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. . . if the outbreak at Checkley had been effectively contained, half of the 583

outbreaks that took place during the 1951–52 epidemic might have been prevented.

The primary reason for this misfortune is not in doubt. It was that the outbreak

at Checkley was not reported early enough to enable that focus of infection to be

promptly stamped out. The disease was four days old before the true diagnosis was

made, and then the harm had been done.

Report of the departmental committee on foot-and-mouth disease 1952–1954

. . . during the epidemic there were several cases where suspicions should have

been aroused earlier and where prompt reporting might have limited the spread

of disease. When the country is free of foot-and-mouth disease for long periods

there is a danger that farmers, and those veterinarians who have had little or no

experience of foot-and-mouth disease, may be slow to recognise the disease.

[. . . ]

In considering the methods which have been employed in the past, as well

as modifications for the future, we have attached great importance to the early

recognition of the disease and the need for immediate action in stamping it out by

slaughter and by the destruction of infected material. We have also attached great

importance to measures designed to limit the spread of disease by controlling the

movements of people, animals, and materials.

Report of the committee of inquiry on foot-and-mouth disease 1968, part two

An outbreak of FMD was unexpected. Neither MAFF nor the farming industry

was prepared for an outbreak on a large scale. . . The country was not well prepared

for what was about to unfold.

[. . . ]

The first responses to the early cases were not fast enough or effectively co-

ordinated. The paramount importance of speed, and especially the rapid slaughter

of infected animals, was not given overriding priority early on.

Foot and mouth disease 2001: Lessons to be learned inquiry report

We have left undone those things which we ought to have done;

and we have done those things which we ought not to have done;

and there is no health in us.

The Book of Common Prayer, 1662
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Summary

Data on cattle movements within the United Kingdom have recently become available.

As part of the conditions for lifting an export ban on British beef following the bovine

spongiform encephalopathy epidemic, the European Union required that the UK should

have “An effective animal identification and movement recording system”. The Cattle

Tracing System (CTS) was introduced in September 1998, and the scheme was ex-

tended to include all cattle by the beginning of 2001.

Contact networks have proved valuable in studying the epidemiology of diseases in

man, such as human immunodeficiency virus; the availability of CTS cattle movement

data has enabled contact network analysis to be applied to diseases of farm livestock.

The CTS data may be represented as a large network; cattle holdings are represented

as nodes, with a movement of cattle between holdings being an edge.

To address concerns about the quality of this cattle movement data, a field study

was conducted on Lewis, one of the Western Isles of Scotland. Farmers were recruited

with the assistance of the local veterinary surgeon, and asked to record a range of

potential risk behaviours relating to the transmission of infectious diseases (moving

livestock, sharing pasture, etc.) for a one-month period. For the study area in question,

movements of cattle not reported to CTS (especially to or from common grazing land)

were a substantial contribution to the contact network during the study period.

A wide range of measures of network structure exist, but their relevance to the

dynamics of infectious diseases on networks is unclear. To address this, a discrete-

time stochastic SIR simulation model of disease on a network was designed and im-

plemented in software. Using this simulation model, a network model with the key

structural features of the CTS contact network was constructed, by considering a range

of measures of network structure, and testing resulting model networks against CTS-

derived networks. The resulting model was shown to predict the dynamics of a simu-

lated disease model on that contact network more closely than existing models of global

network structure.

Much work on the contact structure of the UK cattle herd has relied on relatively

simple static network representations of movement data. By using simulated diseases,

the serious shortcomings of static network representations compared to more complex

dynamic network representations were demonstrated.

A substantial library of software for the generation and analysis of large networks,

and the simulation of disease thereupon, has been produced, and has been made gen-

erally available. The design and implementation of this software is discussed, including

the algorithms and data structures deployed, as well as validation of the software, and

its portability to different computing platforms.
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Glossary

AIDS Acquired Immune Deficiency Syndrome, a condition in humans caused by dam-

age to the immune system by HIV.

BCMS The British Cattle Movement Service, responsible for collecting and storing de-

tails of the births, deaths and movements of cattle in the United Kingdom.

Betweenness A centrality measure of a node based on how many of the shortest paths

between other pairs of nodes that node is on.

BSE Bovine spongiform encephalopathy, a fatal neurodegenerative condition of cattle,

believed to be caused by a prion protein.

BTB Bovine tuberculosis, a zoonotic infectious disease of cattle, caused by Mycobac-
terium bovis.

Centrality The centrality of a node is a measure of how important, or central, that

node is within a graph.

Component A set of nodes within a graph all of which can be reached from one an-

other.

CPH The County/Parish/Holding number of an agricultural premises in the UK; it

should be unique to an individual holding, and every holding should have one.

CTS The Cattle Tracing System, now run by BCMS.

DEFRA The Department for Environment Food and Rural Affairs.

Degree In an undirected graph, the degree of a node is the number of nodes adjacent

(i.e. linked by an edge) to that node. In a directed graph, the in-degree of a node

is the number of nodes from which edges come to that node, and the out-degree

of a node is the number of nodes to which edges go from that node. Synonym:

valence.

Density The density of a graph is the proportion of all possible edges that are extant

in that graph.

Diameter The mean shortest path length between every pair of nodes in a graph.

Digraph A directed graph, i.e. a graph where the edges are directed.
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Dyad A 2-node subgraph of a graph, i.e. any pair of nodes from a graph, and any edges

between them that were in the original graph.

Edge A connection between a pair of nodes, may be directed or otherwise. Synonyms:

arc, line, link.

FMD Foot and mouth disease, a highly infectious disease of cloven-hooved animals.

FMDV Foot and mouth disease virus, the causative agent of FMD.

Graph A non-empty finite set of nodes and a finite set of pairs of elements from the set

of nodes called edges. Synonym: network.

HIV Human immunodeficiency virus, a sexually-transmitted virus, and the causative

agent of AIDS.

MAFF The Ministry of Agriculture, Fisheries and Food, superseded in 2001 by DEFRA.

Node The constituent part from which networks are constructed. Synonyms: point,

actor.

RADAR The Rapid Analysis and Detection of Animal-related Risks project. An infor-

mation management system, which has been developed to collect and collate

veterinary surveillance data from many different sources around the UK.

R0 The basic reproductive rate of a disease; the mean number of secondary infections

produced by the introduction of a single infectious individual into a susceptible,

homogeneously mixed, population.

SEERAD The Scottish Executive Environment and Rural Affairs Department.

SIR A type of infectious disease model, where a population is divided into Susceptible,

Infectious, and Recovered compartments.

Triad A 3-node subgraph of a graph, i.e. any set of three nodes from a graph, and any

edges between them that were in the original graph.

Two-dimensional degree distribution The paired distribution of in- and out-degrees

of nodes in a graph. Each node is characterised by its in- and out-degree, and the

number of nodes with each degree pair is given.

View A virtual table in a database, composed of the result set of a query performed on

that database.
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Chapter 1

Introduction

Recent years have seen diseases of farm livestock in the United Kingdom having a huge

economic impact, particularly foot and mouth disease (FMD) in 2001, classical swine

fever in 2000, and bovine spongiform encephalopathy (BSE) since 1986.

The movement of farm livestock around the country is important to the economics

of UK farming, but each movement clearly carries the risk of transmitting infection.

This was most dramatically demonstrated during the 2001 FMD outbreak, when animal

movements spread FMD to twelve distinct locations across the UK before the introduc-

tion of nation-wide movement restrictions on February 23, 2001 (Gibbens et al., 2001).

Despite this, relatively little work has been undertaken to determine the importance of

animal movements to the dynamics of infectious diseases of farm livestock.

The background literature in basic network theory is reviewed in chapter 2, as well

as the theory of compartmental models of infectious diseases, examples of networks

in nature, and the application of network theory to enhance epidemiological models.

Some example human and animal diseases are reviewed in more detail, to highlight

the use of network approaches to understanding the dynamics of diseases.

Following the rise of BSE in the UK, the Ministry of Agriculture, Fisheries and Food

implemented a computerised Cattle Tracing System (CTS) to record the birth, death,

import, export, and movement of all the cattle in the UK. This system is now run by the

British Cattle Movement Service (BCMS), which makes the data available to researchers

as part of the Rapid Analysis and Detection of Animal-related Risks project (RADAR).

Chapter 3 discusses the RADAR database in more detail, and uses the data stored in the

RADAR database to describe demographic details about the movement of cattle within

the United Kingdom over the last decade.

Networks derived from BCMS data are large, which makes analysis of them diffi-

cult. A lack of suitable software packages for handling networks of this size led to the

development, as part of this thesis, of a C library of functions for the analysis of large
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networks and the simulation of disease processes upon them. A Python module was

also written, to make the high-performance C code useful to a wider range of scientists.

The CD that accompanies this thesis contains this software, along with documentation

for its use. The software produced has been released to the scientific community at

large as free software under the GNU General Public License alongside the publica-

tion of this thesis; its design and implementation are discussed in chapter 4, and the

stochastic disease simulation model is described in more detail in chapter 5. As well as

enabling the work underlying this thesis, this extensive software package represents a

valuable tool for network analysis and epidemiology, particularly upon large networks,

and may be used across a wide range of software and hardware platforms for research

and commercial purposes.

The UK cattle herd may be modelled as a contact network, with each farm, slaugh-

terhouse, market, or other holding being a node, and an edge being drawn between

two nodes if there has been a movement of cattle between them during the time-period

in question. Devising such contact networks and using them as an epidemiological tool

has a long history in human medicine (particularly regarding sexually-transmitted dis-

eases), and is now beginning to be applied to the study of veterinary diseases. Such

work has borrowed heavily from social network analysis, a field which has generated a

vast array of techniques for measuring the structural features of networks (Wasserman

and Faust, 1994; Carrington et al., 2005). In general, however, these studies have been

interested in how the network features of an individual (typically its centrality in a net-

work) may be used to assess that individual’s risk of contracting or passing on infection.

Chapter 6 considers the effect of structural features of a network upon the dynamics of

a simulated disease process across that network as a whole. A relatively parsimonious

model of network structure (consisting of generating a network with the same two-

dimensional degree distribution as the observed network, and then re-wiring it to have

the same dyad census as the observed network) is shown to generate networks which

show very similar disease dynamics (as measured by stochastic simulation) to four-

week snapshots of RADAR movement data. This is a novel way of assessing models of

network structure, and enables the important question of what structural features of a

network are important for disease dynamics to be addressed. Furthermore, it provides

a basis on which models of future movement patterns, and/or the impact of different

policy interventions on the contact structure of the UK cattle herd might be built.

The UK cattle movement data are one of the most detailed data-sets available on dy-

namic network structure. Nevertheless, most of the studies performed on cattle move-

ment networks of the UK have chosen to represent these movement data as static net-

works (since these are much more tractable). In chapter 7 the validity of these static
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network representations is tested compared to fully dynamic network representations,

and found wanting. This is a significant finding which will impact upon future studies

into the role of animal movements on disease dynamics in the UK and elsewhere.

Concerns have been raised about the accuracy of the data collected by BCMS, both

due to deliberate fraud, and to the complex nature of the current regulations concern-

ing the identification of livestock, and the reporting of their movements (National Audit

Office, 2003; Madders, 2006). Furthermore, some classes of animal movements that

may be important to the transmission of disease (such as movements to or from shared

grazing lands) are not required to be reported to BCMS at all. To endeavour to esti-

mate the importance of these factors on the utility of BCMS data for epidemiological

research, a field study was carried out, which is presented in chapter 8. That work

showed that although connections between cattle holdings with the potential for dis-

ease transmission other than cattle movements (e.g. sharing of livestock trailers) did

not make a significant difference to the contact structure on the Isle of Lewis, move-

ments of animals that were not required to be reported to BCMS (especially to and from

shared grazing lands) did make a substantial difference to the contact structure. Since

there is a growing body of work that assumes that BCMS data can be used to represent

the contact structure of the UK cattle herd, these are important results.

