1) Structure and dynamics of post-transcriptional network directed by RNA-binding proteins 

Sarath Chandra Janga and Nitish Mittal 
Invited book chapter for Landes Bioscience Press for an edited book on “RNA infrastructure:                   

RNA processing and regulatory networks” 

2) Dissecting the expression dynamics of RNA-binding proteins in post-transcriptional regulatory       

networks 

Nitish Mittal, Nilanjan Roy, M. Madan Babu and  Sarath Chandra Janga 

Proc. Natl. Acad. Sci. U S A. 106(48): 20300-05, 2009 
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5.1 INTRODUCTION 

Gene expression is a highly regulated process and is controlled at several levels. In eukaryotes, 

control of gene expression first occurs at the level of transcription, where transcription factors 

regulate the synthesis of RNA of specific gene in response to different internal and external 

stimuli. On the other hand, at the protein level, several post-translational modifications, such as 

phosphorylation by kinases and ubiquitin ligases, are known to spatially and temporally control 

the availability of functional protein products within the cell. However, a much less understood 

level of gene expression regulation, which occurs between these two layers, is due to the post-

transcriptional control of RNAs. It is now increasingly known that this level is controlled by 

numerous factors with major players being the RNA-binding proteins (RBPs) (Glisovic et al., 

2008; Keene, 2007; Mata et al., 2005). Therefore, intricate co-ordination of regulation from 

these three different layers is important for finely controlling the flow of genetic information from 

genes to proteins in different conditions. Indeed, changes in gene expression due to aberrations 

at any of these three levels have been shown to be responsible for the cause of a number of 

disorders (Cookson et al., 2009; Cooper et al., 2009; Feinberg and Tycko, 2004; Lukong et al., 

2008; Nica and Dermitzakis, 2008).  

Development of DNA microarray technology has made it possible to measure the 

expression of each annotated gene at the transcript level. Indeed, this technique has been the 

high-throughput approach of choice to efficiently characterize the transcriptomes of several 

model organisms. One common assumption in DNA microarray experiments is that the level of 

mRNA of particular gene reflects the amount of protein and there is little regulation at the post-

transcriptional level. Recent studies comparing the high-throughput data for mRNA and protein-

abundances indicate that there is a very weak correlation between the number of transcripts 

and protein products of a gene, challenging this notion (Gygi et al., 1999; Washburn et al., 

2003). This suggests that the regulation of gene expression at the post-transcriptional level is 

predominant. For instance, in eukaryotic pathogen,  Trypanosoma cruzi, it is well known that 

gene expression is primarily controlled at post-transcriptional level through RNA binding 

proteins (RBPs) (Noe et al., 2008). These studies suggest the extensive role of post-

transcriptional regulation in controlling gene expression in eukaryotes (Campbell et al., 2003; 

Foth et al., 2008). 

In eukaryotes, transcription and translation occur in different compartments. This allows 

for a plethora of options to control RNA at the post-transcriptional level, including their splicing, 

polyadenylation, transport, mRNA stability, localization and translational control (Glisovic et al., 
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2008; Keene, 2007). Although some early studies revealed the involvement RBPs in the 

transport of mRNA from nucleus to the site of their translation, increasing evidence now 

suggests that RBPs regulate almost all of the post-transcriptional steps shown in Figure 5-1A. 

For example, in humans, Nova protein is associated with splicing (Ule et al., 2003), PUF family 

proteins have been shown to play an important role during Caenorhabditis elegans oogenesis 

(Lublin and Evans, 2007), Tap protein, like its yeast homolog Mex67, was reported as a bona 

fide mRNA nuclear export  factor (Gruter et al., 1998), Puf3p in yeast was shown to be 

responsible for localization of mitochondrial transcripts (Saint-Georges et al., 2008) and Pab1 

was reported to regulate the initiation of translation (Kessler and Sachs, 1998). While the 

extensive role of RBPs in post-transcriptional control of cellular processes has been reviewed 

by several groups (Glisovic et al., 2008; Keene, 2007; Lukong et al., 2008; Mata et al., 2005), in 

yeast alone I found that the known RBPs (see Methods) are involved in multiple cellular 

processes and components based on Gene Ontology analysis. All these aspects highlight the 

importance of RBPs in regulating gene expression at post-transcriptional level.  

Due to their central role in controlling gene expression at post-transcriptional level, 

alteration in expression or mutations in either RBPs or their RNA targets (i.e., the transcripts 

which physically associate with the RBP) have been reported to be the cause of several human 

diseases such as muscular atrophies, neurological disorders and cancer (Cooper et al., 2009; 

Kim et al., 2009; Lukong et al., 2008; Musunuru, 2003). In particular, disorders such as 

myotonic dystrophy (DM) and oculopharyngeal muscular dystrophy (OPMD) have been 

attributed with RNA’s gain-of-function - CUG repeat expansion in the case of myotonic 

dystrophy protein kinase (DMPK) (Musunuru, 2003) and GCG repeat expansion in exon 1 of the 

RBP, PABPN1 in the case of OPMD (Lukong et al., 2008) respectively. On the other hand, 

diseases like opsoclonus-myoclonus ataxia (POMA) and spinal muscular atrophy (SMA) have 

been reported to be due to the RBPs loss of function (Lukong et al., 2008), suggesting that 

mutations in either RBP or any of its interacting RNA target sequences can lead to extensive 

variations in their expression patterns and result in a number of diseases. In addition to the 

fitness defects that variations in RBPs can bring about in cells, it has been recently shown in 

yeast that RBPs form an important class of prionogenic proteins (Alberti et al., 2009).  

 

 
 (Space left for an enhanced layout of the figure) 
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Figure 5-1: A) Schematic diagram showing the extensive role of RBPs in various post-transcriptional 
processes at different locations in eukaryotic cells. Circled number indicates the process in which RBPs 
are involved. RBPs are major players in splicing pre-mRNA into mature mRNA in the nucleus which are 
then exported into the cytoplasm by various other RBPs. In addition, RBPs are responsible for the 
localization of mRNAs to distinct sub-cellular compartments such as the mitochondria. In the cytoplasm, 
RBPs are also involved in governing the stability of transcripts by binding the substrate RNAs and in 
controlling the translation of mRNAs into corresponding protein products. For this reason, RBPs have 
been found to be key players either directly or indirectly responsible for the cause of several disorders 
due to changes in regulation they bring about at post-transcriptional level. B) In this study, an analysis of 
the sequence properties of the RBPs and the structure of the post-transcriptional network formed by 
RBPs followed by a detailed analysis on the expression dynamics of RBPs at two distinct levels is 
presented. First involved, RBPs as a functional class, where we compared the properties of RBPs with 
rest of the protein coding genes in the entire genome of Saccharomyces cerevisiae. This involved 
comparison of 561 RBPs against 5685 non-RBPs in the whole genome. Second, we studied the 
relationship between the RBP’s connectivity, defined as the number of target mRNAs which are bound by 
a given RBP and their transcript and protein stability, transcript and protein expression, rate of translation 
and expression noise. 
 

All these observations raise the questions: are RBPs finely controlled in terms of their 

expression patterns and are there constraints on their expression patterns depending on the 

number of distinct RNA targets they control? To address this, in what follows I present an over-

view of the analysis that was performed on the post-transcriptional network formed by RBPs in 

yeast, S. cerevisiae at two distinct levels shown in Figure 5-1B. The first involved asking 

whether RBPs as a group show distinct dynamic properties in comparison to non-RBPs in the 

whole genome. The second comprised of understanding the constraints placed on dynamic 

properties of RBPs in relation to the number of distinct transcripts controlled by them. Our 

analysis at the first level revealed that RBPs, as a functional class, are rapidly turned over (i.e., 

less stable) at the transcript level and are tightly controlled at the protein level. Analysis of the 

post-transcriptional network formed by RBPs indicated that highly connected RBPs are more 

abundant and ubiquitously present within the cell. 
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In this chapter, I attempt to provide a comprehensive overview and preliminary insights 

on this quickly developing area of post-transcriptional regulatory networks formed by RBPs by 

organizing the work done into three major sections, namely sequence attributes and functional 

processes associated with RBPs, methods used for the construction of the networks formed by 

them and finally discuss the structure and dynamics of these post-transcriptional networks 

based on recent publicly available data.    

5.2 RESULTS 

5.2.1 RNA binding proteins and post-transcriptional regulation 

RNA binding proteins (RBPs) are key regulators of different steps in the metabolism of RNA in 

eukaryotes. As shown in Figure 5-1A, they participate in the processing of pre-mRNA which 

includes splicing, poly-adenylation and capping to get mature mRNA. Following which, they are 

responsible for mediating the transport of mRNA from nucleus to cytoplasm. RBPs are also 

found to facilitate and control the localization, translation, stability and degradation of mRNA. To 

regulate the different steps of RNA metabolism, RBPs bind to RNA and form ribonucleoprotein 

complexes (RNP). Depending upon whether RBPs are bound to pre-mRNA or mRNA, RNPs 

are classified as hnRNP or mRNP respectively.  RNPs are inherently highly dynamic complexes 

due to their ability to associate and dissociate with various RBPs to mediate different steps of 

RNA metabolism. Some RBPs associated with RNP complexes are known to remain bound to 

their target RNA during all the steps of the RNA processing, from splicing to translation. For 

instance, SF2/ASF, a member of the SR class of RBPs in mammals, is found to facilitate 

splicing, export and translation initiation of its target RNA (Sanford et al., 2004; Zhong et al., 

2009) . Similarly Npl3, a yeast SR protein, has also been shown to interact with pre-mRNA and 

regulate the events from splicing to translational elongation (Gross et al., 1998). Similarly, 

neuronal ELAV protein also regulates the fate of its target RNA by mediating the events from 

poly-adenylation to translation (Pascale et al., 2008). On the other hand, several RBPs are also 

responsible for participating in specific steps of RNA metabolism such as the Nova protein, 

which is associated with splicing in neuronal cells (Ule et al., 2003; Ule et al., 2006). Tap 

protein, like its yeast homolog Mex67, was reported to be a bona fide mRNA nuclear export 

factor (Gruter et al., 1998). All these examples highlight 1) the role of RBPs in regulating the 

expression of genes in multiple steps at post-transcriptional level and 2) the complex 

combinatorial interplay of different RBPs to integrate various post-transcriptional events to fine 

tune the availability of transcripts both spatially and temporally. 
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Table 5-1. Common RNA binding domains in putative RBPs of the yeast S. cerevisiae, their frequency in 
RBPs and domains most often associated with these RNA binding domains according to the Pfam (Finn 
et al.) domain database. 
 

Domain Pfam 
accession Description Protein 

frequency 
Frequent Occurrence of 
other domain  

RRM_1 PF00076 

RNA recognition motif (RRM).  Many 
eukaryotic proteins containing one or 
more copies of a putative RNA-
binding domain of about 90 amino 
acids are known to bind single-
stranded RNAs 

0.105 RRM_1, Lsm_interact 

DEAD PF00270 
DEAD/DEAH box helicase.  
Members of this family include the 
DEAD and DEAH box helicases 

0.042 Helicase C,  

KH_1 PF00013 
K homology (KH) domain is a 
doamain of 70 amino acid and 
present in diverse RBPs.  

0.015 KH_1 

PUF PF00806 
Pumilio-family RNA binding repeat. 
Puf domain usually occurs as a 
tandem repeat of eight domains  

0.013 PUF, RRM_1 

WD40 PF00400 

WD-40 repeats (also known as WD 
or beta-transducin repeats) are short 
~40 amino acid motifs, often 
terminating in a Trp-Asp (W-D) 
dipeptide  

0.013 WD40 

 

RBPs bind to their RNA targets with the help of several domains having different 

specificity and affinity. Some of the most common domains are RRM (RNA recognization motif), 

KH (K homology domain), SR (serine arginine domain), Zn-finger, Pumilio/FBF (PUF domain) 

and Sm (Glisovic et al., 2008) . Table 5-1 shows the most frequently occurring RNA binding 
domains in the yeast, S. cerevisiae, along with the commonly appearing partner domains in the 

conventional list of 560 RBPs reported recently by Hogan and co-workers (Hogan et al., 2008) 

(see Materials and Methods).  A large number of proteins have been predicted as RBPs in 

several model organisms including humans on the basis of the presence of these commonly 

occurring domains. A list of approximate number of RBPs identified in different model organisms 

is shown in Table 5-2 along with a reference to the study reporting it. For instance, in C. elegans 

approximately 500 proteins are annotated as RBPs on the basis of the presence of one or more 

RNA binding domains. In the yeast, S. cerevisiae about 560 proteins have been reported as 

putative RBPs till date. In human, more than 1000 proteins are considered as RBPs of which 

there are 497 that contain at least one RRM domain (Maris et al., 2005). Other than these 

putative RBPs (on the basis of previously known RNA binding domains), several metabolic 
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enzymes have also been shown to bind to RNA molecules (Ciesla, 2006). For example Aco1, 
TCA cycle enzyme, in yeast S. cerevisiae binds to several RNAs encoded by the mitochondrial 

genome (Hogan et al., 2008). Likewise, recent studies have also shown the ability of RBPs to 

bind to DNA suggesting that some of the known RBPs might act as unconventional DNA-

binding proteins (Hu et al., 2009).These examples indicate the potential for the existence of 

novel classes of RBPs in eukaryotes with yet to be discovered functional roles. 

 
Table 5-2. Putative number of RBPs reported in different organisms. 
 

Organism putative 
RBPs 

Approximate 
number of genes Reference 

S. cerevisiae  561 7000 (Hogan et al., 2008) 

C. elegans  500 20000 (Lee and Schedl, 2006) 

D. Melanogaster  300 13290 (Lasko, 2000) 

MusMusculus  380 28287 (McKee et al., 2005) 

Human 800 30000 (Sanchez-Diaz and Penalva, 
2006) 

5.2.2 Methods to Identify RBPs and their targets 

Although, several RBPs have been identified on the basis of conservation of domains in 

different organisms, targets of these RBPs are poorly understood. Therefore, several methods 

have been employed to identify the targets of RBPs, both in vitro and in vivo. The list of some 

commonly used methods for identification of RBP targets have been described in Table 5-3. 

Traditionally, RNA targets for known RBPs have been identified in vitro by using cross-linking 

immunoprecipitation followed by electromobility shift assays (Pinero et al., 2000; Thomson et 

al., 1999). More recently, one hybrid (Wilhelm and Vale, 1996) and three hybrid assays 

(SenGupta et al., 1996) have been used to identify in vivo interaction of a RBP and RNA 

molecule. But these traditional methods have limitations in their ability to identify new targets. 

Therefore, other in vivo assays have been developed to identify the novel targets of a RBP such 

as ultraviolet (UV) cross-linking and immunoprecipitation (CLIP) and RNP immunoprecipitation-

microarray (RIP-CHIP). These assays usually work on a similar concept where in (i) the 

complex of RBP and its target RNAs is first extracted and (ii) the target RNA identified. 

However, they differ in the procedure used for extracting RBP-RNA complexes and identification 

of target RNAs. For example, in ultraviolet (UV) cross-linking and immunoprecipitation (CLIP) 
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method, cells are exposed to ultraviolet light to crosslink RBP-RNA molecules inside the cells. 

Then cells are lysed and cross-linked RBP-RNA complexes are immunoprecipitated using 

antibody against the RBP of interest. Further, RNA is isolated from the complexes and identified 

by RT-PCR. For instance, in a study to discover the targets of the splicing factor Nova, thirty 

four transcripts were identified by using the CLIP method (Ule et al., 2003).  

In RNP immunoprecipitation-microarray (RIP-Chip) method, cells are not treated with UV 

light to crosslink RBP-RNA complex but cells are lysed directly and native RBP-RNA complexes 

for RBP of interest are purified from the cell lysate using immunoprecipitation method. Following 

which RNA is isolated from the complexes and identified by using high-density oligonucleotide 
microarrays. The targets of Puf family of RBPs and other RBPs in yeast S. cerevisiae have 

been identified by using modified RIP-Chip method, where tandem affinity tagged (TAP) RBPs 

are used to facilitate the immunoprecipitation (Gerber et al., 2004; Hogan et al., 2008). These 

studies showed that the RNA targets vary from 1-1300 approximately for the studied RBPs in 
yeast S. cerevisiae. For instance Nop13, responsible for pre-18s rRNA processing, has 2 RNA 

targets whereas Npl3 and Mex67, both involved in mRNA export, have 1266 and 1150 RNA 

targets respectively (Hieronymus and Silver, 2003; Hogan et al., 2008). 

Another fundamental area of exploration in elucidating post-transcriptional networks is 

the identification of the repertoire of RBPs across organisms and several approaches both 

computational and experimental have been developed in recent years. Computational 

approaches involve the identification of the set of protein-coding genes which contain the 

bonafide RNA-binding domains, following which manual curation of the collected set is 

undertaken to identify a high confidence set of RBPs (Galante et al., 2009; Hogan et al., 2008). 

Experimental techniques comprise of employing the protein chip of an organism of interest to 

probe for the potential binding of the cellular RNA molecules and is analogous to the attempts to 

characterize the repertoire of DNA-binding proteins (Fasolo and Snyder, 2009; Hall et al., 2004; 

Hu et al., 2009; Zhu et al., 2001). Another strategy which has been developed to identify the 

RBPs attached to known RNA molecule is the PNA-assisted identification of RBPs (PAIR) 

(Zeng et al., 2006). This assay utilizes specific mRNA binding probe (PNA) that has ability to 

cross the cell membrane and can bind to RNA of interest. This probe also contains 

photoactivable amino acid adduct p-benzophenylalaline (Bpa) which can covalently crosslinked 

to adjacent RBP on photoactivation. After delivery of PNA, cells are exposed to ultra violet light 

for crosslinking of PNA to RBPs associated with RNA of interest. Cells are then lysed, treated 

with RNase and PNA-RBP adducts are isolated by using sense oligo (bind to PNA) coupled 

magnetic beads. Following which RBPs are identified by mass spectrometry. This method has 
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been used to identify the RBPs associated with ankylosis (ank) RNA, a panneuronal 

dendritically localized RNA (Zielinski et al., 2006). 

 
Table 5-3. Different methods to identify novel RBPs, their targets or RBP_RNA interactions. 
 

Method Description Reference 

Three hybrid 

in vivo yeast genetic method to detect and analyze the RNA-RBP 
interaction of known RNA and RBP. This methods is based on 
the binding of bifunctional RNA to both the two hybrid protein 
which activates the expression of reporter gene.   

(SenGupta et al., 
1996) 

RNAcompete  

in vitro identification RNA binding specificity of RBP. High 
concentration of RNA pool are used and incubated with tagged 
RBP. High concentration of RNA provide the competition for 
bindng and hence technique gets its name. RBP-RNA complexes 
are purified and microarray is used to identify the specific binding 
sites of RBP. (Ray et al., 2009) 

RIP-ChIP 

in vivo identification of RNA targets for RBP of interest. Cells are 
lysed and RBP-RNA complexes are immunoprecipitated in native 
state. Target RNA are extrated from the RBP-RNA complexes. 
Target RNAs are identified by microarray method where control 
RNAs are total RNA of the cell. 

(Tenenbaum et al., 
2000) 

CLIP 

in vivo identification of RNA targets for RBP of interest. Cells are 
treated with ultraviolet light to covalently crosslink RBP-RNA 
complex. Cells are lysed and RBP-RNA complexes are 
immunoprecipitated and RNA are identified by RTPCR. (Ule et al., 2003) 

PAIR 

in vivo identification of novel RBPs. mRNA binding PNA probe is 
delivered to cell. Cells are exposed to ultraviolet light that enable 
PNA to bind with RBP. Cells are lysed and PNA-RNA-RBP 
complexes are immunoprecipitated and RBPs are identified by 
mass spectrometry.   

(Zielinski et al., 
2006) 

SERF 

in vitro selection of RNA fragments that bind to RBP. Random 
pool of fragmented RNA is generated. RNA pool is incubated with 
RBP in test tube. RBP-RNA complex is extracted by filtration on 
nitrocellulose membrane. Selection cycle is repeated several time 
and selected RNA fragment are cloned and identified the 
consensus sequences binding to RBP   

(Stelzl and 
Nierhaus, 2001) 

TRAP 

in vivo system for identification of RNA-RBP interaction in yeast. 
Transformation of reporter mRNA encoding GFP protein and 
expression of RBP of interest. Fluorescence intensity of GFP is 
measured to know the binding of RBP of interest. Higher the 
interaction leads to lower expression and low fluorescence 
intensity.  

(Paraskeva et al., 
1998) 

SNAAP 

in vitro method used to identify mRNAs bind to specific RBP. 
Purified tagged RBP is treated with cell lysate. 
Immunoprecipitation of mRNP using antibody against tag. Target 
mRNA are identified by differential display method   

(Rodgers et al., 
2002) 

Quantitative 
proteomics 

in vitro method to identify RBPs bind to specific RNA sequence. 
RNA aptamer tagged RNA sequence is incubated with cell lysate. 
RNA aptamer-RNA-RBPs complex is purified. RBPs are identified 
by using mass spectrometer. (Butter et al., 2009) 
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5.2.3 RBPs and post-transcriptional operons 

In prokaryotes, it has been long known that the genes involved in similar processes tend to 

cluster on chromosomes and are transcribed together using the same promoter thus forming 

DNA operons such as the well studied, Gal and Lac operons. On the other hand, in eukaryotes, 

DNA operons are rare. However, following this notion recently the concept of post-

transcriptional operons has been proposed in eukaryotes (Keene and Tenenbaum, 2002) which 

has become possible due to the availability of the wealth of information on RBP-RNA 

interactions. According to this concept, diverse RNAs related to a common biological process 

are regulated by similar RBPs. For instance, in yeast S. cerevisiae, study of the RBP-RNA 

interactions by modified RIP-Chip method has revealed that each member of Puf family RBPs 

bind with functionally and cytotopically related RNAs (Gerber et al., 2004). Puf1 and Puf2 have 

been shown to bind to mRNAs of membrane associated proteins. Similarly, Puf3 binds to 

cytoplasmic mRNAs of mitochondrial proteins. Likewise, Nova protein was found to regulate 

splicing of pre-mRNA encoding components of inhibitory synapses and a stem loop binding 

protein (SLBP) was involved solely in splicing and translation of replication dependent histone 

RNAs (Townley-Tilson et al., 2006). Further examples in support of post-transcriptional operons 

have been reviewed extensively elsewhere (Keene, 2007; Keene and Lager, 2005). These 

examples demonstrate the role of RBPs in view of post-transcriptional operons for coordinating 

the expression of functionally related genes in eukaryotes. 

5.2.4 Post-transcriptional network formed by RBPs 

Development of several high throughput approaches has increased the amount of data for 

targets of RBPs in diverse organisms. This data of RBPs and their targets could be utilized to 

construct RBP-RNA interaction network which is also typically referred to as post-transcriptional 

regulatory network (see Figure 5-1B). This post-transcriptional network is represented in the 

form of a directional network with each edge corresponding to a regulatory link between the 

nodes as shown in Figure 5-2A. In this directed network, one set of nodes are RBPs forming the 

regulatory proteins while the other set of  nodes are RNAs encoded by either protein-coding or 

non-protein coding genes referred to as the target nodes. These two nodes (regulator node and 

target node) are joined by an arrow starting from regulator node and directing towards target 

node. The target RNA may belong to diverse functional proteins including other RBPs. This 

network can also contain loops as a link starting from RBP and targeting itself, typically referred 

to as autoregulation of an RBP (Figure 5-2B). This loop structure suggests that RBP can bind to 
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its own RNA and control its metabolism at transcript level. There are several examples 

suggesting the auto-regulation of RBPs at post-transcriptional level. For instance, in humans, 

RBPs such as AUF1, HuR, KSRP, NF90, TIA-1 and TIAR were reported to associate with their 

own mRNA and other RBPs (Pullmann et al., 2007).  

 

 
Figure 5-2: Concept figure showing the RBP mediated post-transcriptional regulatory network. A) Dark 
(Regulator) and light (Target) grey circles denote nodes in the network. These nodes are linked to each 
other via a directional arrow starting from regulator (which is RBP in the network) and pointing towards 
target (which may be RNA or miRNA) in the directional network. These linked nodes simply indicate that 
RBP (Dark grey circle) binds to RNA/miRNA of target gene (Light grey circle) and regulate its metabolism. 
B) Shows a toy network representing a dense set of RBP-RNA interactions with different RBPs having 
diverse targets. The targets of one RBP in the network may be RNA of other genes or miRNA (dark and 
light circle linked by arrow), the RNA of the RBP itself (loop from dark circle) and the RNA of other RBPs 
(two dark circles linked by an arrow). 
  

Due to the availability of the network of post-transcriptional interactions for a 

considerable fraction of RBPs in model systems such as S. cerevisiae (see Materials and 

Methods), it has become possible to address several questions concerning the structure and 

organization of post-transcriptional networks directed by RBPs. Table 5-4 summarizes some of 

the properties which govern the structure of this network obtained as described in the Materials 

and Methods section. It is evident from this table that majority of the mRNA transcriptome 

encoded by about ~ 70% of the genes had significant associations with at least one of the RBPs 

screened for RNA interactions, and on average, each distinct yeast mRNA was found to interact 

with three of the RBPs, suggesting the potential for a combinatorial and multidimensional 

network of regulation.  Indeed, it was found that the average connectivity of a node in this 

network was ~7 indicating that most nodes in this network have more number of targets and/or 

more the number of RBPs controlling them.  
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Table 5-4. Properties defining the structure of the post-transcriptional network of RBPs and their target 
RNAs in the model eukaryote, S. cerevisiae. Dataset employed for characterizing the network structure 
was obtained from Hogan  et. al.(Hogan et al., 2008) and all the network properties are calculated using 
igraph, a publicly available R package for analyzing graphs [ http://cneurocvs.rmki.kfki.hu/igraph/ & 
http://www.r-project.org]. 
 
 
Property Definition Value* 

No. of edges 
Each edge corresponds to a single RBP-RNA interaction. Hence, 
total edges represent all the interactions in the post-transcriptional 
network 

19396 

No. of 
vertices/nodes 

Total number of nodes, which comprise of both the RBPs as well 
as the RNAs, encoding for both protein coding and non-coding 
genes. This network comprises of 41 RBPs which are screened 
for their RNA targets. 

5398 

Degree or 
Connectivity 

Degree or connectivity refers to the number of interactions a 
protein or RNA has in this network – the higher the connectivity 
(i.e., hub nodes) the more the number of targets and/or more the 
number of RBPs controlling it. 

7.18 

Clustering 
coefficient  

Clustering coefficient of a node reflects the extent to which the 
neighbors of a given node are interconnected among themselves 
to what is expected theoretically and indicates the cohesiveness 
or local modularity of the network. Average value taken over all 
nodes reflects the modularity of the network. 

0.37 

Betweenness  

Betweenness centrality of a node measures the number of 
shortest paths between all pairs of nodes in the network that pass 
through a node of interest – the higher the number of paths that 
pass through a node, the more important it is. 

43.11 

Average path 
length 

Average length of the shortest paths between all pairs of nodes in 
the network. 2.65 

Closeness 

Closeness centrality is defined as the inverse of the average 
length of all the shortest paths from a node of interest to all other 
nodes in the network - note that closeness centrality defined this 
way implies that higher the closeness value, the higher the 
importance (centrality) of a node. 

0.38 

Diameter 
The diameter of a network is the length of the longest path among 
all the shortest paths defined between two nodes. It gives an 
estimation of the distance between nodes in the network. 

6 

Graph density The density of a network is the ratio of the number of edges to the 
number of total possible edges. 1.33x10-3 

Power law fit 
(exponent-alpha) 

Fitting a power-law distribution function to the degree distribution 
of the network to study whether the network is likely to exhibit a 
scale-free network structure.  

1.77 

 
* Note that average values for the entire network are reported for properties which are defined for specific 
node or edge.   
 

Other measures of centrality like betweenness and closeness which provide a measure 

of the importance of a node in a network, shown in this table, also reflect this trend ( see (Junker 

et al., 2006) and references there in for comprehensive definitions). For instance, the average 

length of the shortest path between two nodes in this network which gives an indication of the 
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distance between nodes suggests that most nodes are separated by no more than 3 edges - a 

measure reflecting the dense networking in this network. Similarly, diameter of a network which 

refers to the longest of all the shortest paths between a pair of nodes is about 6 indicating that 

two nodes in this network are separated by no more than 6 edges. Likewise, clustering 

coefficient which is a proxy for the modularity of the network shows that neighbors of most 

nodes tend to be highly interconnected among themselves forming a dense and cohesive 

network of regulatory linkages at this level of regulation. Finally, although incomplete in size, 

scaling exponent of this network is about 1.8 which suggests that the network might obey a 

scale-free topology with a power-law degree distribution. 

5.2.5 Expression dynamics of RBPs in post-transcriptional networks 

5.2.5.1 RBPs show high abundance and tight regulation at the protein 

level 

To compare and understand the differences in the gene expression dynamics of RBPs with 
other protein coding genes in S. cerevisiae, we first compiled the set of RBPs and non-RBPs as 

described in Materials and Methods (also see Figure 5-1B). This allowed us to define a set of 

561 proteins in yeast as those that encode for RNA-binding proteins and the remaining 5685 

proteins (from the complete set of protein coding genes) as non-RNA-binding proteins. We also 

collected high-throughput data documenting various dynamic properties of messenger RNA 

transcripts and their translated protein products in yeast from different sources as described in 

Materials and Methods. These properties included the mRNA stability, mRNA copy number, 

ribosome occupancy, protein stability and abundance. In addition to these attributes of mRNAs 

and proteins, we also obtained the data describing the cell-to-cell variation in protein expression 

in a genetically homogenous population of cells, typically referred to as protein expression 

noise.  

 

 
 

(Space left for an enhanced layout of the figure) 
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Figure 5-3: Comparing expression dynamics of RBPs with non-RBPs in the entire genome. Box-plots 
showing the distribution of values for various regulatory properties for the two different groups of proteins 
(RBPs and non-RBPs) in S. cerevisiae. Blue and red bars correspond to RBP and non-RBP populations 
respectively. Box-plot identifies the middle 50% of the data, the median, and the extreme points. The 
entire set of data points is divided into quartiles and the inter-quartile range (IQR) is calculated as the 
difference between x0.75 and x0.25. The range of the 25% of the data points above (x0.75) and below 
(x0.25) the median (x0.50) is displayed as a filled box. The horizontal line and the notch represent the 
median and confidence intervals, respectively. Data points greater or less than 1.5 IQR represent outliers 
and are shown as dots. The horizontal line that is connected by dashed lines above and below the filled 
box (whiskers) represent the largest and smallest non-outlier data points, respectively. (A) mRNA half-life 
(B) mRNA copy number (C) Ribosome occupancy (D) Protein abundance (E) Protein half-life (F) Protein 
noise. In each case, P-values shown correspond to the significance estimated based on Wilcoxon test 
comparing the RBP and non-RBP group of proteins. RBPs were found to show significantly lower 
transcript stability, higher mRNA copy number, ribosome occupancy, protein stability and abundance. 
However protein noise which reflects the extent of cell-to-cell variation in protein levels, was found to be 
significantly lower for RBPs compared to non-RBPs suggesting that most RBPs are uniformly expressed 
across a homogenous population of cells.  
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Messenger RNA half-life is a measure of transcript stability in the cell, while mRNA copy 

number reflects its abundance. We first asked whether RBPs as a functional class show a 

different tendency in comparison to non-RBPs in these properties. As a result of this analysis, 
we found that mRNAs encoding RBPs are significantly less stable (i.e., short half-life) at the 

transcript level compared to those genes that do not encoded RBPs (p = 3.1 x 10–10, Wilcoxon 

test) (Figure 5-3A). In yeast it has been shown that, in general, mRNAs of central physiological 

pathways have longer half-life and mRNAs encoding regulatory and signaling proteins have 

shorter half-life (Pombo et al., 1999). In line with these observations, the observed lower half-life 

of RBPs in our analysis is consistent with their regulatory function and quick turn over at 

transcript level. However, a comparison of the mRNA copy number of the two groups of genes, 

which is a proxy for mRNA abundance in the cell, indicated that RBPs are encoded by genes 

which exhibit much higher mRNA copy number (p < 2.2 x 10–16, Wilcoxon test) (Figure 5-3B). 

Exclusion of translation and ribosome associated genes which form a significant fraction of the 

total repertoire of RBPs and are known to be highly expressed, did not change our results. 

These observations suggest that RBPs tend to be less stable but more abundant at transcript 

level suggesting that abundance is a more prominent factor than their stability. Both mRNA half-

life and mRNA abundance data indicate that RBP’s expression at mRNA level is likely to be 

transient but whenever they are transcribed they are produced at high concentrations. 

Ribosome occupancy has been shown to be a measure of translational efficiency of 

mRNA. Higher ribosome occupancy relates to higher protein synthesis and lower ribosome 

occupancy indicates low translation rate of mRNA. We next asked whether the ribosome 

occupancy i.e, rate of translation, of RBPs is higher than those for non-RBPs and if their protein 

levels are higher within the cell. This analysis clearly revealed that RBPs have high ribosome 

occupancy (p = 2.5 x 10–13, Wilcoxon test) (Figure 5-3C) and are also present in much higher 

concentrations (p < 2.2 x 10–16, Wilcoxon test) (Figure 5-3D) with median abundances of RBPs 

being roughly double that observed for non-RBPs (3895 versus 2132 protein molecules/cell). 

