
Appendix 2: Bayesian Anova

Richard Newton∗1, Jason Hinds2 and Lorenz Wernisch1

1MRC Biostatistics Unit, Robinson Way, Cambridge, CB2 0SR, UK
2Bacterial Microarray Group, Division of Cellular & Molecular Medicine,St. George’s, University of London, Cranmer Terrace, London,

SW17 0RE, UK

Email: Richard Newton∗- richard.newton@mrc-bsu.cam.ac.uk; Jason Hinds - j.hinds@sgul.ac.uk ; Lorenz Wernisch -

lorenz.wernisch@mrc-bsu.cam.ac.uk;

∗Corresponding author

We follow the Bayesian treatment of linear models as outlined in Sorensen and Gianola [Sorenson and

Gianola(2002)] although the specific forms of posteriors weare interested in deviate slightly from the book.

The objective is to obtain posterior distributions for the coefficientsθ in

y = Xθ + Zu + ǫ

while integrating out the nuisance variablesu andǫ. As priors we assumeθ ∼ N(0, Bσ2
θ), u ∼ N(0, Aσ2

u), and

ǫ ∼ N(0, Iσ2
e). It is straightforward to see that, conditioned onθ, the prior predictive distribution ofy − Xθ is a

Gaussian with mean 0 and covariance matrixσ2
e V = ZAZ ′σ2

u + Inσ2
e . That is,

p(y | θ, A, σ2
u, σ2

e) ∝ (σ2
e)−n/2 exp(−

1

2σ2
e

((y − Xθ)′V −1(y − Xθ))−(ν+d)/2))

V = ZAZ ′
σ2

u

σ2
e

+ In

(we keep track of all variance terms for later use). The posterior distribution forθ is (see equation (6.67) in [Sorenson

and Gianola(2002)])

p(θ | y, A, σ2
u, B, σ2

θ , σ2
e) ∝ (σ2

θ)−b/2 (σ2
e)−n/2 exp(−

1

2σ2
e

((θ − θ̂)′W−1(θ − θ̂)))

W = (X ′V −1X + B−1 σ2
e

σ2
θ

)−1

θ̂ = WX ′V −1y

whereb is the dimension ofθ.

We are left with the problem of integrating out variance componentsσ2
u, σ2

e , σ2
θ . There is no analytical solution to this

integral in its general form. However, making the usual assumption that the error varianceσ2
e is actually closely

1



related to the variance factorsσ2
θ andσ2

u of the coefficients and settingσ2 = σ2
e = σ2

u = σ2
θ , a conjugate analysis is

possible forσ2. We assume a priorpICh(σ2 | ν0, σ
2
0). First note that

(y − Xθ)′V −1(y − Xθ) + θ′B−1θ = (θ − θ̂)′W−1(θ − θ̂) + Sθ + Se

with

Sθ = θ̃′D(D + B−1)B−1θ̃, Se = (y − Xθ̃)2, D = X ′V −1X, θ̃ = D−1X ′V −1y

whereθ̃ is the ML estimate ofθ (after integrating overu). The joint distribution ofθ andσ2 = σ2
e = σ2

u = σ2
θ is

p(θ, σ2 | y, A, B) ∝ (σ2)−(n/2+b/2+ν0/2+1) exp

(

(θ − θ̂)′W−1(θ − θ̂) + Sθ + Se + ν0σ
2
0

2σ2

)

We obtain

p(θ | y, A, B, ν0, σ
2
0) =

∫

∞

0

p(θ, σ2 | y, A, B) d(σ2) = pt(θ | θ̂, n + ν0, (Sθ + Se + ν0σ
2
0)W ) (1)

wheren is the dimension ofy andb is the dimension ofθ.

Finally, to derive a likelihood for the optimisation of hyperparameters we start with the predictive likelihood

conditioned on the variance components, which is a Gaussianwith mean 0 and covariance

σ2
eU = XBX ′σ2

θ + ZAZ ′σ2
u + Iσ2

e . For further analysis we assume equality of all variance components and use the

same prior as above onσ2,

p(y | A, B, ν0, σ0) =

∫

pN(y | A, B, σ2) pICh(σ2 | ν0, σ
2
0) d(σ2) = pt(y | 0, ν0, σ

2
0(XBX ′ + ZAZ ′ + In)) (2)
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