Papers based upon three chapters of this thesis have been prepared for publication.

Chapter 6 is going to be submitted for publication in BMC Veterinary Research, chap-

ter 7 has been published in Proceedings of the Royal Society B (Vernon and Keeling,

2009), and chapter 8 has been published in the Veterinary Record (Vernon et al., 2010).
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Chapter 2

Literature review

Introduction

This review focuses on the science underpinning network-based approaches to epi-

demiology, as well as examples of how these approaches have born fruit in furthering

the understanding of animal and human diseases. Key mathematical papers about

networks are presented first, and the small world and scale-free network models dis-

cussed. Some uses of network models to describe natural phenomena are illustrated,

as examples of the wide range of uses to which network models may be put. The com-

partmental model of epidemiology is introduced, as are a range of studies that have

used increasingly refined aspects of network structure to improve basic compartmental

models. Measures of network structure, and simulation approaches to epidemiology

are reviewed in detail, as they are particularly relevant to later chapters in this thesis.

Following from these theoretical foundations, work incorporating network analysis

into the modelling of a range of specific conditions is described; in humans (the role of

movements of people in the spread of influenza, and the importance of sexual networks

to the epidemiology of sexually-transmitted diseases both being areas in which signif-

icant advances have been made), and in animals (where data on animal movements

have been used to model foot-and-mouth disease and bovine tuberculosis). The avail-

able data on the structure of the UK cattle industry are described, much of which was

collected by the BSE Inquiry. Finally, open research questions are sketched, particularly

those which this thesis addresses.
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Networks and graphs

In lay terms, a graph is a series of points (called nodes) joined by lines (called edges).

More technically, a graph can be defined as the pairing of a non-empty finite set of

nodes and a finite set of pairs of elements from the set of nodes called edges. The edges

may be ordered pairs or otherwise, and there may be a requirement for the edges to be

pairs of distinct nodes (i.e. that there be no self-loops). Network theory has grown out

of graph theory, and is particularly concerned with matters such as the flow of materials

round graphs, whilst graph theory has been more interested in the abstract properties

of graphs (Biggs et al., 1976).

The work of Paul Erdős and Alfréd Rényi on random graphs provided the initial

model of a network, which later work improved upon. A random graph is a graph in

which properties such as the number of nodes and edges and the connections between

them are determined in a random manner. Erdős and Rényi showed that for many

properties of such graphs there is a threshold; graphs with a few more edges than the

threshold are highly likely to have this property, whereas graphs below this threshold

almost certainly will not. For example, if the edge/node ratio is small (around 0.1),

then most nodes are isolated. As this ratio rises towards 0.5, the sizes of the connected

components grow, and their number decreases. Beyond 0.5, there is a rapid transition

towards a single connected component (Erdős and Rényi, 1960).

Most networks are not random, however. The latterly-contested (Kleinfeld, 2002)

“Small World” study (Milgram, 1967) showed that it was possible to pass a letter be-

tween two apparently unrelated people with a surprisingly small number of intermedi-

ate steps (Travers and Milgram, 1969). Such short paths between nodes in a network

would be expected in an entirely random network, but it is intuitively obvious that so-

ciety is not randomly structured; nonetheless an entirely regular network would have

much longer paths between randomly-selected nodes (Watts and Strogatz, 1998). In

the Watts-Strogatz model, a regular network has a small proportion of its edges ran-

domised. Compared to random networks, such networks typically have a slightly in-

creased characteristic path length, but are substantially more clustered, even when the

proportion of edges randomised is very small. The authors demonstrate that the net-

work of American film actors, the power grid of the United States of America, and the

neural network of the nematode worm Caenorhabditis elegans all fit this small world

model.

A further refinement to the modelling of networks arose from studying the links

between websites. This demonstrated that the probabilities Pout(k) and Pin(k), that a

document has k outgoing and incoming links respectively, follow a power law distri-
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bution over several orders of magnitude (i.e. P (k) ≈ k−γ) (Albert et al., 1999). This

is in marked contrast to the Poisson distribution predicted by Erdős and Rényi’s ran-

dom graphs and the bounded distribution found in Watts and Strogatz’s small worlds.

Both the Erdős-Rényi and the Watts-Strogatz models assume a constant number of

nodes which are then randomly connected (in the case of the Erdős-Rényi model) or

re-connected (in the Watts-Strogatz model) without preference to other nodes. Many

real-world networks are open, and wax and wane as the result of the addition and

removal of nodes (i.e. they are dynamic). Furthermore, many such networks show

preferential attachment — a frequently-cited paper is more likely to be cited by an

author than an unknown work, for example. A model which incorporates network

growth and preferential attachment shows the power-law distribution of connectivity;

removing either of these factors destroys this distribution (Barabási and Albert, 1999).

Networks with a power-law distribution of node degree are sometimes known as “scale-

free” networks.

Scale-free networks display interesting responses to failure and attack. The diame-

ter of a network is the average length of the shortest paths between every pair of nodes

in that network, and has been used as a measure of how well connected a network is.

Erdős-Rényi random networks break apart (measured in terms of increasing diameter,

and the appearance of large disconnected clusters) fairly swiftly under both failure of

random nodes and directed loss of the most highly-connected nodes (“attack”). Scale-

free networks, on the other hand, are highly robust against random failure — because

there are relatively few highly-connected nodes, random failure will mostly remove

nodes with low degree, with little effect on the network as a whole. Under attack, how-

ever, the diameter of a scale-free network increases dramatically, doubling when only

5% of the highest-connected nodes are removed; removing the most highly connected

nodes from a scale-free network dramatically alters the topology of the network. Scale-

free networks are thus highly robust against random errors, but potentially vulnerable

to planned attack (Albert et al., 2000).

Nevertheless, there are assumptions made by the power-law model that are not

always true. In particular, two classes of factors can inhibit the preferential attachment

that gives rise to power-law distributions of connectivity: ageing of nodes (consider that

in a network of film actors, actors will stop acting as they get older, so cease acquiring

new links), and cost of adding links or limited node capacity (consider the network of

airports: physical constraints mean that airports can only handle so many flights per

day) (Amaral et al., 2000). Depending on the strength of the constraints applied, there

is either a cutoff on the power-law decay of the tail of the connectivity distribution, or,

with strong enough constraints, no power-law region at all (Amaral et al., 2000).
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Networks in nature

Network models have helped to elucidate several natural phenomena. Luis Lago-

Fernández and colleagues created a model of the locust olfactory antennal lobe. They

compared regular, random and Watts-Strogatz-style small world networks of Hodgkin-

Huxley elements and how they responded to a stimulus. The olfactory antennal lobe

shows a fast response to an olfactory stimulus, and coherent oscillations of 20 Hz in

the local field potential can be measured. Regular networks produced coherent oscil-

lations in a slow time scale, whereas random networks gave rise to a fast response but

without coherent oscillations. Only small world networks demonstrated both coherent

oscillations and a fast reaction time, thus modelling the behaviour of the locust neurons

(Lago-Fernández et al., 2000).

Ecosystems may also be modelled as networks, with trophic relations being the

edges and species being the nodes. A study of three different but well-described ecosys-

tems (the Ythan estuary web, the Silwood web, and the Little Rock lake web) showed

that they all exhibited small world behaviour, and that the more detailed webs could

be shown to exhibit a scale-free degree distribution, although with a rather different

exponent than in studies of the Internet (Montoya and Solé, 2002). Further analytic

work showed that most species are connected by only a very few links; even in high

quality species-rich food webs, eighty percent of species are connected by one or two

links, with two being the mean shortest path between any two species (treating edges

as being undirected) (Williams et al., 2002). Regular equivalences have been applied

to food webs. In a regular equivalence, if nodes a and b are equivalent, and if one has

an edge to another node x, then the other must have a corresponding edge to node

y, where x and y are equivalent (and may be the same node). Dividing a food web

into equivalence classes enables species with similar roles to be identified, even if they

do not feed, or feed upon, the same species. Furthermore, the image graph of such

a regular equivalence (where each class is a node, and classes are adjacent if species

in those classes are adjacent to each other in the original web) provides a useful way

of simplifying food webs whilst maintaining structural information (Luczkovich et al.,

2003). The response of an ecological network to species removal has recently been con-

sidered. That work showed that under random species removal, secondary extinction

was a very uncommon event except at very high levels of destruction, whereas if highly-

connected species are removed, secondary extinctions (and indeed disintegration of the

entire food web) are much more likely. Such highly-connected species (which are often

omnivores) are candidates, therefore, for “keystone” species status (Solé and Montoya,

2001).
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The complete genome for a number of organisms has now been established. With

some organisms, like Escherichia coli, the functions of many of the proteins encoded in

the genome have also been established. Recently, attention has turned to the possibility

of using these data to make predictions about the importance of various genes to the

survival of micro-organisms (and hence, by extension, to larger organisms). An in silico
representation of the metabolism of E. coli was constructed based on available genomic

and biochemical data. A flux balance analysis approach (where an attempt is made to

find the metabolic fluxes that maximise the growth of an organism, assuming a steady

state) was used to model the effect of gene deletions on aerobic growth on a glucose

medium. The model was able to qualitatively predict the growth potential of mutant

strains in 86% of cases (when compared to experimental results) (Edwards and Palsson,

2000). A more extensive study of the metabolisms of 43 different organisms looked

simply at the network properties of those metabolisms, and again detected a power-law

distribution of degree (here, nodes represent substrates and edges metabolic reactions);

furthermore the highest-connected substrates were highly conserved between the 43

different species. Surprisingly, the diameter of the metabolic network hardly increased

with increasing cellular complexity. This suggests that cellular metabolism has evolved

to form a system that is highly robust against random mutation (Jeong et al., 2000).

In a related study, the protein-protein interaction network of the yeast Saccharomyces
cerevisiae was also shown to be a scale-free network; it is perhaps unsurprising that

the most highly-connected proteins are most likely to be lethal if deleted (Jeong et al.,

2001). Whilst some authors have suggested that this may provide targets for new

anti-microbial agents, the fact that the highly-connected proteins or substrates (which

might seem the tempting targets) are also the highly-conserved ones suggests that any

such agents would run the risk of high patient toxicity. Nevertheless, these studies

are a useful example of deploying abstract network theoretic concepts to model real

biological systems.

The compartmental model

One of the earliest formulations of the compartmental model for epidemiology was by

Kermack and McKendrick. They divided a population into three categories: suscepti-

ble, infected, and recovered (or dead), and derived a deterministic epidemic model,

assuming a homogeneous population, complete immunity after infection, a constant

population, and no latent period (Kermack and McKendrick, 1927). This is the basis

of the compartmental model of epidemiology, and is sometimes referred to as the SIR
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model1, although it only addresses very basic heterogeneities in a population. If the

number of individuals in each state is indicated by the terms S, I and R, then the fol-

lowing equations (assuming a homogeneously mixed population) describe the model’s

behaviour (Anderson and May, 1991):

Ṡ = −β S
N
I

İ = β
S

N
I − gI

Ṙ = gI

Here β is a contact parameter (which describes how infectious the disease is, as well as

the level of contact between individuals in the population), 1/g is the infectious period,

N is the number of individuals, and Ṡ, İ, and Ṙ are the rates of change of S, I, and

R over time, respectively. In a disease where immunity is relatively short-lived, an SIS

model may be more appropriate, in which case the following equations are used:

Ṡ = gI − β S
N
I

İ = β
S

N
I − gI

This basic framework has been modified in several biologically-motivated ways, usu-

ally by either further subdividing the S, I, and R compartments to reflect greater com-

plexity in the host-pathogen life cycle, or by specifying different mixing patterns be-

tween different sub-groups of the population (typically done by making β into a matrix

of transmission parameters describing the transmission of infection between different

groups) (Anderson and May, 1991). Mixing, even within subgroups of the population,

is not random, however. Many social contact networks may have their degree distribu-

tions best fitted to an exponential function; in these cases epidemic models based on

random-mixing assumptions improve as mean degree increases, and also out-perform

scale-free network models, although they do not perform as well as other network

models (Bansal et al., 2007). The incorporation of networks into epidemic models has

enabled researchers to reflect more realistic interaction patterns in their models (Keel-

ing and Eames, 2005).