These results indicate that RBPs are abundant and are translated rapidly, supporting the 

versatile nature of their involvement in multiple post-transcriptional control mechanisms at 

different cellular locations. Exclusion of ribosome and translation associated factors from RBPs 

to compare non-ribosomal RBPs against non-RBPs indicated that ribosomal RBPs contribute 

significantly to the observed differences in the rate of translation and protein abundance of 

RBPs. Comparing the protein concentrations of non-ribosomal RBPs with non-RBPs indicated 

that the former are still significantly more abundant (p =  2.2 x 10-2). 
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Stability of a protein measured as its half-life can be considered as a proxy for the life 

time of a protein in a cell. Therefore, to understand the degradation rates of RBPs and to 

compare them against non-RBPs we analyzed their protein half-lives (see Materials and 

Methods). This analysis revealed that RBPs are significantly more stable than non-RBPs, with 

RBPs exhibiting a median half-life of 71 min as against non-RBPs with 46 min (p = 5 x 10-12, 

Wilcoxon test) (Figure 5-3E).  Repeating the analyses with non-ribosomal RBPs showed a 

consistent trend despite their exclusion (p = 4.8 x 10-2). Our observations on the increased 

protein stability and concentration of the RBPs compared to other proteins in the cell suggests 

that RBPs, whose main functional role is in the processing and localization of their mRNA 

targets, might be required at multiple sub-cellular locations and be used throughout the cell 

cycle. This may likely warrant their higher abundance and stability at the protein level. It is 

important to note that although RBPs exhibit high protein stability, they also show low transcript 

stability which indicates that most RBPs which are stable at the protein level, might be avoiding 

cellular crowding of their transcripts by quick turnover at the transcript level. Indeed, it has been 

shown in yeast that most RBPs auto-regulate their own activity at the transcript level (Hogan et 

al., 2008).  

In order to understand how these properties vary with different processes in which RBPs 

are involved, we divided RBPs in to four major categories: translation, transport, RNA 

localization and processing using GO annotations and compared them with non-RBPs. This 

analysis revealed that the general trends observed for different categories are similar to those 

seen for RBPs as a whole although certain categories comprised of relatively few RBPs. 

Several RBPs have been shown to be post-translationally modified, which adds a layer of 

flexibility to their function. Many of these post-translational modifications have been shown to 

modify their RNA-binding properties or their sub-cellular localization. Indeed, at least four types 

of post-translational modifications namely phosphorylation, ubiquitination, methylation and 

SUMOylation have been reported for RBPs (Glisovic et al., 2008). High stability of RBPs 

indicates the potential that post-translational modifications can offer in the diversification of their 

function. Infact, analysis of the number of kinase substrates in RBP and non-RBP populations 

using the currently available protein phosphorylation map for yeast (Ptacek et al., 2005), 

suggests that some kinases not only target higher number of RBPs compared to non-RBPs (p = 

2.7 x 10-2) but also more number of kinases are associated with RBPs (p < 2.2 x10-16). 

Gene expression is a highly dynamic process and because of its dynamic nature there is 

a large variation in a protein’s abundance among different cells in a population. This variation is 

termed as biological noise. Genes whose expression varies to a large extent show more noise 
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and these are typically involved in stress response, amino acid biosynthesis and heat shock. On 

the other hand, genes which show consistent expression during the cell cycle such as those 

involved in protein degradation and ribosomal proteins tend to show low noise (Newman et al., 

2006). Here, we have explored this noise data, to address whether RBPs show significant 

difference from non-RBPs in terms of biological noise. As shown in Figure 5-3F, RBPs were 

found to show significantly lower noise levels in comparison to non-RBPs (p = 1.7 x 10-12, 

Wilcoxon test). Re-analyzing the data by excluding ribosomal proteins still clearly indicated that 

RBPs exhibit much lower noise compared to other protein coding genes (p = 6.3 x 10-6, 

Wilcoxon test). This analysis unambiguously reveals that low noise is an inherent property of all 

RBPs and suggests that RBPs are tightly regulated at the protein level with little variation in their 

expression from cell to cell. 

5.2.5.2 The number of distinct targets bound by a RBP is correlated 

with its cellular abundance 

RBPs are the key elements responsible for the post-transcriptional control of gene expression 

and when combined with their RNA targets, this information can be represented as a RBP-RNA 

network. Although, on a genomic scale, RBPs are believed to control diverse range of functions 

with some eukaryotic systems predominantly using post-transcriptional mechanisms for gene 

expression control (Foth et al., 2008; Noe et al., 2008), large-scale elucidation of post-

transcriptional networks is limited to few model organisms for a select set of RBPs.  In yeast, 

few recent genome-wide studies identified the targets for several RBPs using RIP-chip 

technology (Gerber et al., 2004; Hogan et al., 2008). These studies revealed the important roles 

played by different families of RBPs and the structure of the post-transcriptional network formed 

by them. These high-throughput studies showed that the number of targets of a RBP can vary 

widely, from fewer than ten to more than thousands. In this study we obtained this network 

discussed above, where nodes represent RBPs or their targets and links represent a distinct 

physical association between the RBP and the target RNA. We then systematically investigated 

the relationship between different dynamic properties of RBPs and the number of distinct RNA 

targets they control.  

 

 

(Space left for an enhanced layout of the figure) 
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Figure 5-4: Relationship between the number of targets of a RBP and it’s A) transcript turn over B) 
estimated mRNA copy number per cell C) extent of ribosome occupancy and D) protein abundance. In 
each case, except for transcript stability, we found a strong correlation between the connectivity of a RBP 
and the regulatory property studied, suggesting that RBPs which regulate high number of targets are 
present at higher levels at the protein level. RBPs are divided into 5 bins, with approximately equal 
number of RBPs, based on their connectivity. Points correspond to the median values in the respective 
bins while the error bars show the normalized median deviation calculated as the ratio between the 
Median Absolute Deviation (MAD) and the square-root of the number of values in the bin.  
 

We first asked whether the number of targets of a RBP is correlated with its transcript 

stability by grouping the RBPs into different connectivity bins i.e., groups of RBPs comprising of 

number of distinct RNA targets (see Methods). As a result of this analysis, we found that there 

was a weak but positive correlation between them suggesting that transcript turnover of RBPs 

may not be dependent on their number of targets (R2=0.18, p < 0.24) (Figure 5-4A). On the 

other hand, a comparison of the mRNA copy number of a RBP and its number of targets 

revealed a strong positive correlation between them suggesting that RBPs with high number of 

targets are likely to be more highly expressed at the mRNA level (R2=0.96, p <  1 x 10-3) (Figure 

5-4B). For instance, PAB1 is a highly connected essential RBP which can bind to the poly (A) 

tail of an mRNA to regulate its translational initiation through its binding with eIF4G protein 

(Kessler and Sachs, 1998; Sachs et al., 1987). Indeed, it was reported to bind to 1,994 distinct 
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RNA targets and was among the genes with very high mRNA copy number (7.1 mRNA 

copies/cell). These observations point to a direct link between the number of distinct targets of a 

RBP and its available number of copies of mRNA in the cell. To test the existence of a 

correlation between the connectivity and the rate of translation or the absolute protein 

abundance profile of RBPs, we further explored the relationship between them (Figure 5-4C and 

5-4D). This comparison uncovered a more general link between translational efficiency of a 

RBP and its degree. For instance, Pub1p is another poly (A) binding protein (Matunis et al., 

1993) which binds to diverse sets of transcripts involved in ribosome biogenesis, cellular 

metabolism and transport (Duttagupta et al., 2005). This protein was reported to be localized to 

both nucleus and cytoplasm (Anderson et al., 1993). Hence to be present at different locations 

and to bind to a large number of transcripts it has to be translated more often and should be 

present in more number of copies. Consistent with this, we find that it’s transcript exhibits high 

ribosome occupancy. Indeed, Hogan et. al (Hogan et al., 2008) demonstrated that RNA targets 

of highly connected RBPs were enriched for multiple processes and sub-cellular localizations. 

These results clearly unveil the strong relationship between the concentration of a RBP and the 

number of distinct RNA targets bound by them, indicating that RBPs responsible for controlling 

a wide range of targets must occur in more number of copies at the protein level. It is important 

to note that although RBPs as a group of genes are significantly higher expressed at the 

transcript and protein levels compared to non-RBP population, relative abundance of the RBPs 

is correlated to the hierarchy of a RBP, defined as the number of distinct RNA targets. It is also 

noteworthy to mention that the RBPs analyzed for connectivity in this section did not comprise 

of core ribosomal proteins, strengthening the generality of these observations. 

5.2.5.3 RBPs bound to many RNA targets are less frequently degraded 

and tightly controlled at protein level 

Although RBPs with more number of distinct targets are expressed at a higher level compared 

to those which control fewer targets, it is not evident if their protein turnover rates would hold a 

similar trend. Therefore, to understand whether there is any dependence between the stability of 

a RBP and the number of transcripts it controls, we employed a similar approach as above. This 

analysis clearly showed that RBPs which regulate many targets are highly stable at the protein 

level (R2=0.95, p < 3 x 10-3) (Figure 5-5A). The link between protein stability and RBP’s degree 

indicates that RBPs controlling several targets are less frequently degraded at the protein level 

and might be present throughout the cell cycle. Taken together, these observations raise the 

question: If highly connected RBPs are consistently expressed in large concentrations and are 



Post-transcriptional networks controlled by RNA-binding proteins                                                                        5-22 

 

 

less frequently degraded, would their regulation be tightly controlled at the protein level. The fact 

that RBPs as a group show significantly lower noise in comparison to non-RBPs and that 

previous studies reported that regulatory proteins generally exhibit low noise (Newman et al., 

2006) suggests that highly connected RBPs can be expected to show less noise in comparison 

to those which are poorly connected. Hence, we compared the connectivity of RBPs with their 

noise value. As shown in Figure 5-5B, we found a strong correlation between the number of 

targets of a RBP and its protein noise. In particular, highly connected RBPs showed minimal 

variation in their protein expression across a population of cells (R2=0.93, p < 4 x 10-3). This 

suggests that RBPs controlling many targets are very tightly regulated with little cell-to-cell 

variation in their protein expression. These observations indicate that any significant change in 

their availability or regulation may result in an imbalance in cellular homeostasis as it may affect 

a vast number of transcripts. Indeed, a comparison of the number of essential genes in RBPs 

showed a two-fold enrichment compared to the whole genome, suggesting their central role in 

maintaining cellular homeostasis. These lines of evidence reveal that RBPs act as an important 

class of regulatory molecules in the cell whose expression is tightly controlled despite their 

occurrence in large cellular concentrations and in multiple sub-cellular locations.  
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Figure 5-5: Relationship between RBP’s connectivity versus it’s A) protein stability and B) noise. RBPs 
controlling more number of targets showed an increasing tendency to be stable at the protein level and 
deceasing tendency in protein noise.  RBPs are divided into 5 bins, with approximately equal number of 
RBPs, based on their connectivity. Points correspond to the median values while the error bars show the 
normalized median deviation calculated as the ratio between the Median Absolute Deviation (MAD) and 
the square-root of the number of values in the bin.  
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5.3 DISCUSSION & CONCLUSION 

RBPs form an important class of evolutionarily conserved proteins (Anantharaman et al., 2002) 

and are known to be involved in a wide range of cellular processes. In addition to their functional 

roles in diverse processes as shown in Figure 5-1A, RBPs are also known to be implicated in a 

number of disorders due to their mis-expression or mutations in the sequences that are 

employed to recognize their cognate target RNAs. For instance, in humans, malfunctioning of 

RBPs like NOVA, which is a neuron specific protein responsible for the alternative splicing of a 

subset of pre-mRNAs, is known to be involved in the pathogenesis of the neurodegenerative 

syndrome Paraneoplastic Opsoclonus-Myoclonus Ataxia (POMA) (Ule et al., 2003). In line with 

this and other observations on the impact of changes in the expression levels of RBPs being 

associated with diseases and fitness defects (Cooper et al., 2009; Lukong et al., 2008) results 

reported here reveal that RBPs as a functional class show very little variation in their expression 

across cells suggesting the importance in tightly controlling them. In addition, it was found that 

RBPs which regulate multiple transcripts show a significantly reduced noise indicating that 

variations in the expression levels of these key post-transcriptional regulators can have 

significant impact on the functioning of the cell thereby leading to a disease phenotype.  

The fact that RBPs are generally less stable at the transcript level but exhibit higher 

stability and abundance at the protein level demonstrates that they form a group of proteins 

which follow the theoretically proposed time averaging effect on noise propagation (Paulsson, 

2004), which suggests that if the protein has long half life compared to its mRNA then it 

averages over the noisy fluctuations in the mRNA decreasing the protein expression noise. 

These results also indicate that regulation of RBPs is predominantly controlled at the protein 

level through the use a number of post-translational modifications (PTMs) like phosphorylation, 

arginine methylation and sumoylation which have been reported to occur in several well-studied 

RBPs (Schullery et al., 1999; Vassileva and Matunis, 2004; Yu et al., 2004). Indeed, a 

comparison of the number of phosphorylated targets in RBPs and non-RBPs revealed the 

predominance of post-translational control in RBPs. Therefore, it is possible to suggest that a 

wide variety of these PTMs might be responsible for their ability to spatially and temporally 

regulate transcripts in eukaryotic systems. It is possible to speculate from these observations 

that the low noise levels of RBPs together with extensive regulatory flexibility at the protein level 

might give them an advantage to control gene regulation at a finer level compared to 

transcriptional control by transcription factors. This might thereby provide a quick and extensive 

framework for controlling gene expression of a wide range of genes. This is also supported 



Post-transcriptional networks controlled by RNA-binding proteins                                                                        5-24 

 

 

based on the observation that RBPs which are central to the cell are not only required in large 

quantities but are also found to be present for a longer time in the cell. All these observations 

suggest the importance of a post-transcriptional network of interactions in higher eukaryotes 

and raise several open questions in the regulation of gene expression beyond transcription. It 

should be possible to address such questions in the near future as more data from different 

levels of regulation becomes available (Halbeisen et al., 2008; Hieronymus and Silver, 2004; 

Lackner et al., 2007). 

While the post-genomic era has introduced the genomic complement of hundreds of 

genomes, it has also left us with several unanswered questions regarding the functional 

relevance of the genes an organism encodes or principles that govern the regulation of the 

genes encoded on them. It is noteworthy to mention that even in a model organism like S. 

cerevisiae, regulation of gene expression at the post-transcriptional level is rather poorly 

understood. Nevertheless with recent improvements in and availability of high-throughput 

approaches such as RNA-sequencing and immunoprecipitation protocols, future years can 

expect to see a wealth of data detailing the dynamic, spatial and tissue-specific nature of the 

interactions governed by these exciting class of regulatory molecules, which would undoubtedly 

allow us to gain a deeper understanding of regulation at a level which has been under-

appreciated over the past decades. Given the unprecedented detail at which these high-

throughput technologies can reveal the link between the regulatory elements on the target 

genes and the RNA-binding proteins specific to environmental conditions, it is possible to use 

these approaches to interrogate the prevalence of these phenomena in different states and 

thereby study their relevance to physiology and disease in diverse model systems. 

5.4 MATERIALS AND METHODS 

5.4.1 Data on RNA-binding proteins in S. cerevisiae and their 

interactions 

The complete list of annotated RBPs and the data for well studied RBPs in S. cerevisiae was 

obtained from Hogan et al (Hogan et al., 2008).  The total number of annotated RBPs in yeast 

reported in this study was 561 and mRNA targets for 41 RBPs have been systematically 

identified on a whole genome scale by employing the RIP-chip technology. This approach 

essentially consists of two steps. The first involves generation of two RNA samples, isolation of 

RBP bound mRNA by immunoprecipitation of messenger-ribonucleoproteins using affinity 

purification and isolation of cellular RNA representing the whole set of transcripts in the cell. The 
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second step involves hybridization of the two isolated RNA samples using dual-color 

microarrays and are analyzed for enriched transcripts, to detect the bound targets of a RBP 

(Sanchez et al., 2007). A total of 14,312 interactions comprising of 41 RBPs and 5025 genes in 
the entire genome of S. cerevisiae, which forms a network of post-transcriptional interactions 

between RBPs and the target RNAs encoding for proteins obtained using this approach was 

used for studying the expression dynamics, while the network properties have been studied 

using the entire network of 19396 interactions reported in the original study (Hogan et al., 2008). 

5.4.2 Analysis of the structure and properties of post-transcriptional 

regulatory network 

We used igraph, a publicly available R package [see http://cneurocvs.rmki.kfki.hu/igraph/ and 

http://www.r-project.org] to study the properties of this network and to calculate the centrality of 

the nodes in this framework. In particular, since the network analyzed in this study was 

considered as undirected for the sake of simplicity, we used the corresponding versions of the 

functions: degree, transitivity, betweenness and closeness for calculating the degree, clustering 

coefficient, betweenness and closeness centralities of a node. Betweenness centrality, which is 

the number of shortest paths going through a node was calculated using the brandes algorithm 

(Brandes, 2001) implemented in R. Similarly, closeness, measured as average length of the 

shortest paths to all the other vertices in the graph, was obtained using the implementation in R. 

Since the centrality measures, betweenness and closeness use the shortest path lengths 

between all pairs of nodes in a graph, for cases where no path exists between a particular pair 

of nodes, shortest path length was taken as one less than the maximum number of nodes in the 

graph. Note that this is also the default assumption for calculating centrality measures in igraph. 

The Clustering coefficient is a property of a node which tells how connected are the neighbors 

of a given node to what is expected when all the neighbors are completely connected. An 

extension of this metric to the complete network defined as the average clustering coefficient 

tells whether the network is modular or is sparsely connected. Other network properties were 
calculated using the default implementations in igraph or as discussed in the main text. 

5.4.3 Data for comparative analysis of expression dynamics 

To study the expression dynamics of RBPs in comparison to other protein coding genes in the 

genome and to analyze its relationship with the number of RNAs controlled by RBPs, we have 

employed a variety of datasets. These include the transcript stability, mRNA copy number, 

ribosome occupancy, protein half-life, protein abundance and protein noise. Transcript stability 
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which is measured as the RNA half-life of a transcript was obtained from Wang et. al (Wang et 

al., 2002) and contained mRNA half-lives for 4687 genes in the entire genome. A key parameter 

describing the translational status of a gene is the fraction of its transcripts engaged in 

translation which is defined by the ribosome occupancy (Arava et al., 2003). Likewise, the 

number of mRNA copies of a gene can be best described by the parameter mRNA copy number 
per cell. Both these parameters for genes in S. cerevisiae were obtained from Arava et. al 

(Arava et al., 2003) where the authors employed velocity sedimentation to separate mRNAs 

bound to ribosomes and quantified them using microarray analysis. mRNA copy number could 

be obtained for 5643 genes while ribosome occupancy could be mapped for 5700 genes, 

allowing us to study the extent of transcript abundance and translation rates of the genes and 

transcripts. Stability of a protein which is an estimate of the duration it occurs with in the cell is 

measured as the half-life of the protein. In yeast, protein half-lives have been estimated by Belle 

and co-workers for about 3750 proteins by inhibiting translation (Belle et al., 2006). In this study 

we used this data by excluding proteins whose half-lives have been obtained by extrapolation. 

Protein abundance which reveals the absolute number of protein molecules per cell was 

obtained from Ghaemmaghami et. al (Ghaemmaghami et al., 2003). We could obtain 

abundance values for 3868 proteins in the entire genome. Biological noise which is typically 

defined as the variation in the expression of a protein between different cells in a homogenous 

population of cells was obtained from Newman et. al (Newman et al., 2006). We could obtain 

noise data for 2213 genes for cells grown on rich media. The authors in this study employed two 

distinct measures for calculating protein noise, coefficient of variation (CV), which is the ratio of 

the standard deviation in the expression of a protein and it’s mean expression and distance from 

median (DM), which was calculated as the difference between the CV value of a protein and a 

running median of all CV values. In this study we have used DM as a measure of protein noise 

as it was indicated to be a more robust measure compared to CV to understand protein to 

protein variations in noise levels (Newman et al., 2006). Since DM is the distance between the 

CV and median value of all CVs, negative values correspond to relatively less noise while 

positive values reflect higher levels of noise in the protein expression. 

5.4.4 Comparison of the regulatory properties of RBPs with other 

protein coding genes 

To study whether RBPs show differences in dynamic properties when compared to other protein 

coding genes, we defined non-RBP set of proteins. This set essentially comprised of proteins in 

the whole genome after excluding the list of 561 RBPs defined above. To assess whether RBPs 
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exhibit a different trend compared to non-RBPs for each of the properties studied, we used 

Wilcoxon rank-sum test or Mann-Whitney U test available in the R statistical package to 

calculate the significance. Wilcoxon test enables the comparison of two samples to assess 

whether they come from the same distribution or not. Since this test is non-parametric and does 

not assume any inherent distribution of the samples it is ideal to compare different samples. Box 

plots were used to represent the distribution of values for each property. Since the RBP set 

comprised of a number of ribosome associated proteins we also excluded them from this list 

and repeated the analysis to test the robustness of the tendencies observed, in the absence of 

ribosomal proteins.  

5.4.5 Analysis of the relationship between the number of targets of a 

RBP and its dynamic properties 

To understand the link between the number of targets of a RBP and its dynamic properties, 

RBPs were first grouped on the basis of their number of distinct RNA targets to which they were 

bound. This grouping was done in such a way that each bin of RBPs contained roughly equal 

number of RBPs. This resulted in five different bins corresponding to varying degrees of RBPs, 

with some RBPs controlling as many as 2000 mRNAs in the RBP-RNA network. To nullify the 

effect of outliers in each bin, median values were calculated for different dynamic properties and 

correlation was estimated between median values and connectivity of RBPs. P-values were 

calculated using the coefficient of correlation and the number of data points, based on a linear 

fit. 
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6.1 Outline 

An important notion that is emerging in post-genomic biology is that cellular components can be 

visualized as a network of associations between different molecules like proteins, DNA, RNA 

and metabolites. This has led to the application of network theory and network-based 

approaches to a wide range of biological problems from understanding regulation of gene 

expression to prediction of gene’s function and phenotype to drug discovery settings. In Chapter 

1, I introduced the notion of networks and the basic principles of network biology together with 

an overview of different kinds of networks that are being widely studied in biological sciences at 

the systems level. For instance, while in transcriptional and post-transcriptional networks, 

typically trans-acting elements like TFs, RBPs and sigma factors form one set of nodes and 

their target genes or RNAs, of which they control the activity, form the other set of nodes. The 

links between them which have directionality from the trans-acting elements to their target 

genes, controlled by their cis-regulatory elements, form a complex and directional network of 

interactions. In contrast, functional linkage networks constructed in function prediction pipelines 

typically comprise of undirected networks where all the nodes are treated essentially the same 

and there is no directionality between nodes. These networks aim to uncover the broad 

functional role of the uncharacterized genes using the annotations of already characterized 

members to which they are connected to. I then give a brief overview of small-molecule protein 

interaction networks which are also referred to as the drug-target networks to extend the 

generality and applicability of the network-guided approaches in understanding biological 

systems. 

Gene expression is a highly regulated process and is controlled at several levels. In 

prokaryotes, control of gene expression predominantly occurs at the level of transcription and 

TFs play important role in this process. In Chapter 2, I address the questions, how and why are 

genes organized on a particular fashion on bacterial genomes and what are the constraints 

bacterial transcriptional regulatory networks impose on their genomic organization. I extend this 

one step further to unravel the constraints imposed on the network of TF-TF interactions and 

relate it to the numerous phenotypes they can impart to growing bacterial populations.  

In contrast to prokaryotes, regulation of gene expression in eukaryotes is much more 

complex and is known to occur at many different levels even at the stage of transcription. In 

Chapter 3, I first present an overview of our current understanding of eukaryotic gene regulation 

at different levels and then present evidence for the existence of a higher-order organization of 

genes across and within chromosomes that is constrained by transcriptional regulation. These 



Conclusions and Implications                                                                                                                                    6-4 

 

  

results demonstrate that specific organization of genes across and within chromosomes that 

allowed for efficient control of transcription within the nuclear space has been selected during 

evolution. 

Determining the functions of proteins encoded by genome sequences represents a 

major challenge in contemporary biology. With traditional methods for annotation of a genome 

reaching their saturation there is an increasing need to develop alternate and complementary 

approaches for solving the genomic function prediction challenge. As a result, alternate 

computational methods for inferring the protein function such as those which exploit the context 

of a protein in protein association networks have come to be sought after. These network-based 

approaches aim to integrate diverse kinds of functional interactions as a means of boosting 

coverage as well as confidence level of an association. In Chapter 4, I first present an overview 

of different computational approaches for inferring the function of uncharacterized genes and 

discuss network-based approaches currently employed for predicting function. I then summarize 

a recent high-throughput study performed to provide a ‘systems-wide’ functional blueprint of the 

bacterial model, Escherichia coli K-12, with insights into the biological and evolutionary 

significance of previously uncharacterized proteins. Given the volume of high-throughput data 

that is being reported for understanding diverse model systems, the network-based approaches 

presented here would undoubtedly be a useful addition to unravel the functions of an increasing 

number of uncharacterized proteins accumulating in the genomic databases. 

While control of gene expression in eukaryotes first occurs at the level of transcription, 

there is accumulating evidence that an often neglected set of factors called RNA-binding 

proteins play major roles in controlling the expression of a protein by regulating expression at 

post-transcriptional level. In Chapter 5, I attempt to provide a comprehensive overview and 

preliminary insights on this rapidly developing area of post-transcriptional regulatory networks 

formed by RBPs. I discuss the sequence attributes and functional processes associated with 

RBPs, methods used for the construction of the networks formed by them and finally discuss the 

structure and dynamics of these post-transcriptional networks based on recent publicly available 

data. The results obtained from this study show that RBPs exhibit distinct gene expression 

dynamics compared to other class of proteins in a eukaryotic cell and that these properties are 

also reflected from an analysis of the post-transcriptional networks formed by them. 

In the current chapter, I first summarize the key findings of all the previous chapters and 

then discuss their broader implications.  
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6.2 Major Findings 

6.2.1 Constraints imposed by transcriptional regulation on genome 

organization and regulatory network  

In Chapter 2, using network-guided approaches for understanding the transcriptional regulatory 

networks of bacteria, I show that there are at least two kinds of constraints. The first is among 

the network of transcriptional regulatory interactions between TFs, where in I show that while 

the mode of regulatory interaction between transcription factors (TFs) is predominantly positive, 

TFs are frequently negatively auto-regulated. Furthermore, feedback loops, regulatory motifs 

and regulatory pathways are unevenly distributed in this network with short pathways, multiple 

feed-forward loops and negative auto-regulatory interactions being abundant in the sub-network 

controlling metabolic functions such as the use of alternative carbon sources. In contrast, long 

hierarchical cascades and positive auto-regulatory loops are over-represented in the sub-

networks controlling developmental processes for biofilm and chemotaxis. Based on these 

observations, I propose that these long transcriptional cascades coupled with regulatory 

switches (positive loops) for sensing external conditions enable the coexistence of multiple 

bacterial phenotypes in growing bacterial populations  (Martinez-Antonio et al., 2008). A second 

constraint is that of a link between the transcriptional hierarchy of regulons (TFs) and their 

genome organization. In particular, I show that, to drive the kinetics and concentration gradients, 

TFs belonging to big and small regulons (classified based on the number of genes they regulate 

in the transcriptional network) organize themselves differently on the genome with respect to 

their targets. Using data from independently reported studies in E. coli, I demonstrate that 

higher a TF is in the transcriptional hierarchy more are its detected number of mRNA and 

protein molecules per cell, reflecting its need to be expressed in higher concentrations to 

regulate target genes located dispersedly on the chromosome. In contrast to big regulons, local 

or dedicated TFs (lower in the network hierarchy and regulating much fewer genes) were found 

to be expressed in much lower concentrations explaining the reasons for their proximity on the 

chromosome to their target genes (Janga et al., 2009). These observations give insights into 

how the scale-free structure of transcriptional networks can be encoded on the chromosome to 

drive the kinetics and concentration gradients of TFs, depending on the number of genes they 

regulate and could facilitate the horizontal transfer of local environment-specific transcriptional 

modules. I then propose a conceptual model based on these observations to explain how the 

hierarchical structure of TRNs might be ultimately governed by the dynamic biophysical 
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requirements for targeting DNA-binding sites by transcription factors. These results suggest that 

the main parameters defining the position of a TF in the network hierarchy are the number and 

chromosomal distances of the genes they regulate and their protein concentration gradients. 

These observations give insights into how the hierarchical structure of transcriptional networks 

can be encoded on the chromosome to drive the kinetics and concentration gradients of TFs 

depending on the number of genes they regulate and could be a common theme valid for other 

prokaryotes, proposing the role of transcriptional regulation in shaping the organization of genes 

on a chromosome. 

In Chapter 3, extending these ideas to eukaryotic systems, I first describe our current 

understanding of eukaryotic regulation in all the three dimensions (DNA sequence level, 

chromatin level and nuclear organizational levels) to reinforce the notion that regulation in 

higher organisms is much more complex and needs intricate co-ordination of several molecular 

events in space and time. I then present evidence, analyzing the currently known transcriptional 
regulatory network of the single-celled model eukaryote, Saccharomyces cerevisiae, for the 

existence of a higher-order organization of genes across and within chromosomes that is 

constrained by transcriptional regulation. In particular, here I reveal that the target genes (TGs) 
of transcription factors (TFs) for the yeast, S. cerevisiae, are encoded in a highly ordered 

manner both across and within the 16 chromosomes by showing that (i) the TGs of a majority of 

TFs show a strong preference to be encoded on specific chromosomes, (ii) the TGs of a 

significant number of TFs display a strong preference (or avoidance) to be encoded in regions 

containing particular chromosomal landmarks such as telomeres and centromeres, and (iii) the 

TGs of most TFs are positionally clustered within a chromosome (Janga et al., 2008). These 

results demonstrate that specific organization of genes that allowed for efficient control of 

transcription within the nuclear space has been selected during evolution which has lead to the 

constraints observed at different levels reported in this chapter. Further analysis on human and 

mouse TFs permitted us to also show that the constraints are more general and are not limited 

to yeast alone suggesting that uncovering such higher-order organization of genes in other 

eukaryotes will provide insights into nuclear architecture, and will have implications in genetic 

engineering experiments, gene therapy, and understanding disease conditions that involve 

chromosomal aberrations. 

6.2.2 Uncovering the functional landscape of a bacterial genome 

Determining the functions of proteins encoded by genome sequences represents a major 

challenge in contemporary biology. As of now, public databases report more than 1000 
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completely sequenced genomes with over 3700 genome projects underway leading to a 

situation where we know the location and position of the protein coding genes on the genome 

but we hardly have a clue on what many of these protein machines do across genomes. Add to 

this the sequencing of metagenomic samples which currently stand at more than 100 in number, 

with the venter’s marine microbial community’s project alone contributing more than 6,000,000 

proteins to the already accumulating list of protein repertoire (Venter et al., 2004). All these point 

out to the slow pace at which we are able to understand the protein repertoire of the organisms 

at the functional level despite rapid pace at which sequencing technologies are able to generate 

the genome sequence data.  

For instance, yet despite being the most highly studied model bacterium, a recent 

comprehensive community annotation effort for the fully sequenced reference K-12 laboratory 

strains (Riley et al., 2006) indicated that only half (~54%) of the protein-coding gene products of 

E. coli currently have experimental evidence indicative of a biological role. The remaining genes 

have either only generic, homology-derived functional attributes (e.g. ‘predicted DNA-binding’) 

or no discernable physiological significance. In Chapter 4, I discuss a recent study where we 

attempted to characterize one-third of the 4,225 protein-coding genes of Escherichia coli K-12 

which remain functionally unannotated (functional orphans) (Hu et al., 2009). In particular, to 

elucidate their biological roles, we performed an extensive proteomic survey using affinity-
tagged E. coli strains and generated comprehensive genomic context inferences to derive a 

high-confidence compendium for virtually the entire proteome consisting of 5,993 putative 

physical interactions and 74,776 putative functional associations, most of which were novel. We 

then clustered the respective probabilistic networks to reveal putative orphan membership into 

discrete multiprotein complexes and functional modules, while a machine-learning strategy 

based on network integration methods implicated the orphans in specific biological processes. 

In an attempt to uncover the functions of these orphans and to have a complementary 

understanding (to traditional methods) of their biological roles in E. coli as well as in other of its 

close relatives, I highlight this resource in this chapter which provides a ‘systems-wide’ 

functional blueprint of a model microbe, with insights into the biological and evolutionary 

significance of previously uncharacterized proteins. The network-based methods developed and 

the approach adopted in this study can not only be used for understanding the functions of 

uncharacterized genes in other prokaryotic systems but will also enable to identify novel cellular 

processes and the interplay between them – an fundamental goal of systems biology which at 

the moment is rather under-appreciated.  
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Defining the precise biological roles and relationships of bacterial gene products in an 

often dynamically changing physiological context is a challenging proposition. Historically, 

systematic assessments of protein function in bacteria have tended to rely on molecular 

inferences based on sequence alignments and domain architectures, while experimental 

characterization has traditionally been driven by specific scientific interests rather than with the 

aim of providing the broader community with unbiased collections of functionally-related proteins 

and phenotypes. Since the biological role of a protein is not necessarily reflected in its primary 

sequence, the elucidation of molecular interaction networks can provide an alternate 

perspective even in the absence of detailed phenotypic data (Ideker and Sharan, 2008; Lee et 

al., 2008). Therefore, the notion of viewing a model microbial cell mechanistically as a series of 

modular molecular interaction networks that underlie the major biochemical processes that 

mediate cell homeostasis and proliferation provides a complementary understanding of 

biological systems with insights into the functional roles of proteins in the context of other 

cellular entities.  

 Since the various methods used in this study discover different types of molecular 

relationships and each has its own intrinsic bias, complementary information was obtained 

through data integration. The limited overlap between the high-confidence physical and 

functional interaction networks presumably stems in part from to the incomplete coverage 

typically achieved by high-throughput experiments and their methodological differences 

(Rajagopala et al., 2007; Yu et al., 2008). For example, certain orphans were difficult to evaluate 

by GC methods due to a lack of apparent orthologs at medium-to-high evolutionary distances, 

which hinders comparative genomic inferences. Likewise, although large-scale tandem affinity 

tagging and purification was performed under near-native physiological conditions to generate 

highly purified preparations of stable, endogenous multiprotein complexes, complete coverage 

of the proteome was not achieved. For instance, a large number of membrane-associated 

proteins were not purified, which require specialized solubilization procedures, while the soluble 

proteins that we failed to tag or detect by mass spectrometry were presumably either of very low 

abundance or not expressed in our growth conditions.   

