Appendix 2: Bayesian Anova

Richard Newton*1, Jason Hinds ${ }^{2}$ and Lorenz Wernisch ${ }^{1}$
${ }^{1}$ MRC Biostatistics Unit, Robinson Way, Cambridge, CB2 0SR, UK
${ }^{2}$ Bacterial Microarray Group, Division of Cellular \& Molecular Medicine,St. George's, University of London, Cranmer Terrace, London, SW17 ORE, UK

Email: Richard Newton*- richard.newton@mrc-bsu.cam.ac.uk; Jason Hinds - j.hinds@sgul.ac.uk ; Lorenz Wernisch -lorenz.wernisch@mrc-bsu.cam.ac.uk;
*Corresponding author
We follow the Bayesian treatment of linear models as outlined in Sorensen and Gianola [Sorenson and Gianola(2002)] although the specific forms of posteriors we are interested in deviate slightly from the book.

The objective is to obtain posterior distributions for the coefficients θ in

$$
y=X \theta+Z u+\epsilon
$$

while integrating out the nuisance variables u and ϵ. As priors we assume $\theta \sim N\left(0, B \sigma_{\theta}^{2}\right), u \sim N\left(0, A \sigma_{u}^{2}\right)$, and $\epsilon \sim N\left(0, I \sigma_{e}^{2}\right)$. It is straightforward to see that, conditioned on θ, the prior predictive distribution of $y-X \theta$ is a Gaussian with mean 0 and covariance matrix $\sigma_{e}^{2} V=Z A Z^{\prime} \sigma_{u}^{2}+I_{n} \sigma_{e}^{2}$. That is,

$$
\begin{aligned}
p\left(y \mid \theta, A, \sigma_{u}^{2}, \sigma_{e}^{2}\right) & \propto\left(\sigma_{e}^{2}\right)^{-n / 2} \exp \left(-\frac{1}{2 \sigma_{e}^{2}}\left((y-X \theta)^{\prime} V^{-1}(y-X \theta)\right)^{-(\nu+d) / 2)}\right) \\
V & =Z A Z^{\prime} \frac{\sigma_{u}^{2}}{\sigma_{e}^{2}}+I_{n}
\end{aligned}
$$

(we keep track of all variance terms for later use). The posterior distribution for θ is (see equation (6.67) in [Sorenson and Gianola(2002)])

$$
\begin{aligned}
p\left(\theta \mid y, A, \sigma_{u}^{2}, B, \sigma_{\theta}^{2}, \sigma_{e}^{2}\right) & \propto\left(\sigma_{\theta}^{2}\right)^{-b / 2}\left(\sigma_{e}^{2}\right)^{-n / 2} \exp \left(-\frac{1}{2 \sigma_{e}^{2}}\left((\theta-\hat{\theta})^{\prime} W^{-1}(\theta-\hat{\theta})\right)\right) \\
W & =\left(X^{\prime} V^{-1} X+B^{-1} \frac{\sigma_{e}^{2}}{\sigma_{\theta}^{2}}\right)^{-1} \\
\hat{\theta} & =W X^{\prime} V^{-1} y
\end{aligned}
$$

where b is the dimension of θ.
We are left with the problem of integrating out variance components $\sigma_{u}^{2}, \sigma_{e}^{2}, \sigma_{\theta}^{2}$. There is no analytical solution to this integral in its general form. However, making the usual assumption that the error variance σ_{e}^{2} is actually closely
related to the variance factors σ_{θ}^{2} and σ_{u}^{2} of the coefficients and setting $\sigma^{2}=\sigma_{e}^{2}=\sigma_{u}^{2}=\sigma_{\theta}^{2}$, a conjugate analysis is possible for σ^{2}. We assume a prior $p_{\mathrm{ICh}}\left(\sigma^{2} \mid \nu_{0}, \sigma_{0}^{2}\right)$. First note that

$$
(y-X \theta)^{\prime} V^{-1}(y-X \theta)+\theta^{\prime} B^{-1} \theta=(\theta-\hat{\theta})^{\prime} W^{-1}(\theta-\hat{\theta})+S_{\theta}+S_{e}
$$

with

$$
S_{\theta}=\tilde{\theta}^{\prime} D\left(D+B^{-1}\right) B^{-1} \tilde{\theta}, \quad S_{e}=(y-X \tilde{\theta})^{2}, \quad D=X^{\prime} V^{-1} X, \quad \tilde{\theta}=D^{-1} X^{\prime} V^{-1} y
$$

where $\tilde{\theta}$ is the ML estimate of θ (after integrating over u). The joint distribution of θ and $\sigma^{2}=\sigma_{e}^{2}=\sigma_{u}^{2}=\sigma_{\theta}^{2}$ is

$$
p\left(\theta, \sigma^{2} \mid y, A, B\right) \propto\left(\sigma^{2}\right)^{-\left(n / 2+b / 2+\nu_{0} / 2+1\right)} \exp \left(\frac{(\theta-\hat{\theta})^{\prime} W^{-1}(\theta-\hat{\theta})+S_{\theta}+S_{e}+\nu_{0} \sigma_{0}^{2}}{2 \sigma^{2}}\right)
$$

We obtain

$$
\begin{equation*}
p\left(\theta \mid y, A, B, \nu_{0}, \sigma_{0}^{2}\right)=\int_{0}^{\infty} p\left(\theta, \sigma_{2} \mid y, A, B\right) d\left(\sigma^{2}\right)=p_{t}\left(\theta \mid \hat{\theta}, n+\nu_{0},\left(S_{\theta}+S_{e}+\nu_{0} \sigma_{0}^{2}\right) W\right) \tag{1}
\end{equation*}
$$

where n is the dimension of y and b is the dimension of θ.
Finally, to derive a likelihood for the optimisation of hyperparameters we start with the predictive likelihood conditioned on the variance components, which is a Gaussian with mean 0 and covariance
$\sigma_{e}^{2} U=X B X^{\prime} \sigma_{\theta}^{2}+Z A Z^{\prime} \sigma_{u}^{2}+I \sigma_{e}^{2}$. For further analysis we assume equality of all variance components and use the same prior as above on σ^{2},

$$
\begin{equation*}
p\left(y \mid A, B, \nu_{0}, \sigma_{0}\right)=\int p_{\mathrm{N}}\left(y \mid A, B, \sigma^{2}\right) p_{\mathrm{ICh}}\left(\sigma^{2} \mid \nu_{0}, \sigma_{0}^{2}\right) d\left(\sigma^{2}\right)=p_{t}\left(y \mid 0, \nu_{0}, \sigma_{0}^{2}\left(X B X^{\prime}+Z A Z^{\prime}+I_{n}\right)\right) \tag{2}
\end{equation*}
$$

References

Sorenson and Gianola(2002). D Sorenson and D Gianola. Likelihood, Bayesian, and MCMC Methods in Quantitative Genetics. Springer, 2002.