1The R referring to recovered individuals who are modelled as being immune to re-infection
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Incorporating network structure into epidemic models

A refinement to the compartmental model was to consider the effect of spatial struc-

ture. Keeling describes a homogeneous network in terms of the average number of

neighbours of a node (n) and the proportion of triples of nodes that form triangles (φ).

The number of triples and higher-order pairs is approximated by assuming a distribu-

tion for the number of triples, and modifying it by the correlation between nodes of

different types. If a single infectious individual is added to a network of susceptibles,

then initially infectious and susceptible nodes are uncorrelated. In the early develop-

ment of an epidemic, the correlation between susceptible and infectious individuals,

CSI , converges to a quasi-equilibrium value, and it is more useful to wait for the local

spatial pattern to form and CSI to equilibrate before measuring R0 (and indeed the

epidemic behaves more deterministically after this point) (Keeling, 1999). The limited

spatial spread of an epidemic in a network means that there is more intra-specific com-

petition than assumed by the basic SIR model, so R0 is reduced. This effect is greatest

when n is small, and φ is large.

Eames and Keeling take a not dissimilar approach in modelling sexually-transmitted

diseases. They employ a pair-wise model, and are able to describe the dynamics of pairs

in terms of triples. Since immunity to many sexually-transmitted diseases is short-lived,

an SIS model (i.e. infected individuals recover and become susceptible again) is used

instead of an SIR model. A moment-closure approximation (estimating the number

of triples in terms of the number of pairs) is used, and the network properties of the

infected partner in an SI pair are ignored to reduce computational load (this simplifica-

tion is shown to not significantly affect the results of the model) (Eames and Keeling,

2002). The model is parameterised using a known network of sexual relationships

in Canada derived from a study of chlamydia and gonorrhoea cases (Wylie and Jolly,

2001). The model predicts that a combined strategy of contact tracing and screening

is most efficacious in achieving eradication of disease. However, it is deterministic, and

largely neglects spatial effects. This work was refined to reflect the fact that most peo-

ple only have one active sexual relationship at a time (i.e. that they are monogamous,

even if serially so); the previous pair-wise network was considered to be a network of

potential sexual partnerships, with each node having at most one active partnership

at once. When compared to the polygamous network, prevalence in the monogamous

network is lower, even if the difference in density is taken into account. This protec-

tive effect of monogamy was undone, however, if even a relatively small proportion of

the population indulges in concurrent relationships (Eames and Keeling, 2004). The

effect of different network structures on the efficacy of contact tracing has been con-
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sidered. This showed that a higher tracing effort is needed to control a disease on a

scale-free network than on a random network; this effect becomes more pronounced

in diseases with longer latent periods — although a longer latent period makes tracing

on both types of network easier, the improvement is much more marked on random

networks (Kiss et al., 2006a).

Many networks are dynamic, and this complicates the dynamics of diseases trans-

mitted upon those networks. One approach taken to address this problem was to con-

sider all the movements across a short time period (4 weeks), and then repeatedly take

a sample of these edges as being infectious, given a set of estimates of network pa-

rameters such as the giant strong component size. For short time periods (specifically,

where the time period used for network construction was the same as the infectious pe-

riod of the epidemic being considered), this approach gave similar results to stochastic

simulations on a dynamic network, but it was not useful over longer time periods (Kao

et al., 2006). In related work, Kao and colleagues create “epidemiological” networks

(where edges are probabilistically thinned out based on the probability of transmission

along that link given the source node is infected) of sheep movements, and considered

the resulting networks for two different diseases — foot and mouth disease (FMD) and

scrapie. For FMD (a disease with a short infectious period), they show that farmers

who buy sheep at one market and immediately sell sheep at another market are dispro-

portionately important for the transmission of FMD (as assessed by the size of the giant

strong component). For scrapie (a disease with very long incubation times), network

analysis was less rewarding, although an association was found between buying sheep

from scrapie-reporting farms and being a scrapie-reporting farm (Kao et al., 2007).

Read and Keeling considered the role of contact structures in the evolution of dis-

eases. Two caricature networks (one a highly locally-clustered network, the other a

“global” network containing many long-distance links) were used as the basis for an

SIR model (birth and death rates being equal). Recovered nodes were considered to

have life-long immunity to all strains and were removed from the network (such that

new nodes will never be connected to recovered nodes). Infectious agents were able

to mutate every generation, to alter their infectivity and infectious period. In a global

network, ability to persist dominated, whereas in a local network, ability to infect was

most important. In a local network, there was a scramble between progeny to in-

fect the available individuals, partially balanced by the need to avoid host “burn-out”.

Mean-field models did not show any of this interplay between leaving a susceptible

environment for progeny, and producing a large number of secondary infections (Read

and Keeling, 2003).
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Scale-free networks

There has been recent interest amongst physicists in how the features of complex net-

works (particularly scale-free networks) interact with the dynamics of disease. Ro-

mualdo Pastor-Satorras and Alessandro Vespignani studied the dynamic behaviour of

disease spread (based upon an SIS model) in a range of complex networks using both

analytic methods and large-scale simulations. Numerical and analytic results confirm

the standard epidemiological picture of an epidemic threshold for Watts-Strogatz net-

works — if the infection rate is above the critical threshold, then disease spreads ex-

ponentially, whereas if it is below the critical threshold, then the disease will die out

exponentially fast in finite time. Scale-free networks behave differently, however, de-

pending on the value of the exponent in the probability distribution of node degree

P (k) ≈ k−2−γ. In networks where 0 < γ ≤ 1, there is no epidemic threshold, and

so an infection can pervade the network regardless of its infection rate. However, the

prevalence of such infections remains exponentially low at small spreading rates (i.e.

prevalence ρ is related to spreading rate λ as ρ ∼ e−C/λ, where C is a constant). In

the interval 1 < γ ≤ 2, an epidemic threshold reappears, but is approached smoothly.

Finally, if γ > 2, then the usual critical behaviour is recovered, and the network be-

haves just like a network with an exponentially bounded degree distribution (such as

a Watts-Strogatz small world, or a random network) (Pastor-Satorras and Vespignani,

2001a). As a specific example of this behaviour, data on computer viruses were anal-

ysed. The observed behaviour that many viruses linger for an extended period of time

at low prevalence is contrary to the “classical” epidemiological model — it is highly un-

likely that many computer viruses are written such that their infection rate is infinitesi-

mally below the critical threshold. Treating the internet as a scale-free network enables

the prediction of this behaviour of computer viruses (Pastor-Satorras and Vespignani,

2001b).

So, scale-free networks challenge conventional thinking about epidemics, and can

be used to explain the behaviour of computer viruses. In 2001, Fredrik Liljeros and col-

leagues investigated the results of a survey on sexual behaviour. Social networks tend

to be somewhat subjective in nature, since perception of what constitutes a social link

differs between individuals (Wasserman and Faust, 1994), whereas sexual contacts are

easier to define precisely. Their analysis showed that for both males and females, the

network of sexual contacts was a scale-free network, with a notable number of individ-

uals who had had a large number of sexual partners, and suggested that safe-sex edu-

cation campaigns should be specifically aimed at those people if they can be identified

(Liljeros et al., 2001). More recent work has, however, challenged the idea that sexual

networks are scale-free. Hamilton and colleagues examined five previously-published
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data sets on sexual partnerships which had previously been described as having scale-

free characteristics, and showed not only that social process models of sexual part-

nerships explained the observed data as well as power-law models but also that these

social process models predicted a non-zero threshold transmissibility value for sexually

transmitted infections. Given that a generalised epidemic of sexually transmitted dis-

ease was not observed, this suggested that power-law models of sexual partnerships

were less likely to be true than social process models (Hamilton et al., 2008).

The failure modes of scale-free networks in response to error and attack were dis-

cussed above. Given that networks can be used to model disease dynamics, an ob-

vious extension of this work was to look at the effects of immunisation upon disease

spread. In a Watts-Strogatz small world network, a uniform immunisation strategy

(where nodes are immunised at random) can usefully eradicate infection. In a scale-

free network, however, uniform immunisation fails to stop the disease spreading unless

nearly all of the nodes are immunised. Targeted immunisation, however, can be very

effective - if the most highly connected nodes are immunised, then an epidemic thresh-

old behaviour can be restored, and the disease potentially eliminated from the network

(Pastor-Satorras and Vespignani, 2002). As noted above, however, identifying the most

highly-connected hubs is not always possible. It has been demonstrated in theory that

an immunisation policy that is biased towards the more highly-connected nodes can be

effective at controlling an infection in a network even if it is only moderately successful

at identifying the highly-connected nodes. Furthermore, it is a more cost-effective strat-

egy than random immunisation (Dezső and Barabási, 2002). No field results support

this conclusion as yet, however.

Epidemics on dynamic networks

Contacts between individuals do not typically remain constant over time; this is an as-

pect of behaviour that static network models fail to take into account. One approach to

incorporating this fluidity of contacts into network models is the neighbour exchange

(NE) model. In the NE model, each individual has a specific-to-that-individual num-

ber of contacts at any given time, but the identity of those contacts changes over time.

During an epidemic, individuals can only transmit infection to other individuals while

there is an edge between those individuals. This model may be approached analytically

(using a technique based on probability generating functions), and shown to converge

to a simpler mass-action model in the limit of high re-assortment of edges, as well as

predicting the shape of epidemics simulated on a dynamic network, if not the time at

which a particular epidemic will “take off” (Volz, 2008; Volz and Meyers, 2007). For
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infections on networks, the quantity R∗ may be defined as the expected number of sec-

ondary infections from an individual infected early in the epidemic (but who is not the

first infected individual, termed the index case); this takes into account that every case

other than the index case has at least one neighbour who cannot be infected (the node

from whence that individual was infected). Where R∗ > 1, there is a positive probabil-

ity that epidemics will occur on the network in question (Trapman, 2007). In a dynamic

network system, R∗ depends on the transmissibility of the infection, and the number

of transitory contacts that a node makes during its infectious period. Depending on

the ratio of the recovery rate and the transmission rate, epidemics may occur or not

occur unconditional on neighbour exchange (i.e. the rate at which nodes change their

edges), or may occur conditional on neighbour exchange. As would be expected, static

network approximations match these dynamic network models best when the rate of

neighbour exchange is low (Volz and Meyers, 2009).

Simulation approaches

Published papers tend to be very sparse on the details of their computer models; for ex-

ample, Eames and Keeling stated “We compare [their other models] with the results of

a true stochastic infection process occurring on a fully connected computer-generated

network”, and provided no further details (Eames and Keeling, 2002). Nonetheless,

the details of how epidemics have been simulated in the past are reviewed here, to

inform the development of a stochastic disease model in chapter 5. Keeling previously

described an SIR model as simply a “stochastic simulation modelling the spread of a dis-

ease across a network.” The network had 6000 nodes, each of which had 6 neighbours,

and the ratio of the number of triangles over the number of triples in the network, φ,

was 0.2 (Keeling, 1999).