The observation that the intersection of functional genomics inferences with low-

throughput curated physical interaction data is somewhat higher might be explained by two non-

mutually exclusive ways: first, protein-protein interactions reported in the literature based on 

traditional biochemical methods might be biased towards the most evolutionarily conserved 

multiprotein complexes, which tend to be enriched for essential components with broadly 

distributed phylogenetic profiles that are more easily and accurately predicted by GC methods 
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(like those of ribosomal proteins which form conserved clusters on the genome); second, the 

relatively high sensitivity of the two complementary forms of protein mass spectrometry used in 

this study may have resulted in the detection of lower abundance orphan proteins that have 

previously not been studied in depth.  

In general, the high confidence functional relationships inferred for E. coli in this study 

can be validated by independent experimental tests, and can be extrapolated to other bacterial 

species, including pathogens. In fact, over 35% of the orphans find orthologs as far away as 

Archaea, and hence are likely associated with the same basic housekeeping processes we 

predict for E. coli, such as formation of the cell wall and protein synthesis. Conversely, our 

systematic comparisons also revealed some unique aspects of the orphans in the evolutionary 

history of E. coli, such as the potential fimbriael factors that appear to be restricted to 

Enterobacteriaceae. One interpretation is that orphans (and orphan groups) with limited 

phylogenetic distributions in any major phyla contribute to fine tuning of adaptive physiological 

responses upon changing environmental conditions and hence might be responsible for not yet 

characterized processes in bacterial adaption. Alternatively, some orphans might belong to the 

well conserved biological systems which still need to be characterized for their functional role. 

6.2.3 Structure and dynamics of post-transcriptional networks 

controlled by RNA binding proteins 

While transcription factors regulate the synthesis of RNA of specific gene in response to 

different internal and external stimuli at the level of transcription and several post-translational 

modifications, such as phosphorylation by kinases and ubiquitin ligases, are known to spatially 

and temporally control the availability of functional protein products within the cell, little is known 

about regulation at the post-transcriptional level and major players involved in it. In contrast to 

prokaryotes where transcription and translation are coupled, in eukaryotes transcription usually 

takes place in nucleus and translation in cytoplasm. This uncoupling of transcription and 

translation provides an additional level of gene regulation at post-transcriptional level in 

eukaryotes. Although ignored for a long time the presence of this post-transcriptional control has 

been evidenced by a number of post-genomic studies which showed that in general there is a 

poor correlation between the mRNA and protein pools in eukaryotic cells (Greenbaum et al., 

2003; Gygi et al., 1999; Ideker et al., 2001). It is now increasingly known that this level is 

controlled by numerous factors with major players being the RNA-binding proteins (RBPs) 

(Glisovic et al., 2008; Keene, 2007; Mata et al., 2005). These observations have suggested that 

there is need for an intricate co-ordination of regulatory events from these three different layers 
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to finely control the flow of genetic information from genes to proteins in different conditions. 

Indeed, changes in gene expression due to aberrations at any of these three levels have been 

shown to be responsible for the cause of a number of disorders (Cookson et al., 2009; Cooper 

et al., 2009; Feinberg and Tycko, 2004; Lukong et al., 2008; Nica and Dermitzakis, 2008).  

In Chapter 5, I introduce the important class of post-transcriptional regulators - RBPs 

and show that RBPs are key regulators of different steps in the metabolism of RNA in 

eukaryotes including splicing, poly-adenylation, capping to get mature mRNA, localization, 

translation, stability and degradation of cellular RNAs. To regulate all these different steps of 

RNA metabolism, RBPs bind to RNA and form ribonucleoprotein complexes (RNP). RNPs are 

inherently highly dynamic complexes due to their ability to associate and dissociate with various 

RBPs to mediate different steps of RNA metabolism. I then summarize based on current 

knowledge that RBPs control almost all the steps at post-transcriptional level with some RBPs 

having the ability to be involved in multiple steps of a post-transcriptional regulatory cascade. I 

also argue that the complex combinatorial interplay of different RBPs to integrate various post-

transcriptional events is an inherent property of these post-transcriptional controllers as this 

property facilitates them to fine tune the availability of transcripts both spatially and temporally. 

I then provide an overview of the recent developments in our understanding of the 

repertoire of RBPs across diverse model systems and discuss the approaches currently 

available for the construction of post-transcriptional networks governed by them.  Following that 

I present for the first time an indepth analysis of the properties of post-transcriptional network 

governed by RBPs and proceed to discuss a study where in we compared the expression 

dynamics of RBPs with other protein coding genes in yeast (Mittal et al., 2009). The analysis on 

the expression dynamics showed that RBPs are generally less stable at the transcript level but 

exhibit higher stability and abundance at the protein level demonstrating that they form a group 

of proteins which follow the theoretically proposed time averaging effect on noise propagation 

(Paulsson, 2004), which suggests that if the protein has long half life compared to its mRNA 

then it averages over the noisy fluctuations in the mRNA, thereby decreasing the protein 

expression noise. These results also indicate that regulation of RBPs is predominantly 

controlled at the protein level through the use a number of post-translational modifications 

(PTMs) like phosphorylation, arginine methylation and sumoylation which have been reported to 

occur in several well-studied RBPs (Schullery et al., 1999; Vassileva and Matunis, 2004; Yu et 

al., 2004). Indeed, I also show that a comparison of the number of phosphorylated targets in 

RBPs and non-RBPs reveals the predominance of post-translational control in RBPs. Based on 

this I suggest that a wide variety of these PTMs might be responsible for their ability to spatially 
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and temporally regulate transcripts in eukaryotic systems. It is possible to speculate from these 

observations that the low noise levels of RBPs together with extensive regulatory flexibility at 

the protein level might give them an advantage to control gene regulation at a finer level 

compared to transcriptional control by transcription factors. This might thereby provide a quick 

and extensive framework for controlling gene expression of a wide range of genes. This is also 

supported based on the observations presented in this chapter that RBPs which are central to 

the cell are not only required in large quantities but are also found to be present for a longer 

time in the cell. 

Implications and Future Directions 

The observation that short regulatory pathways composing of multiple feed-forward 

loops with negative auto-regulatory interactions (of TFs) are abundant in the sub-network 
controlling metabolic functions, such as the use of alternative carbon sources in  E. coli, 

indicates that free living bacteria which have the ability to uptake a wide number of sugars to 

adapt themselves to diverse conditions must harbor a high number of such circuits as a means 

of switching between different carbon sources. Likewise, organisms living in extremely 

fluctuating environments might comprise of a higher number of long hierarchical cascades so as 

to accommodate them with developmental-like pathways so that a mixed number of phenotypes 

can be generated to survive the variations in the conditions. Alternatively, network structure in 

such fluctuating environments might be complemented with longer cascades or even 

bifurcations or divisions in the already established circuits as a means of generating novelty to 

the existing developmental programs. Part of the plasticity in such extended network structure 

could come from the presence of multiple auto-regulatory TFs at different stages so that 

decisions can be made at multiple stages enhancing the number of phenotypes and hence the 

adaptive potential of microbes. Therefore, while variations in regulatory network topology might 

be expected, for instance in the case of bacteria with asymmetric cell division (mostly alpha-

proteobacteria), where the offspring asymmetric cells cause a transient genetic asymmetry that 

triggers different developmental processes, such as the formation of stalked and swarmer cells 

in Caulabacter or vegetative and spore-forming cells in Bacillus (Ausmees and Jacobs-Wagner, 

2003; Dworkin, 2003; Dworkin and Losick, 2001; Hilbert and Piggot, 2004; Yudkin and Clarkson, 

2005), future comparisons between network topologies for different model systems should 

further enhance our understanding of regulatory network organization and its conservation or 

variations among different bacterial phyla. 
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It is now clear that regulatory networks are plastic with TFs evolving faster than their target 

genes (Borneman et al., 2007; Hogues et al., 2008; Lozada-Chavez et al., 2006; Madan Babu et 

al., 2006; Tuch et al., 2008). For instance, TFs, TF-families and global regulators have been 

shown not to be conserved in between different major groups of bacteria such as E. coli and B. 

subtilis, with different families being distinctly expanded in different lineages (Janga and Perez-

Rueda, 2009; Lozada-Chavez et al., 2006; Madan Babu et al., 2006). This suggests that 

although the general topological properties such as power-law degree distribution, hierarchical 

organization etc of the regulatory network as well as the gene repertoire might be well-

conserved across organisms, variations might be happening at the wiring of the 

interconnections between the TFs and their targets between different organisms. This implies 

that both genomic organization and architecture on one hand and TFs and their binding 

specificities and locations across genome on the other, play major roles in enabling a significant 

rewiring of the network across organisms as is evidenced from some recent studies (Borneman 

et al., 2007; De et al., 2009; Tuch et al., 2008). It is easy to imagine that this genomic and 

network rewiring together can explain the conservation of the constraints across genomes 

suggesting that the observed constraints might be generic principles valid for all genomes. 

Nevertheless, it remains to be learnt whether this rewiring is valid for high eukaryotes and if so 

how fast and what factors might best explain the rewiring while preserving the constraints. 

Recent experimental data show that regulatory networks can be plastic even among members 

of a population indicating that transcriptional control is much more dynamic in evolution than 

previously thought (Kasowski et al., ; McDaniell et al., ; Zheng et al.). Naturally, it follows that 

some types of TFs might be showing greater plasticity than others in closely related organisms 

or with in individuals and hence might be major contributors for the rewiring of regulatory 

programs. Therefore, it would be interesting to understand the design principles underlying 

these variations. In light of these recent studies, an interesting open question which still remains 

is whether the rewiring in regulatory network can be explained based on phylogenetic distance 

or if other factors like adaptation play more important roles as has been seen in bacteria (Madan 

Babu et al., 2006). 

 Observations in Chapter 4 show that genome-context and network-based methods 

developed here can be employed as powerful means for automating the functional prediction 

pipelines so that any newly sequenced genome can be studied as soon as the gene coordinates 

are available. With the availability of metagenomic sequences the power of these computational 

methods for generating functional association networks will increase not only in terms of 
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coverage but also in terms of quality of predicted associations- thereby increasing the quality of 

the function predictions. With the increasingly cheaper availability of RNA sequencing 

technologies it should be possible to construct expression compendiums to bacterial genomes 

as soon as genome sequences are available. Thus, enabling the addition of these high-

throughput transcriptomic profiling data to function prediction pipelines just like what microarrays 

did in the past decade. Integration of all these high-throughput computational methods together 

with genetic, physical and small molecular perturbation experiments aimed to provide different 

kinds of associations in a condition specific manner, should all enable the rapid screening for 

the phenotypes of newly identified genes faster than it was in the previous century and in 

elucidating their detailed functional inter-relationships with the rest of the cellular machinery.    

In a similar vein, availability of invivo crosslinking assays and cheaper sequencing 

should enable the identification of RNA targets of RBPs from different families at single 

nucleotide resolution which should enable the elucidation of genome-wide RBP-RNA maps. 

Such high density maps will not only permit the understanding of the mechanism of action of 

RBPs but also, when they are performed on a high-throughput way for many RBPs, allow the 

understanding of their interplay in Ribo-nucleoproteins (RNPs) to mediate different RNA 

processing events. In addition, such maps also allow the variations in the binding of different 

RBPs across conditions and between cell types so that tissue-specific variations and 

aberrations can be identified to further exploit them for therapeutic use. The data generated 

using these high-throughput techniques will also enable the improvements in our understanding 

of the cross-talk between different post-transcriptional events and processes. Understanding the 

links between different layers of regulation can also improve our global understanding of 

regulatory processes enabling a better modeling of eukaryotic systems.  

In general, the vast amount of data that will be generated using the next generation 

technologies in the coming years, will form a foundation not only to test many of the hypothesis 

that have been generated during my doctoral work but will also improve our understanding of 

the interpretations of these constraints at different levels. Improved understanding of the design 

principles governing biological systems will improve our ability to model disease phenotypes in a 

larger context. Such developments will allow the development of disease treatment strategies   

using modern systems approaches (Janga and Tzakos, 2009). 
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Editorial

Ten Simple Rules for Organizing a Scientific Meeting
Manuel Corpas1, Nils Gehlenborg1,2, Sarath Chandra Janga3, Philip E. Bourne4*
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Cambridge, United Kingdom, 3Medical Research Council–Laboratory of Molecular Biology, University of Cambridge, Cambridge, United Kingdom, 4 Skaggs School of

Pharmacy and Pharmaceutical Science, University of California San Diego, La Jolla, California, United States of America

Scientific meetings come in various
flavors—from one-day focused workshops
of 1–20 people to large-scale multiple-day
meetings of 1,000 or more delegates,
including keynotes, sessions, posters, social
events, and so on. These ten rules are
intended to provide insights into organiz-
ing meetings across the scale.
Scientific meetings are at the heart of a

scientist’s professional life since they
provide an invaluable opportunity for
learning, networking, and exploring new
ideas. In addition, meetings should be
enjoyable experiences that add exciting
breaks to the usual routine in the labora-
tory. Being involved in organizing these
meetings later in your career is a commu-
nity responsibility. Being involved in the
organization early in your career is a
valuable learning experience [1]. First, it
provides visibility and gets your name and
face known in the community. Second, it
is useful for developing essential skills in
organization, management, team work,
and financial responsibility, all of which
are useful in your later career. Notwith-
standing, it takes a lot of time, and
agreeing to help organize a meeting
should be considered in the context of
your need to get your research done and
so is also a lesson in time management.
What follows are the experiences of
graduate students in organizing scientific
meetings with some editorial oversight
from someone more senior (PEB) who
has organized a number of major meet-
ings over the years.
The International Society for Compu-

tational Biology (ISCB) Student Council
[2] is an organization within the ISCB
that caters to computational biologists
early in their career. The ISCB Student
Council provides activities and events to
its members that facilitate their scientific
development. From our experience in
organizing the Student Council Sympo-
sium [3,4], a meeting that so far has
been held within the context of the
ISMB [5,6] and ECCB conferences, we
have gained knowledge that is typically
not part of an academic curriculum and
which is embodied in the following ten
rules.

Rule 1: The Science Is the Most
Important Thing

Good science, above all else, defines a
good meeting; logistics are important, but
secondary. Get the right people there,
namely the best in the field and those who
will be the best, and the rest will take care
of itself. When choosing a topic for your
conference, map it to the needs of your
target audience. Make sure that you have
a sufficiently wide range of areas, without
being too general. The greater the number
of topics covered, the more likely people
are to come, but the less time you will have
to focus on particular subject matter.
Emerging areas can attract greater inter-
est; try to include them in your program as
much as possible; let your audience decide
the program through the papers they
submit to the general call for papers. This
can be done with broad and compelling
topic areas such as ‘‘Emerging Trends in
…’’ or ‘‘New Developments in …’’.

Rule 2: Allow for Plenty of
Planning Time

Planning time should range from nine
months to more than a year ahead of the
conference, depending on the size of your
event. Allow plenty of time to select your
meeting venue; to call for, review, and
accept scientific submissions; to arrange
for affordable/discounted hotel rooms; to
book flights and other transportation
options to the conference. Having out-
standing keynote speakers at your event
will also require you contact them months
in advance—the bigger the name, the
more time is required.

Rule 3: Study All Potential
Financial Issues Affecting Your
Event

Sponsors are usually your primary
source of funds, next to the delegates’
registration fees. To increase the chances
of being sponsored by industry, write them
a clear proposal stating how the money
will be spent and what benefits they can
expect to get in return. You may also want
to reserve a few time slots for industry talks
or demos as a way of attracting more
sponsors, but be wary that the scientific
flavor of the meeting is not impacted by
blatant commercialism. Make sure you
first approach the sponsors that match
your interest topics the closest. If they say
they are not interested this year, keep their
contact information, as they might be able
to sponsor you in future events. Approach
them early rather than later in any case.
The cost of your conference will be
proportional to the capacity of the venue;
therefore, a good estimation of the number
of attendees will provide you with a good
estimate of your costs. You will need to
include meals and coffee breaks together
with the actual cost of renting your venue.
Be aware that audiovisual costs can be
additional as well as venue staff—look out
for hidden costs. Aside from venue-related
costs, additional expenditures might in-
clude travel fellowships, publication costs
for proceedings in a journal, and awards
for outstanding contributors. All these
issues will determine how much you need
to charge your participants to attend. Map
all this out on a spreadsheet and do the
math. Allow for contingencies, such as
currency fluctuations and world-changing
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events that will impact attendance. For
large meetings, consider insurance against
such events. Starting with a template that
others have used for previous similar
conferences can be a big help.

Rule 4: Choose the Right Date
and Location

Your conference needs to be as far away
as possible from established conferences
and other related meetings. Alternatively,
you may want to organize your event
around a main conference, in the form of
a satellite meeting or Special Interest
Group (SIG). Teaming up with established
conferences may increase the chances of
attracting more people (especially if this is
your first time) and also save you a great
deal of administrative work. If you decide
to do it on your own, you should consider
how easy it is to travel to your chosen
location, whether it has a strong local
community in your field, and whether it
has cultural or other tourist attractions.
Inexpensive accommodation and airfares
to your conference are always a plus.

Rule 5: Create a Balanced
Agenda

A conference is a place for people
wanting to share and exchange ideas.
Having many well-known speakers will
raise the demand for your event (and the
cost) but that has to be balanced with
enough time for presentation of submitted
materials. A mix of senior scientists and
junior scientists always works for the better.
Young researchers may be more enthusias-
tic and inspiring for students, while top
senior scientists will be able to present a
more complete perspective of the field.
Allow plenty of time for socializing, too;
breaks, meals, and poster sessions are ideal
occasions to meet potential collaborators
and to foster networking among peers.

Rule 6: Carefully Select Your
Key Helpers: the Organizing
Committees

A single person will not have all the
skills necessary to organize a large meet-
ing, but the organizing committee collec-
tively needs to have the required expertise.
You might want to separate the areas of
responsibilities between your aides de-
pending on their interests and availability.
Some potential responsibilities you might
delegate are: 1) content and design of the
Web site promoting the meeting; 2)
promotion materials and marketing; 3)
finance and fundraising; 4) paper submis-

sions and review; 5) posters; 6) keynotes; 7)
local organization; 8) program and speak-
ers; 9) awards. Your organizing committee
should be large enough to handle all the
above but not too large, avoiding free-
loaders and communication issues. It is
invaluable to have a local organizing
committee since they know local institu-
tions, speakers, companies, and tourist
attractions. Local organizations may also
help you with administrative tasks; for
example, dealing with registration of
attendees and finding suitable accommo-
dations around the venue.

Rule 7: Have the Members of
the Organizing Committees
Communicate Regularly

It is good to have planning sessions by
teleconference ahead of the meeting. As
far as possible, everyone should be familiar
with all aspects of the meeting organiza-
tion. This collective wisdom will make it
less likely that important issues are forgot-
ten. The local organizers should convince
everyone that the venue will work. Use
these sessions to assign responsibilities
ahead of the meeting. Tasks such as
manning the registration tables, carrying
microphones for attendees to ask ques-
tions, introducing sessions and speakers,
checking presentations ahead of time, and
having poster boards, materials to attach
posters, etc., are easily overlooked. In
short, good communication will lead to
you covering all the little things so easily
forgotten.
Good communication continues

throughout the meeting. All organizers
should be able to contact each other
throughout the meeting via mobile phone
and e-mail. Distribute to all organizers the
names and contact information of caterers,
building managers, administrative person-
nel, technicians, and the main conference
organizer if you are having your event as
part of another conference. Onsite chang-
es that incur additional costs, however,
should require the approval of a single, key
organizer rather than all organizers oper-
ating independently of one another. This
will ensure there are no financial surprises
in the end. It is also important that you
have a designated meeting point where
someone from the organizing committee is
going to be available at all times to help
with problems.

Rule 8: Prepare for Emergencies

Attendees need to be aware of all
emergency procedures in terms of evacu-
ation, etc. This should be discussed with

the venue managers. All attendees should
be reachable as far as possible during the
conference. If an attendee has an emer-
gency at home, his or her family should be
able to reach them through the conference
desk—mobile phones are not perfect after
all.

Rule 9: Wrap Up the Conference
Properly

At the end of the conference, you
should give credit to everyone who helped
to make the event a success. If you have
awards to present, this is the right time for
the awards ceremony. Dedicate some time
to thank your speakers and sponsors as
well as everyone involved in the organiza-
tion of the conference. Also collect feed-
back about the event from the delegates
through questionnaires. This evaluation
will help you to understand the strengths
and weaknesses of your conference and
give you the opportunity to improve
possible future events. Have a party or
some other event for all those organizing
the conference.

Rule 10: Make the Impact of
Your Conference Last

Published proceedings are the best way
to make the results of your conference last.
Negotiate with journals far in advance of
the conference to publish the proceedings.
Make those proceedings as widely acces-
sible as possible. Upload photos and videos
of the event to the conference Web site
and post the names of presenters who have
received awards or travel fellowships. It is
also a good idea to link the results of your
evaluation to the Web site. Send one last
e-mail to all delegates, including a sum-
mary of the activities since the conference
and thanking them for their participation.
This is particularly important if you are
considering holding the conference again
in future years, in which case include some
information on your plans for the next
event.

As always, we welcome your comments
and experiences that you think would
enrich these ten rules so that they might
be useful to others. The comment feature
now supported by this journal makes it
easy to do this.
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The sequential nature of the reactions in metabolic pathways

means that they can be modeled in the form of a graph

(network) of enzymes and chemical transformations, and

network theory can be used to represent and understand

metabolism [1,2]. The connected collection of metabolic

pathways, describing the set of all enzymatic interc-

onversions of one small molecule into another, is defined as

the metabolic network of an organism (Figure 1a).

The most commonly used network representations are

‘metabolite-centric’. They consider metabolites as the nodes

of the graph and two metabolites are linked if one can be

converted into the other by an enzymatic reaction (Figure 1b,

left). An alternative network representation is ‘enzyme-centric’.

It considers the enzymes as nodes and links enzymes that

catalyze successive reactions (Figure 1b, right). Although

several studies have provided insights into the structure and

evolution of a metabolic network, very few have addressed

the influence of environment on metabolic network struc-

ture in species from diverse environmental conditions. The

availability of many completely sequenced genomes means

that metabolic-network analysis can now be extended from a

few model organisms to species from different branches of

the tree of life and living in very different environments. This

should enable the elucidation of general principles

underlying metabolic networks.

Two recent studies, published in the Proceedings of the

National Academy of Sciences by Eytan Ruppin and colleagues

(Kreimer et al. [3] and Borenstein et al. [4]), provide

important insights into links between the environment of an

organism and the structure of its metabolic network. Using

data from a large number of bacterial metabolic networks,

Kreimer et al. address the question of how the topologies of

the metabolic networks from different species reflect both

genome size and the diversity of environmental conditions

the species would encounter. Borenstein et al. set out to

identify the ‘seed set’ - that set of small molecules that are

absolutely needed from the external environment - of each

species and how this seed set differs across species from

different environments.

AA  nneettwwoorrkk  vviieeww  ooff  mmeettaabboolliissmm
Several studies have addressed a wide-range of questions

using network representation of small-molecule metabolism

[5-7]. For instance, at the structural level, the metabolic

network of an organism has been shown to have a scale-free

topology with few nodes (for example, pyruvate or coenzyme

A) reacting with many other substrates [8,9]. A distinguis-

hing feature of such scale-free networks is the existence of a

few highly connected metabolites, which participate in a very

large number of metabolic reactions. By definition, when a

large number of links integrate several substrates into a

single highly connected component, fully separated modules

will not exist. This has led to the notion of hierarchical

modular structures within the fully connected metabolic

network, where a ‘module’ is defined as a group of nodes

that are more connected to each other than to other nodes in

the network [10].

Kreimer et al. [3] have carried out a comprehensive, large-

scale characterization of metabolic-network modularity

(defined as in [11]) using 325 prokaryotic species with



sequenced genomes and metabolic networks in the KEGG

pathway database [12]. They found that network size was an

important topological determinant of modularity, with

larger genomes exhibiting higher modularity scores (that is,

a higher proportion of edges in the network forming part of

modules than would be expected by chance). In addition,

several environmental factors were shown to contribute to

the variation in metabolic-network modularity across species.

In particular, the authors found that endosymbionts and

mammal-specific pathogens have lower modularity scores

than bacterial species that occupy a wider range of niches.

Moreover, among the pathogens, those that alternate

between two distinct niches, such as insect and mammal,

were found to have relatively high metabolic-network

modularity. This supports the notion previously put forward

by Parter et al. [13] that variability in the natural habitat of

an organism promotes modularity in its metabolic network.

Kreimer et al. [4] also reconstructed likely ancestral states,

and found that modularity tends to decrease from ancestors

to descendants; they attribute this to niche specialization

and incorporation of peripheral metabolic reactions.

In line with the above effects of environmental diversity on

network structure, Pal et al. [14] observed that bacterial

metabolic networks grow by retaining horizontally acquired

genes (genes acquired from other species) involved in the

transport and catalysis of external nutrients, and that evolu-

tionary changes in networks are primarily driven by adap-

tation to changing environments. Accordingly, horizontally

transferred genes were found to be integrated at the

periphery of the network, whereas the central parts remain

evolutionarily stable. Indeed, genes encoding physiologically

coupled reactions were often found to be transferred

together, frequently in operons. This suggests that bacterial

metabolic networks evolve by direct uptake of peripheral

reactions in response to changing environments [14].

In this regard, a recent genome-wide study in yeast found

that central and highly connected enzymes evolve more

slowly than less connected ones and that duplicates of highly

connected enzymes tend to have a higher likelihood of

retention [15]. Enzymes carrying high metabolic fluxes

under natural biological conditions were also found to

experience greater evolutionary constraints. Interestingly,

however, it was shown that highly connected enzymes are no

more likely to be essential to survival than the less connected

ones [15].

The functional and evolutionary modularity of the Homo

sapiens metabolic network has also been investigated from a

topological point of view and was shown to be organized

with a highly modular, ‘core and periphery’ topology [16]. In

such a structure, the core modules are tightly linked together

and perform basic metabolic functions, whereas the

peripheral modules only interact with few other modules

and accomplish relatively independent and specialized

functions. Interestingly, as in bacteria and yeast, peripheral

modules were found to evolve more cohesively and faster

than core modules [16].

LLiinnkkiinngg  eexxtteerrnnaall  eennvviirroonnmmeenntt  ttoo  tthhee  mmeettaabboolliicc
cciirrccuuiittrryy
Microorganisms constantly monitor their surroundings for

the availability of nutrients and other chemicals, using both
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FFiigguurree  11
Metabolic networks. ((aa)) A set of related metabolic reactions can be
represented as a network. M1, M2, and so on are metabolites and E1, E2,
and so on are the enzymes that catalyze the conversion of one metabolite
into another. The arrows represent the direction of the reaction. ((bb))
Different ways of representing a metabolic network: left, with the
metabolites as nodes; right, with the enzymes as nodes. ((cc)) Representation
of seed compounds in a hypothetical metabolic network. The metabolic
boundary of the organism is represented by the gray oval. Metabolites
(the nodes in the network) are represented by colored circles. The set of
compounds that cannot be internally synthesized but must be obtained
from the environment is referred to as the seed set, and is represented
here as red circles. Seed metabolites form the interface between the
environment and the metabolic system and link the metabolic habitats of
an organism with its core metabolic processes. In this hypothetical
network, it is possible to reach any of the internal nodes (open green
nodes) from any other node except those that have to be obtained from
the environment (blue arrows).
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external and internal sensors to respond dynamically to

environmental changes [17]. Integration of the external

environment with metabolism occurs through the import of

compounds from the environment and results, for example,

in a transcriptional response or an allosteric interaction with

an enzyme [18-20]. In the second of the recent studies from

Ruppin and co-workers, Borenstein et al. [4] propose a

graph-theoretical approach to define these exogenously

acquired compounds - the seed set of an organism - and

have identified their repertoire across the tree of life (Figure 1b).

This is one of the most comprehensive studies so far that links

organisms’ metabolic circuitry with their environment.

The authors represent the metabolic network of a given

species as a directed graph with nodes representing metabo-

lites and edges corresponding to the linking reactions

converting substrates to products. Using this, they identify

the maximal set of metabolites that can be synthesized from

a particular precursor metabolite. This graph-based repre-

sentation of the metabolic network then enabled them to

discover the seed-set compounds for each of the 478 pro-

karyotic species with available metabolic networks in the

KEGG database [12]. On the whole, they found that about 8-

11% of the compounds in the metabolic network of an

organism correspond to the seed set. Their predictive ability

to correctly identify seed compounds reached a precision of

95% when benchmarked against a set of compounds

experimentally characterized as being taken up from the

environment by the rickettsia that cause the disease

ehrlichiosis in humans and animals. Recall values (defined

as the percentage of correctly identified seeds of all exoge-

nously acquired compounds) based on the same dataset

were low, suggesting that other factors might have a role in

the identification of seed compounds of an organism, such as
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Box 1. Models of metabolic pathway evolution

The most influential models of metabolic pathway evolution have been the ‘retrograde model’ proposed by Horowitz in

1945 [24] and the ‘patchwork model’ proposed by Ycas in 1974 [25] and later improved by Jensen in 1976 [26].

The retrograde model

In the retrograde model, pathways evolve bottom-up from a key metabolite, which is assumed to be initially abundant in

the ancestral condition. The model presupposes the existence of a chemical environment in which both the key

metabolite and potential intermediates are available. An organism primarily dependent on molecule Z will use up

environmental reserves of the metabolite to the point at which its growth is restricted; in such an environment, an

organism capable of synthesizing molecule Z from environmental precursors X and Y will have a selective advantage.

Any natural variant evolving an enzyme that catalyzes this synthesis will have a fitness advantage in such an environ-

ment. As a result, with the drop in environmental concentration of X or Y, the process will be repeated, with the similar

recruitment of further enzymes.

The retrograde model also proposes that the simultaneous unavailability of two intermediates (say X and Y) would favor

symbiotic association between two mutants, one capable of synthesizing X and the other of synthesizing Y from other

environmental precursors. One of the major assumptions of this model is that the evolution of metabolic pathways occurs in

an environment rich in metabolic intermediates, and it therefore cannot explain their evolution during major environmental

transitions in the history of life such as, for example, the depletion of organic molecules from the environment [24,27]. The

retrograde model also fails to explain the development of pathways that include labile metabolites, which could not have

accumulated in the environment for long enough for retrograde recruitment to take place.

The patchwork model

In light of these limitations, Ycas [25] and Jensen [26] proposed the patchwork model of metabolic pathway evolution, in

which pathway evolution depends on the initial existence of broad-specificity enzymes. In its original formulation [25],

such enzymes catalyze whole classes of reactions, forming a large network of possible pathways. The broad specificities

would mean that many metabolic chains, synthesizing key metabolites, may have existed, although short and incomplete

compared with the pathways observed today. The duplication of genes in such pathways (advantageous because

increased levels of the enzyme would generate more of the key metabolites), followed by their specialization, would

account for extant pathways. Jensen [26] subsequently pointed out that the fortuitous evolution of a novel chemistry,

together with the biological leakiness of such a system, could allow the production of a key metabolite from a novel

intermediate, even if it is several enzymatic steps away from the original product.



the incompleteness of the metabolic network or ways of

acquiring an exogenous compound that cannot be captured

by currently available metabolic maps. The resulting

compilation, which represents the overall static metabolic

interface of each organism characterizing its biochemical

habitat, enabled Borenstein et al. to trace the evolutionary

history of both metabolic networks and growth environments.

When the seed sets identified in each organism were

analyzed in detail, species living in variable environments

were found to have more versatile seed sets, in terms of

variability of size and diversity of composition. On the other

hand, obligate parasites like Buchnera aphidicola and those

microorganisms, such as archaea, that live in extreme and

narrowly defined environments, were found to have much

smaller seed set sizes. These results suggest that although

organisms surviving in predictable environments can take

up many compounds from their surroundings, this

capability is still significantly smaller than in organisms that

have to survive in a wide range of niches.

Borenstein et al. [4] carried out a phylogenetic analysis of

the seed sets across different taxa, which suggested not only

that an accurate tree of life can be reconstructed from them

but that such a tree can provide insights into the evolu-

tionary dynamics of seed compounds. In particular, the

study revealed that novel compounds can be integrated into

the metabolic network of an organism as either non-seeds or

seeds, and that seed compounds are more likely to be lost

during evolution than non-seed compounds. From the

comparison with ancestral metabolic networks, Borenstein

et al. [4] suggest that the transition from seed to non-seed

compound occurs 2.5 times more often than the reverse.

This suggested that, of the two main current hypotheses of

metabolic network evolution - the ‘patchwork’ and ‘retrograde’

models (see Box 1) - the retrograde model, in which

pathways evolve in a direction opposite to the metabolic

flow, might best explain the observed events. However, the

observations of Borenstein et al. [4] on the high overall rate

of integration of non-seed compounds and the relatively

high rate of transition of non-seed compounds into seed

metabolites, suggest that some aspects of network evolution

could be explained by the patchwork and other models. The

results highlight the fact that these models are not mutually

exclusive, but complementary, and might have contributed

to pathway evolution to different extents [21,22].

It should be noted that there are limitations to studies such

as those reported here, in that the incompleteness of meta-

bolic maps, the reversibility of reactions, possible alternative

mechanisms controlling metabolic import, and the ignoring

of the distinction between catabolic and anabolic pathways

can all potentially result in false positives in the identified

seed sets. Nevertheless, it is exciting to note that seed sets

obtained using the approach developed in these studies not

only reflect the metabolic environments of the species

themselves but also provide insight into their natural

biochemical habitats - the union of all the metabolic

environments an organism encounters.

