
Evaluation

MEME

MEME [1] version 3.5.7 was used with options “-dna -mod zoops -revcomp -text -w 16 -maxsize 30000000 -maxiter 150 -nmotifs 5”. We have found that using “zoops” almost
always gives a better balance between sequences and resulting ROC curves than using “anr”. We have used the motif reported by MEME as giving the most sites, as this rule
has been found to avoid degenerate motifs of nearly all Ts which MEME sometimes gives as most statistically significant. In fact, for most of these data sets this rule is identical
to using the motif MEME reports as most statistically significant (there is a small exception for Sp1 where all motifs given by MEME give poor ROC curves).

GLAM2

GLAM2 allows complete generality of insertions and gaps throughout the length of the motif. We used the parameters to turn off insertions because otherwise the method
reports very long biologically implausible runs of insertions. This still gives a huge parameter search space and it is not surprising that the method has difficulty in finding the
global optimum. Even when the -n parameter (number of allowed iterations without improvement in the objective function) was increased to five hundred thousand from its
default value of ten thousand, the number and position of gaps as well as the length of the motifs were sensitive to the seed given to the algorithm. We tried GLAM2 on all the
data sets examined in this paper for eight replications using parameters “-2 -s S -r 1 -I 0.1 -J 99999.0 -n 500000” where the seed S took the values 1 to 8. For each data set we
report the motif with the highest significance score.

Test data sets

The data for p53 and Sp1 were extracted from TRANSFAC professional 11.4 and the flanking bases added by TRANSFAC were removed. The data sets for GABP, NRSF,
Stat5a and Stat5b were processed to extract the binding site sequences using the cisGenome software suite v1.0 [2]. In every case both sequences and controls were used.
Binding region boundary refinement was used and then the region extended on each side by 30bp. For NRSF peaks were selected if there were more than 8 reads in a rolling
100 bp sequence window compared to the control which detected 1775 peaks. For the GABP data, peaks were selected if there were more than 18 reads in a rolling 100 bp
sequence window compared to the control. This higher figure was selected to remove visually noisy peaks and 10767 peaks were detected. Cutoffs of 30 and 20 reads were used
for the Stat5a and Stat5b data respectively yielding 814 and 154 peaks. RepeatMasker was used on all the test data sets to mask repetitive elements using the genomic context
for each sequence. We provide the sequences as part of the Supplementary Materials. These files give data for sequences and genomic coordinates. The results in the paper
are based on the masked data, but the unmasked data is given for completeness. The sequences are given in FASTA format and notes about the files for genomic coordinates
(including assembly versions) are given within the files.

ROC curves, AUC and AUC50 statistics

We evaluated each method on each of the datasets, using three different background data sets as negative examples. These evaluations are presented as ROC curves and AUC
and AUC50 statistics. Given a method, M , a set of positive examples, X+, and a set of negative examples, X−, the details of the evaluations are as follows.

Let M(x) be the score the method gives example x, then we define the positive and negative scores to be

S+ = {M(x) : x ∈ X+}, S− = {M(x) : x ∈ X−}

For a given threshold, t, we define the number of true positives, false positives, true negatives and false negatives as

TP = |{s : s ∈ S+, s ≥ t}|, FP = |{s : s ∈ S−, s ≥ t}|, TN = |{s : s ∈ S−, s < t}|, FN = |{s : s ∈ S+, s < t}|

The specificity and sensitivity are defined as

sensitivity =
TP

TP + FN
, specificity =

TN
TN + FP

The ROC curve is a plot of 1-specificity as the abscissa against sensitivity as the ordinate for various thresholds. The AUC is the area under the ROC curve and can be
interpreted as the probability that a randomly chosen positive example will score more highly than a randomly chosen negative example under the given method. The AUC is
a common metric used to assess ROC curves.

Oftentimes a user will apply a method to many examples and can only afford to perform follow-up investigations on a few of these. These users will be interested in the
performance of the method at a high specificity, that is when the false positive rate is low. The AUC50 [3] is a statistic to measure this ability. We define X−

M,50 as the 50



highest scoring negative examples under the method. Using the original set of positive examples, X+, and the new negative examples, X−
M,50, we generate another ROC curve

(called the ROC50 curve). The area under this curve is the AUC50 statistic. The AUC50 statistic can be interpreted as the probability that a positive example will be correctly
classified over a randomly selected high-scoring negative example.

Cross-validated ROC curves

We give the results for each data set individually. We show ROC curves using three different negative sets of sequences:

• shuffle : Shuffled versions of the positive sequences

• r1-back : Random genomic regions

• r3-TSS : Randomly selected promoters

The top 3 figures are ROC curves for the different negative sets of sequences. Following the ROC curves we show precision-recall curves. The bottom figures show the AUC
and AUC50 statistics. We show the logos of the motifs discovered by each method when run on the whole data set.
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Full Sp1 evaluation

We show ROC curves and precision-recall curves for the full Sp1 evaluation. The AUC statistics are given in the legends of the ROC curves.
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RISOTTO

We experimented with RISOTTO [4] (a development of RISO [5]) as it is one of the few methods to allow a variable gap between or within motifs. This method defines parts
of motifs by an exact sequence subject to an allowed number of mismatches. This implies an equal weighting to each position in the motif and all or nothing values of the
probabilities. This is a much cruder formulation than the PWM formulation used by most work in this area (as discussed in the Background section), and by the standard
databases of TF motifs [6, 7]. One of the difficulties of testing the method is the range of parameters that might be given as input: for a given number of mismatches we found
that there was a very sharp boundary between the length of motif that gives no models and the motif-length that gives thousands of models. Since the present concern is with
the possibility of finding a gapped motif, we report the results where the parameters were set as follows: quorum 75%, boxes 2 (a two part motif), each sub-motif with minimum
length 4 bases and maximum length 12 bases, with one substitution (mismatch) allowed in each part; minimum distance between parts 0 bases, maximum distance 3 bases.
For p53, the shuffle-algorithm [8] was confused by the N’s in the data, but ignoring motifs with N’s, the best motif was AAAA AAAA which was found to be slightly (but not
significantly) under represented in the data by the RISOTTO shuffle test. For Sp1, RISOTTO found 7701 models and the best one, AAAA AGAC, had a Z score of +2.83.
For GABP it found 2002 models with the best, AGGA AGCG, having a Z score of +1.05. Only one model CAGG GCAG, was found for NRSF but this was found to be under
represented by the shuffle test. No models were found for Stat5a. For Stat5b, 208 models were found: the best six models were AACA CCAG, AACA ATTT, AACA TCAG,
AACA GAAG, AACA TGAT, AAAA ACTG, and AACA TCCT—they had Z values ranging from +3.67 to +3.02. Given the number of models, this is of marginal statistical
significance, but the decisive point is that these motifs do not correspond to the known motif for this transcription factor. We made various experiments, but at no stage did
we have the sense that RISOTTO was a competitive motif-finder for these data sets.
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