Read and Keeling studied evolution of disease strains by simulation on different

networks. They randomly generated a network of N nodes uniformly distributed across

an
√
N ×

√
N plane. A connectivity kernel K determined the probability of an edge

between nodes separated by distance d:

K = pe

“
−d2
2D2

”

Where p was used to control the expected number of edges per node, and D was the

average distance between connected nodes, and hence determined the structural prop-

erties of the network. They constructed two types of networks, local ones (D = 1) and

global ones (D = 50). New nodes were added and connected during the simulation
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by the same mechanism. The model was updated synchronously, thus corresponding

to a discrete-time model of infection. For every edge between an infected node and

a susceptible node, the per-iteration probability that infection passes across the edge

was:

P = 1− e−τ

Where τ is the transmission rate of the agent being modelled. Nodes remained infected

for an integer number of iterations before being removed from the network. The au-

thors used this model to investigate whether the two different types of network would

have different influences upon disease evolution, by allowing the infectious period and

τ values of the simulated infections to change over time (Read and Keeling, 2003).

Keeling and colleagues used a different stochastic model to investigate the dynamics

of the 2001 UK FMD epidemic. The probability that a susceptible farm was infected on

a given day was:

Pi = 1− e[−S.Ni
P
j∈infectious(t) T.NjK(dij)]

Where Ni is the vector number of sheep and cattle on farm i, t is the time parameter

(i.e. the current day), and S and T are the vectors of susceptibility and transmissibility.

The effect of distance dij between farms i and j was captured by the dispersal kernel K,

which was estimated from contact tracing undertaken by MAFF/DEFRA (Keeling et al.,

2001). In a later paper using the same model, it was described in slightly different

terms. The rate at which farm i, which was currently susceptible, was infected was

given by:

Ri =
∑

L∈livestock

SLN
i
L ×

∑
j∈infectious

∑
L∈livestock

TLN
j
L ×K(dij)

Where N i
L is the number of livestock of type L within farm i, SL and TL are the sus-

ceptibility and transmission rate of livestock L (i.e. SL and TL are scalar equivalents of

the vectors S and T in the previous equation), and other terms are as above. Once in-

fected, farms remained in an exposed but uninfectious state for four days, after which

time they became infectious. Nine days after infection was when the appearance of

clinical signs was assumed to be reported, and between one and three days later the

animals on the farm were culled, and a neighbourhood cull was performed. Vaccina-

tion (via a number of strategies) was modelled by reducing the number of livestock on

a vaccinated farm (Keeling et al., 2003).

Pastor-Satorras and Vespignani described an SIS model in which a susceptible node

was infected with probability ν in each time step if it was connected to at least one

infected node, and each infected node recovered (and reverted to the susceptible state)

with probability δ in the same period (Pastor-Satorras and Vespignani, 2001a; Pastor-

22



Satorras and Vespignani, 2001b). They set ν = 1 for their analytical work, which

explains the slightly unusual risk model (that a node’s risk of becoming infected is not

altered by the number of infected nodes it is adjacent to, providing there is at least one).

Dezső and Barabási investigated targeted treatments using this model. They started it

on a scale-free network, and initially infected half of the nodes. An infected node was

treated in one time period with probability δ = δ0k
α where k is the degree of the node

in question, and α is a measure of the effectiveness of the targeting strategy (Dezső

and Barabási, 2002). Pastor-Satorras and Vespignani extended their model to consider

immunisation strategies; immunised nodes were entirely protected from infection for

the duration of the simulation (Pastor-Satorras and Vespignani, 2002).

Network structure measures

The question of how network structure measures relate to disease transmission has

been addressed before. Some examples of this work are presented here, and then

various measures of network structure are defined in more detail below.

The centrality of a node is a measure of how central, or important, that node is; for

example, in a star graph (which consists of one node that is connected to many other

nodes, which are connected only to that one node), there is one central node, and many

peripheral nodes (Freeman, 1979). A study amongst prostitutes, injection drug users

and their associates in Colorado Springs showed that risk behaviours correlated with a

series of centrality measures (information centrality, degree, betweenness, eccentricity,

and mean distance from other connected nodes), and suggested that the low centrality

of the HIV-positive individuals in this network contributed to the low incidence of HIV

in the population of that town (Rothenberg et al., 1995). Bell and colleagues compared

a series of prestige and centrality scores for individual nodes against their “infectiv-

ity” (the probability a node is responsible for infecting, directly or otherwise, another

node) or “vulnerability” (the probability a node is infected if disease enters a network)

assessed by simulating HIV transmission on an ego-centric network of injection drug

users in Houston, Texas (Bell et al., 1999).

In a “short” transmission process (12 or 25 time-points in a simulated disease),

a series of valued (as opposed to dichotomous) measures were shown to correlate

well (r > 0.90) with simulated “vulnerability”: outdegree centrality, indegree prestige,

Hubbell centrality (which are all directed measures), degree centrality, eigenvector cen-

trality and power prestige (which are undirected measures). No measure correlated this

well over a longer transmission process, and dichotomous measures performed better

than valued ones at longer time-scales. When “infectivity” was considered, five mea-
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sures correlated well (r > 0.90) over all time-scales, including outdegree centrality,

degree centrality, and eigenvector centrality (Bell et al., 1999).

Recent work has considered again which measures of centrality correspond to “at

risk” individuals. Simulations on random and small world networks showed that de-

gree centrality, farness centrality, shortest-path betweenness centrality and random-

walk betweenness were all associated with probability of infection in both random and

small world networks. Degree centrality performed at least as well as other measures

as a predictor of individual risk (Christley et al., 2005a). This work did not address

network-level dynamics, concentrating instead on identifying at-risk individuals.

In addition to considering the centrality of individual nodes and the distribution

of particular centrality measures across nodes, the centralisation of a graph may be

calculated. This is the tendency of one particular node to be more central than all

other nodes. More specifically, it is an index of the extent to which the centrality of the

most central node exceeds the centrality of all other nodes, expressed as a ratio to its

maximum possible value for a graph containing the observed number of nodes:

CG =

∑N
i=1[C

∗ − C(i)]

max
∑N

i=1[C
∗ − C(i)]

where CG is the centralisation of a graph G, C(i) is the centrality score of node i, C∗ is

the maximum value of C(i) for any node in G and max
∑N

i=1[C
∗−C(i)] is the maximum

possible sum of differences in centrality for a graph of size N (Freeman, 1979).

The frequency distribution of node centrality scores is a more general measure of

network structure based upon a particular type of centrality, rather than simply mea-

suring how centralised a particular network is.

Centrality measures

The relevance of different centrality measures to flow in networks (in the broad sense

of something (be it a physical object, or something more abstract such as gossip) mov-

ing between the nodes of a network) has been investigated. Borgatti showed that

whilst different centrality measures were appropriate for assessing node prominence

under differing models of network flow, none were entirely suitable for SIR-type infec-

tions (Borgatti, 2005). The measures considered were all of the centrality of individual

nodes rather than properties of the network as a whole.
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Degree

In a graph, the degree of a node is the number of other nodes it is adjacent to. In a

digraph, nodes have indegree (the number of nodes with an edge to that node) and

outdegree (the number of nodes that node has an edge to). These measures may be

normalised by dividing by the maximum possible degree in a network, N−1 (Freeman,

1979).

There is a substantial body of literature considering how degree distribution relates

to flow in networks. Much of it has been conducted by physicists in relative isolation

from other work on social networks. This has led to some ill-feeling, with the editors

of a recent social network analysis text commenting that “their maniacal focus on the

small world problem has made most of their research rather routine and unimagina-

tive.” (Carrington et al., 2005).

Nonetheless, there is a substantial body of work on how degree distribution re-

lates to infection dynamics. It is readily measured with a Θ(E) algorithm (E being the

number of edges), and processes for generating random graphs with arbitrary degree

distributions have been described (Newman et al., 2001); degree distribution is thus

an attractive measure to consider.

The degree centralisation of a graph may also be calculated. The maximum sum of

differences in degree centrality is (N − 1)(N − 2), so degree centralisation is (Freeman,

1979):

CG =

∑N
i=1[C

∗ − C(i)]

(N − 1)(N − 2)

Betweenness

Another measure of centrality is betweenness centrality. It is a measure of the number

of geodesics (a geodesic is a shortest path between a pair of nodes) upon which a node

lies. If two nodes u and v are linked by gu,v geodesics then the probability that a lies on a

randomly selected geodesic connecting u and v (referred to as the partial betweenness

of a) is:

bu,v(a) =
gu,v(a)

gu,v

where gu,v(a) is the number of geodesics connecting u and v that pass through a. The

overall centrality of node a is the sum of its partial betweenness values for all unordered

pairs of nodes where a 6= u 6= v:

B(a) =
N∑ N∑
u<v

bu,v(a)
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Whilst a simple matrix method exists for calculating betweenness centrality (Harary

et al., 1965), an algorithm based on shortest-path counting is more efficient (Brandes,

2001). The maximal value that B(a) can take is that of the central node of a star, which

is (N2 − 3N + 2)/2. Thus a normalised value of betweenness, comparable between

different graphs, can be calculated (Freeman, 1979):

B′(a) =
2B(a)

N2 − 3N + 2

Betweenness may be calculated in O(NE) or O(NE + N2 log N) time on unweighted and

weighted graphs, respectively (Brandes, 2001). There is no literature on betweenness

centrality distribution, and no published algorithms exist for generating graphs with

different betweenness distributions.

Betweenness centrality assumes that only geodesics are important, and that flow

is equally likely to proceed along any geodesic. One generalisation is to consider all

paths that a node lies upon. The information centrality of a node is the harmonic

mean of the information in all the paths it lies at the beginning or end of, where the

information in a path is the inverse of the variance of that path, and the variance of a

path is equivalent to its length (Stephenson and Zelen, 1989). It has been suggested

that the arithmetic sum of the information of a node’s paths would be a better measure

than the harmonic mean when considering disease transmission networks (Altmann,

1993). A centralisation measure cannot be calculated for information centrality, as

the denominator (the maximum possible sum of differences between the most central

node and all other nodes) has not been calculated, although the variance in information

centrality scores may be used (Wasserman and Faust, 1994). Calculating this measure

requires a matrix inversion operation, so is an O(N3) process (Altmann, 1993); it is

therefore impractical for use on the BCMS dataset.

Eigenvector-based measures

Eigenvector centrality is defined as the principal eigenvector of the adjacency matrix

describing a network. An eigenvector is defined by the following equation:

λν = Aν

where λ is a constant (the eigenvalue), A is the adjacency matrix, and ν is the eigen-

vector. The principal or dominant eigenvector is the one with the largest associated

eigenvalue. A node with high eigenvector centrality is one that is adjacent to other

nodes that have high centrality (Bonacich, 1972). Eigenvector centrality can only be
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used with a symmetric adjacency matrix (i.e. an undirected graph), and requires a

single component. Calculating it takes O(N3) time, so it is impractical to use as net-

works derived from the BCMS data are very large, asymmetric, and have more than

one component.

Eigenvector centrality is an unsuitable measure for digraphs, and graphs where

some nodes have zero indegree. A measure that is suitable in such cases, and that

generates identical results to eigenvector centrality for symmetric graphs or asymmet-

ric digraphs with no nodes with zero indegree, is α-centrality:

x = (I − αAT )−1e

where e is defined to be a vector of ones, α should be less than 1/λ1, where λ1 is the

maximum eigenvalue of A, and AT is the transpose of the adjacency matrix (Bonacich

and Lloyd, 2001).

Prestige measures on nodes in digraphs attempt to assess the importance of edges

incident to a node. The simplest of these, degree prestige is simply indegree centrality,

as defined above. A more complex version states that the prestige of a node i is the sum

of the prestiges of nodes with an edge to i. This can converted into a matrix equation,

and re-arranged:

(I − AT )p = 0

where p is an eigenvector of AT corresponding to an eigenvalue of 1. The simplest way

to ensure there is a finite solution to this equation is to normalise AT to have column

sums equal to 1 (Katz, 1953). There are refinements to this system of prestige mea-

surement, but they are considered unnecessarily complex by some authors (Wasserman

and Faust, 1994).