Hence, such approaches can be exploited to study the

interaction and association of microbes with other species

thriving in similar habitats. This may help in the identifi-

cation of host-parasite and symbiotic relationships between

organisms and also enable the prediction and design of

drugs that can precisely target an organism of interest

without adversely affecting the host. With the availability of

metagenomic data ranging from viromes to biomes [23], we

anticipate that similar approaches can be applied to study

metagenomic environments to decipher species relationships

and dependencies occurring in large ecological niches, thereby

providing insights into ecological imbalances or tradeoffs.
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Gene expression is a dynamic process which can be controlled by a number of mechanisms as

genetic information flows from nucleic acids to proteins. The study of gene expression in the

steady state, while informative, overlooks the underlying dynamics of the processes. Steady-state

transcript levels are a result of both RNA synthesis and degradation, and as such, measurements

of degradation rates can be used to determine their rates of synthesis as well as reveal regulation

that occurs via changes in RNA stability. Messenger RNA degradation plays a central role in

diverse cellular processes and is controlled primarily by the activity of the degradosome in

prokaryotes. In this study, we use the currently available network of protein–protein interactions

(PPIs) and mRNA half-lives in Escherichia coli to demonstrate that centrality of a protein in the

PPI network is strongly correlated with its mRNA half-life. We find that interacting proteins tend

to show similar half-lives, commonly referred to as assortative behavior in networks, which is

frequently found in biological and social networks. While a major fraction of the interacting

proteins show significantly lower differences in mRNA stabilities, a smaller but significant number

of protein pairs tend to show higher differences than expected by chance. Higher differences in

transcript stabilities often involved those that encode for transcription factors and enzymes,

suggesting a feedback link at the post-translational level. We also note that although essential

genes, which act as a proxy for in vivo centrality in PPI networks, are highly expressed compared

to non-essential ones, they do not encode for more stable transcripts than non-essential genes. Our

results provide a direct link between mRNA stability and centrality of a protein in PPI network

indicating the importance of post-transcriptional mechanisms on nascent RNAs in the cell.

Introduction

RNAs can be classified by their stability in the cell. The best-
known stable RNAs are the tRNAs and rRNAs. mRNAs are
unstable, with half-lives in Escherichia coli ranging from 2 to
25 min (see Fig. 1A). In eukaryotic cells, mRNA turnover is
slower, but the half-lives are usually shorter than the genera-
tion time. The instability of mRNA is an important property
permitting timely adjustments to changes in growth conditions
or to genetically controlled programs of expression. Until
recently, tRNAs and rRNAs were believed to be protected
by their rapid folding and assembly into compact structures.
This simplistic view seems unlikely because of the discovery of
ribonucleolytic multienzyme complexes capable of unwinding
and degrading structured RNA. Another widely held precon-
ception was that the enzymes involved in the processing of
stable RNA would be distinct from those involved in the
degradation of mRNA. With the discovery in E. coli and
Saccharomyces cerevisiae that ribonucleases involved in the
processing of rRNA are also important in the degradation of
mRNA, it is now clear that there is a close connection between
processing and degradation.1–4

mRNA instability is an intrinsic property that permits
timely changes in gene expression by limiting the lifetime of

a transcript and acts as a regulator for controlling the produc-
tion of a protein product at the post-transcriptional level. It is
becoming increasingly clear that in eubacteria like E. coli,
RNase E, a single-strand-specific endonuclease is involved in
the processing of rRNA and the degradation of mRNA.5–7

A nucleolytic multienzyme complex now known as the RNA
degradosome was discovered during the purification and
characterization of RNase E.8,9 Two other major components
of this complex include a 30 exoribonuclease (polynucleotide
phosphorylase, PNPase) and a DEAD-box RNA helicase
(RNA helicase B, RhlB). RNase E is a large multidomain
protein with N-terminal ribonucleolytic activity, an RNA-
binding domain and a C-terminal ‘scaffold’ that binds
PNPase, enolase and RhlB. The association of RNase E and
PNPase in a complex provides a direct physical link for their
co-operation in the degradation of mRNA. Other associated
proteins, present in substoichiometric amounts, include poly-
phosphate kinase (PPK), DnaK and GroEL. Interactions with
other enzymes, such as E. coli poly(A) polymerase and
the ribosomal protein S1, have also been described, although
the role of enolase, PPK and other associated proteins in the
degradation of mRNA is still unknown.7 However, a ‘minimal’
degradosome containing RNase E, RhlB, PNPase and enolase
can be reconstituted from purified components and has been
proposed to comprise the degradosome complex.
In E. coli, the degradation of mRNA is mediated by the

combined action of endo- and exo-ribonucleases, RNase E
and PNPase, respectively, which degrade RNA in a 30–50
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pathway.10 Enzymes related to RNase E and PNPase are
widespread in both eubacteria and eukaryotes.11 Recent
studies have shown the existence of endonuclease binding
proteins like RraA and RraB that can modulate the remodelling
of degradosome composition in bacteria and can result in
dramatic, distinct, and inhibitor-specific changes in degrado-
some composition. These effects have also been shown to be
associated with alterations in RNA decay and global
transcript abundance profiles. These profiles were found to be
dissimilar to those observed during simple RNase E deficiency,
and such effects have been suggested to make degradosome
remodelling as a mechanism for the differential regulation of
RNA cleavages in E. coli.12,13 In addition, recent whole
genome microarray studies have revealed the importance
of the contribution from different components of the
degradosome, the relation between mRNA stability and its
abundance and the higher order cleavage characteristics
implying the importance of mRNA stability and the role of
post-transcriptional regulation in mediating cellular interac-
tions and cross-talk.14–17

Two key factors for controlling the concentration of a
protein in a bacterial cell include the number of transcripts
per cell cycle and the stability of the transcript. Evidence
points to the fact that most transcripts in bacteria and eukarya
are produced only once per cell cycle suggesting that stability
of a transcript during the cell cycle might play a more
important role than the actual number of mRNA molecules,
which is already low.18 As the transcription rate is generally
low, it follows that cells must depend on their mother’s
mRNAs and/or proteins for survival. Therefore, transcript
half-life might enforce a constraint on transcripts that have
critical roles in important cellular processes, which may take
place throughout the cell cycle or longer. On the other hand,
smaller cellular sizes in bacteria would force the infrequently
used transcripts to be rapidly decayed. In fact, it has been
shown in the E. coli transcriptional regulatory network that
highly connected transcription factors tend to be less stable
with short half-lives although they are highly expressed,19,20

indicating that stability of a transcript might play a vital role
in several cellular processes. Given these observations, it is
imperative to understand how stability of a transcript can
constrain the interaction of its protein product with other

cellular components. With the availability of data from high-
throughput technologies like affinity purification and two
hybrid system, it has become possible to address such ques-
tions on large-scale PPI maps.21–23 In this study, we use for the
first time the PPIs of a bacterial model organism, E. coli from
the database of interacting proteins (DIP)24 and ask how the
in silico and in vivo measures of centrality of a protein are
related to the stability of its transcript (Fig. 1B). In silico
centrality of a protein in a PPI network refers to its number
of connected neighbors and other network based topology
measures which indicate its importance while the in vivo
centrality indicates whether a protein is essential for survival
in specific experimental conditions.

Results and discussion

mRNA half-lives of proteins correlate positively with their PPI
network centrality

The control of mRNA degradation plays a central role in
diverse cellular processes and is regulated primarily by the
activity of the degradosome in prokaryotes.25–27 mRNA decay
has been studied in a range of organisms, and much has been
learned about the substrate features and ribonucleolytic
enzymes that influence mRNA stability based on data from
small sets of transcripts.27,28 However, due to the availability of
DNAmicroarrays, it has recently become possible to screen and
measure the mRNA levels of transcripts of thousands of
individual genes, enabling the determination of mRNA abun-
dance and stability on a genome-wide scale. A common strategy
used to determine mRNA half-lives is to block new transcrip-
tion and monitor expression levels of transcripts over a period
of time to obtain rates of decay of individual transcripts using a
microarray. Typically, rifampicin, a drug known to prevent the
initiation of new transcripts by binding to the b subunit of RNA
polymerase is used.15,16 In this study, we used the repertoire of
mRNA half-lives determined by Selinger et al.16 in E. coli
(see Materials and methods). The data on PPIs were obtained
from the DIP, which contains a high quality set of interactions24

(see Materials and methods). The final PPI network consisted of
5667 interactions involving 998 proteins, encompassing about
25% of the predicted proteome of E. coli.

Fig. 1 Schematic showing the (A) distribution of mRNA half-lives (in minutes) for all the protein coding genes in E. coli analyzed in this study.

(B) Concept of mRNA stability, protein–protein interaction (PPI) network and its relationship with in silico and in vivo centrality and essentiality

measures addressed in this study.
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By integrating the data on mRNA half-life and protein
interaction network, we first asked if there is a correlation
between the mRNA half-life of the transcript and the impor-
tance of a protein (encoded by the transcript) in the protein
interaction network. To obtain the importance of a protein in
the PPI network, we calculated different centrality measures29

for every protein in the network as described in the Materials
and methods. In brief, three centrality measures have been
described in the literature: (i) degree or connectivity, which is
the number of interactions a protein has in the PPI network—
the higher the connectivity (i.e., hub nodes) the more impor-
tant a protein is, (ii) betweenness centrality, which measures
the number of shortest path lengths between all pairs of
proteins in the network that pass through a protein of
interest—the higher the number of paths that pass through a
protein, the more important it is, (iii) closeness centrality,
which provides the average length of all the shortest paths
from a protein of interest to all other proteins in the
network—note that closeness centrality defined this way
implies that lower the closeness value, the higher the impor-
tance (centrality) of a node. We used all of these parameters
measuring the importance of a protein in a PPI network and
compared them against the mRNA half-lives of the encoding
transcripts. As shown in Fig. 2, we found that all the centrality
measures correlate positively with the mRNA half-lives,
indicating that the transcripts of the highly central proteins
in the PPI network tend to be more stable in the cell. It should
be noted that the results presented here are insensitive to the
removal of up to 10% of the interactions in the network
suggesting that the findings presented here are generally robust

(see Materials and methods; data not shown). This implies that
proteins that are more central in the PPI network of E. coli
(e.g., hubs—those which interact with a large number of other
proteins) tend to have much more stable transcripts in order to
enable their availability for most of the cell cycle. This might
ensure that proteins that are important to co-ordinate cellular
activity by interacting with several other proteins can be
synthesized from their corresponding transcripts in required
concentrations at different times. It is interesting to note that
the finding reported here is in contrast to what is observed for
hubs in the transcriptional network of E. coli19 (i.e., transcription
factors which regulate the expression of several genes) possibly
as a result of different functional constraints and mechanisms
governing the roles for hubs in different networks. In other
words, since hubs in the transcriptional network have to be
transcription factors only (which regulate gene expression by
binding to upstream region) while hubs in the PPI network can
be any protein that need not be a transcription factor, this may
introduce very different constrains for transcript stability for
hubs in the two networks.
In addition to these centrality measures, we also computed

the clustering coefficient of a node, which reflects the extent to
which the neighbors of a given node are interconnected among
themselves and indicates the cohesiveness or local modularity
of the network. It is interesting to note from Fig. 2D that half-
lives of these very stable transcripts are inversely correlated
with their clustering coefficient implying that highly stable
transcripts may not form cohesive local modules in the inter-
action network. This result also suggests that highly connected
nodes in PPI network may not form part of any particular

Fig. 2 Relationship between network properties of proteins in the PPI network and their corresponding mRNA stability measured as the

transcripts half-life (A) degree of a node in the PPI network versus its mRNA half-life, (B) betweenness of a node versus mRNA half-life,

(C) closeness of a node versus its mRNA half life and (D) clustering coefficient of a node versus its mRNA half-life. All the centrality measures

indicate that proteins with high centrality tend to exhibit high mRNA half-lives. Clustering coefficient of highly stable nodes in the PPI network

decreases, indicating that although central proteins are more stable, they may not form multi-protein assemblies. Error bars are shown in each case

to show the extent of variation of the network property in each bin. p-values correspond to the significance level of the correlations.
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module but rather might be involved in multiple modules, due
to the hierarchical nature of biological systems previously
demonstrated for metabolic networks.30

mRNA half-lives of interacting proteins tend to have similar
degradation rates with few pairs showing significant differences
in half-lives

We then investigated if the transcripts of interacting proteins
in the PPI network tend to have similar or dissimilar half-lives.
To investigate this question, we calculated the ‘‘assortativity
value’’ for the PPI network based on the half-life values
associated with a node by adapting the formula described by
Newman31,32 (see Materials and methods). As originally
described by Newman,31,32 assortativity value is a single
global measure that tries to capture the dominant type of
interaction in a network. For instance, positive assortativity
value (assortative mixing) based on the degrees of a node in a
network would mean that there is a preference for interacting
nodes to have a similar degree, while negative assortativity
value (disassortative mixing) would imply that there is a
preference for interacting nodes to have dissimilar degree
(e.g., high-connectivity nodes interacting with low-connectivity
ones). Negative assortative values have been shown to
correspond to scale-free graphs like that of world-wide web,
internet and protein interaction networks with values ranging
from "0.06 to "0.18.31 We calculated the assortativity value
based on the mRNA half-life (rather than the degree) of a
protein in the PPI network and found a low but positive value
of 0.03, suggesting that proteins which interact with each other
tend to have comparable half-lives.

To investigate this observation in more detail, we computed
the differences in half-lives of interacting proteins and com-
pared the distribution with that observed from randomly
selected pairs of proteins as described in Materials and
methods. As a result of this analysis (Fig. 3), we found that

in general interacting proteins tend to show lower differences
in half-lives than what is expected by chance (Pr 1.43# 10"3),
although a small fraction of interacting proteins did show high
differences in half-lives (Table 1). This calculation shows that
interacting proteins on an average have a variation in half-life
of about B4 minutes with a vast majority of them falling in
the difference range of o3 minutes (marked with a black
arrow in Fig. 3). Likewise, very few interacting proteins were
found to show high differences in half-lives (threshold value of
B13 minutes above which a much smaller fraction of inter-
acting pairs was found compared to random pairs, marked
with a yellow arrow in Fig. 3) and they corresponded to
interactions between and among regulators and enzymes
involved in global regulatory processes (see Table 1). Sensi-
tivity analysis to test the robustness of the results indicated
that the results are reproducible with networks where up to
10% of the interactions are randomly removed (see Materials
and methods; data not shown). An analysis of the function of
interacting proteins that show large differences in half-lives
reveals that some highly stable transcripts belong to
the enzyme or regulator functional classes. These might be
involved in PPIs as a means of linking cellular processes as
diverse as metabolism, replication, repair and regulation. One
possible explanation for such large differences in stabilities
might be the usage of the stable transcripts (which typically
encode for hubs) as feedback controllers at different stages of
the cell cycle.
Since it has been known that gene duplication is an

important mechanism for genome evolution which has also
contributed to the growth of the PPI networks, we investigated
if duplicate genes have similar half-lives. By investigating the
sequences of the proteins in the network, we found that only
2% of the interacting protein pairs (108 of 5667 interactions)
are composed of duplicated protein partners at a BLAST
e-value threshold of 1e"5. Of these, we had half-life data for
39 pairs and they did not show any significant tendency for
high or low differences in half-lives compared to overall
distribution (data not shown). Since the fraction of duplicated
genes and the corresponding interactions in our network is
very low and does not show any inherent trends, our results
were robust to removal of these duplicate proteins. Varying
the BLAST e-value thresholds by 2 orders of magnitude to
detect duplicate genes did not change our end results (data not
shown). However, as more data on protein interaction net-
works become available, it should be possible to address this
question in greater detail.

Hubs in PPI network tend to be essential although transcripts
of essential genes are not more stable than non-essential ones

While the importance of a protein can be assessed by measur-
ing the centrality of a node in the PPI network, it can also be
inferred by experimentally testing if removal of the gene
renders a cell lethal or not. To complement our understanding
of the relationship between the in silico centrality of a node in
the PPI network against the stability of a transcript from an
experimental perspective, we investigated the following ques-
tions: do the experimentally determined essential genes tend to
be important proteins in the PPI interaction network? Are

Fig. 3 Distribution of the differences in mRNA half-lives of inter-

acting proteins compared against random pairs of proteins, indicating

that interacting protein pairs exhibit a higher tendency to have lower

differences in half-lives. Marked in black and yellow arrows are the

half-life thresholds where interacting protein pairs show significantly

lower and higher differences in half-lives, respectively. Very few

interacting protein pairs showed high differences in half-lives as shown

in Table 1.
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transcripts of essential genes more stable or highly expressed
compared to the non-essential genes? To address these ques-
tions, we obtained a list of essential and non-essential genes in
the E. coli genome from a recent study conducted by Mori and
co-workers.33

To address the first question, we integrated essentiality data
with the connectivity data of proteins in the PPI network. In
particular, we compared the proportion of essential genes in
different connectivity bins (see Materials and methods), after
dividing the proteins in the PPI network into three different
groups based on their degree, D: low (D o 9), intermediate
(9 r D o 44) and high (D Z 44). Fig. 4A shows the
proportion of essential genes for each of the three groups of
proteins. We note that the bin with the highly connected
proteins also has a higher proportion of essential genes,
while the bin with lowly connected proteins shows a
depletion in the fraction of essential genes, indicating that
essentiality (a qualitative measure of in vivo centrality) of a
gene correlates with its degree in the PPI network, similar
to what has been observed in the yeast PPI network.34

We found that a total of 173 essential genes (58% of all
essential genes) formed part of these bins (82, 64 and 27 in
the low, intermediate and high-connectivity bins, respectively)
signifying that most of the essential genes in E. coli also form
part of the PPI network. Note that although the absolute
number of essential genes in highly connected bin is low, it
overlaps with a significant fraction of the hubs (i.e., proteins
with degree Z 44).

To address the second question on the relationship between
essentiality and transcript stability, we integrated the gene
essentiality data with mRNA half-life and expression data.
Though it is commonly believed that essential genes which
comprise core proteins necessary for the survival of the cell
need to be expressed in higher concentrations,35,36 this has not
been tested so far. Thus we investigated if essential genes

would be highly expressed compared to non-essential genes
and how hubs (proteins with degree Z 44) in the interaction
network compare in their expression with respect to essential
genes. It should be noted that though hubs tend to be essential
genes, not all essential genes are hubs. Hence it becomes
important to make this distinction and test them indepen-
dently. Fig. 4B shows the expression levels of essential and
non-essential genes in E. coli along with hubs in the interaction
network using most of the publicly available expression data
generated on the affymetrix platform (see Materials and
methods).37 Both hubs and essential genes were found to be
significantly more highly expressed than non-essential genes
(t-test, p o 2.2 # 10"16) and hubs were found to be more
highly expressed than essential genes (p o 8.87 # 10"10).
Given these observations that both hubs and essential genes
are significantly more abundant than non-essential genes at
the mRNA level, we asked whether this difference is also
reflected in the stability of their transcripts. To address this,
we compared their mRNA half-lives and found that although
the transcripts of essential genes are not more stable than non-
essential genes (p o 0.057), transcripts encoding hubs exhibited
significantly higher stabilities compared to those encoding
non-essential genes (p o 8.9 # 10"5) (Fig. 4C). These results
suggest that although essential genes are highly expressed, they
do not tend to be more stable than non-essential genes. These
observations together with biological processes enriched in
these classes of genes (see Table 2) suggested that the differences
may stem due to the nature of proteins with distinct functions
in the two groups. While hubs predominantly encode
for proteins involved in translation and protein synthesis,
essential gene set comprises genes belonging to various
metabolic and biosynthetic processes important for cellular
growth. Thus the higher abundance of essential genes
compared to non-essential genes may be a result of higher
transcription of essential genes rather than increased stability

Table 1 Interacting protein pairs exhibiting highest differences in their mRNA half-lives. Most of these interactions are between or among
regulatory factors and enzymes suggesting that these interactions contribute to the cellular integrity by linking different cellular processes and
pathways with the core machinery of the cell. All interacting pairs which showed high differences in half-lives and are under-represented in
proportion with increasing differences in half-lives threshold compared to random pairs, are shown below (see Fig. 3 for additional details)

Gene 1
(higher half-life) Function

Gene 2
(lower half-life) Function

Difference
(min)

hupA|b4000 Factor; basic proteins-synthesis, modification;
HU, DNA-binding transcriptional regulator,
alpha subunit

galR|b2837 Regulator; degradation of small
molecules: Carbon compounds; DNA-
binding transcriptional repressor

18.1

rpoD|b3067 Factor; global regulatory functions; RNA
polymerase, sigma 70 (sigma D) factor

crp|b3357 Regulator; global regulatory functions;
DNA-binding transcriptional dual
regulator

13.9

pflB|b0903 Enzyme; energy metabolism, carbon:
Anaerobic respiration; pyruvate formate lyase
I

yjeE|b4168 ATPase with strong ADP affinity 20.9

ybdN|b0602 Conserved protein sspB|b3228 Regulator; global regulatory functions;
ClpXP protease specificity-enhancing
factor

14.6

recG|b3652 Enzyme; DNA-replication, repair, restriction/
modification; ATP-dependent DNA helicase

ssb|b4059 Factor; DNA-replication, repair,
restriction/modification; single-
stranded DNA-binding protein

21.6

sgbH|b3581 Putative enzyme; central intermediary
metabolism: pool, multipurpose conversions;
3-keto-L-gulonate 6-phosphate decarboxylase

nudF|b3034 ADP-ribose pyrophosphatase 13

hupA|b4000 Factor; basic proteins-synthesis, modification;
HU, DNA-binding transcriptional regulator,
alpha subunit

nudH|b2830 Putative factor; not classified;
nucleotide hydrolase

18.2
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of their transcripts. Since cells prefer to degrade transcripts
encoding essential genes in the same way as other non-essential
genes, this also suggests that increased transcript stability of
essential genes, resulting in very high levels of essential genes,
might be generally unfavorable or expensive for the cell to
have them present for a longer time.

Materials and methods

Data on mRNA half-lives, gene essentiality and PPI network
in E. coli

Half-life of RNA acts as a direct measure of transcript stability
and is frequently used for measuring the stability of messenger
RNAs. mRNA half-lives of protein coding genes in E. coli
were obtained from a previous study where the authors
analyzed the global patterns of RNA degradation on a
genome-wide scale using high-density, subgenic-resolution
oligonucleotide microarrays.16 Half-life data could be
obtained for a total of 2680 genes whose distribution (in minutes)
is shown in Fig. 1A. Data on gene essentiality were obtained
from a recent genome-wide knock out study, where the
authors generated a whole genome single gene knock library.33

We collected a total of 298 genes in E. coli K12 which were
reported to be lethal according to this study. The remaining
genes were considered as non-essential. Manually curated and
high quality data on PPIs in E. coli were obtained from the
DIP,24 which included data from traditional independent
studies and high-throughput studies such as Butland et al.21

Our final dataset used for this study consisted of 5667 PPIs
with 49 proteins qualifying as hubs (top 5% of the nodes with
highest connectivity). Since not all the genes had half-life data
associated with it, only those set of interactions for which both
the genes had half-life information available were considered
for studying the differences in half-lives. This subset composed
of 447 interacting protein pairs.

Network properties of the proteins in the PPI network

To study the properties of the PPI network and their depen-
dence on mRNA half-life, we used igraph, a publicly available
R package for analyzing graphs [see http://cneurocvs.rmki.
kfki.hu/igraph/ and http://www.r-project.org]. In particular,
since the network of PPIs analyzed in this study is undirected,
we used the corresponding versions of the functions: degree,
transitivity, betweenness and closeness for calculating the
degree, clustering coefficient, betweenness and closeness cen-
tralities of a node. Betweenness centrality, which is the number
of shortest paths going through a node, was calculated using
the brandes algorithm38 implemented in R. Similarly,
closeness, measured as average length of the shortest paths
to all the other vertices in the graph, was obtained using
the implementation in R. Since the centrality measures,
betweenness and closeness use the shortest path lengths
between all pairs of nodes in a graph, for cases where no path
exists between a particular pair of nodes, shortest path length
was taken as one less than the maximum number of nodes in
the graph. Note that this is also the default assumption for
calculating centrality measures in igraph. Hubs were defined as
the nodes with degrees greater than two standard deviations
above average degree of a node in the PPI network
(i.e., degree Z 44), while poorly connected nodes were defined
as nodes with degrees less than average degree of a node in the
network (i.e., degree o 9). To assess the robustness of the
results, we have performed sensitivity analysis by randomly
removing 10% of the PPI network in 10 independent trails and
calculated the network properties and other results reported in

Fig. 4 (A) Hubs tend to be essential in the protein interaction

network of E. coli similar to what has been observed in yeast.34 Each

bin corresponds to the range of the degree of a protein in the PPI

network and shows the proportion of essential genes in the bin on the

Y-axis. (B) Although both hubs and essential genes were found to be

significantly more expressed than non-essential genes (p o 2.2 #
10"16), when their expression levels were compared using the publicly

available microarray compendium for more than 400 microarray

experiments performed on E. coli, (C) only hubs show a tendency to

be more stable at the mRNA level compared to non-essential genes

(p o 8.9 # 10"5 comparing the stability of hubs against non-essential

genes versus p o 0.057 for essential genes against non-essential genes).

p-values were calculated using the t-test function in the R statistical

package.
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this study in each case. We found that the general observations
were consistent in each run indicating that incompleteness of the
network or the existence of false positives is unlikely to affect the
findings presented here (data not shown).

Calculation of assortativity value for the mRNA half-lives
associated network of PPIs

To calculate the assortativity value, r, for the PPI network
with mRNA half-lives associated to nodes, we used the
formula defined by Newman31,32 as below, wherein the vari-
ables ji and ki were substituted for the mRNA half-lives of the
interacting proteins of the ith edge with i varying from 1 to M,
which stands for the total number of edges or interactions in
the network. The range of r is the closed interval ["1, 1] with
positive values corresponding to assortative behavior while
negative values suggest disassortativity of the network.

r ¼
1
M

! "P
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i

1
2

! "
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Estimating the significance in the differences of observed
half-lives of interacting proteins

To assess the significance of the observed differences in mRNA
half-lives of interacting proteins, we compared the average
value of the observed differences against the same value in a
collection of randomly selected pairs of genes whose half-life
values were available. In each randomization, we generated
447 pairs of genes, which is equal to the number of interactions
in the real dataset and obtained their average of the differences.
A total of 100 000 random networks were generated to

estimate the statistical significance of the observed difference
in half-lives. Statistical significance was assessed based on
p-value estimation, defined as the fraction of the 100 000
random networks which showed a value Z what was
observed in the real network. Since the p-value of the average
of the differences in mRNA half-lives when compared against
random networks was lower than r1.43 # 10"3, the results
were considered to show a significant difference in comparison
to the null model described above, suggesting that interacting
proteins tend to show lower differences in mRNA half-lives
than what is expected by chance.

Analysis of expression data for protein coding genes in E. coli

To compare the expression levels of essential and non-essential
genes, we obtained a large compendium composing of 445
microarray datasets available as a public resource for E. coli.37

These data were available in the form of Robust Multi Array
(RMA) normalized profiles thus enabling us to directly calculate
the average expression value of protein coding genes across
all experimental conditions tested. Therefore, averaged
gene expression values were used to compare the levels of
expression of essential genes, non-essential genes and genes
encoding hubs.

Statistical analysis for comparing gene expression and mRNA
half-lives of essential, non-essential and hub encoding genes

To test the significance for the observed higher expression of
hubs and essential genes over non-essential genes and to
investigate whether essential genes produce stable transcripts
compared to non-essential ones, we used the Welch two-
sample t-test as implemented in the R statistical package

Table 2 Gene ontology biological processes enriched in hubs and essential genes along with their significance values. p-values were calculated
using BINGO,46 a JAVA-based tool for calculating predominant functional categories in a collection of genes. p-values were corrected for multiple
testing using the same package, at a false discovery rate (FDR) of 0.05 and only those less than 1 # 10"3 are shown. Hub class which comprised 49
proteins showed enrichment for only translation and protein metabolism while the essential-gene class comprising 243 genes showed enrichment
for many other metabolic and biosynthetic processes

Biological process ontology p-Value Corrected p-value

Enriched biological processes in hubs
Translation 1.9492 # 10"9 2.0077 # 10"7

Protein metabolic process 1.4225 # 10"6 4.8841 # 10"5

Cellular protein metabolic process 1.4225 # 10"6 4.8841 # 10"5

Cellular macromolecule metabolic process 8.6460 # 10"6 2.2263 # 10"4

Gene expression 2.1656 # 10"5 4.4611 # 10"4

Enriched biological processes in essentials
Cellular biosynthetic process 5.4841 # 10"13 1.6672 # 10"10

Translation 5.2333 # 10"12 7.9547 # 10"10

Oxidoreduction coenzyme metabolic process 7.8414 # 10"9 7.9460 # 10"7

Coenzyme biosynthetic process 2.4621 # 10"8 1.6639 # 10"6

Biosynthetic process 2.7367 # 10"8 1.6639 # 10"6

Cellular macromolecule metabolic process 1.5135 # 10"7 7.6686 # 10"6

Protein metabolic process 3.4365 # 10"7 1.3059 # 10"5

Cellular protein metabolic process 3.4365 # 10"7 1.3059 # 10"5

Cofactor biosynthetic process 4.5055 # 10"7 1.5219 # 10"5

Coenzyme metabolic process 1.1352 # 10"6 3.4511 # 10"5

Ubiquinone biosynthetic process 3.1663 # 10"6 8.0213 # 10"5

Ubiquinone metabolic process 3.1663 # 10"6 8.0213 # 10"5

tRNA aminoacylation 1.0490 # 10"5 2.1260 # 10"4

Amino acid activation 1.0490 # 10"5 2.1260 # 10"4

tRNA aminoacylation for protein translation 1.0490 # 10"5 2.1260 # 10"4

Cofactor metabolic process 1.6198 # 10"5 3.0776 # 10"4

tRNA metabolic process 1.7515 # 10"5 3.1322 # 10"4
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[see http://www.r-project.org]. We found a significantly lower
p-value (o2.2 # 10"16), when we compared expression values
of hubs and essential genes with respect to non-essential ones
suggesting increased expression of the former groups across
different conditions. In contrast, essential genes did not show a
significant difference in their half-lives compared to non-
essential gene set while hubs did.

Conclusion

It has long been believed that in bacteria, most of the regula-
tion of gene expression is at the transcriptional level with little
involvement of post-transcriptional control. However, recent
studies indicate a widespread role for several novel mechan-
isms and molecules in regulating expression at the RNA
level.17,39–41 In this context, the findings presented here
indicate for the first time, that proteins which are central in the
protein interaction network tend to encode for stable mRNA
transcripts and might be constrained to possess properties
such as the formation of stem–loop structures or protection of
their 30 ends. This would provide them with enhanced stability
over other transcripts, so that they would be available for a
longer duration in the cell. The findings presented here suggest
that hubs in the protein interaction network, which may need
to interact with multiple proteins possibly at different time
points during the cell cycle, might have been selected during
evolution to have increased transcript stability, thereby
enabling them to be utilized for multiple rounds of translation
and decreasing the cost of transcription. This hypothesis is
supported by the observation that certain functional
categories like transcription factors and enzymes involved in
core regulatory roles and central metabolism show extensive
differences in their stabilities so that while one transcript is
available for most of the cell’s life time the other is available
only under appropriate conditions in order to fine tune
the interaction between them and/or to prevent undesirable
cross-talk between them. Such high differences in half-lives can
also act as fine-tuned feedback mechanisms at appropriate
conditions through the physical interaction between proteins.
In light of recent studies demonstrating the impact of the
change in expression level of single gene over generations,42

our results suggest that mRNA stability might not only
provide a fitness advantage but also mediate regulation at
post-transcriptional level, thereby allowing an organism to
adapt to changing environments.

Our analysis of the expression level of essential genes
suggests that while essential genes are highly expressed com-
pared to non-essential ones and are enriched in hub encoding
genes, they do not seem to encode for more stable transcripts.
This is in contrast to what we observe for hubs which were
found to be highly expressed and were encoded by stable
transcripts. These findings are also in contrast to what was
seen in eukaryotic PPI network where transcripts encoding
hubs were significantly short-lived.43 These observations
suggest that the rapid turnover of hubs in eukaryotic PPI
network reported earlier43 might be explained based on the
distinct mechanisms that prokaryotic and eukaryotic cells use
to compartmentalize and regulate their protein availability.
For instance, microRNAs which are known to regulate the

expression of a significant fraction of the genes at the post-
transcriptional level in higher organisms are known to prefer-
entially inhibit the expression of hubs in both transcriptional
and protein–protein interaction networks44,45 possibly
explaining their high turn over rates. Another possible
explanation for these observed differences could be due to
the fact that in bacteria, cell cycle duration is often small
so that sometimes the turnover time of RNAs and other
molecules exceeds the lifespan of a single generation. This
may thereby provide the advantage of having higher stabilities
for frequently used transcripts by allowing them to carry over
the transcripts to future generations.
Our results also suggest that essential genes, which are

highly expressed, might compensate for their abundance by
not coding for highly stable transcripts, which might otherwise
cause cellular crowding. On the contrary, hubs which were
found to be highly expressed and produce stable transcripts
might be utilized by the cell during most of its cell cycle or be
translationally regulated, so that they are readily available
whenever they are needed. It is also interesting to note that
essential genes are composed of two kinds of genes, a small
fraction forming hubs in the PPIs and showing higher tran-
script stability and a majority which are not highly connected
in the PPI and show lower half-lives. These contributions from
essential genes to form a small but significant fraction in hubs
and a majority showing lower half-lives might be the cause for
the observation that essential genes are not more stable than
non-essential ones. Taken together our results demonstrate for
the first time that mRNA stability has a significant role in
mediating PPIs in bacteria and physical interactions might be
influenced by a variety of post-transcriptional mechanisms.
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The metabolic, defensive, communicative and pathogenic capabilities of eubacteria depend on their repertoire of genes and

ability to regulate the expression of them. Sigma and transcription factors have fundamental roles in controlling these

processes. Here, we show that sigma, transcription factors (TFs) and the number of protein coding genes occur in different

magnitudes across 291 non-redundant eubacterial genomes. We suggest that these differences can be explained based on the

fact that the universe of TFs, in contrast to sigma factors, exhibits a greater flexibility for transcriptional regulation, due to

their ability to sense diverse stimuli through a variety of ligand-binding domains by discriminating over longer regions on

DNA, through their diverse DNA-binding domains, and by their combinatorial role with other sigmas and TFs. We also note

that the diversity of extra-cytoplasmic sigma factors and TF families is constrained in larger genomes. Our results indicate that

most widely distributed families across eubacteria are small in size, while large families are relatively limited in their distribution

across genomes. Clustering of the distribution of transcription and sigma families across genomes suggests that functional

constraints could force their co-evolution, as was observed in sigma54, IHF and EBP families. Our results also indicate that

large families might be a consequence of lifestyle, as pathogens and free-living organisms were found to exhibit a major

proportion of these expanded families. Our results suggest that understanding proteomes from an integrated perspective, as

presented in this study, can be a general framework for uncovering the relationships between different classes of proteins.

