Using CamGRID to Calculate Protein Structures from NMR Data

Helen Mott

Department of Biochemistry
University of Cambridge
Nuclei with spin (e.g. 1H) align (mostly) with the applied magnetic field.

Application of a “pulse” tips the bulk magnetization by 90°.

Magnetization vectors then rotate in this plane at a frequency that depends on the chemical environment of each nucleus.

Each nucleus in a protein is in a different environment so a frequency can be assigned to each 1H.
Nuclei can interact with each other:

Through bonds (scalar coupling)

Through space (nuclear Overhauser effect - NOE)
- distance restraints

Network of distance restraints (NOEs) leads to structures
Even Small Proteins Contain too Many Hydrogens
Two-dimensional NMR

1D NMR
- Preparation
- Detection

2D NMR
- Preparation
- Evolution
- Detection

Fourier transform

Time (t_1)
Separate in another dimension

Three-dimensional NMR
Structure Determination by NMR

1.) sample preparation

2.) data collection

3.) data processing

4.) assignment & analysis

5.) structure calculation

NMR spectrometer (magnet + console)

1D pulse sequence

2D

3D structure

computer

3D
Peak intensities are measured and are calibrated against known distances to derive proton/proton distance constraints (NOE is proportional to $1/r^6$).

Upper distance limit for NOEs is about 5Å.

Different or random structure starting points are used to obtain ensemble of calculated structures which are consistent with the experimental data.

Even a small protein contains several hundred hydrogen nuclei.
Overlap in through-space spectra

NOEs A-B and A-C can be assigned if the positions of B and C peaks are distinct.
If the position of B and C peaks are the same these possibilities cannot be distinguished.
Distance restraints are treated as ambiguous i.e. each is a sum of contributions:

\[\bar{D} \equiv \left(\sum_{a=1}^{N/8} d_{a}^{-6} \right)^{-1/6} \]

Where \(\bar{D} \) is the effective distance restraint and the individual contributions are \(d_a \).

The structures are calculated using these restraints and the contribution of each possibility is then ranked. Possibilities that contribute little to the peak intensity are discarded.

The structures are then calculated again with the new set of restraints and the analysis is repeated.

The cutoff for the contributions is more stringent with each iteration, thus the ambiguity of the restraints is decreased.
Calculation of three-dimensional structures

Search conformational space for low energy:

Molecular dynamics simulated annealing from random structures using torsion angle dynamics.

Only angles around bonds are allowed to move during dynamics (computationally more efficient)

High temperature torsion angle dynamics, followed by slow cooling with Cartesian dynamics (i.e. all atoms are now allowed to move)

Local energy barriers are overcome by the high temperatures.

Structure calculation is performed using CNS
http://cns-online.org/v1.2/

Interfaced with ARIA, which handles all the data using Python
http://aria.pasteur.fr/

Use CamGRID for structure calculations - 9 iterations of 20 structures each takes about 24 hours for a 300 residue protein
NMR Structures are Ensembles Consistent with the Data

Sec5 - all β-sheet

HR1b - all α-helix
Prediction of protein structures is possible if a homologue is known but interfaces are harder to predict.

Proteins interact through large, flat surfaces using multiple contacts.

Traditionally considered a difficult target for drug design but “hot spots” may define important interactions.
Small G Proteins are Molecular Switches

External signal → GEF (Sos) → GTP → Effector (Ral GDS)

GDP → Pi → GAP
The Ras Superfamily Includes Five Groups of Proteins
The Ras Superfamily, their Effectors and Effects

- Ras
- Rho
- Rab
- Arf
- Ran

- Cell growth and differentiation
- Cytoskeletal organization
- Intracellular vesicle trafficking
- Nucleo-cytoplasmic transport
Ral is a Ras Family Member Involved in Multiple Cellular Processes
RLIP76 is a Multidomain Ral Effector

- ATP binding
- Ral
 - RhoGAP
 - GBD
 - Coiled-coil
 - 654
 - 190
 - 1
 - 450
 - 492
 - 602
 - AP2
 - Epsin
 - R-Ras
 - Rac1
 - Cdc42
 - POB1
 - HSF1
 - Endocytosis
 - Adhesion-induced Rac activation
 - Actin cytoskeleton
 - Endocytosis
 - Stress response
RLIP76 is a Transporter for Toxins and Metabolites in Response to Stress

Ral Binding Domain of RLIP76
Structure of the RalB-RLIP76 GBD Complex

Conserved Residues in RLIP76 are in the Interface

Mutation of RalB Residues in the Interface Disrupts Binding

Protein-protein Interfaces

Prediction of protein structures is possible if a homologue is known but interfaces are harder to predict.

Proteins interact through large, flat surfaces using multiple contacts.

Traditionally considered a difficult target for drug design but “hot spots” may define important interactions.
Acknowledgements

R. Bryn Fenwick
Karthik Rajasekar
Louise Campbell
Darerca Owen

Jacques Camonis (Institut Curie)
Peter Lowe (Biomolecular Interactions Consultancy)

NMR Facility
Daniel Nietlispach

BBSRC
biovision for the future

Wellcome trust

Department of Biochemistry
University of Cambridge