Closeness

Closeness centrality is the inverse of the sum of all geodesic distances from a node to

all other nodes in a network. If d(i, j) is the geodesic distance between i and j, then

the closeness centrality of a node i, C(i) is defined thus:

C(i)−1 =
N∑
j=1

d(i, j)
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In the case of an unconnected graph,

N∑
j=1

d(i, j) =∞

so this measure is meaningless in that case (Freeman, 1979). Closeness centrality can

be normalised so values may be compared between graphs of different sizes:

C(i) =
N − 1∑N
j=1 d(i, j)

This measure may be calculated with a modification of the algorithm for calculating

betweenness centrality, although the requirement for connectedness limits its utility for

the BCMS data.

Closeness centralisation of a graph may be calculated thus (Freeman, 1979):

CG =

∑N
i=1[C

∗ − C(i)]

[(N − 2)(N − 1)]/(2N − 3)

An alternative approach is to calculate the variance and mean of the closeness centrality

scores (Wasserman and Faust, 1994).

A refinement of closeness centrality can be made to enable it to be applied to dis-

connected graphs. Normalised closeness centrality is calculated as above, using the

number of nodes in i’s component as N , and then scaled by a factor based on the com-

plement graph of the network (where nodes are adjacent if they are not adjacent in the

original graph, and similarly not adjacent in the complement graph if they are adjacent

in the original graph), such that the complement-weighted centrality of a node i, Ccw(i)

is defined as:

Ccw(i) =

(
1−

(
N −Ni∑N
j=1 dC(i, j)

))
C(i)

where Ni is the number of nodes in the component containing i, and dC(i, j) is the

geodesic distance between i and j in the complement graph. This measure is equiva-

lent to closeness centrality in a connected graph (Cornwell, 2005). Intuitively, it takes

the “disconnectedness” of a node into account, as well as how central it is within its

component.

Census-based measures

Dyad census analysis (counting and categorising all the 2-graphs in a graph) may be

used to assess whether reciprocity is a significant effect in the graph, i.e. that if there is
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an arc from i to j, then there is an increased likelihood of an arc from j to i. Clearly, it

is only a meaningful measure for digraphs. The observed number of mutual dyads may

be compared against a graph with identical outdegree distribution, or against one with

equal density (Skvoretz and Agneessens, 2007). If the number of mutual, asymmetric

and null dyads in a graph are represented by M , A, and N respectively, then reciprocity

may be calculated as M
M+A

.

Triad census analysis allows a broader range of effects to be measured. Specifically,

transitivity (where if node i “chooses” node j, and node j “chooses” node k, i is more

likely to “choose” k also, i.e. i → j, j → k ⇒ i → k), similarity of choice (where if

both i and j “choose” k, then one of them is more likely to “choose” the other), and

closure (where if i “chooses” both j and k, then one of j or k is more likely to “choose”

the other) can be assessed (see figure 2.1). Since the effect of all three processes is

the same configuration, the relative strength of each effect is assessed by looking for

the configurations that are less likely under each effect. The procedure is to classify

all 3-node subgraphs, and then multiply the count of each type by a weighting value

depending on the effect being measured. The mean and variance of such scores may

be calculated, enabling a z-statistic to be derived (by dividing the difference between

the observed value and the mean by the standard deviation) demonstrating whether

the observed effect is statistically significant, but the maximum scores cannot currently

be calculated, making the magnitude of a given effect hard to determine (Holland and

Leinhardt, 1970; Holland and Leinhardt, 1976).

Transitivity

Similarity of choice

Closure

Figure 2.1: Structural effects measurable by triad census

A naive approach to calculating the triad census requires examining every triad

in the graph, taking O(N3) time. A matrix-based approach has been developed that

takes O(N2) time (Moody, 1998), whilst an edge-iteration approach takes O(Nd2
max)
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time, where dmax is the highest degree of any node in the network (Batagelj and Mrvar,

2001). Whilst faster algorithms for listing triangles in a graph exist, these are unsuitable

for triad census analysis, as many triad types are not connected 3-graphs (Schank and

Wagner, 2005).

Subgroup measures

A range of structural measures have been developed for considering closely-connected

subgroups in a graph. A clique is the simplest such definition. It is a maximal2 complete

subgraph of three or more nodes. It is, however, a very strict definition of a cohesive

subgroup.

A family of extensions to the clique idea are based upon short distances between

nodes. An n-clique is a maximal subgraph in which the largest geodesic between any

pair of nodes is of length no greater than n. The diameter of an n-clique may be

greater than n, however, and indeed an n-clique may be disconnected, as there is no

requirement that the geodesics between nodes in an n-clique pass only between nodes

within that n-clique. n-clans are a subset of n-cliques in which all geodesics within the

n-clan must be of diameter n or less, passing through nodes within the n-clan only. An

n-club is a maximal subgraph of diameter n (i.e. where the distances between all the

nodes within the subgraph are equal or less than n, and no nodes may be added to the

subgraph that are of distance n or less from all the nodes in the subgraph) (Wasserman

and Faust, 1994).

The n-clique concept may be extended to consider digraphs. A weakly connected n-

clique is a maximal subgraph in which each node is weakly n-connected (i.e. joined by

a semipath3 of length n or less) to every other node. A unilaterally connected n-clique

is a maximal subgraph in which each node is unilaterally n-connected to every other

node (i and j are unilaterally n-connected if there is a path of length n or less from i to

j or from j to i). A strongly connected n-clique is a maximal subgraph in which each

node is strongly n-connected to every other node (i and j are strongly n-connected

if there is a path of length n or less from i to j and from j to i, although the paths

need not pass through the same set of nodes). A recursively connected n-clique is a

maximal subgraph where every node is recursively n-connected to every other node (as

strongly n-connected, but the paths must use the same nodes, in reverse order). These

are increasingly strict connectivity definitions.

More generally, a graph may be divided into connected components, or a digraph

2i.e. it may not be extended by including any adjacent nodes whilst remaining a clique.
3A semipath is a sequence of distinct nodes between two nodes where all successive pairs of nodes

are joined by an edge either from the first node to the second, or from the second node to the first.
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into strongly- or weakly-connected components. Some authors have only considered

the largest component of a network for the purposes of epidemiological analysis (Christ-

ley et al., 2005b). Care must be taken in extrapolating such studies to cover an entire

network.

Another set of subgroup measures are those relating to degree, specifically the num-

ber of other nodes within a subgroup that every node in that subgroup must be adjacent

to. A k-plex is a maximal subgraph containing n nodes, in which each node is adjacent

to at least n − k nodes. Loops are not considered, so a 1-plex is a clique. A k-core is

a subgraph in which each node is adjacent to at least k other nodes in the subgraph.

These are generally considered to be areas of a graph that may contain interesting

subgraphs, rather than being of particular interest themselves (Wasserman and Faust,

1994).

Clustering

Clustering is a measure of the “cliquishness” of a network. For a node i with k neigh-

bours; the clustering coefficient for that node is the proportion of the possible edges

between those neighbours that exist (the number of possible edges between k neigh-

bours is k(k − 1)/2 in an undirected graph, or k(k − 1) in a digraph). The clustering

coefficient of the network is the mean of these node-level clustering coefficients for all

the nodes in the network (Watts and Strogatz, 1998). A problem with this measure is

that the contribution to the clustering coefficient of nodes with low degree is weighted

quite heavily. A slightly different definition for this measure that avoids this problem

has also been proposed, where the clustering of a network is defined as three times

the number of triangles in the network divided by the number of connected triples of

vertices (Newman et al., 2001); this form of the measure may be derived from a triad

census of the network. It has the converse problem that the contribution of nodes with

high degree is weighted unduly highly, meaning that in sparse networks with some

highly-connected nodes this form of the measure tends to be very small. Both forms

of the measure need to be used with caution. The former is simpler to measure on

a network, while the latter is easier to handle analytically; these considerations have

sometimes outweighed any theoretical reason to prefer one over the other for any given

study (Newman, 2003).

Density

The density of a network is simply the extant proportion of possible edges. The number

of edges possible in a network with N nodes is N(N−1)
2

if that network is undirected,
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or N(N − 1) otherwise. This measure may be used to compare different networks,

but care must be taken in its interpretation especially if those networks are of different

sizes, because the number of potential edges per node increases in larger networks. For

example, a density of 0.5 in a 5-node undirected network results in an average node

degree of 2, whereas in a 500-node undirected network, a density of 0.5 results in an

average node degree of 249.5.

Exponential random graph models

Exponential random graph models are a class of models that enable the importance of

multiple structural features of a network to be assessed simultaneously. They assume

that the graphs under consideration are Markov graphs. A random graph is a Markov

graph if the number of nodes is fixed, and nonincident edges are independent condi-

tional on the rest of the graph (Frank and Strauss, 1986). Frank and Strauss (1986)

defined a triad model for undirected graphs; this model forms the theoretical basis for

later work on exponential random graph models. If y is an undirected graph with N

nodes represented by the adjacency matrix y = (yij)1≤i,j≤N where yij = 1 indicates an

edge between i and j (yij = 0 otherwise), and yij = yji for all i, j, then the probability

function of this triad model, describing the probability of observing a particular graph

y in this model system, is:

Pθ{Y = y} = eθ1u1(y)+θ2u2(y)+θ3u3(y)−ψ(θ)

where ψ(θ) is a normalising constant, the parameter θ = (θ1, θ2, θ3), and the sufficient

statistic4 (u1(y), u2(y), u3(y)) is defined thus:

u1(y) =
∑

1≤i<j≤N yij number of edges

u2(y) =
∑

1≤i<j≤N
∑

k 6=i,j yijyjk number of twostars

u3(y) =
∑

1≤i<j<k≤N yijyikyjk number of triangles

If θ2 = θ3 = 0, then this reduces to a Poisson graph (i.e. one where all edges

occur independently and have the same probability P (Yij = 1) = eθ1/(1 + eθ1) for

i 6= j (Frank and Strauss, 1986)). This triad model may be generalised to consider

arbitrary statistics on digraphs, leading to the so-called p∗ model, expressed as a family

of probability functions:

Pθ{Y = y} = eθu(y)−ψ(θ)

where y is the adjacency matrix of a digraph, ψ(θ) is a normalising factor, and the suffi-

4i.e. a statistic that encapsulates all the information about the unknown network.

32



cient statistic u(y) is any vector of statistics of the digraph, typically based on subgraph

counts (Wasserman and Pattison, 1996).

Estimating the parameters in these models is challenging, however. One approach

is to use a simulation-based Markov chain Monte Carlo (MCMC) method to approx-

imate the maximum likelihood estimate (MLE) for exponential random graph model

parameters, given an observed network yobs (Snijders, 2002). The procedure involves

using an MCMC algorithm to generate networks from a p∗ model; a starting point in

X, the set of all graphs with the correct number of nodes is chosen, and then Markov

transitions are made until approximate convergence to Pθ{Y = y} is achieved. In this

approach, u(yobs) is constructed to be equal to zero, and the aim of the MLE procedure

is to maximise the loglikelihood `(θ):

`(θ) = − logψ(θ) = log
∑
z∈X

eθu(z)

Given a suitable starting estimate of θ, θ0, and the ability to generate random networks

from the distribution defined by the p∗ model with parameter θ0, then the following

quantity may be estimated:

`(θ)− `(θ0) ≈ log
1

m

m∑
i=1

e(θ0−θ)u(yi)

where y1, y2, . . . , ym is a random sample of networks from the p∗ model with parameter

θ0. This Monte Carlo MLE converges to the true MLE as m increases (Geyer and Thomp-

son, 1992). A MLE of θ may be obtained by maximising this equation, and software

exists to perform this function for p∗ models (Handcock et al., 2003).