Introduction

Bacteria respond and adapt to diverse environmental conditions
as a consequence of their gene repertoire and regulatory
mechanisms, among other elements.1–3 The availability of
their genome sequences has enabled the investigation of their
differences at genetic, molecular and biochemical levels. Recent
studies have shown that the evolutionary events associated
with regulatory gene families, such as their expansion and
contraction, contribute significantly to shaping the gene
repertoire and genome size of different lineages of prokaryotes.4–7
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Based on comparative genomics, it has been shown that
genes associated with transcriptional regulation increase in a
quadratic proportion with respect to the genome size.8–10

These observations become pertinent given that the regulation
of transcription initiation in bacteria is primarily mediated by
sigma factors (ss), which provide most of the specificity for
promoter recognition and DNAmelting needed for transcription
initiation.11–13 In fact, sigma factors perform these functions
only when bound to the RNA polymerase (RNAP). On the
other hand, DNA-binding transcription factors (TFs)14 affect
gene expression by blocking or allowing the access of the
RNAP to the promoter, depending on the operator context
and ligand-binding status.15–18 Usually, most gene transcription
in exponentially growing bacteria is initiated by RNAP carrying
a housekeeping s, similar to E. coli s70 or B. subtilis sA.
Alternative ss typically redirect the RNAP towards a subset of
genes required during specific conditions, such as stress
response or growth transitions, among others.11–13 TFs represent
a class of proteins devoted to sense and bind signals to regulate
genes, in response to specific compounds.17,19 Although there
is extensive evidence for the existence of alternative regulatory
mechanisms in diverse bacterial systems from post-transcriptional
regulation,20–22 they are not considered in this study, as we
focus on the specific role of TFs in mediating regulatory
mechanisms in a wide range of completely sequenced bacterial
genomes.

It has been previously suggested that the abundance of TFs
increases with an increase in an organism’s complexity8,23–26

as a consequence of different evolutionary events, such as
gene expansion, gene loss and lateral gene transfer.24,27,28

On the other hand, the repertoire of TFs, depending on
their hierarchical position in the network of transcriptional
interactions, have also been shown to play an important
role in shaping the organization of genes on bacterial
chromosomes.29–32 In this study, we analyze the repertoires
of ss and TFs in 291 eubacterial genomes and compare
their distribution in relation to the genome size to under-
stand their contribution to gene regulation in different
lineages and lifestyles. The results obtained here provide
insights into the functional and evolutionary constraints
imposed on different classes of regulatory factors in bacterial
organisms.

Results

The abundance of sigma factors and TFs correlates with genome
size in bacteria

To study the abundance and diversity of regulatory proteins
controlling transcription initiation, the repertoires of ss and
TFs were obtained in 291 non-redundant (NR) bacterial
genomes (see Materials and methods section for details). A
comparison of regulatory elements across genomes suggested
that they increase almost quadratically with genome size
(Fig. 1). In particular, we found that the repertoire of TFs is
roughly 10 times higher than ss (hundreds vs. tens) when we
considered the general profiles in all the genomes analyzed,
suggesting a proportion in the order of 1 ss : 10 TFs : 100
annotated ORFs per genome, although some genomes deviate
from this trend. This observation suggests that possible
functional relationships between TFs and ss, on one hand,
and bacterial lifestyles, on the other, could both be influencing
the observed trend. We discuss the impact of both of these
scenarios in the following sections.

The variation in the extent of conservation of rs compared to
TFs might be explained based on their regulatory roles at
transcription initiation

Firstly, the differences in the abundance of repertoires of ss
and TFs in bacteria might be attributed to the different
regulatory roles associated with them. Transcription starts
when a s interacts with RNAP to recognize its specific
sequence promoter (Fig. 1). This promoter recognition stage
imposes the existence of at least one s per organism, which

Fig. 1 The distribution of the number of TFs and ss in bacterial

genomes as a function of genome size. Genomes are sorted on the

x-axis by the number of ORFs. The abundance of TFs and ss in each

genome is shown on the y-axis (each dot corresponds to one genome).

ss are shown in pink and transcription factors in blue.Agustino Martı́nez-Antonio
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typically belongs to the s70 family.13 As a result, bacterial
systems might be able to switch between different transcriptional
programs based exclusively on their repertoire of s factors.
Nonetheless, the transcriptional programs mediated uniquely
via ss would be restricted, as a result of their limited repertoire
and the small collection of ligands they can recognize, such as
guanosine tetraphosphate (ppGpp).33 As a consequence, ss
exhibit a limited ability to directly couple the environmental
conditions with gene transcription. In addition, ss have a
constrained DNA-binding region in terms of length and the
diversity of sequences they recognize, as they need to be
structurally-coupled to the RNAP in the promoter zone. These
restricted zones of action divide the universe of ss into
promoters recognized by s70 and those recognized by s54

(the binding zones correspond to about "10 to "35 bp for
s70 and "12 to "24 for s54, relative to the transcription
start site).34,35

On the other hand, TFs define a different regulatory level
compared to ss. These proteins exhibit diverse structural and
functional domains, where one of them specifically binds
to DNA and the other can sense and bind one or more
ligand compounds from endogenous and/or exogenous
sources,17 such as the TyrR of E. coli, which bind to three
aromatic amino acids and ATP.36 In addition, TFs associate
combinatorially, not only with ss, but also with a number of
other TFs and DNA-binding sites,37,38 thus allowing the
rewiring of a transcriptional network depending on the
environmental conditions; for instance, sodA, a gene encoding
for superoxide dismutase in E. coli, is regulated by up to eight
different TFs responsible for various cellular responses,
including Fur (ferric uptake regulation protein), Arc (aerobic
respiratory control) and Fnr (fumarate nitrate reduction/
regulator of anaerobic respiration).39,40 Finally, the diversity
of sequences that TFs can recognize is enormous and can
occur anywhere from a few bases downstream of the promoter
zone to up to hundreds of bases upstream of the transcription
start site (Fig. 1).41,42 For instance, the global regulator
CRP (catabolic repressor protein) in E. coli can regulate
promoters associated with four out of the seven possible ss

and co-regulate with more than 50 different TFs.43,44 In
summary, TFs constitute a class of proteins whose space of
action is more flexible than that of ss, not only in sensing
diverse environmental and endogenous stimuli, but also in
recognizing a wide range of binding site sequences over a
larger zone on the DNA around the transcription start site.

Lifestyles explain the abundance of rs and TFs in bigger
genomes

The results of the previous sections suggest that regulatory
complexity should increase in larger genomes and might be
associated with bacterial lifestyles, as the environment should
influence the bacterial genome structure and function. Thus,
we analyzed the genomes in relation to the four global classes
of lifestyles.45 These included extremophiles (21 genomes),
intracellular bacteria (28 genomes), pathogens (109 genomes)
and free-living bacteria (133 genomes). To understand how the
complexity of gene regulation depends on the number of ss
and/or TFs, as a function of increasing genome size and how
they are associated to lifestyle, we calculated the ratio of
TFs/number of genes (T/G) and ss/number of genes (S/G),
(Fig. 2). From this analysis, we found that the increase in
regulatory complexity in intracellular (I) and extremophilic (E)
bacteria depends almost exclusively on the TF repertoire
(no correlation was observed for an increase in s with genome
size for these lifestyles). On the other hand, in pathogenic (P)
bacteria, the regulatory repertoire is contributed-to by TFs
and to some extent by ss. In contrast, ss and TFs contributed
almost equally to the regulatory repertoire in free-living (F)
bacteria. Thus, TFs contribute significantly to the regulatory
complexity of bacteria belonging to different lifestyles,
whereas ss contribute more significantly to the transcriptional
machinery of regulation in pathogens and free-living bacteria.
These results agree with previous observations, which suggest
that few regulatory elements identified in small genomes would
compensate the regulation of the entire genome with an
increase in the number of DNA-binding sites per element, in
contrast to the large number of elements identified in large
genomes that control a lesser proportion of DNA-binding sites

Fig. 2 The ratio of regulatory factors to the total number of ORFs per genome. The number of genes encoding for TFs and ss were normalized

with respect to the total number of ORFs per genome (T/G and S/G, respectively), and these ratios are shown for bacteria belonging to four

different lifestyles: free-living (F) (m), extremophiles (E) (’), pathogens (P) (E) and intracellular (I) (K).
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on average.10 In addition, genes in small genomes are organized
into large operons, simplifying the transcriptional machinery
necessary for gene expression. This is in contrast to large
genomes, which have a reduced number of genes in operons,
influencing the proportion of ss and TFs in those organisms,46

suggesting that complex lifestyles would require a higher
proportion of TFs and transcription units to better orchestrate
a response to changing conditions.

The contribution of sigma factors to the transcriptional
machinery trend

In order to assess the contribution of ss to the trends
described in Fig. 1 and Fig. 2, they were divided into three
main groups based on their sequence and function. As
described in the previous section, we then computed the ratio
of the number of ss/number of genes (S/G) in all the genomes
for each group of ss, namely s54, s70 and extra cytoplasmic
function (ECF) sigma factors.13 From this analysis, we found
that the abundance of ss is primarily determined by the
number of ECFs and s70s, as the number of s54 members
was found to be roughly constant and often occurred in no
more than a single copy in most genomes (Fig. 3(a)). ECFs
were highly abundant in free-living and pathogenic bacteria,
with genomes containing more than 2000 genes, and might be
the result of massive gene duplications.47,48 The extent of
conservation of different types of ss across bacteria suggests
a functional role for each, depending on their distribution. For
instance, s70 is indispensable to the adequate maintenance of a

cell and is the only sigma identified in small genomes with less
than 800 genes, whereas ECFs are factors associated with the
regulation of functional processes beyond the basal ones. In
obligate intracellular pathogens, such as Mycoplasma sp,
Streptococcus mutants or Lactobacillus plantarum, there is
only one housekeeping s70 and no alternative ss. s54 factors
were found to exhibit an almost constant distribution of one
copy per genome, except in some pathogens and free-living
eubacteria, where they were identified in two-copies (see the
ESIz). s54 factors require the assistance of specialized activators
of the EBP (enhancer binding protein) family of TFs, and this
might have constrained the number of genes regulated by s54,
i.e. promoters associated with s54 frequently require the
bending of long intergenic DNA stretches via IHF, resulting
in a specific physical proximity between the RNAP and
TFs.49,50 Thus, evolutive mechanisms working for chromosome
compactness might be working against the increased use of s54

promoters in bacteria.
To analyze the specific contribution of the different

families of ss to gene transcription, we computed the ratio
of the number of ss/genes (S/G) in all the genomes. Fig. 3(b)
shows, as expected, that s70s have a higher proportion
of genes to transcribe in small genomes, but that as genome
size increases, this proportion diminishes; ECF is the
only family whose proportion of regulated genes increases
in larger genomes. Most of the diversification of ECFs
corresponds to free-living and pathogenic genomes with
B5000 ORFs.

Fig. 3 The distribution of families of ss in bacterial genomes. (a) Genome size is shown on a log scale on the x-axis. The y-axis shows the number

of s factors in each family per genome. (b) The ratio of the number of sigma factors from each family to the total number of ORFs per genome; the

three outliers, with a high number of ECFs, correspond (from left to right) to b-proteobacteria (N. europaea) and two bacteriodes (B. fragilis

NCTC9434 and B. thetaiotaomicron VPI-5482).
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The abundance of TFs does not correlate with the diversity
of families, and large families are not the most widely distributed

An appealing hypothesis is that a high diversity of TF families
would contribute more significantly to regulatory plasticity
than ss. In line with this hypothesis, an analysis of 93 TF
families, comprising of a total of 46 255 TFs across all the
genomes analyzed in this study, showed a reduced diversity of
families in small genomes, with an increasing proportion
in larger ones, especially in pathogens (P) and free-living
organisms (F) (Fig. 4(a)). The diversity of families reaches a
maximum in genomes with around 5000 ORFs. The higher
number of TFs in larger genomes does not necessarily imply
the diversity of families beyond this plateau, but instead an
increase in the size of some families of TFs. Congruent with
this observation, Fig. 4(b) shows that the average number of
TFs per family increases linearly, with a few families of TFs
expanding disproportionately. These families comprise of
LysR and TetR, which represent about 24% of the total set
of TFs identified (11 078 of 46 255 proteins). Members of these
two families increase abruptly in larger genomes, as shown
in Fig. 4(c), which also shows three other most-populated

families of TFs in eubacteria for the sake of comparison. The

increase in the size of these two families in larger genomes

coincides with the plateauing of the diversity of families in

these bacterial genomes (marked by arrows in Fig. 4(a), (b),

and (c)). Another feature associated with large families is that

they are not widely distributed among bacteria, despite their

role in controlling important processes, such as cell–cell

communication (LuxR), the response to external conditions

by two-component systems (OmpR), the sensing, uptake and

metabolism of external food sources (GntR and LysR), or

resistance to antibiotics (TetR). On the other hand, some

families with an average size of a few copies per genome, such

as DnaA, LexA and IHF from E. coli, proposed to be essential

in standard growth conditions in this bacterium and in keeping

its DNA and nucleoid integrity,51,52 can be considered to be

conserved across bacteria. This is because they were identified

in at least 86% of the genomes, suggesting probable gene loss

events in bacteria where they are absent (Fig. 5).
In summary, our results suggest that a family’s abundance

and distribution is associated with evolutionary events in
bacteria. For instance, small families widely distributed among

Fig. 4 Characteristics of TF families in bacterial genomes. (a) The number of TF families as a function of the number of ORFs in each genome,

grouped according to the lifestyle of the organism: E (extremophiles), I (intracellular), P (pathogens) and F (free-living bacteria). (b) The average

number of TFs per family as a function of the number of ORFs in each genome, grouped according to the lifestyle of the organism, as in (a).

(c) The ratio of the number of TFs to ORFs per genome for the five most abundant families of TFs in bacterial genomes.
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bacteria might be related to ancestral functions beyond tran-
scriptional regulation, such as DNA organization, or nucleoid
integrity or DNA salvage, whereas large families might be
associated with the regulation of dispensable or emergent
processes in bacterial evolution, such as quorum sensing,
belonging to the members of the LuxR family, which are
widely identified in bacteria. Indeed, the evolution of this
mechanism in bacteria has been proposed to be one of the
early steps in the development of multicellularity,53 and may
be correlated with bacterial specialization.

Functional relationships might impose evolutionary constraints

Since some proteins tend to work together in a functional
context, we analyzed the distributions of different families, as
this would give us an indication about the co-evolution of
regulatory factors. Hence, we clustered the co-occurrence of
the regulatory protein families (TFs and ss) in all 291 bacterial

genomes, as shown in Fig. 6. From this analysis, we found that
the distribution of s54, IHF and EBP families is correlated,
supporting the functional interdependence discussed above
(and inset in Fig. 6) and probable co-evolution, where
members and mechanisms have been preserved along the
course of evolution. A second cluster including s70, the ECF
family of sigma factors and other highly abundant families
(more than 15 members per genome) responsible for regulating
diverse mechanisms of stress responses (MarR), antibiotic
resistance (TetR), osmotic response (OmpR) and quorum
sensing response (LuxR), among other processes, were also
found to be clustered as a result of this analysis. This suggests
a strong functional relationship among these s and TF
families. These clusters, in addition, give insights into the
functional interdependence between regulatory proteins from
different families, which could help in the characterization of
regulators in poorly studied genomes.

Materials and methods

Genome sequences

Predicted proteomes for 291 eubacteria were obtained from
the entrez genome database of the NCBI (ftp://ncbi.nlm.nih.
gov/genomes/bacteria).54

A complete list of non-redundant genomes can be obtained
at http://popolvuh.wlu.ca/Phyl_Profiles/NR_genomes/RE
DUNDANCY.html. In brief, two genomes are considered
redundant if they share a genomic similarity score (GSS)
higher than 0.95, where GSS is defined as the ratio of the
sum of all the BLAST bit-scores for protein coding genes that
have orthologs between two genomes being compared and
reaches a maximum of one if all the proteins of one organism
are identical to their corresponding orthologs of another
organism. This would be the case when the proteomes are
identical.55,56 A complete list of genomes analyzed and their
repertoire of TFs is provided as ESI.z

Fig. 5 The diversity and conservation of TF families in bacteria. The

occurrence of a TF family across genomes as a function of the total

number of TFs identified. Some families of TFs conserved in a few

copies per genome are circled in pink. Note that these are also the most

conserved families of TFs in the analyzed genomes. In contrast, some

families (circled in blue) are the most populated, though are less

conserved, in comparison to those circled in pink across genomes.

Fig. 6 The clustering of transcription and sigma factor families across bacterial genomes based on their co-occurrence profiles. A clear

co-occurrence distribution is observed for IHF, EBP and s54 families, suggesting a functional interdependence between them. The co-regulatory

mode of action for these regulatory proteins is shown in the inset.
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The identification of families of DNA-binding transcription
factors (TFs)

To identify and analyze the repertoire of TFs in bacterial
genomes, a combination of information from different sources
and bioinformatics tools were used. Firstly, 45 088 putative
TFs were collected from the transcription factor DB,57 a
database devoted to the identification and classification of
DNA-binding TFs by means of the SUPERFAMILY library
and PFAM hidden Markov models (HMMs). In a second
phase, 90 family-specific HMMs previously reported from
E. coli K12 and 57 family-specific HMMs from B. subtilis5,58

were used to scan the complete genome sequences (E-value
threshold = 10"3) with the hmmsearch module of the HMMer
suite program (http://hmmer.janelia.org). TF families were
identified based on their DNA-binding domains: in a first
step, if a protein shared more than 25% of the identity in its
DNA-binding region with any member of the well-characterized
TFs of E. coli and/or B. subtilis, it was included in this
particular family. In order to include distant homologs and
to decrease the bias associated with the over-representation of
TFs from specific organisms, these families were expanded by
Blast searches59 against the SwissProt database60 using an
E-value threshold of 10"6. Proteins retrieved were filtered at
100% to exclude redundancy using the program CD-hit61 and
aligned with ClustalW.62 Proteins with less than 50% similarity
against their corresponding HMM were excluded. This step is
important to explore potential TFs not identified through the
first approach and vice versa, i.e. the coverage of the DBD
database corresponds to approximately 70% of the universe of
TFs and can be complemented with family-specific HMMs.63

Previous studies using this approach for predicting new TFs
suggest that these models are successful in identifying a
significant fraction of experimentally confirmed TFs in different
lineages,40,64 confirming the value of these predictions for
studying genome-scale patterns. An extensive set of TFs
from all 675 bacterial genomes (including redundant ones)
and supplementary material associated with this study is
available.z

The identification of r factors

Three HMMs were used to identify s70, s54 and ECF-like
sigma factors across genomes. s70 and s54 models were
retrieved from the PFAM database.65 ECFs have been
considered as a separate group of s70 proteins because of their
significant sequence divergence from the s70 family. Thus, we
constructed a specific ECF HMM based on the well-known
repertoire of ECF proteins in B. subtilis. These proteins
were used to run the motif discovery and search system,
MEME/MAST (using default parameters), to identify specific
regions associated with this group. We selected two motifs to
construct HMMs and to scan the whole repertoire of bacterial
genomes. The motifs and HMMs are available in the ESI.z

Clustering of families of regulatory factors

To analyze the distribution of ss and TF families across the
291 bacterial genomes, they were first saved as a matrix. This
matrix was then loaded into the cluster 3.0 program66 to
identify groups of families that correlate in terms of their

occurrence profile across all the bacterial genomes. A
hierarchical complete linkage clustering algorithm was run
with an uncentered correlation as a similarity measure. The
clustering results were then visualized using the Treeview
program.66

Conclusions

To understand the relationship between the expansion
patterns of different regulatory factors involved in gene
regulation at transcription initiation, 291 completely sequenced
bacterial genomes, which represent adaptive designs for
different lifestyles, were analyzed. We showed that the
distribution of ss and TFs follows a trend, with a ratio of
1 s per 10 TFs and 100 ORFs in all the genomes analyzed,
coinciding with our present knowledge that ss direct RNAP to
a small repertoire of binding sites in sequence and location,
compared to the diversity provided by the collection of TFs at
the promoters in a genome. For instance, in E. coli, around
95% of its genes are transcribed by s70, with the fine tuning of
their expression mediated by TFs.44 In addition, we found
that, in large genomes, there is a decrease in the number of
different families of TFs, i.e., in the diversity of families, than
would otherwise be expected. In this context, abundant
families are not widely distributed across all bacteria. In
contrast, some small families are the most widely distributed.
This difference might be associated with different phenomena,
such as evolutionary constraints by regulatory mechanisms, as
discussed in the case of DnaA or LexA and EBP families.
Our results also suggest that in larger genomes, regulatory
complexity may possibly increase as a result of the increasing
number of members from the ECF family and some TF
families. However, it is unclear if this increase would correspond
to an increase in complexity by means of multiple parallel
switches and feed-forward loops in regulatory networks (as
shown for carbon sources in E. coli67), as long regulatory
cascades, or as a combination of both. Overall, the analyses
presented here will not only contribute to improving our
understanding of the influence of design on the regulation of
gene expression, but also support the basis for a comprehensive
modelling of transcriptional regulatory networks in bacteria.
The observations discussed in this study should be valid for a
wide-range of bacteria in most genomic studies; the analysis of
over 100 genomes is reported to be sufficient and robust
enough to be generalized.68

Abbreviations

ss Sigma factors
TFs Transcription factors
EBP Enhancer binding proteins
ECF Extra-cytoplasmic sigma factors
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a b s t r a c t

Escherichia coli K12 and Bacillus subtilis 168 are two of the best characterized bacterial organisms with
a long history in molecular biology for understanding various mechanisms in prokaryotic species. How-
ever, at the level of transcriptional regulation little is known on a comparative scale. Here we address
the question of the degree to which transcription factors (TFs) and their evolutionary families are shared
between them. We found that 59 proteins and 28 families are shared between these two bacteria, whereas
different subsets were lineage specific. We demonstrate that majority of the common families expand in a
lineage-specific manner. More specifically, we found that AraC, ColD, Ebp, LuxR and LysR families are over-
represented in E. coli, while ArsR, AsnC, MarR, MerR and TetR families have significantly expanded in B.
subtilis. We introduce the notion of regulatory superfamilies based on an empirical number of functional
categories regulated by them and show that these families are essentially different in the two bacteria.
We further show that global regulators seem to be constrained to smaller regulatory families and gener-
ally originate from lineage-specific families. We find that although TF families may be conserved across
genomes their functional roles might evolve in a lineage-specific manner and need not be conserved,
indicating convergence to be an important phenomenon involved in the functional evolution of TFs of the
same family. Although topologically the networks of transcriptional interactions among TF families are
similar in both the genomes, we found that the players are different, suggesting different evolutionary
origins for the transcriptional regulatory machinery in both bacteria. This study provides evidence from
complete repertoires that not only novel families originate in different lineages but conserved TF families
expand/contrast in a lineage-specific manner, and suggests that part of the global regulatory mechanisms
might originate independently in different lineages.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

The genomes of the two model organisms, Escherichia coli
K12 (Blattner et al., 1997) and Bacillus subtilis 168 (Kunst et al.,
1997), contain a different proportion of Transcription Units (TU’s)
(Moreno-Hagelsieb and Collado-Vides, 2002), sigma factors and
promoters (Salgado et al., 2006; Makita et al., 2004). Despite these
basic differences, it has been possible to find some conserved
and unique DNA-binding transcription factors (TFs) acting over
their complete gene repertoires (Makita et al., 2004; Perez-Rueda
et al., 2004). Such TFs have been related to a wide diversity of
functions including catabolite repression, differentiation and cel-
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(E. Pérez-Rueda).
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lular maintenance, among others. However, it is unclear how the
collection of proteins performing similar functions (DNA-binding
ability) could have evolved in these two organisms with different
evolutionary history and ancestry (Hedges, 2002). Understanding
the evolution of the transcriptional regulatory machinery across
genomes would improve our knowledge about the evolutionary
constraints that play a role in the formation of regulatory networks
and would also help to decipher the design principles governing
these networks across bacteria (Janga et al., 2009). Although some
recent works have dealt with the evolution of the components
and suggested duplication of genes as the main factor contribut-
ing to the formation of the Transcriptional Regulatory Network
(TRN) (Madan Babu and Teichmann, 2003; Teichmann and Babu,
2004), there has not been comparative analysis of TFs and their
families between genomes to understand the evolutionary con-
straints, functional aspects and design principles governing their
formation. Despite the fact that there has been an increasing inter-
est to identify and understand the regulatory repertoires of entire
genomes using a variety of computational approaches (Perez-Rueda

1476-9271/$ – see front matter © 2009 Elsevier Ltd. All rights reserved.
doi:10.1016/j.compbiolchem.2009.06.004
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et al., 2004; Brune et al., 2005; Moreno-Campuzano et al., 2006;
Kummerfeld and Teichmann, 2006), there has not been genome
scale comparative study reported so far to our knowledge, using
representative genomes from distant lineages especially in the
context of regulatory networks. Here we present the first com-
prehensive comparative analysis of the complete repertoires of TFs
from two prokaryotic model organisms, E. coli K12 and B. subtilis.

In this work, we first identify and classify the repertoire of DNA-
binding TFs of E. coli and B. subtilis into families using a previously
reported approach applied to E. coli (Perez-Rueda and Collado-
Vides, 2000). We then analyze the collection of TFs and their TF
families at various levels to deduce thereof the common set of regu-
latory genes and families and to infer specific tendencies of TFs. Our
analyses were based on the collection of TFs reported and collected
from two different databases: RegulonDB (Salgado et al., 2006) for E.
coli K12 and DBTBS (Makita et al., 2004) for B. subtilis. Additional lit-
erature look up was performed, to retrieve a more complete dataset
of TFs in these organisms. Here, we demonstrate that although E.
coli and B. subtilis contain a similar proportion of DNA-binding TFs,
the majority of the TF families have expanded and evolved inde-
pendently. The regulatory networks based on the set of well-known
TFs in both genomes suggest that the functions of genes regulated
by similar families could be different. These findings open diverse
opportunities to understand the complex regulatory systems in dif-
ferent bacteria, beyond Proteobacteria and Firmicutes.

2. Materials and Methods

2.1. Identification of TFs and Construction of TF Families in B.
subtilis

In order to identify the repertoire of TFs in B. subtilis, we used
a combination of information sources and bioinformatics tools as
reported earlier (Moreno-Campuzano et al., 2006). Briefly, 237 TFs
were identified by an exhaustive analysis of three sources, those
TFs identified from DBTBS, a database devoted to the gene regula-
tory mechanisms in B. subtilis strain 168 (Makita et al., 2004), TFs
identified by the search of family-specific Hidden Markov Models
(HMMs) reported previously (Perez-Rueda et al., 2004) from E. coli
TFs (E-value threshold ≥10-3), and those TFs identified with the
library of HMMs from the Superfamily database (E-value ≥10-3)
(Madera et al., 2004). This HMM library is based on the sequences of
domains collected in the Structural Classification of Proteins (SCOP)
database (Hubbard et al., 1997) and is thus applicable for a structural
classification of proteins. In summary, the final dataset included
those proteins identified by HMMs, Superfamily searches, and the
repertoire (manually curated) of TFs described in DBTBS. These pro-
teins were classified into families by using HMMs deposited in the
PFAM DB (Bateman et al., 2000), and aligned by using the program
hmmalign from HMMer. Our final collection included 90 families
in E. coli and 51 families for B. subtilis. Additionally, their corre-
sponding HMMs were used to scan a collection of 234 genomes,
including bacterial, archaeal and eukaryotic species, in order to
determine their evolutionary emergence in different lineages (see
Supplementary Material for a complete list of genomes analyzed
and the number of TFs identified across genomes).

2.2. Data of Regulatory Interactions

Transcriptional regulatory interactions of E. coli K12 were
obtained from RegulonDB (Salgado et al., 2006), which contains
experimental information extracted from literature, whereas the
regulatory interactions of B. subtilis were retrieved from DBTBS
(Makita et al., 2004). Those interactions from the datasets where
a sigma factor is known to control the expression of a gene were

excluded. Therefore, a total of 1816 regulatory interactions were
considered for E. coli while 745 were included from the B. subtilis
TRN.

2.3. Identification of Orthologs

Orthologs are defined as proteins in different species that
evolved from a common ancestor by speciation (Fitch, 1970) and
usually have the same function. Our working definition of orthology
consisted of BLASTP reciprocal best hits, which is a widely accepted
notion for identifying functional orthologs and homologous genes
were identified with an E-value cutoff of 1e-6 as described else-
where (Janga and Moreno-Hagelsieb, 2004).

3. Results and Discussion

3.1. Conserved TFs and TF Families Between E. coli and B. subtilis
Genomes

Two proteins associated to common functions might be a con-
sequence of common origin in different genomes (orthologous) or
gene duplication within a genome after speciation (paralogous).
Thus, we sought to determine the fraction of the total repertoire of
TFs in E. coli and B. subtilis related by orthology and how it compares
with genomic conservation. We found that 59 TFs from E. coli which
correspond to around 20% of total TFs, had orthologs in B. subtilis,
while around 29% of their total gene products are related by orthol-
ogy which is statistically significant (see Supplementary Material),
as has been previously observed about their conservation patterns
using only a known subset of TFs in these genomes (Madan Babu
et al., 2006; Lozada-Chavez et al., 2006). This finding suggests that
TFs between the two genomes are 30% less conserved than other
protein classes, indicating that TFs are likely lost to a greater extent
at such phylogenetic distances (Lozada-Chavez et al., 2006). These
observations give rise to several questions concerning the evolu-
tionary and functional conservation of TFs between these bacterial
genomes, so in order to have an insight into the commonalities and
differences in the gene regulation between the prokaryotic species
from the perspective of TFs, we used the complete repertoires of
TFs in E. coli and B. subtilis. Based on diverse sequence and HMM
searches, a total number of 303 E. coli TFs and 237 B. subtilis TFs were
identified. These repertoires were also classified into families and
compared to understand their evolutionary trends. Fig. 1 evidences
the different proportions of TF families identified in the genomes.
However, it can be noted that ArgR, BirA, DnaA, FrvR, LexA, PrpD and
WrbA families show a very similar distribution in both the genomes.
The similar proportion of these groups suggests the possibility of
an early evolution of these families before the split of Proteobacte-
ria and Firmicutes and no subsequent lineage-specific expansion or
loss. A closer look at the functions of these families indicates that
they are mostly involved in the synthesis of amino acids, replica-
tion and DNA repair mechanisms and metabolism of sugars. On the
contrary AraC, ColD, DeoR, Ebp, IclR, LacI, LuxR, RpiR, YjhU YdeW
and YeiL families are dominant in E. coli, whereas ArsR, AsnC, GntR,
Fur, MarR, MerR, ROK, TetR and OmpR can be seen to be domi-
nant in B. subtilis. It is interesting to observe that AraC, ColD, Ebp,
LuxR and LysR families are roughly double in proportion in E. coli
than in B. subtilis, while ArsR, AsnC, MarR, MerR and TetR show a
marked over-representation in B. subtilis. To test the significance of
this observation and to determine if these distributions are in fact
very different we performed a chi-square test, with the expected
distribution in each genome calculated as the product of the total
TFs from the common families and proportion of the TF family as
seen in other genome. We observed a P-value < 10−53 when the
familial distribution in B. subtilis was considered as the observed
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Fig. 1. Proportion of TFs in the common families identified among E. coli and B.
subtilis. Proportion of TFs in each family was calculated as the fraction of TFs in a
given family normalized against the total TFs that were identified in that genome in
the common families. Chi-square tests against the distributions suggest that they are
significantly different with P-values lower than 10−19 observed in both the genomes.

set and P-value < 10−19 when families in E. coli were treated as
observed, indicating a significant difference in the distribution of
common families. In order to test if some of the well conserved
single-gene families like ArgR, BirA, DnaA, discussed above affect
the P-values, we re-calculated them excluding these families and
found them to be lower than 10−57 and 10−22 respectively, suggest-
ing that these families indeed make the distributions more similar
due to their very similar distribution in both the genomes and are
probably evolutionary conserved as single copies in most prokary-
otic genomes (Perez-Rueda et al., 2004; Lozada-Chavez et al., 2006;
Makarova et al., 2001; Rodionov et al., 2002; Erill et al., 2004; Fujita
et al., 1989). A plausible explanation for this biased lineage-specific
over-representation of antibiotic related families in B. subtilis and
metabolic and structural components inE. coli could be attributed to
the niche in which these organisms survive. For instance, although
both of them are free-living bacteria, E. coli has adapted to thrive
inside its host and can degrade a wide variety of carbon sources
thereby harboring a number of TFs responsible for degradation of
carbon compounds (Martinez-Antonio et al., 2008), while B. subtilis
has adapted to soil environments and can accept limited number
of carbon sources but this is probably complemented due to its
ability to form spores and starve long durations in the absence of
substrates which might be driven by the excess number of sigma
factors present in this bacterium.

We proceeded to analyze those DNA-binding TFs that are com-
mon to both the bacterial genomes. Table 1 shows the distribution
of 59 orthologous TFs between the genomes grouped according
to their association to TF families (Perez-Rueda et al., 2004). We
found that the core of the TFs conserved between the genomes
are involved in the regulation of amino acid biosynthesis, car-
bon sources assimilation, antibiotic resistance, DNA replication
and repair and biosynthesis of membrane components. To iden-
tify shared and species-specific TFs quantitatively, overlooking the
different evolutionary phenomenon the organisms might have
undergone over time, homologous proteins were identified in the
complete collection of TFs by using BLASTP matches. This compar-
ative analysis allowed us to assess the extent of variation between
the two bacteria at the level of regulatory proteins. We found that
151 TFs have homologs in both genomes, corresponding to about
52% of the TFs of E. coli, suggesting that the regulatory networks
might be poorly conserved between the species and controlled by
few homologous regulatory functions. It is also interesting to note

Table 1
Distribution of orthologous TFs between E.coli and B. subtilis into different families.