The advantage of these models is that they can assess the importance of several

different structural measures at once, and facilitate the building of new model networks

from a particular model. The downside is that they are computationally intensive, may

not converge well (Snijders, 2002), and should be avoided unless there are hypotheses

about particular structural features to be tested (Wasserman and Pattison, 1996). Given

these drawbacks, and the novelty of software to estimate p∗ models, no attempt has

been made to fit such models to the BCMS dataset as yet; if network structure proves

to be important to epidemiological modelling, then this would be a useful avenue for

research in the future.
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Exemplary applications of networks in epidemiology

Having described the theoretical background of network science and how it relates

to epidemiology, some examples of applications to human and animal diseases are

discussed.

Respiratory diseases

The 2002-3 severe acute respiratory syndrome (SARS) epidemic originated in early

November in the Guangdong province of China, and spread rapidly via air travel. Ri-

ley and colleagues analysed the data from the 1512 cases in the first ten weeks of the

outbreak. The epidemic was characterised by two large clusters, which were initiated

by separate “super-spread events” (SSEs), and community transmission. A stochastic

metapopulation compartmental SLIYHR (an extension of the SIR model, where L is la-

tently infected, I is asymptomatic but infectious, Y is infectious and symptomatic, and H

is hospitalised) model was fitted to information about progression of clinical signs and

case data. The SARS agent was shown to be only moderately transmissible, although

nosocomial infections were a substantial source of new cases. Movement restrictions

and better hospital hygiene were demonstrated to be the most effective techniques

for reducing the size of the epidemic, whilst ensuring that infected persons were hospi-

talised as rapidly as possible was also significant in reducing spread (Riley et al., 2003).

The global spread of SARS via air travel has motivated work on the potential for dis-

ease transmission by transportation networks. Colizza and colleagues combined urban

census data with air travel data to produce a large-scale simulation model; urban areas

contained homogeneously-mixed individuals (with populations based on census data),

and they were connected to each other via air travel. The resulting model was able

to predict the spread of SARS reasonably well, both in terms of which countries were

most at risk, and the final magnitude of the epidemic (Colizza et al., 2007b).

Patterns of movement of people affect the geographical spread of diseases. Satten-

spiel and Dietz incorporated a mover-stayer model of movement (where a proportion

of the population moved between locations) into an SIR model (although the SIR state

of an individual was assumed not to affect their movement pattern). This model was

applied to the 1984 measles outbreak on the island of Dominica. Movement patterns

amongst people differed according to age categories, but over the short time-scale of

the epidemic, these age categories could be assumed to be static. The population was

divided into seven districts and three age classes within these. A complex system of dif-

ferential equations combining the SIR model with the movement patterns of the various

groups was derived. Despite the complexity, many parameters could be estimated from
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available data on movement of people on the island, and the incidence data on measles.

Simulations of the model were not performed, however (Sattenspiel and Dietz, 1995).

The 1918-1919 influenza epidemic in Canada has been used to investigate the ef-

fects of the movement of people between communities and the socio-economic struc-

ture of groups of communities upon the geographical spread of disease. The Hudson’s

Bay Company post journals have enabled the movement patterns of people between

three aboriginal communities in central Canada to be determined. Sattenspiel and

colleagues applied the techniques described above to combine an SIR model with the

movement pattern data. The starting point of the epidemic was shown to have little

effect on the total number of cases in each community, but did substantially affect the

timing of the epidemic peaks in each location. Rates of mobility and distributions of

destinations of travel had little effect on the outbreak beyond changing the timing of

epidemic peaks somewhat, but contact within communities had a much greater effect

on the size of the epidemic and timing of its peak within that community. Histori-

cally, there were no cases of influenza in the smaller communities; possibly this is due

to quarantine measures instituted in the larger settlement. The fact the outbreak oc-

curred in winter meant that many families were relatively isolated from each other, and

probably reduced the total size of the epidemic (Sattenspiel and Herring, 1998). This

work was extended to include three idealised patterns of movement between commu-

nities. Movement patterns were shown to have little effect on the total number of cases

within a community, but did alter the timing of epidemic peaks. A community’s socio-

economic position was likely to be more important in influencing patterns of epidemic

spread. In outlying communities, locals visiting a central location and bringing infec-

tion home with them were a greater source of infection than infectious visitors from

other locations (Sattenspiel et al., 2000). An agent-based model was developed to con-

sider just one of the communities (Norway House) and the people within it in more

detail, based on the wealth of archive and ethnographic data available. This showed

that the seasonal changes in social structure around Norway House had a significant

affect upon the outcome of the influenza epidemic — had the epidemic occurred in

Summer rather than Winter, then most people would have been together in the Nor-

way House fort rather than dispersed in trapping camps, and the epidemic would have

been shorter-lived and infected (and killed) many more people (Carpenter and Satten-

spiel, 2009).

Quarantine efforts made to control this influenza outbreak were largely ineffectual,

at least partly due to social factors (such as people hiding cases to avoid home quar-

antine) and the laxness of the controls themselves. The previous model was used to

look at the effects of applying quarantine to a community (i.e. to limit movement in
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and out of that community). The movement patterns from Canada, Dominica, and a

composite pattern (with the rate of movements from Dominica, but the distribution of

destinations from Canada) were considered. In situations of low movement (such as in

Canada), quarantine had relatively little effect beyond a slight delay in the timing of the

epidemic peak. Quarantine generally increased the number of cases in the largest town

which normally received a substantial number of travellers (as the population of that

town is reduced, so the infectious cases represent a greater proportion of the popula-

tion, making susceptibles more likely to contact them). Even in scenarios with greater

movement rates, quarantine only had a moderate effect on the number of cases, its

main effect being to delay the epidemic peak (maybe allowing health authorities more

time to devise better control strategies). There was limited benefit to extending quaran-

tine beyond a certain length, and indeed it was most effective if introduced well before

an epidemic peaked, but not right at the beginning of an epidemic. Delaying quaran-

tine until after the epidemic has peaked was shown to be futile. Quarantine had to be

very effective at reducing movements to have much impact at all, particularly if move-

ment was low to begin with. The model ignored stochastic effects, however, which are

probably significant in such small communities (Sattenspiel and Herring, 2003).

The emergence of zoonotic H5N1 influenza, and H1N1 pandemic influenza has fu-

elled interest in how human movements influence the epidemiology of influenza, and

how these movement patterns interact with potential control strategies. One approach

has been to use very large and computationally expensive stochastic simulation models

that combine global air travel networks with city-level homogeneously mixed popula-

tions (based on census data). In the case of H5N1 influenza, a range of starting times,

locations, and R0 values were explored; global travel restrictions were discarded as a

possible control strategy due to their vast economic cost, and the fact that they have

little effect on overall morbidity, merely delaying the epidemic peak by a few weeks (an

interesting parallel with the 1918 work discussed above). Since a vaccine would take

time to develop, anti-viral use was considered as the primary control strategy. In the

case of plentiful anti-viral availability, targeted treatment of infected individuals may

be effective at controlling the epidemic (with 2–3% of the world population receiving

anti-viral therapy) for low-to-medium values of R0; the caveat being that global air

travel may cause global spread even if the epidemic is locally controlled. At higher val-

ues of R0, antiviral use is of little utility. In the more realistic scenario where antivirals

were only available in richer nations, they were much less useful unless nations are

prepared to share their anti-viral stocks with poorer countries (Colizza et al., 2007a).

So far, there has been no pandemic of H5N1 influenza, and instead H1N1 has become

a pandemic in 2009. The previous large-scale simulation model was therefore adapted
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to consider that outbreak, as well as refined to consider more general metapopulations

around airports rather than simply homogeneous urban areas. Official data on the

outbreak’s beginning near La Gloria in Mexico were used with a maximum likelihood-

based approach to estimate R0 for the H1N1 strain, and then a million simulation

runs were performed to estimate the likely future path of the epidemic. Simulation

runs based on early data predicted the later-observed path of the epidemic reasonably

well, supporting this modelling approach. A key finding was that an early epidemic

peak in the Northern hemisphere (before vaccines were expected to be available) was

likely (Balcan et al., 2009).

These works on respiratory diseases show how human travel networks (whether

very small-scale in the case of the Canadian sub-Arctic, or very large-scale in the case

of recent pandemic influenza) can be successfully incorporated into epidemic models,

connecting up smaller sub-populations.

Sexually-transmitted diseases

Whilst social contacts can be tricky to define precisely, sexually-transmitted diseases are

passed on by a readily specified set of risk behaviours. This has made them tempting

model systems on which to base work on network analysis and epidemiology. Indeed,

a study of the sexual relations between 40 patients with AIDS (collected and analysed

before the discovery of HIV, although published later) showed that not only were the

relationships between the individuals in this cluster highly unlikely to be due to chance,

but also that a single component in a network of sexual contacts contained all the af-

fected men, thus supporting the hypothesis that a sexually-transmitted infectious agent

was causing AIDS (Klovdahl, 1985). Networks based on interview-collected data on

sexual and drug-related activity between 22 individuals, along with basic biological

data on HIV transmission risk have been used to evaluate network measures as tools

for epidemiology, by comparing them to the results of simulated HIV epidemics on the

study network; that study showed relatively simple measures such as degree centrality

to be useful as indicators of an individual’s risk of acquiring or passing on infection,

although it did not address the question of using network measures to predict global

dynamics (Bell et al., 1999). Another study deployed centrality measures on a network

of prostitutes, injection drug users, and their partners, and showed that HIV-positive

individuals had low centrality in that network, which it was suggested might account

for the low HIV prevalence in a group exhibiting high-risk behaviour patterns (Rothen-

berg et al., 1995). A wide range of studies reviewed by De and colleagues have looked

at social network aspects of injection drug use and sharing of equipment (a high-risk
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activity for the transmission of infection), and found a range of features of the structure

and composition of the social networks of injection drug users as well as the behaviour

of others in those networks impacted the likelihood of those users sharing equipment.

This highlighted the importance of networks of humans not only for transmission of

disease directly, but for influencing behaviour patterns in either a protective or risk-

enhancing manner (De et al., 2007).

Research on Chlamydia trachomatis and Neisseria gonorrhoeae infections in Canada

has combined sexual network-based approaches with molecular biological and geo-

graphic analyses. Using routinely-collected case and contact information across the

province of Manitoba, a sexual network of 4,544 people was analysed, which showed

that there were several large components, spread across a large geographic area. These

were particularly important in the geographic spread of gonorrhoea (Wylie and Jolly,

2001). Genotyping of the omp1 gene from C. trachomatis was used to show that com-

ponents within the sexual network were largely concordant (i.e. all the individuals

therein were infected with the same strain), thus reinforcing the value of sexual net-

work analysis in chlamydia epidemiology (Cabral et al., 2003). This work was then

combined with geographic clustering of cases; that showed that some of the clusters

(identified based on strain type and geographic proximity) could be differentiated on

demographic grounds, whilst in other cases apparently geographically-separate clusters

were probably connected by individuals covering significant distances. An advantage

of this approach was that it enabled apparently separate small groups of infected indi-

viduals to be identified as probable members of a larger sexual network (Wylie et al.,

2005).

Animal networks

A little work has been published attempting to apply network methods to animal pop-

ulations for the purposes of disease control. One such study considered the contact

network of racehorse trainers over a seven-day period in 2001 when both National

Hunt and flat racing occurred. An edge between two trainers existed if horses trained

by both trainers had raced against each other during the study period. The resulting

contact network had the small world characteristics of a similar mean shortest path

length to an equivalent random network, and considerably higher clustering, mean-

ing that an infectious agent would spread through the population faster than might be

expected if homogeneous mixing was assumed (Christley and French, 2003).

Additionally, some network analysis has been performed on the UK cattle herd,

based on RADAR data. In particular, this showed that the giant strongly-connected com-
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ponent of the UK cattle herd (based on 4 weeks’ movements) had small world proper-

ties, as well as power-law in- and outdegree distributions (Christley et al., 2005b). Care

should be taken when extrapolating such studies to cover the entire network, however.