Family Number of orthologs Regulatory roles

LysR 7 Amino acid biosynthesis
GntR 7 NA
AraC 5 Carbon metabolism, cell wall

synthesis, stress responses and
pathogenesis

LuxR 3 Quorum sensing
TetR 3 Tetracycline resistance
DeoR 3 Deoxiribose assimilation
MerR 3 Mercury resistance
MarR 2 Multiple antibiotic resistance

response
YjeB 2 NA
Rok 2 NA
Cold 2 Low temperature adaptation
LacI 2 Carbon sources assimilation
Fis 2 NA
YeiL 1 Global regulatory functions
PrpD 1 NA
LexA 1 DNA repair
AsnC 1 Leucine repressor protein
Fur 1 Iron assimilation
Ihf 1 Integration host factor
OmpR 1 Biosynthesis of membrane

components
YjhU YdeW 1 NA
RpiR 1 Ribose phosphate isomerase
IclR 1 Glyoxylate bypass operon
BirA 1 Biosynthesis of biotin
DnaA 1 Transcription and replication

regulation
ArsR 1 Arsenic resistance
ArgR 1 Arginine biosynthesis
HipB 1 NA

Functions of the TF families were as described in a previous study on TF families
in E. coli. TF families whose function cannot de determined either because of lack
of information or due to the complexity of the members to regulate more than one
function are represented as not available (NA).

that E. coli and B. subtilis contain 48% and 36% unique TFs at the
BLASTP thresholds used to determine homologs, indicating that the
genomes have considerably changed their repertoires of regulatory
machinery.

3.2. Lineage-specific Families

Diverse families were identified exclusively in E. coli or B. subtilis.
In Table 2 we present 16 families identified as specific to Firmi-

Table 2
Lineage-specific TF families identified in B. subtilis.

TF family Family size Regulatory roles

AbrB 3 Transition state genes
CodY 1 Global regulatory mechanisms
ComK 1 Late competence genes
CtsR 1 Class III stress genes
DtxR 1 Manganese transport
DUF24 3 Unknown
HxlR 2 Detoxification system regulation
LytTR 3 Regulation of autolysis
PadR 1 Phenolic acid synthesis
PRD 1 Phosphotransferase system
Psq 1 NA
PucR 1 Purine degradation
Rrf2 3 NA
RsfA 1 Prespore-specific regulation
TenA 1 Extracellular enzyme genes
Xre 17 Prophage, competence development

and sporulation associated genes

TF families whose function cannot de determined because of lack of information are
represented as not available (NA).
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Table 3
Distribution of global TFs into different families in E. coli K12 and B. subtilis 168.

Family Family size (E. coli) Family size (B. subtilis) Global TFs (E. coli) Global TFs (B. subtilis)

YeiL 3 1 Crp/Fnr –
Hns 2 0 Hns –
AsnC 3 6 Lrp –
IHF 4 2 IHF –
Fis 8 3 Fis –
LacI 14 11 – CcpA
ComK 0 1 – ComK
AbrB 0 3 – AbrB
CodY 0 1 – CodY
OmpR 14 8 ArcA- Spo0A

cutes or closer lineages in terms of their taxonomic distribution.
In these families there are diverse global regulators, such as ComK,
AbrB and CodY, which act as switches between sporulation and free-
living state in B. subtilis. From the perspective of E. coli, we found
15 characterized families which are specific to this bacterium or
closely related lineages. For instance, MetJ and TrpR, the regulators
of methionine and tryptophan related genes and AlpA and Crl which
are known to be involved in the context of lipopolysaccharide adhe-
sion to human gastric tissue and regulation of curly surface fibers
respectively, are constrained to enterobacteria while some fami-
lies like CaiF, HycA and HtgA are exclusive to E. coli and Salmonella
strains. This suggests that diverse lineage-specific TFs might be
involved in specific and important processes, such as sporulation in
bacilli or in some specific amino acid biosynthesis routes in enter-
obacterial species. It is interesting to note that the absence of TFs for
several important amino acid biosynthetic routes in B. subtilis and
other Firmicutes is complemented by the invention of novel regula-
tory mechanisms such as transcription attenuation, despite the fact
that these genomes might be responding to identical regulatory sig-
nals in the synthesis of these amino acids, suggesting the possibility
for variations even in fundamental processes of the cell (Gollnick
et al., 2005; Gutierrez-Preciado et al., 2005; Winkler et al., 2003;
Merino and Yanofsky, 2005; Rodionov et al., 2004). In other bacteria,
similar lineage-specific TFs and TF families might be expected as has
been previously reported for Streptomyces coelicolor (Bentley et al.,
2002).

3.3. Evolution of Global TFs in the Context of TF Families

Global TFs, defined as those regulatory proteins which regulate
a wide variety of functional categories and have their influence on
a considerable number of genes (Martinez-Antonio and Collado-
Vides, 2003), provide important insights into the evolution of
regulatory mechanisms in bacterial genomes. Therefore, it was our
interest to understand how this class of TFs is distributed across
TF families in both the genomes (see Table 3). From this table,
we did not find any global TFs in common families, thus although
there are common families between the two genomes, global TFs
have originated from completely different TF families in different
lineages. Some specific examples in this direction have been also
demonstrated in other bacteria, like Crc in Pseudomonas putida
which belongs to the endonuclease/exonuclease/phosphatase fam-
ily (Morales et al., 2004) or ArlR in Staphylococcus aureus and PrrA
in Rhodobacter sphaeroides which are members of two component
response regulators (Liang et al., 2005; Mao et al., 2005). How-
ever, many of the global TFs occur in families identified in both the
genomes except for Hns and ArcA in E. coli and ComK, AbrB and CodY
in B. subtilis which occur in genome or lineage-specific families. A
glance at the functions of these global TFs indicates that they are
specific in their functional roles and might have evolved depend-
ing on the organism specific needs like sporulation in B. subtilis,
essentially implying that different bacteria might have developed

Fig. 2. Distribution of the COG categories of the regulated genes by each family of TFs
in (a) E. coli and b) B. subtilis. Only those families which have more than 3 regulated
genes per family are shown. The first 8 TF families correspond to the ones which
exist in both the genomes. The fractions in each column are normalized against the
total COG annotated genes. COG functional categories: amino acid transport and
metabolism (E); carbohydrate transport and metabolism (G); energy production
and conversion (C); transcription (K); cell wall/membrane/envelope biogenesis (M);
replication, recombination and repair (L); inorganic ion transport and metabolism
(P); translation, ribosomal structure and biogenesis (J); posttranslational modi-
fication, protein turnover, chaperones (O); signal transduction mechanisms (T);
coenzyme transport and metabolism (H); cell motility (N); nucleotide transport
and metabolism (F); lipid transport and metabolism (I); secondary metabolites
biosynthesis, transport and catabolism (Q); defence mechanisms (V); intracellu-
lar trafficking, secretion, and vesicular transport (U); cell cycle control, cell division,
chromosome partitioning (D). Correlations observed in the distribution of functional
categories of the regulated genes in the common TF families: YeiL (R2 = 0.0398),
BirA (R2 = 0.9423), LacI (R2 = 0.0023), AsnC (R2 = 0.8036), Fur (R2 = 0.734), OmpR
(R2 = 0.4332), GntR (R2 = 0.1103) and ArgR (R2 = 0.8598).
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Fig. 3. TF family size versus number of regulatory interactions with in members of the same family (a) E. coli and (b) B. subtilis.

at least part of their global regulatory mechanisms independently.
A second observation that can be made from the table is that most
of the global TFs seem to fall into smaller TF families hinting that
global TFs might avoid the cross talk over the binding sites between
different members of their TF family by reducing the number of
family members. Some TFs of the same family are known to bind
to very similar binding sites when the sequences encoding them
have significant sequence similarity as in the case of MarA, Rob and
SoxS (Martin and Rosner, 2002). An alternate explanation for the
observed tendency could be that large families through gene dupli-
cation could have sub-divided their regulatory functions among
many TFs, thus leaving no room for global regulators in larger
families. To test the significance of this observation we compared
the average size of a family for a global regulator (observed to be
3.4 and 5.6 in E. coli and B. subtilis respectively) with the average
family size of a general TF in 1000 randomly sampled collections
each equal to the size of respective total repertoires in both the
genomes. We found that the average family size of a general TF
in the randomized collection followed a normal distribution and
hence used Z-scores to calculate P-values. In both E. coli and B.
subtilis, P-values < 10−37 were observed indicating that global TFs
have a strong tendency to occur in small families. Despite the rea-
sons which can best explain the tendency, the above observation
should enhance our ability to predict global TFs in other microbial
genomes.

3.4. Distribution of Functional Classes in the genes Regulated by
TF Families

In order to study the heterogeneity of the TFs in families in a
functional context one has to compare the functions of the regu-
lators in each TF family. However, given the poor annotations for
genes encoding TFs about their specific functional roles it would be
hard to use them for a comparative functional analysis. Moreover,
most of the functional classification schemes for genes do not con-
tain a detailed description for the physiological roles played by the
regulators in the context of the genome being analyzed. Consider-
ing these issues we used the functional categories of the regulated
genes in each family to analyze the extent of functional variation in
TF families in both the organisms.

To understand the variability in the functions of the regulated
genes by each family of TFs in E. coli and B. subtilis we used the
COG annotations of the protein coding genes available from NCBI
(Tatusov et al., 1997; Tatusov et al., 2003). In Fig. 2, we show the dis-
tribution of the COG categories of the regulated genes for TF families
that are known to regulate more than 3 COG annotated genes. The
families YeiL, Fis, AraC and Fur in E. coli and GerE, ComK, LacI, Fur and
AbrB in B. subtilis regulate more than 7 different categories. These
families can be considered as “regulatory superfamilies” in these
organisms because of their ability to control diverse physiological
processes. Fur is the only family which regulates a large number

Fig. 4. Network of transcriptional interactions between different TF families identified in (a) E. coli and (b) B. subtilis. Two nodes are shown to be connected if there exists at
least one regulatory interaction between the nodes.
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of categories in both the bacteria, probably indicating its presence
in the vital roles of the cell. Other families like GerE, ComK and
AbrB suggest the evolution and expansion of their functions inde-
pendently in Firmicutes. When we examined the TF families which
regulate far fewer categories we found that most of them are either
very restricted in their function or have an ancient origin.

A closer look into the distribution of COG categories of the 8
common families, namely YeiL, BirA, LacI, AsnC, Fur, OmpR, GntR
and ArgR, between the two genomes gave further insights into
the evolution of TF families in the context of functional roles. For
instance, the YeiL family which composes of the Crp, Fnr and YeiL
TFs in E. coli regulates 15 different categories and 4 in B. subtilis, of
which the 2 categories “inorganic ion transport and metabolism”
and “signal transduction mechanisms” are predominantly regu-
lated in the second bacterium. The case of the BirA and ArgR
families is interesting, because they are known to be well con-
served across all the genomes (Makarova et al., 2001; Rodionov et
al., 2002). Accordingly we found an appreciable overlap in the func-
tional categories of the regulated genes in these families. TFs from
the families LacI and GntR were found to preferentially regulate
the functions “carbohydrate transport and metabolism” and “Tran-
scription and energy production and conversion” in B. subtilis while
in E. coli the dominantly regulated categories included “nucleotide

transport”, “carbohydrate transport” and “amino acid transport and
metabolism” for LacI members and “transcription” and “carbohy-
drate transport and metabolism” for GntR members. The case of the
family of Fur regulators seems to be interesting with the majority of
regulated genes in both E. coli and B. subtilis belonging to “inorganic
ion transport and metabolism” possibly suggesting partial conser-
vation of the regulatory roles of its members. The family of OmpR
regulators are known to be involved in the regulation of genes
related to the biosynthesis of membrane components in E. coli,
accordingly we found them to regulate the categories “inorganic
ion transport and metabolism”, “cell wall/membrane/envelope bio-
genesis”, “lipid transport and metabolism” and “transcription” in
both bacteria. These observations lead us to conclude that although
TF families may be conserved across genomes their functional
roles might evolve in an organism-specific or lineage-specific
manner and are not always conserved indicating convergence to
be a major phenomenon involved in the functional evolution of
transcription factors of the same TF family. This finding also sug-
gests that existence of common families between two organisms
could be the result of a common ancestry initially but with spe-
ciation, functional divergence and lineage-specific expansion or
contraction of TF families occurs rapidly to adapt to changing
environments.

Fig. 5. Number of TFs predicted across genomes by using TF family models from E. coli and B. subtilis as the phylogenetic distance with respect to E. coli increases. Intersection
stands for the number of TFs predicted by the models from both the genomes while the predictions identified using models in E. coli only are shown in green and those based
on B. subtilis models only are shown in blue. To facilitate the display of results, we only show 105 complete genomes, obtained by filtering out strains and species of the same
bacterial genus keeping the strain or species with the maximum number of genes among a given genera of organisms. The evolutionary distance from E. coli to all organisms
was obtained according to the evolutionary branching process previously reported (Brown et al., 2001).
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3.5. Interaction of TFs Within and Across Families

In order to understand if TFs in a given family interact with each
other to regulate biological processes, we sought to see any relation
between the number of regulatory interactions among members in
a given family and its family size. In Fig. 3 we show the number of
transcriptional interactions between members of the same family
of TFs as the family size increases. It appears from this figure that
interactions among members of a TF family increase as the family
size increases, although the number of interactions is always low
in both the genomes.

To study the interaction of TFs from different families we
identified the transcriptional interactions between the regulators
belonging to different families. As shown in Fig. 4 we observed a
scale-free like topology when the interactions between TF families
were modeled as a network. Some of the well-connected families
are those containing the global regulators; however, it should be
noted that the families which are responsible for the scale-free
nature in E. coli and B. subtilis are different as has been observed
in the TRNs of these genomes (Madan Babu et al., 2006). It is
interesting to visualize from this figure the case when one of the
well-connected hubs like Fis or AraC in E. coli or AbrB or ComK in
B. subtilis but not the central node is removed from their genomes,
which would lead to removal of a branch of the interactions rather
than lethality of the whole network (and hence the cell) which
is typically what is observed in scale-free networks and has been
described as robustness (Albert et al., 2000). However, in this con-
text, robustness might refer to the conditions of growth in which
these regulatory families are no longer needed by the cell to reg-
ulate its processes. Although the data of the TRN of B. subtilis is
smaller in size compared to E. coli, these observations allow us to
conclude that scale-free nature in the networks of TF families is
common to both the genomes and might have evolved to choose
different nodes as hubs despite the existence of common families.

3.6. Effect of Lineage Specificity in Predicting TFs From
Comparative Genomics

Despite the poor conservation of the TFs between the two bac-
teria, we wanted to determine how much comparative genomics
can help to identify TFs across organisms using the family-specific
HMMs developed in these bacteria and how much overlap the pre-
dictions based on the models from different organisms might have
in a given genome. We therefore identified the repertoires of TFs
in complete genomes using the models from both the genomes
(see Section 2 and Supplementary Material). In Fig. 5 the num-
ber of predicted TFs across 105 complete non-redundant genomes
from the perspective of both the genomes is shown. It is clear from
the figure that although the number of TFs predicted from B. sub-
tilis perspective is lower than that from E. coli’s, there is almost a
complete overlap in the predictions between the two sets across
genomes suggesting that comparative genomics approaches based
on family-specific HMMs as against homology based approaches
which typically search similarity across the entire length of the
sequence can be very powerful to predict TFs with a high positive
predictive value (calculated as True Positives/(True Positives + False
Positives)). For example in B. subtilis we identified 185 TFs using E.
coli based models of which 167 were a subset of 237 TFs identified in
this bacterium, similarly we identified 122 TFs in E. coli based on B.
subtilis models of which 114 were a subset of the collection identi-
fied earlier in E. coli (Perez-Rueda and Collado-Vides, 2000). It is also
easy to note from the figure that as the evolutionary distance with
respect to E. coli increases (in Archaea and Eukarya) the predictive
coverage drops rapidly indicating the loss of domain level signal
at such distances. A second observation to note is that B. subtilis
models tend to predict slightly higher proportion of TFs in closer lin-

eages like Bacillales and Lactobacillales while E. coli models clearly
dominate the number of predictions in all proteobacterial lineages
suggesting the effect of lineage or genome-specific expansion of TFs
playing an important role in identifying TFs across genomes.

These observations suggest that although this approach to iden-
tify TFs can produce high quality predictions, the limiting factor
can be the evolutionary distance because at large evolutionary dis-
tances it would be hard to trace the repertoires of TFs not only due
to the poor conservation of domains but also due to the evolution of
novel TF families as has been demonstrated in this work. However,
as the experimental knowledge about the TFs from lineage-specific
families increases it should be possible to expand the repertoires of
TFs across prokarya beyond the few model organisms that are the
focus of the study.

4. Conclusions

Based on genome analysis we defined the individual set of DNA-
binding TFs in E. coli and B. subtilis genomes and deduced thereof
the common repertoire of transcriptional regulators and regulatory
families of these species. The set of the well-conserved TFs between
the two genomes is involved in fundamental cellular processes
and could have an ancient origin. We show that TF families evolve
rapidly and expand in a lineage-specific manner to adapt to vary-
ing environmental needs of the organisms. Similar trends have been
observed in previous comparative studies on TF families in plants
versus animals and at the level of taxa (Shiu et al., 2005; Coulson
et al., 2001). A more general perspective of lineage-specific expan-
sion of protein families and its implications on the diversification
of organisms has also been shown in eukaryotic species (Lespinet
et al., 2002). Our results show that global TFs responsible for global
regulatory mechanisms in bacteria can evolve independently in
different organisms and from totally different regulatory families,
suggesting that transcriptional regulatory machinery plays a very
important role in the speciation of organisms. We observe that
global regulators have a tendency to occur in smaller and lineage-
specific families which might be of recent origin indicating a source
for the innovation of novel regulatory interactions and mechanisms
across different lineages while still keeping the genetic repertoire
well conserved. Our findings show that larger TF families regulate
disproportionately low number of genes. It is possible that these
large families function as local modules of regulation while the
smaller families act as major hubs of the Transcriptional Regulatory
Network.

It is interesting to speculate the variation of regulatory networks
across prokaryotic organisms at three different levels (a) variation
of regulon composition due to the re-organization of genomic con-
text of genes accompanied by changes in the cis-regulatory regions
in closely related species, though preserving the mode of action
of TFs (Espinosa et al., 2005) (b) variation at the level of reper-
toire of TFs due to the need for different requirements of regulatory
machinery in different environments (Madan Babu et al., 2006) (c)
variation at the level of the regulatory mechanisms employed to
perform the same biological process, as is seen in the case of atten-
uation mechanisms replacing transcriptional regulation in some
bacteria. While the variations at the first level can be believed to
occur mostly in the same phylogenetic group/lineage and can be
treated analogously to changes affecting a given valley of moun-
tains and the variations at the second and third levels could be
major reasons for differentiation of lineages/phylogenetic groups
analogous to differences between valleys.

Supplementary Material

Supplementary material can be accessed at: http://tikal.ccg.
unam.mx/sarath/tfevolution/.
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Recent years have seen an explosion in the amount of ‘‘omics’’ data and the integration of several

disciplines, which has influenced all areas of life sciences including that of drug discovery. Several

lines of evidence now suggest that the traditional notion of ‘‘one drug–one protein’’ for one

disease does not hold any more and that treatment for most complex diseases can best be

attempted using polypharmacological approaches. In this review, we formalize the definition of a

drug-target network by decomposing it into drug, target and disease spaces and provide an

overview of our understanding in recent years about its structure and organizational principles.

We discuss advances made in developing promiscuous drugs following the paradigm of

polypharmacology and reveal their advantages over traditional drugs for targeting diseases such

as cancer. We suggest that drug-target networks can be decomposed to be studied at a variety of

levels and argue that such network-based approaches have important implications in

understanding disease phenotypes and in accelerating drug discovery. We also discuss the

potential and scope network pharmacology promises in harnessing the vast amount of data from

high-throughput approaches for therapeutic advantage.

Introduction

In living organisms, viability and functionality is accomplished
through a constant flow of information transmitted through
interactions between the basic building blocks RNA, DNA,
proteins and small molecules. This ‘‘biological cosmos’’,
represented as a global biological network, although inherent
in its complexity, is bound with stability and equilibrium.
Any change that irreversibly distorts the equilibrium in this
network could result in pathological conditions and hence
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confer disease. It is increasingly becoming clear that for a drug
to combat a disease effectively, it should target not a single
but several building blocks in this biological network1–4 to
re-establish the equilibrium state. This emerging field is
often referred to as network pharmacology.3,4 Network
pharmacology resembles the LeChatelier’s principle of bio-
logical networks, i.e. if a system (biological network) at
equilibrium (healthy state) experiences a change (disease
state), the effective drug will shift the equilibrium in order to
minimize that change (Fig. 1A). For over twenty years the
focus of drug development has been to develop highly selective
molecules. However, recent improvements in high throughput
screening methods and advances in genomics, transcriptomics,
proteomics and metabolomics have enabled us to gather large
amounts of data on drug-target interactions in several model
organisms and this picture is starting to be challenged.5–10 This
is also driven by the fact that the cost for discovery of new
drugs continues to rise disproportionately in comparison to
the approval rates despite the munificent investment in screening
technologies and genomics.11 The costs of discovering and
developing a drug are in the order of US $900 million. The
majority of this cost is spent in the later stages of the
pharmaceutical pipeline,11–13 as can be ascribed in the form
of a drug development clepsydra (Fig. 1B). Unfortunately, the
attrition rates are reported to be higher in the later phases
(Phases IIb and III) of full clinical development, where most of
the cost will have been apparently invested in the wrong
direction due to molecules that failed to pass the final
stages.12,13 The most important reasons for drugs failing in
development are either due to inadequate efficacy or their
inability to pass the safety standards, as initial screenings done
on animal models can often be unpredictive, with other factors
like complexity of the disease playing an important role as
well.13 Recent surveys suggest that the success rates are less
than 10%, with this figure being even more worrisome for
drugs targeting novel mechanisms, since they have higher
attrition rates.13,14 Attrition rates are not equally distributed
across different therapeutic areas and remarkable differences
have been reported,13 with oncology suffering from higher
failure rates in Phase II and III trials.13,15 Fortunately, these
figures are not irreversible and multidisciplinary research can
identify and remedy the causes of attrition. For instance, it is
clear that the rate of attrition of compounds with novel
mechanisms of action is higher than those with previously
precedent mechanisms of action, suggesting a need to focus on
already approved drugs for new therapeutic benefits.13 Indeed,
an emerging, promising and cost efficient direction of drug
development surmounting the risk of toxicity and efficacy is
the area of finding new therapeutic uses for approved drugs, so
called drug repurposing.16 It is anticipated that decoding the
molecular pathophysiology of disease, through global under-
standing of disease heterogeneity and connection between
diseases and targets in the biological network, will eventually
lead to improved target validation. This is evident even in the
therapeutic area of oncology with attrition rates in the order of
82% as a whole, wherein if one considers the clinical success of
multitargeted kinase inhibitors as a subset, the attrition rate is
only 53%, emphasizing the importance of polypharmacological
approaches to drug discovery.17 All these challenges that

pharmaceutical industries are facing call for novel ideas,
approaches and methodologies for speeding up the drug
development process using our current understanding. In
particular, more effective tools will be needed to critically
analyze the information flow in the early stages of the drug
discovery and development pipeline. Network pharmacology,
which is built on the foundations of multi-target drugs i.e.,
polypharmacology, could be a strong asset to treat complex
diseases such as cancer. This paradigm shift together with the
explosion of information from several multi-disciplinary areas
aggregated into three dimensions: Drug space—comprising of
small molecules, Target space—comprising of the cellular
interactome available for small molecules and Disease
space—comprising of the disease states an organism encounters,
has brought great attention in drug discovery circles. In this
review, we discuss recent advancements in Drug, Target and
Disease spaces in the context of this paradigm and propose
new research venues in light of these recent findings.

Drug space

Sampling for biologically active compounds in the vast drug
space

Several advances in medicinal chemistry, including parallelization
and miniaturization of synthetic compounds, have increased
dramatically the synthesis and screening of thousands of
compounds against a single target.18 Combinatorial chemistry
is widely used to build large libraries of many thousands of
compounds both for the identification and optimization of
lead compounds. The design of these libraries followed different
philosophies and approaches. Initial efforts to chart the global
drug space followed probabilistic approaches implementing
chemical libraries of large size and diversity.19 However, such
approaches were only successful in identifying hits but not lead
compounds.20 The reason is simple: the chemical universe is
just vast and may contain 1020–10200 molecules.20,21 Thus,
‘‘when trying to find a needle in a haystack, the best strategy
might not be to increase the size of the haystack’’.20 Therefore,
over the years a more rational design of chemical libraries was
required for more successful optimizations which included
preserving the drug-like properties and generating pharma-
cophore mapping libraries which can possess attributes of
drugs with minor variations in the backbone structure.22–24

Due to the enormous size of the chemical space, a thorough
experimental exploration is not feasible and thus novel
methodologies and strategies are required to effectively and
intelligently map the sub-portion of the chemical space that is
of biological relevance. Current trends in the design strategy of
chemical libraries include high diversity in molecular properties
such as hydrophobicity and hydrogen bond donors/acceptors,
variations in the backbone and scaffold of the molecules
(skeletal diversity)25–27 and diversity in the spatial placement
of atoms in the 3D space (stereochemical diversity).26–30 These
efforts aim to sample in an effective manner the chemical and
conformational space and increase the likelihood to discover a
novel hit. Since the number of molecules is large and only
a small fraction can be potential drugs which can satisfy a
number of constraints such as bioavailability, cell membrane
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permeability and non-toxicity, a number of in silico approaches
have been developed in the past years to pre-filter drugs in the
early stages of their synthesis. One of the most popular is
Lipinski’s rules which is a molecular property filter developed
after analysis of marketed drugs and describes in a quantitative
manner the cut-off or upper-limits for a number of molecular
properties like hydrogen bond donor/acceptor, molecular
weight, rotatable bonds, solubility, etc.31,32 Recommendations
in terms of bioavailability, solubility and drug-likeness have
also been constructed on the basis of predicted physicochemical
properties from the 2D structure. Although several properties
and guidelines exist, most commercial drugs satisfy Lipinski’s,22

Veber’s,33 Bergström’s34 andWenlock’s35 recommendations in
terms of solubility, bioavailability and drug-likeness. Prediction
of pharmacokinetic properties is also considered early on in
the drug development pipeline and chemical libraries are
screened for absorption, distribution, metabolism and excretion
properties (ADME).36,37

There are several databases that have accumulated information
on chemical molecules and drugs (see examples in Table 1).
Such databases contain judicious information on the drug
space currently available to be navigated. Several computational
algorithms have been employed to explore this chemical space
from 1D to 3D.38–41 Artificial intelligence, machine learning
and pattern recognition approaches have been recruited and
gained determinant roles in rational drug design and screening
of candidate molecules.42 There is now a growing tendency to
sculpt a drug for multiple targets since it can be a strong asset
for the treatment of numerous disorders. A common tactic is
to take as a framework a drug that is well-established for a
given disease and introduce additional functionalities to
enhance its efficacy and reduce its side-effects (see the section
of target space for detailed discussion). The trend is to identify
more promiscuous drugs, drugs that can recognize multiple
targets following upon the notion of polypharmacology. All
these observations indicate the importance of new approaches

to efficiently and intelligently navigate the vast drug space to
identify the desired multi-target drugs.

Guidelines and methods to construct functional ligand
promiscuity

Ligand promiscuity is a plus according to the paradigm of
network pharmacology. However, the scope is not a generic
transformation of compounds affecting a single node in a
disease network to compounds perturbing non-selectively
several nodes.3 On the contrary, the aim is to affect the ideal
combination of nodes, which will only perturb the disease state
to restore it to its natural un-diseased state, by creating
functional promiscuous ligands (Fig. 1A). Given the enormous
size of drug and target space, an extensive exploration seems
impossible and makes rational design of functional ligand
promiscuity rather difficult. Therefore, a more focused navigation
towards fractions or regions of the chemical space with
increased likelihood to contain biologically active and
promiscuous ligands is required. Several studies have identified
general qualitative physicochemical and structural principles
for sculpting promiscuous molecules capable of binding to
multiple targets.43–45 Generally, it has been proposed that
ligand promiscuity is favoured by molecules exhibiting specific
physicochemical criteria such as: (a) low molecular weight i.e.,
small size, (b) increased hydrophobicity—such ligands are
closer to the centre of the biological charge space and are
not very sensitive to differences in the shapes of targets,44 (c)
conformational flexibility—which allows for increased binding
affinity to multiple partners, however, induces higher specifi-
city for polar and charged ligands,44 (d) asymmetric groups
can also lead to increased promiscuity, (e) increased molecular
complexity of a ligand reduces the probability to recognize
multiple targets as it would also increase the mismatch
probability between the ligand and the targets.46

Several methods have been suggested for the construction
of ligands with promiscuity, with the predominant technique

Fig. 1 (A) Network pharmacology resembles the LeChatelier’s principle in biological networks, i.e. if a system (biological network) at equilibrium

(healthy state) experiences a change (disease state), the effective drug will shift the equilibrium in order to minimize that change. (B) The drug

development clepsydra over the different phases of drug development (I, II, III and registration). The sizes of the clepsydra correlate with the

number of tested drug candidates, the cost incurred and attrition rate over the process of drug development. Initially, there are a huge number of

molecules that enter the drug development pipeline but this shrinks over time in contrast to the attrition rate and effective cost.
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being referred to as the pharmacophore combination
approach.47–52 In this approach, different pharmacophores
from an array of selective ligands are joined together. This
technique is a knowledge-based approach since it requires the
knowledge of the structure-activity relationship (SAR) of the
functionalities of the ligands to be joined.48–50,52 Different
approaches for connecting pharmacophores into single
entities have been demonstrated in the literature.47–51 Typically
pharmacophore connections are achieved via incorporation of
a cleavable or a non-cleavable conjugated spacer.47–52 Merging
of pharmacophores through cleavable conjugates resembles
drug cocktails since the different pharmacophore-drugs
are separated after administration in to two independent
moieties commonly via plasma esterases53,54 (Fig. 2A). The
pharmacophore combination approach with linkers normally
suffers by not providing compounds with good oral drug-like
properties due to the inevitable increase of the molecular
weight and complexity of the resulting compounds. Other
approaches targeting high merging through overlapping55

(Fig. 2B) or integration56 (Fig. 2C) of the different pharma-
cophores may lead to smaller and simpler molecules surmounting
problems of unfavourable physicochemical properties.

An alternative to the SAR knowledge-based approaches are
the screening approaches of diverse or focused compound
libraries for activity on different targets.47,49 The later

approaches are especially valuable for cases where there is lack
of selective ligands for the targets of interest or a combination
of unrelated receptor families is to be targeted. Once a
compound is identified having a predetermined set of
requirements, a heavy elaboration follows to improve binding
affinity and drug-like properties. This can be either performed
through ‘‘fragment evolution’’,57 where a systematic
incorporation of chemical functionalities to the starting core
is attempted or ‘‘fragment linking’’57 that basically follows the
approaches of pharmacophore connection mentioned above.

Approaches to generate effective promiscuous drugs

Promiscuous drugs are typically developed by employing
one of the three approaches outlined below. Firstly, in
drug-repurposing approach, knowledge about existing old
drugs or other historical compounds available from literature
or proprietary company sources are exploited. This involves
discovering new therapeutic uses for approved drugs.16 Drugs
have been traditionally designed to have unidirectional character
interacting with a single target that was relevant to the disease
of interest and hence during the drug optimization process,
very limited attention was given to address properly the issue
of target selectivity. One of the most interesting examples in
this direction is that of aspirin, which was originally developed

Fig. 2 Examples of different pharmacophore combination approaches to design promiscuous ligands. (A) Pharmacophore connection through

cleavable ester linker for a nitric oxide-releasing derivative of aspirin (1)53 and a hydrogen sulfide-releasing derivative of diclofenac (2).54 The drugs

aspirin and dichlofenac are coloured in red and blue respectively. (B) Pharmacophore merging through overlapping of pharmacophores from

antagonists of histamine receptors H1 (3), coloured in grey, and H3 (4), coloured in blue, to construct the dual H1/H3 antagonist (5). Merging was

made via the amine moieties that are common to both (3) and (4).55 (C) Pharmacophore merging through integration of pharmacophores from an

endothelin A receptor antagonist (6) and an angiotensin II receptor antagonist (7) to construct the dual endothelin A/angiotensin II receptor

antagonist (8).56 In grey and red are the pharmacophores used from compounds (6) and (7) respectively. This high pharmacophore integration was

achieved since starting compounds shared a common biphenyl core (coloured in red).
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to combat arthritis but it was found later on to have
antipyretic, analgesic, anti-inflammatory, anti-platelet activities,
to inhibit the synthesis of prothrombin, promote apoptosis
and to have cancer preventive effects.58 The capability of
in silico target profiling methods to identify new targets for
old drugs as also to alert for potential off-target effects has
been demonstrated.58–60

Natural products (NPs) have a dominant role in
pharmacology, since almost 60% of anticancer compounds
and 75% of drugs for infectious diseases are either natural
products or natural product derivatives and hence form
an important source of chemicals for natively increasing
promiscuity.61–63 An important feature exhibited by them is
their ability to interact with multiple targets and modulate
multiple signal transduction pathways. One example is
quercetin that targets cancer prevention at several levels due
to its favourable anti-mutagenic and anti-proliferative effects,
its role in the regulation of cell signaling, cell cycle
and apoptosis.64 NPs have been evolutionary selected after
nature’s combinational chemistry to have chemical diversity
and interact with multiple biological target molecules.62,65,66

In addition, natural products often resemble endogenous
metabolites or biosynthetic intermediates, thus favourably
operating in active transport mechanisms.67 Therefore, the
investigation of such compound collections in biochemical and
biological screens should yield high hit rates at comparably
small library size and will be an important source for the
identification of small molecules for multi-target compounds.65,68

From analysis of the drug-like properties of NPs that have
been approved as drugs, it was found that they could be
divided in two equal subsets.67 The first subset follows Lipinski’s
rules and the second violates them. Interestingly, nature
through its multiple combinatorial design efforts succeeded
to bypass Lipinski constraints for large compounds in terms of
molecular weight and number of rotatable bonds maintaining
at the same time low hydrophobicity and intermolecular
H-bond donating potential.67 Unexpectedly, both subsets
had identical success rate in delivering an oral drug.67 We
should therefore take lessons from nature’s effort to design
multi-target compounds. A comparison of the molecular
property profiles in combinatorial libraries, natural products
and marketed drugs indicated a broader distribution and
increased diversity in natural products and drugs compared
to combinatorial compounds.69 Therefore, a good strategy to
increase the chemical space charting by combinatorial library
efforts will be to mimic the molecular properties and diversity
found in natural products.69

Yet another approach to increase the promiscuity of a drug
is by creating drug cocktails. Although one of the major
disadvantages of a drug cocktail compared to a single multi-
target agent is the risk of drug–drug interactions,70 there is an
increasing interest in developing drugs which can bypass these
issues. Such an approach becomes especially appealing
towards evolving targets that generate mutant forms escaping
drug interaction as it requires the consideration of more than
just one drug binding tightly to the existing target molecule.
Due to the potential for increased toxicity with each additional
drug in the cocktail and possible cross interactions, the smallest
cocktail possible should be targeted that will effectively cover

the different ensembles of the evolving target. To that end,
focus has been given for the development of theoretical
methods to design optimal drug cocktails for targeting
molecular ensembles.71

Target space

Major components of the target space

Organisms respond to continuous variations in internal and
external cellular conditions by orchestrating their responses
depending on the environmental challenges they are faced
with. This involves the usage of a complex network of
interactions among different proteins, RNA, metabolites and
several other cellular entities, which undergo rewiring when
perturbed by chemicals or drugs from the Drug space
(Fig. 3A). The interaction between different chemicals
and cellular entities can be represented in the form of a
network—so called Drug Target network. Recent years
have seen the development of a number of approaches both
computational and experimental for the identification and
elucidation of the molecular targets of a drug on a genomic
scale.72–81 This cellular target space which contains the targets
of drugs, can be considered to predominantly comprise of
three components namely protein–protein, metabolic and
transcriptional interactions (Fig. 3B). While the vast majority
of the drugs target the protein–protein and metabolic
components, limited number of targets have been identified
till date for the transcriptional pool.10,82–85 Indeed, most
common therapeutic targets for established drugs belong to
either protein kinase or receptor families with enzymes and ion
channels forming the second most predominant class of
targets.86 This explains the reasons for the increased attention
towards understanding the biophysics of protein–protein
contacts in the context of drug targets as these protein classes
form major players in protein–protein interactions.87

An interesting possibility for systematic target identification
is that the structures of biological networks may actually
provide valuable information in assessing targets and their
combinations. In recent years, it has been appreciated
that many effective drugs in therapeutic areas as diverse as
oncology, psychiatry and infectious diseases act on multiple
rather than single targets.6 Indeed, this has been confirmed by
network analysis of the drug target interactions where it was
found that not only drugs commonly act on multiple targets
but also drug targets are often involved in multiple diseases
with over 40% of the drug targets that map onto disease genes
involved in more than one disease.10 This observation is
further strengthened by an independent analysis to analyze
the genetic origins of most diseases using OMIM database,88

where the authors found that of 1284 disorders documented in
OMIM nearly 70% share at least one gene with another
disorder.82 Taken together, studies employing network
approaches reveal that in most cases exquisitely selective
compounds may exhibit a lower than needed efficacy for the
treatment of disorders and that compounds that selectively act
on two or more targets of interest might be more efficacious
than single target agents, ruling out the assumption of one
drug for one target in a disease which has significantly
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influenced the drug discovery pipeline for more than a decade
before the advent of genomics.

An additional insight gained from network-based approaches
in pharmacology is that, although disease genes play central roles
in the protein–protein interaction networks of the target space,
the vast majority of disease genes are nonessential and show no
tendency to encode hub proteins and their expression pattern
indicates that they are localized in the functional periphery of the
network. This is in contrast to essential genes which show higher
likelihood to encode for hub proteins in the protein interactome,
higher transcript levels and are expressed widely in most
tissues.82,89 These studies also show that genes with intermediate
connectivities are likely to harbor germ-line disease mutations,
suggesting that disease genes tend to occupy an intermediate
niche in terms of their physiological and cellular importance.89

Likewise, analysis of the protein interactions of the drug
targets suggested that they have more interactions than expected
by chance but lower than that observed for essential genes,
re-enforcing the trend observed for disease genes.10

Different knowledge based approaches have also been
employed to prioritize the drug targets based on the existing
datasets of protein interactomes. For instance, Lage et al.83

constructed a phenome–interactome network comprising gene
products implicated in many different categories of human
disease which permitted them to identify previously unknown
complexes likely to be associated with disease by using a
phenotype similarity score. Others exploited the topological
features of the protein interactome for predicting novel disease
genes.90 Similarly, the notion of polypharmacology had its
effect on computational approaches to associate targets to
well-established drugs based on similarity in protein sequence
space.81 Polypharmacology also had its influence on experimental
screening in a high throughput fashion wherein attempts have
been made to understand the relationship between similarity
of ligands and their targets when they belong to one or more
different sequence clusters.59,80

While much of mainstream research has focused on the
protein–protein interaction component of the target space few

Fig. 3 Different components of the drug-target network. (A) Drug space (marked with the outer box) consists of the small-molecules which can

potentially bind entities with-in the cell (marked as drug targets in red spheres). In turn cellular interactions between different components (marked

with red spheres and green circles) form cellular interactome comprising the target space. (B) Target space comprises of different components

namely protein–protein interactions, metabolic pathways and transcriptional circuits which together form the biological network or the cellular

interactome.
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attempts are made to exploit the therapeutic potential of
metabolic and transcriptional components. Many reasons have
been accounted for the slow pace in targeting these components,
including the challenges involved in manipulating them with
ligands and lack of experimental protocols for studying their
impact when perturbed. For instance, transcription factors
(TFs) play a major role in many human diseases including
cancer, inflammatory and heart diseases however very few TFs
such as those containing the ligand binding domains could
be successfully exploited.84 However, availability of new
approaches such as those which can directly block transcription
factor dimerization or those which can indirectly target specific
DNA and DNA decoys are being increasingly explored.84

Methods for identifying drug targets

Availability of genome sequences together with technologies
for high-throughput screening of chemicals on a large scale has
revolutionized our ability to understand the biological activity
of novel ligands and in identifying their targets in short time
periods. These methods can be broadly classified into genetics-
based, proteomics-based and knowledge-driven approaches
(See Table 2). Genetics based approaches typically involve
use of mutant libraries of large set of genes, generated either by
exploiting the RNA interference pathways in mammalian
systems or by knocking-out the genes, which are exposed to
drugs at different concentrations to study the resistance
measured as the fitness of a strain of interest with respect to
the wild type.76,77 Improvements in these approaches include
bar-coding of deletion strains with unique DNA sequences
which enable parallel genetic screens of a large number of
drugs.78,91 Alternatives to the mutant-based approaches
involve forward chemical genetics techniques which typically
involves screening of small molecule libraries for their ability
to induce a particular phenotype in cells or cellular extracts. In
these approaches, instead of deleting or impairing protein
function at the genetic level, small molecules generally act by
inhibiting (or activating) a particular protein or set of proteins
directly. Tracing the inhibitor (or activator) back to its target
protein can, in principle, provide a causal link between the
target and its associated phenotype.92

Proteomic methods for drug-target identification can be
classified into three major categories: (a) based on affinity
chromatography, (b) based on small-molecule or protein
microarrays, (c) based on active-site profiling of the proteins
of interest (reviewed in ref. 93). In affinity-based methods
typically a small molecule is immobilized via a functional
group onto a solid support followed by the addition of a
protein extract. This is followed by a series of washing steps to
finally isolate and identify proteins which remain in the
column due to the affinity for the small molecule.94 Protein
microarray based methods comprise of recombinant protein
molecules or antibodies immobilized on the surface of a
substrate material like glass or silicon, which is then exposed
to small molecules which are labeled and the binding on the chip
is monitored.95 Antibody microarrays form a variant which can
be useful to study the ligands which can bind to low abundance
proteins.96 Chemical microarrays form a promising class of
methods when the goal is to screen for a large number of

small-molecules against a selected set of proteins.97 In activity-
based profiling methods, active-site directed chemical probes
consisting of two-components, a moiety which covalently binds
to the active site of an enzyme and a reporter tag for tracking the
modified proteins, are used to measure of binding.98 More
recently there is an increasing interest in using metabolic
approaches on systems-scale for identifying drug targets due
to improvements in mass spectrometry techniques.99

Knowledge-driven approaches comprise of both literature
derived data sources and informatics methods which employ
our current understanding of design principles of drug space,
target space or an integration of them.72,73,81,100–102 These
include but are not limited to the use of structure activity
relationships, network-based, genomics-based, pathway
analysis and integration of data sources72,73,80,81,103 (briefly
summarized in Table 2). One of the major limitations of these
approaches is that these are often only incremental and
can not predict counterintuitive or unexpected outcomes.

Identifying off-target effects in the target space

One of the significant outcomes of the notion of poly-
pharmacology is that the promiscuity of drugs can be of
therapeutic advantage if the drug under investigation can
perturb the relevant genes in the disease state to bring it to
equilibrium. For instance, if the target is a rapidly mutating
agent, a drug that is too specific will quickly lose its efficacy by
not binding well to functional mutants. Therefore, in molecular
design, it is crucial to tailor the binding specificity of a drug in
such cases to all the functional mutants to improve its
efficacy.44 The ideal situation will be to design promiscuous
drugs that are directed towards a desirable multi-target space,
however this is not straightforward for protein families such as
kinases that are structurally divergent but yet need to be
targeted by a single drug.45 Recently, Apsel et al.80 reported
the discovery of dual inhibitors of tyrosine and phosphoinositide
kinases which form intensely pursued cancer drug target
families. Although tyrosine and phosphoinositide kinases lack
significant sequence similarity, they share several short motifs.
Through iterative chemical synthesis, X-ray crystallography
and kinome-level biochemical profiling they were able to
develop molecules that adopted dual selectivity to the hydro-
phobic pocket conserved in both enzyme classes. Other
approaches employed the phenotypic side-effects of the marketed
drugs to cluster drugs which exhibited similar therapeutic
indications as a means of identifying potential new drug
targets for existing drugs thereby extending the applicability
of existing drugs in less explored disease phenotypes.104

In addition to using off-target effects for therapeutic benefits
recent advances have also involved the use of computational
and experimental means to identify them at a first glance.60,105

For instance, Ericson et al.105 employed chemo-genomic
screening to identify the off-target effects of 81 psychoactive
drugs in yeast. The general consensus is that most drugs
showed a propensity to affect multiple cellular functions
ranging from secretion, protein folding to chromatin remodeling
roles suggesting the utility of model organism pharmacogenetic
studies to provide a rational foundation for studying the
off-target effects of clinically important drugs.
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Disease space

Decomposing drug-target associations using network-based
approaches

An important notion that has emerged in post-genomic drug
discovery is that the large-scale integration of genomic,
proteomic, signalling and metabolomic data can allow us to
construct complex networks of the cell that would provide us
with a new framework for understanding the molecular basis
of physiological or pathophysiological states.106 Such an
integrated view has important implications in improving our

understanding of the disease phenotypes by viewing them as
perturbations in a complex system rather than effects on a
selective set of proteins. Using such a framework, network-
based drug discovery aims to harness this knowledge to
investigate and understand the impact of interventions, such
as candidate drugs, on the molecular networks that define
different states and therefore can significantly complement the
existing drug discovery pipelines.
In such a framework at the most basic level is the

Drug-Target (DT) network which composes of a directed
graph connecting the set of drugs from the drug space which

Table 2 Different methods available for identifying drug-targets on a genomic scale. Methods can be broadly classified into proteomics-based,
genetics-based and knowledge-driven

Proteomics-based methods Description

Activity based protein
profiling (ABPP)129

This is a functional proteomic technology that uses chemical probes that react with mechanistically related
classes of enzymes. The basic unit of ABPP is a probe that typically consists of a reactive group (electrophile
or a photoreactive group) that covalently binds to the active site of an enzyme (nucleophilic residue) and a tag.
The tag can either be a reporter (i.e. fluorophore, radioactive group) or a handle (i.e. affinity tags such as
biotin). A tag-free strategy for activity-based protein profiling has also been introduced that utilizes the
copper(I)-catalyzed azide-alkyne cycloaddition reaction (click chemistry) and gives the advantage of not
interfering with biological activity or binding affinities of the probes. The activity-based protein profiling and
multidimensional protein identification technologies (ABPP-MudPIT) can provide profiling of inhibitor
selectivity, as the potency of an inhibitor can be tested against hundreds of targets simultaneously.130

Affinity chromatography94 This is a protein separation method based on the interaction between target proteins and specific immobilized
ligands. Traditionally, the ligand is tethered on a solid support via a spacer arm followed by the addition of a
cellular lysate or tissue extract. Only target proteins binding tightly to the ligand are selectively purified, eluted
off (denaturation or competition with free ligand) and subsequently identified by mass spectroscopy. To
minimize the identification of nonspecifically bound proteins, the protein profile that is obtained with an
inactive ligand analogue is also determined and compared with the relevant profile, determined with the
desired analogue. More recently, an improved method for the identification of proteins that can bind to small-
molecules and drugs has been established which uses quantitative mass spectrometry (MS)-based proteomics
(utilizing stable isotope labeling with amino acids in cell culture (SILAC)) and affinity chromatography.131

Microarrays95–97,132 Microarrays in drug target discovery provide miniaturized high-throughput tools to study binding of specific
molecules to immobilized proteins or small molecules. In protein microarrays, different recombinant proteins
or antibodies that are immobilized on a solid substrate are exposed to a drug solution to identify the target
protein(s) which can bind to the small molecule. In chemical microarrays, immobilized drug compounds can
be screened for candidate drug–target interactions with purified proteins.97 When the target protein is known,
small molecule arrays can be also used to identify off-target interactions that could have implications for
side-effects.

Genetics-based Methods Description

Synthetic lethality/
Gene knock-out76,78

Single gene knock-out strains on a genomic scale or for a selected set are exposed to small molecules at
different concentrations to evaluate the fitness defects and fitness levels are compared to wild-type populations
exposed to the same conditions. This provides an easy means to identify targets on a large scale.76,78

RNAi RNA interference pathways in mammalian systems are used for silencing genes and similar approaches
as above are employed to study the fitness defects of cell lines to identify potential drug targets in higher
eukaryotes77,133

Forward chemical
genetics92

Unlike the use of mutants in previous approaches, small molecules are screened for their ability to induce a
particular phenotype in cells or cellular extracts. Instead of deleting or impairing protein function at the
genetic level, as in classical genetics, small molecules generally act by inhibiting (or activating) a particular
protein or set of proteins directly. Tracing the inhibitor (or activator) back to its target protein can, in
principle, provide a causal link between the target and its associated phenotype. Forward chemical genetics
requires three components: one, a collection or ‘library’ of compounds; two, a biological assay with a
quantifiable phenotypic output; and three, a strategy for identifying the target(s) of active com-
pounds.92,134,135

Knowledge-driven approaches Description

Literature derived
interactions.10,103,136,137

In these approaches, manually curated set of interactions are obtained from the literature to generate high
confidence set of drug-target relationships to either study their overall structure10 or focus on specific disease
of interest.10,103,136,137

Network-based
approaches.3,80

In these approaches, literature derived interactions are exploited to predict new interactions based on the
principles governing the structure of the networks, so that new disease targets are identified using comparative
genomics or other informatics-based methods, followed possibly by experiments to improve the chemicals.3,80

in silico chemogenomics41 In predictive chemogenomics one predicts relationships between genes/proteins and compounds. In silico
approaches that are used can be classified into ligand-based approaches (ligand comparison for target
prediction), target-based approaches (target comparison for ligand prediction) or ligand-target based
approaches41
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can bind to the targets in the target space (Fig. 4). Such a
network has been shown to form a bipartite graph with a giant
connected component, suggesting the involvement of most
drugs in targeting more than one target protein.9,10 At the
second level, one can visualize the decomposition of the DT
network into the Drug-Drug (DD) network or Target-Target
(TT) network (Fig. 4). The former is typically constructed by
linking two drugs if they share a significant number of targets
while the later comprises of associations or links between
targets which are targeted by the same set of drugs. As is
expected, increasing the level of significance in the number of
shared targets104 or drugs would improve the quality of the
polypharmacological downstream network. Initial analysis by
decomposing the experimentally validated DT network, for
FDA-approved drugs, into DD or TT network confirmed the
tendency of pharmaceutical industry to target already experi-
mentally validated proteins, leading to an increase in the
number of follow-on drugs.10,104 The authors also found that
a number of drugs in the DD network grouped into distinct
clusters confirmed from their similarity according to the
Anatomical Therapeutic Chemical (ATC) classification.

At the third level in this framework one can connect diseases
and therapies associated with them using the already known
network of DD or TT interactions. This typically involves
mapping the already known disease phenotype of a drug or a
target onto the DD or TT networks respectively to generate a

network of disease associations (Fig. 4). Recent attempts to
generate such disease association or common therapy based
networks starting from drug–drug interactions revealed that
the average path length between drugs is shorter than three
steps reinforcing the polypharmacology notion from the
perspective of drugs i.e., most chemicals might be sharing
their phenotypic affects to a significant extent when perturbing
the target space.107 An alternative explanation for these
observations is that most drugs currently employed are a
result of follow-on of existing knowledge about previously
established drugs, suggesting that there is enormous potential
in the drug space for identifying bioactive compounds with
novel targets in the target space which yet needs to be
exploited. Future studies in this direction can address questions
on the link between different diseases and the role of multi-
target drugs in a range of related disorders to pinpoint the
basis for some of these observations.

Exploiting disease networks to study disease associations

Independently drug–drug relations can also be constructed by
obtaining only the structural similarity or prior phenotypic
characteristics of well-exploited drugs in contrast to the
network-based approaches described above. Likewise other
variants such as a Target-Target (TT) network in which
proteins documented in literature to be involved in the same
disease can also be constructed to study relationships between
different entities in the target space or diseases. For instance,
recent studies used the phenotypic information for several
disease associated genes available in the OMIM database88

to construct networks of disease associations.82,89 These
studies unambiguously demonstrated that network properties
of genes in such networks influence the likelihood and
phenotypic consequences of disease mutations, with genes
exhibiting intermediate connectivities having the highest
probability of harboring germ-line disease mutations, suggesting
that disease genes tend to occupy an intermediate niche in
terms of their physiological and cellular importance. In addition,
disease genes were found to show significant functional
clustering in the studied network suggesting the existence of
disorder-specific functional modules.89

Conclusion

Data completeness in the drug, disease and target space is a
crucial issue to our understanding of Drug-Target networks.
Thus, efforts should be directed to systematically illuminate
the drug interactome.108,109 Nevertheless, advances in genomics
have influenced the way we understand the action of drugs on
a genomic scale.110–112 One of the challenging aspects of drug
discovery is the evolution of drug resistant strains emerging in
several human diseases such as malaria, tuberculosis and cystic
fibrosis. Systematic genomic screens have improved the way
we understand the combinatorial drug chemistry113,114 and
would enable us to design ‘‘hyper-antagonistic’’ drugs which
can fight drug-resistant strains by working as drug cocktails
when the agents have acquired resistance to individual
drugs.110 Indeed, recent studies show that although synergistically
acting drugs, which are commonly used in clinical settings,
might favor immediate efficacy, they might also favor evolution

Fig. 4 Decomposition of Drug-Target (DT) network. Drug-target

network composes of a directed graph with the interactions from drugs

to targets. Such a directed network can be exploited to study associations

between drugs or targets. The former consists of linking two drugs

(DD network) when they share significant number of targets while the

later involves linking target proteins which share a significant number

of drugs (TT network). Both these decompositions have yielded

significant insights in recent years, in particular, to understand the

polypharmacological nature of drugs. One can study the disease

associations by using either DD or TT networks by overlaying the

phenotypic knowledge accumulated in databases for either drugs or

targets. Such integrated approaches not only provide insights into

relationships between different diseases but also allow the applicability

of existing drugs in less explored disease phenotypes in the paradigm

of network pharmacology.
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of resistance compared to antagonistic combinations, thereby
indicating a need to develop antagonistic combinations,
which might be effective in combating diseases in multi-drug
chemotherapy.115,116

An emerging view of polypharmacology in the post-genomic
era is that drug, target and disease spaces can be correlated
to study the effect of drugs on different spaces and their
interrelationships can be exploited for designing drugs or
cocktails which can effectively target one or more disease
states (Fig. 5). According to such a view, systems-level
understanding of the cell by integration of data from different
omics platforms can be of unprecedented value, as it not only
improves our understanding of the pathophysiological states,
but also its relationship in the context of different chemicals
thereby making useful interpretation of existing data and
accelerating hypothesis generation for testing in disease
models.117–119
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A report of BioSysBio 2009, the IET conference on Synthetic
Biology, Systems Biology and Bioinformatics, Cambridge, UK,
23-25 March 2009.

The fourth meeting in the BioSysBio conference series

brought together international researchers in the interacting

disciplines of synthetic biology, systems biology and bio-

informatics. This conference was largely student-run, and as

well as the formal talks included workshops, discussion

sessions and a panel session on ethics, public engagement

and biosecurity. A wide range of topics was covered at the

conference, including modeling, biofuels and environmental

bioremediation, metabolomics, structural and computational

genomics, and software tools. Of note were the number of

groups presenting improved models of metabolism, studying

cellular subsystems such as cell death and circadian rhythms.

Others are developing new approaches and standards for

systems and synthetic biology, and significant improvements

were reported for Systems Biology Markup Language (SBML)

and the MIT Registry of Standard Biological Parts. A few

highlights of the meeting are given here.

SSyynntthheettiicc  bbiioollooggyy  aanndd  iittss  ssttaannddaarrddiizzaattiioonn
Synthetic biology is a newly emerging field, where biological

components are reengineered to provide new, designed

functions. In a keynote lecture, Adam Arkin (University of

California, Berkeley, USA) discussed the origins of synthetic

biology and its scalability, as well as the engineering

challenges that lie beyond the bioreactor. In his view, using

synthetic biology, whether to meet an engineering or

biological challenge, can be transparent, efficient, reliable,

predictable and safe, unlike other human interventions such

as selective breeding and the introduction of non-native

species. Arkin also described ways of reducing the time and

improving the reliability of biosynthesis, such as the use of

standardized parts, computer-assisted design, and methods

for quickly assembling parts. Evolved systems are complex

and subtle, and he highlighted the fact that synthetic

organisms need to deal with the same uncertainty and

competition as do existing organisms.

Among the ‘parts’ required in synthetic biology are switches

that can function, for example, as regulators of gene

expression. Christina Smolke (Stanford University, USA)

presented novel design strategies for constructing RNA-

based molecular switches that can function as both bio-

sensors and ligand-controlled regulators of gene expression.

Binding of the appropriate ligand leads to a regulated

conformational change in a designed RNA molecule, which

in turn can be linked to an appropriate readout signal,

enabling these molecules to act as sophisticated cellular

biosensors. She also described how such riboswitches can be

used as targeted or ‘intelligent’ therapeutic molecules for

treatment of cancer, allowing them to be carefully tuned to

respond as a precise set of molecular stimuli.

Given the recent explosion in the number of approaches to

synthetic biology and the amount of data at the interface of

genomic and systems biology, there is now an over-whelming

need to organize these data efficiently in appropriate reposi-

tories. An update on current standards for DNA description

by Guy Cochrane (EBI, Cambridge, UK) focused on the

different raw sequencing formats available and, in

particular, the work that is being done at EMBL to integrate

them, via SRS. In an overview of standards and improve-

ments in SBML language, which is the platform for most

software in systems biology, Herbert Sauro (University of

Washington, Seattle, USA) emphasized the need to



incorporate multi-compartment models into the existing

framework of SMBL. Randy Rettberg (Massachusetts

Institute of Technology, Cambridge, USA) provided an

overview of the publicly available synthetic biology repository

being developed at MIT

[http://partsregistry.org/Main_Page] as a result of contri-

butions from participants in iGEM - the international

genetically engineered machine competition.

SSyysstteemmss  bbiioollooggyy  aanndd  aauuttoommaattiioonn
Because of the complexity of biological systems, it has

always been a challenge to develop predictive dynamic

models that are sensitive to changes in biological inputs, but

at the same time robust to technical noises. A variety of

approaches were described at the meeting. Using a Bayesian

framework to study the inferability of model parameters

under experimental noise, Kamil Erguler (Imperial College

London, UK) introduced sensitivity profiles to identify the

relative impacts of changes in parameters on the global

dynamics of biochemical models. This analysis revealed the

degree of robustness of inferences drawn from different

parts of biochemical pathways and thus provides a guide to

improved data collection. Andre Ribeiro (Tampere

University of Technology, Finland) has developed a delayed

stochastic model to investigate the stepwise elongation

motion of RNA polymerase and its pauses during

transcription. He showed that transcriptional noise level was

affected by the durations of the pauses, which could in turn

be intrinsically encoded within the DNA sequence.

Another challenge is to store all the information being

generated by all the -omic sciences. Catherine Lloyd

(Auckland Bioengineering Institute, New Zealand) described

the language CellML, which is written in XML and uses

existing formats such as MathML and RDF to describe

biological models of cellular function. The CellML model

repository has over 380 models, free to download

[http://www.cellml.org/]. CellML has a number of other

useful features, including modularity and the sharing of

components such as entities and processes. Ulrike Wittig

(EML Research, Heidelberg, Germany) presented SABIO-

RK, a database of information about biochemical reactions

and enzyme kinetics. The reactions in the database are

mainly taken from the Kyoto Encyclopedia of Genes and

Genomes (KEGG) and the literature, and the kinetic data

comes from the literature. SABIO-RK can be accessed via

both a user interface and web services [http://sabio.villa-

bosch.de/]. Recent improvements include a new data model

for SABIO-RK that allows the storage of intermediate steps

in a reaction, making SABIO-RK the first database to offer

kinetic information for both biochemical reactions and their

individual steps.

DNA synthesis and sequencing comprise one of the

cornerstones of modern biology, and Tuval Ben Yehezkel

(Weizmann Institute, Rehovot, Israel) described new

strategies for synthesizing completely de novo DNA

fragments using single-molecule PCR in a completely

automated fashion. Single-molecule PCR can be readily

scaled up, and will complement the highly parallel DNA

sequencing technologies such 454 and Solexa sequencing in

the future.

Steve Oliver (University of Cambridge, UK) and his

colleagues have taken automation even further, describing

an automated experimental system to study yeast

metabolism. He and colleagues have designed a robot, called

Adam, that uses abductive logic programming (ALP) and is

capable of reasoning about hypotheses and data, designing

experiments to test the hypotheses, and then carrying out

those experiments and interpreting the results.

EEtthhiiccss  aanndd  sseeccuurriittyy
Scientists in all fields have a duty to consider the public

impact of their work and the conference included a lively

panel discussion covering ethics, public engagement and

biosecurity. Drew Endy (Stanford University, USA) asserted

that while the basics of genetic engineering have not

changed in more than 30 years, synthetic biology is

revolutionary. He raised the question of people trying to

‘hack’ genomes in their garage: how should they be

managed, if indeed they should be managed at all? He also

described how the patent system is flawed with regard to

synthetic biology; for example, patenting the BioBricks

registry of DNA parts encoding basic biological function

would be expensive and counterproductive.

Matthew Harvey (Royal Society, London, UK) cautioned that

we should not assume that the public must be engaged:

sometimes the public simply are not interested. In contrast

to genetically modified organisms, there are no synthetic

biology products queuing up to be sold right now. Therefore,

questioning the public about synthetic biology is currently

less like traditional public engagement and more like social-

intelligence gathering.

Two concerns were discussed by Julian Savulescu (Univer-

sity of Oxford, UK): that synthetic biology may pose risks in

terms of malevolent use, and that the use of synthetic

biology might undermine the moral status of living things.

For regulators, the challenge is to minimize the risk of male-

volent use. For scientists, it is to make better predictions

about how research will be used in the future. For

philosophers, the challenge is to ascertain criteria for moral

status, and determine how to weigh the risk of future

wrongdoing against the benefits of pursuing research in

synthetic biology. Piers Millet (UN Biological Weapons

Convention Implementation Support Unit, Geneva, Switzer-

land) invited scientists to work with security people to

prevent bioterrorism. He highlighted that this engagement
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needs to be bottom up, not top down, and that his

organization could help.

A new feature for BioSysBio 2009 to extend participation in

the conference was to a wider audience by communicating

live content through microblogging (using FriendFeed and

Twitter; Figure 1) and live blogging (providing an immediate

and permanent log) [http://themindwobbles.wordpress.

com/tag/biosysbio-2009/]. The fields covered by the

conference are still developing. Researchers are opening up

new topics, discovering that mathematical, physical and

engineering concepts apply to ever more biological

problems. The new generation of researchers increasingly

see themselves as forming a new discipline, and while this is

exciting, they must ensure that they do not cut themselves

off from either of the ‘parent’ disciplines, the physical

sciences (including engineering) and the biological sciences;

in particular, more traditional biologists do have important

knowledge to convey and questions to pose. However, the

results reported at the meeting show that, in most cases, the

best from both disciplines is being matched - and exceeded.
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10 Abstract

Archaea, which represent a large fraction of the phylogenetic diversity of organisms, are prokaryotes with eukaryote-like basal
transcriptional machinery. This organization makes the study of their DNA-binding transcription factors (TFs) and their
transcriptional regulatory networks particularly interesting. In addition, there are limited experimental data regarding their
TFs. In this work, 3,918 TFs were identified and exhaustively analyzed in 52 archaeal genomes. TFs represented less than 5% of

15 the gene products in all the studied species comparable with the number of TFs identified in parasites or intracellular
pathogenic bacteria, suggesting a deficit in this class of proteins. A total of 75 families were identified, of which HTH_3, AsnC,
TrmB, and ArsR families were universally and abundantly identified in all the archaeal genomes. We found that archaeal TFs are
significantly small compared with other protein-coding genes in archaea as well as bacterial TFs, suggesting that a large fraction
of these small-sized TFs could supply the probable deficit of TFs in archaea, by possibly forming different combinations of

20 monomers similar to that observed in eukaryotic transcriptional machinery. Our results show that although the DNA-binding
domains of archaeal TFs are similar to bacteria, there is an underrepresentation of ligand-binding domains in smaller TFs,
which suggests that protein–protein interactions may act as mediators of regulatory feedback, indicating a chimera of
bacterial and eukaryotic TFs’ functionality. The analysis presented here contributes to the understanding of the details of
transcriptional apparatus in archaea and provides a framework for the analysis of regulatory networks in these organisms.

25 Key words: transcription factors, protein families, archaeal genomes, evolution, gene regulation.

Introduction
Regulation of gene expression at the transcriptional level is
a ubiquitous and fine-tuned process observed in all cellular
organisms. The ability to respond and adapt to environ-

30 mental changes is defined by the cell’s repertoire of
DNA-binding transcription factors (TFs) through interac-
tions between the TFs and the cis-regulatory regions of
their target genes in the form of a transcriptional regulatory
network (Babu et al. 2004; Janga and Collado-Vides 2007).

35 These TFs bind to the promoter regions of specific genes to,
either positively or negatively, regulate expression. Due to
the crucial role of TFs in coordinating the gene expression
kinetics of a genome, they have been studied in many as-
pects, including mutational analysis, sequence compari-

40 sons, and elucidation of numerous 3D structures.
The identification of the TF repertoire in a genome se-

quence is a prerequisite to understanding the regulation of
gene expression and, on a global scale, for the elucidation of
regulatory networks. In this context, the organisms with

45 the best studied transcriptional regulatory networks, where
TFs have been identified, are the eukaryote Saccharomyces
cerevisiae (Lee et al. 2002; Janga et al. 2008) and the bacteria
Escherichia coli K12 (Babu and Teichmann 2003; Gama-
Castro et al. 2008), Bacillus subtilis (Moreno-Campuzano

50et al. 2006; Sierro et al. 2008), and more recently Coryne-
bacterium glutamicum (Brune et al. 2005; Brinkrolf et al.
2006). However, relatively, little is known about TFs and
the transcriptional regulatory networks controlled by them
in archaeal genomes, despite the fact that they represent

55a large fraction of the phylogenetic diversity of organisms.
Furthermore, archaea are well suited as model organisms
for eukaryotes because of the similarities they share in their
information transfer machinery, due to a common ances-
tor, as proposed by the symbiotic theory (Martin and

60Muller 1998; Moreira and Lopez-Garcia 1998; Lopez-Garcia
1999; Martin et al. 2001; Esser and Martin 2007).