Markets were important in the initial spread of FMD in the UK in 2001, so their contri-

bution to the movement of animals in the UK has been specifically considered. Whilst

some markets are very central nodes, so are some animal holdings. Also, the distances

animals are moved are typically further when they move from one farm to another via

a market rather than moving directly from farm to farm. Accordingly, markets are po-

tential places where enhanced disease surveillance might pay dividends (Robinson and

Christley, 2007). An interview-based questionnaire was used to contact 56 farms in

north-west England to enquire about direct and indirect contacts between cattle farms.

This showed (amongst other things) that neighbouring farms are more likely to be

linked by direct cattle movements and equipment sharing than distant farms. Addition-

ally, they are likely to use the same markets. Furthermore, farms that move animals

directly between themselves are more likely to share equipment with each other. As

well as asking about contacts between farms, the questionnaire enquired as to attitudes

of farmers to biosecurity; this showed that there was still a very broad range of atti-

tudes to biosecurity measures, with around a third of responding farmers thinking that

many biosecurity measures were of little utility. From a disease control viewpoint, this

is a worrying finding (Brennan et al., 2008).

There is no requirement to report cattle movements to the government in Canada.

However, around three quarters of dairy farms are members of the Dairy Herd Improve-

ment (DHI) database. When dairy cattle are sold to or by DHI member farms, these

sales are reported to DHI; accordingly, a partial movement network for dairy farms in

Canada may be constructed by interrogation of the DHI database. Dubé and colleagues

considered monthly networks of cattle movements from 2004 to 2006, and compared

estimates of likely epidemic sizes based on component sizes with those based on in-

fection chains. They found that infection-chain based estimates of epidemic size were

better than those based on component sizes; the lower bound suggested by infection

chains was smaller than the strong component size (as the order of movements was

ignored in constructing strong components), similarly the size of the largest weak com-

ponent was felt to be an over-estimate (and was consistently higher than the largest

epidemic suggested by an infection chain approach) (Dubé et al., 2008). This work

highlights one problem of constructing static contact networks from dynamic move-

ment data, although it would be interesting to compare their infection chain methodol-

ogy with Heath and colleagues’ temporally-explicit edge-graph approach (Heath et al.,

2008).
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A further illustration of the importance of social effects was provided by work on

bovine tuberculosis (BTB) in captive brushtail possums (Trichosurus vulpecula), which

are the major wildlife reservoir of BTB in New Zealand. Experimentally, if the most

socially active possums were infected with BTB, then a higher proportion of possums

caged with them contracted BTB than in other transmission studies between possums.

Furthermore, those possums which were more central (measured by closeness and

betweenness centrality) were more likely to contract infection (Corner et al., 2002).

Further work on the social networks of captive possums showed that their contact net-

works became more homogeneous with time (as measured by closeness centralisation),

although some individuals became more prominent (as measured by betweenness).

Again, highly central individuals were more likely to contract BTB (Corner et al., 2003).

Field work on free-living possums over a five-year period enabled contact networks to

be constructed for these animals, and a model of BTB was simulated on the resulting

network across a range of likely transmissibility values. This showed that the observed

contact network of possums was significantly more likely to support an epidemic of BTB

than a random network of similar size (Porphyre et al., 2008).

Contacts between sheep flocks have been investigated. A survey of agricultural

shows was used to identify sheep flocks of the same breed that had shown sheep at

the same show. Additionally, breed societies were asked for the addresses of flocks,

enabling their geographic proximity to be determined. This enabled two networks to

be constructed: a “showed with” network, and a “local to” network. Most flocks did

not show at all, or did not show their sheep at shows with other flocks of the same

breed in attendance. The “local to” structure was more varied between the four breeds

considered, with the largest component accounting for between 39% and 96% of the

flocks in the particular breeds. Combining the two networks for any particular breed

resulted in a less fragmented network (Webb, 2005). The data collected were also

used to construct a network between shows where they shared a competitor in the

sheep class. The resulting network consisted of one giant component (and a single

isolated node), highlighting the risk of disease transmission via agricultural shows; if

a further requirement was that shows had to occur within a short period of time from

each other, then the network was more fragmented (Webb, 2006). Agricultural shows

are important to the sheep industry, and this work is a useful attempt to quantify the

risk associated with shows.

The UK government collects data on the movement of sheep, although at the batch

level, rather than the individual animal level. These data have been used to construct

a movement network for sheep; the data were considered in 4-week periods, each of

which was a static network. Analysis of the resulting networks demonstrated season-
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ality of movements (with a peak in August and September), that there was a high

correlation of in- and outdegree of nodes, and that the network showed disassortativity

(i.e. edges tend to be between a high-degree node and a low-degree node). Simulation

of short SEI5 epidemics on the network showed that targeting high-degree nodes was

an effective disease control strategy (Kiss et al., 2006b).

Network analysis has been used to try and understand the potential for disease

transmission within the UK poultry flock. Slaughterhouses and catching companies

were asked about the premises they collected birds from, and and the frequency and

type of movements from their premises. Poultry flocks which house more than 50

birds are recorded on the poultry register (GBPR), and this was interrogated for details

of location and flock size(s) and species of these flocks. A potential worst-case net-

work was constructed where links between premises could occur if two premises were

owned by the same firm, used the same catching company or slaughterhouse, or were

within 3km of each other; in this case, the giant component contained nearly all poul-

try flocks. If the four types of contact were considered separately, the giant component

of the slaughterhouse-use network was the largest in terms of proportion of premises

and geographic spread. Also, the current structure of the industry makes transmission

between different sectors (e.g. different species) relatively likely in the event of an

outbreak of a highly contagious disease such as avian influenza (Dent et al., 2008).

Foot and mouth disease

Several different approaches were taken to modelling the 2001 foot and mouth disease

(FMD) outbreak in the UK. One approach was to develop an individual-farm based

stochastic model of the epidemic. Simulations were started on 23/02/20016 and em-

ployed a diffusion-kernel approach to the spread of FMD thereafter (Keeling et al.,

2001). Large farms were shown to be important to the spread of FMD, and a vigorous

neighbourhood culling policy was predicted to result in a lower overall cull than most

other strategies (including vaccination). Given that the model was parameterised from

FMD data, it is unsurprising that it fits the FMD data well. In addition, it does not

address the question of what might have been done to prevent the substantial spread

of FMD prior to 23/02/2001. Later work considered the question of vaccination strate-

gies based upon this model. Mass vaccination was predicted to dramatically reduce the

number of cases, and to reduce the long “tail” of the epidemic. Ring vaccination lacked

efficacy, although a predictive strategy (based on likely second-generation farms being

vaccinated around an infected premises) should, in theory, reduce the size of the “tail”
5E referring to holdings that have been exposed but are not as yet infectious.
6Movement restrictions were put in place on this date.
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(Keeling et al., 2003). Further work on an optimal reactive vaccination strategy against

FMD considered vaccination of cattle within an annulus around each infected premise

(which will have been culled out, along with any dangerous contacts), working from

the outside in. That model predicted that the inner ring diameter should always be

set to zero, although modelling to exclude premises likely to be infected before vacci-

nation can take effect would improve matters further; the size of the optimum outer

ring depended on the number of animals that may be treated in a day, as well as the

total number of doses of vaccine available. Calculating the optimum ring size, however,

would require epidemiological parameters of any subsequent FMD strain to be known;

prioritising farms for vaccination by their proximity to infected premises and vaccinat-

ing at full capacity every day is a similarly-effective approach, but simpler to implement

on the ground (Tildesley et al., 2006).

The accuracy of these diffusion-kernel models of FMD has been considered at the

level of individual farms (in contrast to the fitting process, which considers regional-

level aggregate performance). As well as the accuracy of the model, its repeatability is

also measured, to investigate how much of the difference between the model and ob-

served data is down to the inherent variability in the infection process. This is particu-

larly useful when considering the fact that the model’s ability to predict future reported

cases is low (12%), as it can be shown that the repeatability of the epidemic in terms

of the identity of reported cases is also low (13.5%) — the difficulties in predicting the

identity of reported farms were substantially due to the inherent stochasticity of the

epidemic. Interestingly, while the repeatability of culled farms was high (up to 60%

in the short term), the accuracy was not so good (only 20–25%); this suggests that

while there was in theory a fixed culling policy in place, in practice there was a degree

of judgement being exercised on a case-by-case basis on the ground. This shows that

models should ideally attempt to model the human responses to an epidemic if they are

to predict the outcomes of future epidemics (Tildesley et al., 2008).

A more general investigation of optimal control strategies was also based on the

2001 FMD data. An SEIR (E representing exposed but not yet infectious holdings)

model was developed, assuming first a homogeneously mixed population, and then

using a metapopulation approach (which simulated simply the effect of clustering upon

an infection). The 2001 UK FMD outbreak was used as an exemplary locally spreading

infection. This model showed there to be an optimal level of pre-emptive culling of “at-

risk” holdings that reduces the total loss of stock, and that this is not the same as merely

attempting to minimiseRe (a measure analogous toR0, taking into account the fact that

a number of exposed holdings never progress to the infectious stage). Higher values

of R0 made control more challenging in two ways: the level of control that minimises
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losses was greater, and that optimal level of loss was higher. The level of optimal

control can only be determined with knowledge of the pathogenesis of the disease in

question, and of the mechanisms whereby secondary cases are infected, although in

general over-control is better than under-control. Primary control measures aimed at

reducing long-range spread are an essential adjunct to any culling strategy (Matthews

et al., 2003). A review of the various modelling strategies deployed against FMD was

undertaken by Rowland Kao in 2002. That review described the approaches taken

by different authors, and noted that none consider the logistical implications of their

suggested control strategies, nor the role of transport vehicles in the spread of FMD

(Kao, 2002).

There has been debate as to whether the infectiousness of infected premises was

constant over their infectious period. Chis Ster and Ferguson, assuming that infectious

farms were completely observed in 2001 and that disease spread on farms was instan-

taneous, created a distance kernel based infection model, and used MCMC methods

to fit this model (with several variations) to 2001 data. By considering models with

parameters that change on 23 February (when movement controls were introduced)

and 31 March (when control measures were intensified, and infectious and contiguous

premises were aiming to be culled within 24 and 48 hours respectively), they sug-

gested that the distance kernel was best modelled as changing on 23 February (perhaps

unsurprisingly, given that movement restrictions were introduced), and that cattle in-

fectivity increased after 31 March (a paradoxical result, suggesting that biosecurity was

declining or that farms were increasingly not complying with regulations) (Chis Ster

and Ferguson, 2007). Savill and colleagues took a different approach, based on a

previously-used farm-level spatial model of the outbreak (Keeling et al., 2001; Tildes-

ley et al., 2006). They refined the earlier model to allow infectiousness to vary on

individual farms, and applied it to seven regional epidemics (considering the post-23

February situation). As well as fitting models to the observed data, they simulated

epidemics based on the demography of Devon to test the effects of missing and inac-

curate data. They demonstrated that while their best-fitting model showed no change

in infectiveness over the infectious period of a farm, errors in estimated infection date

for farms, and infected farms culled out before being detected would result in a false

picture of unchanging infectiveness, even if in fact infectiveness did change with time;

they concluded that whilst the quality of data from 2001 is too poor to conclude with

certainty whether or not infectiveness of farms changed over time, there is no good ev-

idence that it did change, so constant infectiveness should be assumed in the absence

of convincing evidence otherwise (Savill et al., 2007).

Most of the models of the 2001 FMD outbreak operate at global scale (i.e. consider-
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ing the entire country); it has been suggested, however, that a more local scale would be

more appropriate. Picado and colleagues considered a local perspective on the outbreak

for each of the main geographically separated outbreaks that were observed (Devon,

Settle, South Penrith, and Cumbria-Borderlands), and looked for spatio-temporal inter-

actions using space-time K-functions. There was significant variation across the four

areas in the relative impact of being close in space and time to an infected premise, as

well as variation across time in each area. They suggested that inspection of space-time

interactions during an epidemic could be used to determine at a local level whether or

not control measures are effectively halting the local spread of disease or not (Picado

et al., 2007).