Archaea constitute one of the three cellular domains in
the universal tree of life (Woese 1998) composed of organ-
isms highly diverse in morphology, physiology, and natural

65habitats (Chaban et al. 2006; Clementino et al. 2007; Nam
et al. 2008; Auguet et al. 2009). Organisms included in this
cellular domain possess basal transcription machinery re-
sembling that of eukaryotes. For instance, archaea include
a TATA box promoter sequence, a TATA box–binding pro-

70tein (TBP), a homologue of the transcription factor TFIIB
(TFB), and a RNA polymerase (RNAp) containing between
8 and 13 subunits (Goede et al. 2006) (see supplementary
fig. S1, Supplementary Material online). In contrast,
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archaeal messenger RNAs (mRNAs) are structurally similar
75 to bacterial mRNAs, and, most importantly, the majority of

identified TFs in archaeal organisms are homologous to
bacterial activators and repressors (Kyrpides and Woese
1998; Bell 2005). Indeed, very few eukaryotic-like TFs were
found to occur in archaea (Kruger et al. 1998). These ob-

80 servations raise different basic questions with regard to the
mechanisms of transcriptional regulation and the manner
by which bacterial-like TFs may interact or interfere with the
components of the eukaryotic-like basal transcriptional ma-
chinery within an archaeal cell. It is for this reason that ar-

85 chaeal DNA-binding TFs represent an important class of
proteins to explain the molecular mechanisms that underlie
transcription regulation. Even though the ever-growing num-
ber of archaeal genome sequences reveals an increasing list of
potential regulators (Coulson et al. 2007; Wu et al. 2008), ar-

90 chaeal transcriptional regulation is still poorly documented,
and the most detailed and advanced studies have been per-
formed with only a dozen TFs, mainly from the AsnC family
(formerly feast/famine protein family) (see supplementary
table S1, Supplementary Material online) (Napoli et al.

95 1999; Leonard et al. 2001; Bell 2005). Initial sequence analy-
sis–based attempts using family-specific models from E. coli
TFs resulted in a low proportion of bacterial-like TFs in archaea
(Perez-Rueda et al. 2004; Coulson et al. 2007). One probable
cause for this discrepancy could be that archaeal TF zregula-

100 tory repertoire includes additional classes of DNA-binding
motifs not observed in E. coli, suggesting that our current
knowledge on the repertoire of TFs in archaeal genomes is
far from being complete. Importantly, comparative genomic
analysis of archaea represents an opportunity to fill in this gap

105 and is anindispensablesteptowardour understanding of gene
regulation networks in prokaryotes and eukaryotes.

In the present study, an exhaustive analysis of gene se-
quences from 52 completely sequenced archaeal genomes
to identify potential DNA-binding TFs was performed. In

110 addition, a comparative analysis was carried out to deduce
the distribution of TFs and their evolutionary families
among the archaeal genome sequences. Using this reper-
toire of TFs, we show that 1) there is an underrepresenta-
tion of the number of TFs in these organisms compared

115 with bacterial genomes, 2) a considerable number of TFs
encode for short polypeptides with a significant fraction
encoding for single-domain proteins, and 3) a high propor-
tion of TFs are homologous between archaea and bacteria,
mainly from the class clostridia of firmicutes.

120 Materials and Methods½AQ3�
List of Archaeal Genomes Analyzed in This Study
The archaeal genomes analyzed in this work are as follows
(see supplementary table S2, Supplementary Material online,
for a more detailed annotation of the genomes): Crenarchaea

125 (C): Aeropyrum pernix K1, Caldivirga maquilingensis IC-167,
Hyperthermus butylicus DSM 5456, Ignicoccus hospitalis
KIN4/I, Metallosphaera sedula DSM 5348, Nitrosopumilus
maritimus SCM1, Pyrobaculum aerophilum str. IM2, Pyrobac-
ulum arsenaticum DSM 13514, Pyrobaculum calidifontis JCM

13011548, Pyrobaculum islandicum DSM 4184, Staphylothermus
marinus F1, Sulfolobus acidocaldarius DSM 639, Sulfolobus
solfataricus P2, Sulfolobus tokodaii str. 7, Thermofilum pen-
dens Hrk 5, Thermoproteus neutrophilus V24Sta; Euryarchaea
(E): Methanocorpusculum labreanum Z, Methanoculleus

135marisnigri JR1, Methanopyrus kandleri AV19, Methanosaeta
thermophila PT, Methanosarcina acetivorans C2A, Metha-
nosarcina barkeri str. Fusaro, Methanosarcina mazei Go1,
Methanosphaera stadtmanae DSM 3091, Methanospirillum
hungatei JF-1, Methanothermobacter thermautotrophicus

140str. Delta H, Natronomonas pharaonis DSM 2160, Picrophi-
lus torridus DSM 9790, Pyrococcus abyssi GE5, Pyrococcus
furiosus DSM 3638, Pyrococcus horikoshii OT3, Thermococ-
cus kodakarensis KOD1, Thermoplasma acidophilum DSM
1728, Thermoplasma volcanium GSS1, uncultured metha-

145nogenic archaeon RC-I, Methanocaldococcus jannaschii
DSM 2661, Methanococcoides burtonii DSM 6242, Metha-
nococcus aeolicus Nankai-3, Methanococcus maripaludis
C5, Methanococcus maripaludis C6, Methanococcus mari-
paludis C7, Methanococcus maripaludis S2, Methanococcus

150vannielii SB, Archaeoglobus fulgidus DSM 4304, Candidatus
Methanoregula boonei 6A8, Haloarcula marismortui ATCC
43049, Halobacterium salinarum R1, Halobacterium sp.
NRC-1, Haloquadratum walsbyi DSM 16790, Methanobre-
vibacter smithii ATCC 35061; Korarchaeota (K): Candidatus

155Korarchaeum cryptofilum OPF8; Nanoarchaeum (N): Nano-
archaeum equitans Kin4-M.

Identification of DNA-Binding TFs
To identify and analyze the repertoire of TFs in 52 archaeal
genome sequences, we used a combination of information

160sources and bioinformatics tools. First ½AQ4�, 1,820 putative TFs
were collected from Transcription Factor DB (Kummerfeld
and Teichmann 2006), a database comprising computa-
tionally derived predictions of DNA-binding TFs using
the SUPERFAMILY library and PFAM hidden Markov mod-

165els (HMMs). From this data set, 223 proteins, annotated as
transposases, invertases, and integrases, were manually ex-
cluded. In brief, this exclusion was based on sequence com-
parisons against the National Center for Biotechnology
Information’s nonredundant (NR) protein database (E

170value 5 10�3) by using Blast search followed by the iden-
tification of protein domains with CD-search (E value 5

10�3) (Marchler-Bauer et al. 2007).
In the second phase, 90 family-specific HMMs previously

reported for E. coli K12 (Perez-Rueda et al. 2004) and 57 fam-
175ily-specific HMMs for B. subtilis (Moreno-Campuzano et al.

2006) were used to scan the whole 52 archaeal genome se-
quences (E value threshold 5 10�3), with the hmmsearch
module from HMMer suite of programs (http://HMMER.
wustl.edu). Briefly, these HMMs were constructed by using

180the previously identified TF families in E. coli K12 and B. sub-
tilis as seeds, considering every protein family’s DNA-binding
domain (DBD) sequences (around 60 amino acids). Proteins
with less than 50% similarity in the DNA-binding region
against their corresponding HMM were excluded. At this

185stage, 424 proteins were identified as potential TFs. This
was an important step to explore potential TFs not
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identified in the first step and vice versa, that is, the coverage
of superfamily and PFAM assignations correspond to ap-
proximately 70% of the universe of TFs, whereas the rest

190 were complemented with these family-specific HMMs.
In the third phase, 70 new TFs were identified with

HMMs constructed from 17 proteins annotated as TFs
and not identified in previous searches. This step essen-
tially involved retrieving these 17 TFs from Haloweb server

195 (http://halo4.umbi.umd.edu/cgi-bin/haloweb/nrc1.pl?o-
peration5nrc1), and using them as sequence seeds in
Blast searches to retrieve homologous sequences from
the NR database with an E value 5 10�3. Redundancy
was removed using CD-hit (Li and Godzik 2006) at

200 90%, and the potential DBD was identified with CD-
search (Marchler-Bauer et al. 2007) (varying the E value
from 10�3 to 10�1) in the remaining proteins. This region
was then aligned using ClustalW, with parameters set to
default and manually editing output. Finally, 14 HMMs were

205 constructed with the HMMer suite of programs corre-
sponding to the 17 proteins clustered by sequence similarity
into 14 different groups. For two proteins, there was not
enough information to construct a HMM as they appeared
to be lineage specific and no homologues were identified.

210 In addition, a HMM corresponding to the helix-turn-he-
lix (HTH) DNA-binding motif kindly provided by Yan
(2006) was used to identify 686 HTH proteins in the ar-
chaeal genomes. This data set was also filtered to exclude
those proteins described as transposases, ligases, synthases,

215 synthetases, TFIIB, and TFIIE and those proteins identified
in the previous phases, resulting in a total of 95 new prob-
able TFs. Finally½AQ5� , COG assignations associated to TFs in ar-
chaea were also used to retrieve new potential archaeal TFs.
This resulted in 491 proteins, which were filtered and com-

220 pared against the whole data set of predictions, but only 2
of them were found to be novel predictions.

All data sets were finally compared and a total set of
3,918 proteins were compiled and used in this study as
the final collection of TFs (see fig. 1 for a summary of

225the steps). This collection of proteins was classified into
75 families by using HMMs deposited in the PFAM DB
(Finn et al. 2006) and searches with CD-search server (E
value 5 10�1) and aligned against their corresponding
models by using the program hmmalign from HMMer.

230Identification of Homologous DNA-Binding TFs in
Bacteria and Eukarya
In order to identify TFs, which are homologous to the ar-
chaeal set, we compared the whole repertoire against 291
NR genome sequences (Moreno-Hagelsieb and Janga 2008),

235which included bacterial, archaeal, and eukaryotic sequen-
ces. A protein was considered as a homologue of a TF in
a given genome if the alignment covered at least �60% of
the query sequence with an E value �10�6.

Results and Discussion

240Identification of DNA-Binding TFs in Archaea
To understand the distribution of TFs in 52 archaeal ge-
nomes (34 Euryarchaea, 16 Crenarchaeota, 1 Korarchaeota,
and Nanoarchaeota each), we used a HMM-based strategy
in two steps. In the first step, we used a battery of family-

245specific HMMs (see Materials and Methods for details) and
DBD assignments characteristic of TFs to scan the archaeal
genomes (see fig. 1 for a complete outline). These steps
allowed the detection of 3,751 TFs in 52 genomes (see Ma-
terials and Methods for a complete list of genomes ana-

250lyzed), including 53 of the 72 TFs (75%) from
Halobacterium sp. NRC-1 described so far in the Haloweb
server. Halobacterium sp. NRC-1 is one of the few archaea
whose TF repertoire has been extensively analyzed, and

Manual curation. Remotion of
transposases,

Invertases, replication/repair
and other enzymesIncreasing the coverage: Family

specific HMM’s ,designed with
TFs from Halobacterium

salinarum, COGs and HTH
searches

52 Archaeal
genome

sequences

Transcription Factors
identified with DBD database

Family specific HMM’s,
designed using E. coli and

B. subtilis TF families

3918 TFs were
identified

Pfam assignments

Literature look up

FIG. 1. Flowchart½AQ13� showing the different steps involved in the identification of high confidence set of archaeal TFs. Branch points on the vertical
line from top to bottom correspond to the stage at which a particular step was taken in the process of obtaining a cleanerdata set.
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thus, we used its TFs repertoire as a benchmark. In the sec-
255 ond step, in order to increase the sensitivity, the 19 Halo-

bacterium sp. NRC-1 TFs not identified in the first step
were used as seeds for Blast searches against the NR data-
base (E value cutoff 5 10�3), and the matched proteins
were used to build new HMMs for a second round of

260 searches, identifying 70 new TFs. Additionally, archaeal ge-
nomes were scanned to look for HTH and COG annota-
tions to identify new potential TFs not identified
previously. Because it is known that HTH is one of the most
prominent structure associated with TFs in prokaryotes

265 (Perez-Rueda and Collado-Vides 2000, 2001), with at least
80% of the TFs containing this DNA-binding structure, we
employed a specific HMM, which considers amino acid res-
idue identity and solvent accessibility, constructed from
a set of heterogeneous DNA-binding proteins with stan-

270 dard HTH motifs (Yan 2006). After manually excluding pro-
teins that, although can bind to DNA, are unlikely to be TFs,
97 potential TFs that escaped our HMM-based searches
were identified. This composite strategy allowed the detec-

tion of additional 167 potential archaeal TFs not identified
275previously and included all the 72 TFs described in Halo-

bacterium sp. NRC-1. In total, a set of 3,918 potential
TFs in 52 archaeal genomes were finally identified.

Although extensive survey performed in this work iden-
tified a large set of TFs widely distributed in archaea, it is

280still possible that some potential novel TFs escaped the
search criteria or are missing because of their linage-specific
nature, presumably due to de novo invention of TFs whose
DNA-binding models are not included in our seeddata set.

Dissecting the Repertoire of TFs
285Comprehensive identification and characterization of the

repertoire of TFs across archaeal genomes are the first step
toward expanding the possibilities for exploration of their
regulatory networks. Based on our predictions, we found
that smaller archaeal genomes contain fewer TFs than

290larger ones, following a linear correlation (r2 5 0.82), as
has been previously reported for bacteria (Perez-
Ruedaet al. 2004; fig. 2a). This finding might represent

FIG. 2. a) Distribution of TFs identified in 52 archaeal genomes. Nanoarchaeum equitans (Neq), Haloarcula marismortui (Hma),
Methanospirillum hungatei (Mhu), and Methanosarcina acetivorans C2A (Mac) are indicated as a reference. On x axis, genomes are sorted from
smallest to largest size and on y axis the number of TFs is plotted. A linear regression was calculated using the Pearson correlation (r2) between
the number of genes and the total number of TFs. b) Proportion of TFs in all the archaeal genomes. Proportion of TFs was calculated as the
fraction of ORFs encoding for TFs and plotted against the total number of ORFs for each genome. Pyrococcus horikoshii (pho) and Pyrococcus
abyssi (pab) are indicated as a reference. On x axis, genomes are sorted from smallest to largest size and on y axis, the fraction of TFs is plotted.
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either an expansion or a contraction of the repertoire of
TFs in archaea, as a consequence of adaptation to partic-

295 ular habitats or lifestyles. Although larger genomes might
be harboring ampler repertoire of TFs to exploit diverse or
more complex habitats, smaller genomes containing fewer
regulators might be associated with specific niches. For in-
stance, E. coli, which thrives on a large number of sugars,

300 was found to harbor a higher number of TFs compared
with B. subtilis, which is similar in genome size (Janga
and Perez-Rueda 2009). Likewise, we found that the sym-
biotic hyperthermophile, N. equitans, has both a reduced
genome and a lower proportion of TFs than other archaea,

305 whereas Haloarcula marismortui, a chemoheterotrophic
halophilic archaea, was found to have the highest propor-
tion of TFs and Methanosarcina acetivorans (an aerobic
chemolitho(aceto)autotrophic methanogen, nitrogen fix-
ing) with one of the largest genomes contained the highest

310 the number of TFs among archaeal genomes sequenced so
far. An interesting case is that of Methanospirillum hunga-
tei, a methanogenic archaea reported to have an unusual
filamentous structure, which was found to have the lowest
proportion of TFs after N. equitans among the archeael ge-

315 nomes studied. Complex lifestyles might require a higher
proportion of genes and TFs to better orchestrate re-
sponses to changing environments, as is the case of Meth-
anosarcina acetivorans that can form aggregate
multicellular structures when passing from anaerobiosis

320 to aerobiosis (Oelgeschlager and Rother 2008) or the case
of Haloarcula marismortui, a halophilic archaea, which are
generally described to be surprisingly different in its nutri-
tional demands and metabolic pathways (Falb et al. 2008).
In fact, the proportion of TFs in larger genomes is consis-

325 tent with the hypothesis that an increase of genome com-
plexity and physiological functionality is generally
associated with a more complex regulation of gene expres-
sion (Woese 1998).

In this context, the number of predicted TFs in archaea is
330 variable (see supplementary table S2, Supplementary Ma-

terial online), ranging from 8 in the archaeon with the
smallest sequenced genome (N. equitans) to up to 158
TFs in the largest genome, Methanosarcina acetivorans
C2A. A closer look into the normalized distribution of

335 TFs calculated as the proportion of the genes coding for
TFs gave further insights into the evolution of TFs in
the context of their genome size and lifestyles. For instance,
as shown in figure 2b, less than 5% of the open reading
frames (ORFs) in most archaeal genomes are devoted to

340 gene regulation in contrast to about 8–10% observed in
bacterial genomes with similar number of ORFs (Perez-
Rueda and Collado-Vides 2000, 2001). Indeed, larger ar-
chaeal genomes, such as Methanosarcina acetivorans and
Haloarcula marismortui, with similar number of ORFs to

345 E. coli K12, encode a lesser proportion of TFs (4.8%,
3.5%, and 8%, respectively). Thus, the TF repertoire ob-
served in archaea is much more similar to bacteria associ-
ated with gene loss events, such as intracellular pathogens
and endosymbionts (3.9% in average). Notable exceptions

350 are Pyrococcus horikoshi and Pyrococcus abyssi, two small

genomes containing 4.8% and 5.1% of TFs, respectively,
comparable with the proportion of TFs in larger archaeal
genomes. In contrast, N. equitans, which was found to fol-
low the trend in figure 2a, exhibited a clear deviation when

355proportion of genes coding for TFs was compared against
genome size.

Although this intriguingly low proportion of TFs in ar-
chaea compared with bacteria could be partially explained
due to our inability to identify those lineage or organism-

360specific TFs, it is also possible to suggest that other regu-
latory strategies in this cellular domain might be compen-
sating for this underrepresentation. These could involve,
for example, formation of alternative TBP–TFB–RNAp
complexes, with the possibility of interactions with differ-

365ent accessory factors (Baliga et al. 2000; Facciotti et al.
2007). However, the existence of new classes of TFs not ex-
plored here or archaeal-specific regulatory mechanisms
cannot be excluded to be responsible for this trend. For
instance, it has been shown recently from a global analysis

370of translationally regulated genes in Halobacterium salina-
rum and Halobacterium volcanii that 20% and 12% of all
genes in these genomes show growth phase–dependent
differential translational regulation (Lange et al. 2007).
However, the overlap between the two sets was found

375to be negligible, indicating that archaeal organisms may
use differential translational control for regulation of gene
expression, adding a layer of regulatory complexity at post-
transcriptional level (Mittal et al. 2009). Therefore ½AQ6�, regula-
tory strategies such as either those that are found

380exclusively in archaea or those that are exploited to
a greater extent in archaea compared with bacteria might
be responsible for these differences.

Archaeal Genomes Encode a Large Proportion of
Small TFs

385Transcription regulation in archaea appears to be a chi-
mera, with general TFs being clearly eukaryotic like and
candidates for regulating specific responses being bacte-
rial like (Aravind and Koonin 1999). We found that a large
proportion (43.5%) of TFs in the archaeal genomes were

390small in size (100–200 amino acids). In contrast, 42% of
the bacterial TFs have between 200 and 300 amino acids
(vs. 26.5% of the archaeal TFs with this length). Nonethe-
less, 287 large TFs with amino acid length greater than 400,
corresponding to about 2.3%, were identified in the ar-

395chaeal repertoire (fig. 3). To determine the significance
of these findings, we randomly sampled 1,000 collections
of 3,918 proteins from the archaeal genome sequences
and compared their lengths with those observed in
TFs. As the distribution of average length of proteins in

400the random samples followed a normal distribution,
a Z score was used as a test statistic. Z score was calculated
as the number of standard deviations the observed value
(average length of an archaeal TF) is away from the mean
of the 1,000 random collections. This is obtained as the

405ratio of the difference between the observed, x, and
the random expected, l, values to the standard deviation,
r, that is, Z 5 (x � l)/r. P value was defined as the
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fraction of the 1,000 random collections that showed an
average length greater than or equal to what was observed

410 in the archaeal TF collection. Using this approach for the
TF population, a Z score of �23.6 (corresponding to a P
value ,10�3) was found, indicating that TFs in archaea
tend to be significantly smaller than the overall proteome.
In contrast, the repertoire of TFs in E. coli K12 does not

415 exhibit such a tendency compared with the rest of the
proteome (see supplementary fig. S2, Supplementary Ma-
terial online). In fact, a higher proportion of TFs in E. coli
are generally longer compared with other proteins, indi-
cating that archaeal TFs are indeed encoded as small

420 genes. To test whether this observation is more general,
we compared the lengths of archaeal TFs against a com-
plete set of bacterial TFs available from the DBD database
(Kummerfeld and Teichmann 2006). We found that ar-
chaeal TFs showed significantly lower lengths compared

425 with bacterial ones (median size of 179 vs. 236 amino
acids, P , 2.2 � 10�16, Wilcoxon test; see supplementary
fig. S3, Supplementary Material online). Because three of
the abundant families, ArsR, AsnC, and HTH_3, were
found to be composed of small proteins contributing

430 to about 40% of the total TF repertoire (see below), to
exclude the possibility that these large families are indeed
responsible for this tendency, we excluded this set of TFs
from the complete collection and compared their length
distribution with bacterial TFs. This comparison clearly

435 revealed that independent of these large families archaeal
TFs show smaller lengths compared with bacterial ones
(median size of 190 vs. 236 amino acids, P , 2.2 �
10�16, Wilcoxon test; see supplementary fig. S3, Supple-
mentary Material online). These observations raise the

440 question, if archaeal TFs are shorter than bacterial TFs,
do they also encode for smaller number of domains?
To address this, we compared the number of domains

archaeal TFs possess in comparison with those seen for
bacterial ones by obtaining all those TFs for which super-

445family domain assignments were available (Madera et al.
2004). Of the 2,621 archaeal TFs for which domain assign-
ments were available, we found that 1,963 comprised sin-
gle-domain proteins (;75%), whereas single domain
containing TFs in bacteria comprised 50% of the total data

450set analyzed. Further analysis of the distributions of the
number of domains in TFs of both the major kingdoms
of life unambiguously revealed that archaeal TFs encode
for lesser number of domains independent of the exclu-
sion of the large archaeal families (P , 2.2 � 10�16, Wil-

455coxon test). These results clearly unveil that archaeal TFs
comprise a significant proportion of single-domain pro-
teins. One possibility is that most of these one-domain
proteins encode for a DBD and might not contain a li-
gand-binding domain, suggesting that although archaeal

460TFs contain DBDs similar to bacteria, their mechanism of
action might be similar to eukaryotic TFs. In light of these
observations, it is possible to hypothesize that archaeal
TFs although similar in sequence recognition domains
with bacteria (discussed below) might be similar to eu-

465karyotic TFs in mechanistic sense.
The high proportion of small TFs in archaea together

with the observation that most archaea have few TFs per
genome also suggests a dense combinatorial interplay of
TFs for mediating regulation. These data support various

470possible scenarios namely 1) regulation similar to bacteria,
where homodimers can regulate gene expression; 2) for-
mation of different oligomeric assemble forms affected by
the interaction with metabolites associated to a particular
metabolic state, that is, the formation of oligomers with

475different sizes, that is, dimers, tetramers, octamers, and so
on, as has been observed for the members of the AsnC
family (with an average length of around 160 amino
acids), whose small TFs can form dimers, tetramers, or oc-
tamers with differing regulatory functions (Koike et al.

4802004), such as FL11 of Pyrococcus sp., which can form a disc
or a chromatin-like cylinder upon interaction of two pep-
tides and TrmB of Pyrococcus furiosus, which is tetrameric
at ambient temperature and octameric in the presence of
its inducer (maltotriose or maltose) (Lee et al. 2005; Krug

485et al. 2006); 3) binding of the same protein to a broad
spectrum of compounds or ligands, enhancing its activity
under different metabolic states, such as TrmB that binds
maltose, sucrose, maltotriose, and trehalose compounds
in decreasing order of affinity (Koike et al. 2004; Lee

490et al. 2005); and 4) alternative physical interactions or co-
complex memberships with TBP–TFB–RNAp can also be
modulating the structure of the regulatory network in ar-
chaea similar to eukarya. In this regard, Facciotti et al.
found with protein coimmunoprecipitation, ChIP-Chip,

495global transcriptional factor (GTF) perturbation and
knockout, and measurement of transcriptional changes
that global transcriptional factors can associate to nearly
half of all putative promoters and show evidence for at
least 7 of the 42 possible functional GTF pairs (Baliga

500et al. 2000; Facciotti et al. 2007).

FIG. 3. Distribution of amino acid sequence lengths for TFs. On x
axis, the intervals of protein size are shown and on y axis, the
normalized frequency of TFs per interval is shown. Thousand groups
of 3,918 protein sequences were randomly retrieved from archaeal
genome sequences to compare the length distribution of TFs
against other protein-coding genes. In each length internal, bars
marked as random represent the proportion of proteins in an
interval ± their standard deviations from the average in the random
samples.
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Phylogenetic Distribution of TFs in Archaea
It has been previously proposed that DNA-binding TFs can
be grouped into families based on their amino acid se-
quence similarity (Perez-Rueda and Collado-Vides 2000).

505 In order to determine the number of TF families associated
with archaeal genomes, all the 3,918 DNA-binding TFs
were grouped into 75 families according to the PFAM da-
tabase (Finn et al. 2006). As elaborated below, we explored
the familial abundance in the archaeal genomes and the

510 relative contribution of each family to the proteome size
and overall proportion of TFs. This analysis also enabled us
to determine the families that are shared between archaea,
bacteria, and eukarya and the main functions of these
families.

515 The population of TF families was found to follow
a power-law distribution, with 13 families containing more
than 100 members each, representing 71% of the whole TF
repertoire (fig. 4). The½AQ7� top three most populated families
are ArsR (721 TFs), the HTH_3 (361 TFs), and the AsnC

520 (367 TFs), whereas other ten families contained between
101 and 276 TFs. About 49 families comprised less than
30 TFs, each representing in total ;11% of the TF reper-
toire. Previous analysis (Moreno-Campuzano et al. 2006;
Janga and Perez-Rueda 2009) suggests that global regula-

525 tors (GRs) in bacteria usually belong to small families; how-
ever, in Archaea apparently, this is not the case, at least for
the GRs identified so far. For instance, ArsR and TrmB were
found to belong to two large families with 721 and 276
members, respectively.

530 Figure 5 shows that four families are universally distrib-
uted across the four archaeal divisions (Crenarchaea, Eur-
yarchaea, Nanoarchaea, and Korarchaea) namely: the
HTH_3 (a family of putative activator proteins), AsnC
(associated with global regulation of amino acid biosyn-

535 thesis), TrmB (maltose-specific regulation), and ArsR (de-
toxification process). These families might belong to the
ancestral core of TFs in archaea. A second group of families

(PhoU and RpiR) was detected in all archaeal genomes,
with the exception of the endosymbiont, N. equitans,

540and hence can also be considered as part of the archaeal
TF core set. These families are mainly putative regulators of
phosphate uptake (PhoU) and sugar metabolism (RpiR).
Based on these findings, it is possible to suggest that ar-
chaea from new divisions might carry on TFs from these

545universal families, potentially regulating central metabolic
processes, as might be the case with the last common an-
cestor of archaea. Some families such as TrpR were found
exclusively in Metallosphaera sedula, and CopY was found
in diverse Halobacterium strains suggesting that they

550might have been transferred laterally from bacteria to
archaea.

It is possible to speculate from this data that abundant
families like ArsR, AsnC, or HTH_3 might be a consequence
of the lifestyles and a response to the deficit of TFs, that is,

555archaea might have expanded certain families associated
with small sizes, to generate a plethora of combinatorial
possibilities to regulate their gene expression. It is notewor-
thy to mention in this context that these three families
contribute to around 40% of the total TFs with length be-

560tween 100 and 200 amino acids.
In order to understand the similarity of TF repertoires

per family among the archaeal genomes, a hierarchical cen-
troid linkage-clustering algorithm (Eisen et al. 1998) was
applied with uncentered correlation as the similarity mea-

565sure. The clustering results were visualized using the tree-
view program (Saldanha 2004). From this clustering, six
groups of archaea sharing a common set of TFs were iden-
tified (based on a node correlation value �0.6), whereas
three organisms could not be included in any cluster

570and were hence considered as orphans (see fig. 5). It is ev-
ident from this analysis that these six clusters reflect the
major taxonomic positions of the organisms analyzed, al-
though some exceptions could be observed. The TF reper-
toire also reflects the main lifestyle of archaea, such as the

FIG. 4. Abundance of TF families in archaeal genomes. Proportion of TFs in each family was calculated as the fraction of total TFs identified that
belonged to a particular family. The families are displayed from largest to smallest size. Families with less than 20 members were not displayed
as they corresponded to less than 6% of the totaldata set.
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575 first cluster that includes mainly methanogenic archaea
(such as Methanocaldococcus jannaschii and Methanococ-
cus maripaludis S2 among others). The intermixing of
organisms in some clusters might be a consequence of
lateral gene transfer events, as has been suggested for ar-

580 chaea included in the fourth cluster, that is, N. equitans
(Nanoarchaeum) and I. hospitalis (Desulfurococcales)
(Podar et al. 2008).

Comparison of the TF Repertories of Bacteria and
Archaea

585 It has been proposed that bacteria and archaea share a great
similarity at gene regulatory level (Aravind and Koonin
1999), with archaeal TFs clearly being bacterial like, whereas
their basal transcriptional machinery clearly associated to
eukarya. Thus, to understand the degree of conservation of

590 TFs between archaea, bacteria, and eukarya, the probable
homologues of the repertoire of transcriptional regulators
were identified (see Materials and Methods). From this
analysis, it was found that 53% of the 3,918 archaeal TFs
exhibit at least one homologue in bacterial genomes (fig.

595 6). In particular, archaea and clostridia share TFs from
the families HTH_3, Xre, and Rrf2, whereas TFs from the
families DeoR, IclR, and cold shock are shared with several
actinobacteria and some gammaproteobacteria. Another
45% of the 3,918 TFs were clearly identified as archaeal spe-

600 cific, whereas other 6% exhibited homology with bacterial

and eukaryotic TFs and about 2% exhibited homology with
only eukaryotes (mainly with Ascomycetes) possibly sug-
gesting a lateral gene transfer. This reinforces the notion
that TFs of bacteria and archaea share a common ancestry

605and highlight a close relationship between the TFs from
archaea and firmicutes, pointing evidence to drive experi-
ments that can confirm if they share a functional related-
ness as well.

Archaeal TFs Are Predominantly Comprised
610Bacterial DBDs

An important aspect of TFs is their ability to organize into
multidomain proteins and hence understanding them in
a structural context can provide important clues about
how they coordinate regulation. Therefore, the repertoire

615of archaeal TFs was analyzed using the library of HMMs
deposited in superfamily database (Madera et al. 2004).
From this analysis, we found that the most abundant
DBD in these TFs is the winged helix DBD, detected in
45% of the total set. Followed ½AQ8�by the lambda repressor-like

620DBD (;15%). This result is similar to that previously ob-
served for the repertoire of bacterial TFs, reinforcing the
notion of common ancestry in the transcriptional regula-
tory machinery of prokaryotes (Aravind and Koonin 1999;
Aravind et al. 2005). Alternative ½AQ9�DBDs, such as IHF-like

625DBD, PhoU-like domain, nucleic acid–binding domain as-
sociated to cold shock proteins or zinc-finger domains,

FIG. 5. Clustering of TF families and archaeal genomes. A hierarchical centroid linkage-clustering algorithm was applied with uncentered
correlation as the similarity measure and complete linkage (Eisen et al. 1998). Brackets indicate the clusters identified by using a correlation
value �0.6. Nomenclature is as follows: Crenarchaea (C); Euryarchaea (E); Korarchaeota (K), and Nanoarchaeum (N).
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were also identified, although in lower proportions (corre-
sponding to around 12% of the total TFs). Several of these
domains were also identified in bacterial TFs. Zinc fingers

630 represent an intriguing result because this class of proteins
has been found exclusively in eukaryotic transcriptional
proteins.

Most TF families have been found to undergo lineage-
specific duplications resulting in the accumulation of partic-

635 ular families in some microbial species, such as LysR family in
E. coli (45 TFs; Janga and Perez-Rueda 2009) or ArsR in Meth-
anosarcina acetivorans C2A (48 TFs). Indeed, this hypothesis
is consistent with the more general notion that a genome
evolves from a set of precursor genes to a mature size by

640 gene duplications and increasing modifications (Yanai
et al. 2000; Koonin et al. 2002). Therefore, the domain orga-
nization and more generally the properties of the TF reper-
toire described for archaeal genomes in this study open
diverse questions like, if the evolution of regulatory networks

645 in archaea is different to that observed in E. coli, B. subtilis,
and/or other biological systems (Aravind and Koonin 1999;
Koike et al. 2004; Lee et al. 2005; Lozada-Chavez et al. 2006;
Janga et al. 2008, 2009; Perez and Groisman 2009).

Conclusions
650 In this study, 52 archaeal genome sequences representing

a plethora of lifestyles were analyzed to identify the reper-
toire of proteins involved in controlling the gene expres-
sion. Given the fact that there is currently no archaeal
genome, which is completely characterized at the level

655 of transcriptional regulation, the repertoire of TFs and
the conclusions presented here can be a good starting
point in understanding transcriptional regulatory networks
in archaeal genomes. In particular, because the archaeal ge-
nomes studied here are from different taxa, the results pre-

660 sented here should be valid with high confidence for a wide
range of archaea.

Our analysis suggests that although there is a correlation
between the number of TFs and genome size, there is also
a deficit for TFs in all the archaeal genomes, indicating that

665this deficit in TFs, and hence, regulatory plasticity is pos-
sibly supplemented by their ability to form different assem-
bly structures by small-sized TFs found to be enriched in
archaea. We also note that there is an important fraction
of transcriptional regulators common to archaea and bac-

670teria. The distribution of TF families common to prokar-
yotes shows an ancient evolution of transcriptional
machinery in bacteria and archaea. We found that the
number of TF families is distributed almost homogeneously
among all archaea, although there are a small proportion of

675them that are overrepresented in all archaea but not in
bacteria. Further research is necessary to determine the
physiological function of such species-specific or shared
transcriptional regulators. Nevertheless, the analysis pre-
sented here will provide a basis for understanding the or-

680ganization and evolution of regulatory networks in archaea.

Supplementary Material
Supplementary figures and tables are available at Molecular
Biology and Evolution online (http://www.mbe.oxfordjour-
nals.org/).
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sequences of bacterial and eukaryotic genomes. A protein was considered as homologue if the alignment covered at least �60% of the query
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