Another question in FMD modelling is whether there is a more suitable measure

than Euclidean distance for the impact of geography on the transmission of FMD at

the local level. Savill and colleagues tested the utility of Euclidean distance compared

to road distance between pairs of holdings at a coarse scale, by calculating the two

distances between infected premises and potential daughter infected premises and be-

tween infected premises and susceptible uninfected premises within 10km. They found

that there was no significant differences between the correlations between road and

Euclidean distances between the two groups of holdings; the exceptions being where

the pairs of holdings were separated by river estuaries (in these cases, road distance

is markedly higher, due to the shortage of road routes across estuaries) (Savill et al.,

2006). Bessell and colleagues extended this work at a more local scale, by considering

distance-matched source-case-control groups, where a source holding was believed to

have infected the case holding, but not the control holding, and comparing the geo-

graphical features between the source and case holdings and the source and control

holdings. This showed that rivers or railways were a significant barrier to transmission

of FMD, whilst roads (even as large as the M6) were not (Bessell et al., 2008). Whilst

incorporating rivers and railways into a global model would be a challenge in terms of

data handling and increased model complexity, these are clearly features that should

be considered in more local-scale models of FMD.

Some recent work has begun to address the dynamics of FMD before the ban on an-

imal movements was imposed. Considering the 80 farms thought to have been infected

by FMD by the time the movement ban was imposed, and all those farms connected

to these infected holdings by animal movements between the sixth and twenty-third of

February 2001, it has been shown that most of the 10 most central farms (as measured

by betweenness centrality) were key players in the initial spread of the infection (Ortiz-

Pelaez et al., 2006); if timely movement data were available, this work suggests that

targeted control strategies based on network analysis could be valuable in reducing
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disease spread.

Green and colleagues used movement data from 2003 and 2004 to run stochastic

simulations of potential FMD outbreaks. They incorporated a level of local spread be-

tween farms independent of livestock movements (although not from farms prohibited

from moving animals due to a standstill period), and allowed simulations to run for

28 days (assuming that no epidemic could exist for this long undetected, and that at

that point movements would be halted). These simulations showed that the seasonal-

ity of movements substantially affected the size and geographic spread of an epidemic,

whereas local spread substantially increased the number of holdings infected, but not

the geographic spread of the infection (Green et al., 2006).

Bovine tuberculosis

For twenty years, BTB has been spreading in the UK, and is now endemic in south-

west England and Wales, and in parts of central England, and appears sporadically

elsewhere. The role of wildlife, particularly the European badger Meles meles, in the

epidemiology of BTB remains highly controversial; recent work showed that culling

badgers reduces BTB incidence in cattle in the culled area, but increases it in surround-

ing areas, probably due to increased migration of badgers (Donnelly et al., 2006).

Whilst environmental factors can be used to predict BTB incidence with reasonable

accuracy (Wint et al., 2002), models based around cattle movement data taken from

RADAR (the Rapid Analysis and Detection of Animal-related Risks project) were con-

sistently better at predicting the spread of BTB, particularly into areas where BTB was

not at that time endemic (Gilbert et al., 2005). This is a good example of using animal

movements to aid investigation of the epidemiology of an important cattle disease.

The UK cattle industry

There is relatively little research literature published on the structure of the UK farming

industry. A recent review of cattle production and movement was carried out by the

BSE Inquiry; much of the source material for that inquiry was materials solicited by

or submitted to the inquiry, rather than separately-published material. At the end of

2003 there were approximately 9 million cattle in the UK, representing a reversal of

the previous decline since the 1980s (DEFRA, 2004; Scottish Assembly, 2003; National

Assembly for Wales, 2002). Both dairy and beef farms tend to be concentrated on

the western side of the UK, where rainfall is higher, and grass more abundant. Surplus

dairy cattle remain a significant source of beef. There is widespread movement of cattle
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between dairy herds, suckler herds, fattening, and finishing herds. Surplus dairy calves

in particular are often sold on to specialist beef finishing units. Carcasses and livestock

are also exported, the value of beef and veal exports in 1999 being around £20 million

(Meat and Livestock Commission, 2000). The movement of cattle takes place mostly

through a network of livestock markets (which also handle around half of all finished

cattle). The decline in abbatoir numbers has led to an increase in the distance many

cattle travel for slaughter, but most abbatoirs obtain their cattle from within a 150-mile

radius (Lord Phillips of Worth Matravers et al., 2000). Data from the British Cattle

Movement Service (BCMS), made available via RADAR, have been used to study some

of the demographics of the UK cattle industry, confirming that there are two seasonal

peaks of births in spring and autumn, and that most movements of livestock occur

during the working week, with a peak on Wednesdays (Mitchell et al., 2005; Robinson

and Christley, 2006).

Summary

There has been a substantial level of interest in networks and their applications re-

cently. In particular, there is a growing realisation that understanding the nature of the

network in which a disease process operates can enable control strategies to be devised

and evaluated, and that such theoretical studies can translate into real-world solutions.

There is a lack of consensus as to the best way to model the diseases of farm animals,

as was highlighted during the 2001 FMD outbreak. Furthermore, the availability or

lack thereof of data on the movement patterns of the species affected, the biological

parameters of the disease organism and so on will alter which modelling strategy and

scale is most appropriate for any given disease. The availability of cattle movement

data enables network-based approaches to modelling diseases in the UK cattle herd

to be taken. There is not yet clear consensus as to the best way to approach doing

so, however — some authors have argued for static snap-shots of a few weeks’ move-

ments, particularly when considering rapidly-transmitted diseases, whilst others have

preferred dynamic network approaches. This thesis adopts both approaches in places,

and compares different network representations of the UK cattle herd more explicitly

in chapter 7. Also, whilst authors from sociological backgrounds and statistical physics

backgrounds have independently considered the interplay of networks and epidemiol-

ogy, there is still less integration of these two approaches than would be ideal.
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Chapter 3

The RADAR database

History

As part of the effort to eradicate bovine tuberculosis, a requirement to identify cattle

was first introduced in 1953. In 1960, the Movement of Animals (Records) Order 1960

(made under the Diseases of Animals Act 1950) required farmers to keep a record of

all movements of bovines on or off their premises, and to store these records for three

years (Lord Phillips of Worth Matravers et al., 2000).

In 1990, in response to concerns over bovine spongiform encephalopathy (BSE),

tighter controls were introduced. The Bovine Animals (Identification, Marking and

Breeding Records) Order 1990 required farmers to record the births of all calves and

the identity of their dam, and to keep those records for ten years. Dairy cattle were

required to be marked and recorded within 36 hours of birth, and other cattle within

7 days. The Movement of Animals (Records) Amendment Order 1990 extended the

period for which movement records had to be kept to 10 years.

The European Economic Community issued Council Directive 92/102/EEC in 1992,

which required (amongst other things) movements of cattle to be recorded including

origin and destination of the cattle concerned; cattle also had to be identified with an

ear tag bearing a code of no more than 14 characters. In the UK, this was implemented

by the Bovine Animals (Records, Identification and Movement) Order 1995. That order

also required cattle farmers to register their holding with their local Animal Health

Office, and introduced the Ear Tag Allocation System to ensure that every bovine animal

had a unique identity.

In 1996, the Ministry of Agriculture, Fisheries, and Food (MAFF) considered that

implementing a computerised Cattle Traceability System (CTS) was necessary to enable

the lifting of the export ban on British beef (Lord Phillips of Worth Matravers et al.,

2000). Accordingly, the CTS was established in September 1998. During the autumn
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of 2000, the “Cattle Count 2000” exercise was carried out, to register cattle born or

imported before the first of July 1996 (when passports were first issued), and to confirm

the location of cattle born between then and the twenty-seventh of September 1998

(when CTS went live). Cattle passports issued since 28 September 1998 take the form

of chequebook-style passports (DEFRA form CPP13). These consist of: a front page

with details of the animal’s eartag, breed, date of birth, and genetic dam, as well as

the passport’s issue (and, possibly, re-issue) date; a short summary of previous holdings

the animal has been on prior to the passport being (re-)issued; movement summary

pages into which details of movements of the animal are entered; detachable movement

cards by which movements may be reported to CTS; and a back cover for reporting

the animal’s death. As of January 2001, it has been a legal requirement to report all

movements of bovine animals to the CTS. The British Cattle Movement Service (BCMS)

is responsible for running the CTS.

Movements of bovines since 2001 have not occurred in an unchanging regulatory

environment. There have been movement restrictions in the face of specific disease

outbreaks: nationwide during the 2001 foot and mouth disease epidemic and more

locally during the smaller 2007 epidemic; and from September 2007 onwards to tackle

bluetongue virus. Additionally, regulations have been introduced to try and make the

UK cattle herd less susceptible to disease transmission. A six-day standstill period was

introduced on 1 August 2003 by the Disease Control (England) Order 2003; this meant

that if any sheep, goats, cattle or pigs were moved onto a farm, then no sheep, goats,

or cattle could be moved off that farm for 6 days.1 As an attempt to control the spread

of bovine tuberculosis (BTB), pre-movement testing of bovines was introduced in a

phased manner by the Tuberculosis (England) Order 2006, the Tuberculosis (England)

Order 2007, the Tuberculosis (Scotland) Order 2007, and the Tuberculosis (Wales)

Order 2006. Bovines on a farm with a 1- or 2-year BTB testing interval in England and

Wales being moved must have been tested for BTB within 60 days. In Scotland, animals

must additionally be tested 60–120 days post-movement.

The Rapid Analysis and Detection of Animal-related Risks project (RADAR) was

started in 2005 by the Department for Environment Food and Rural Affairs (DEFRA)

to collect veterinary surveillance data from different sources in the UK. It is being

developed and released in phases between 2005 and 2013. Phase 1 took place in

March 2005, and contained information on the UK cattle population as well as data on

Salmonella cases. The cattle movement data contained within RADAR are supplied by

the BCMS.

Cattle movements are reported to BCMS by the holdings at both ends of the move-

1For pigs, the standstill period was 20 days if pigs had been moved on, 6 otherwise.
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ment: i.e. an “off” record is created at one holding, and an “on” record at the other.

Until recently, there has been little attempt to reconcile these pairs of half-movements.

Part of RADAR phase one has been to turn unpaired movements into a life history for

each animal. First, duplicate movement records are discarded, as are movements be-

fore the birth date, or after the death date (these latter two are presumably due to

errors in data entry, either by the farmer, or by BCMS staff). A record of the animal’s

life history is then generated, consisting of a series of stays at locations (potentially

including the “unknown” location), as can best be described by the extant movement

records (Holdship, 2005).

Structure of the BCMS database

The BCMS database consists of six tables. There are two tables describing locations

on which cattle may be held, two tables describing movements, one table describing

the livestock themselves, and one table describing the number of animals born, living

and dying on holdings in particular months; this final table is not used in this study.

The most recent BCMS extract contains a seventh table, also describing livestock move-

ments.

One of the location tables contains CTS location data. This contains at least a CPH

number2(with one exception) and a “raw address” for each holding. The raw address

may have been parsed further into county and postcode, and there may be a link into

the PAF3 location table. The other location table contains PAF location data. This is

the result of applying georeferencing software to the address details from CTS, and

contains postcode, county, easting, and northing data.

One of the movement tables contains “source” movements; these are the unpaired

movement records. Each record includes a location identifier, a livestock identifier, the

movement date, type (birth, death, normal movement, etc.), and direction (on or off).

The other movement table is the result of an attempt by RADAR to pair up the source

movements; it a list of stays of animals on locations. Specifically, each row represents

a stay of one animal on one location, and contains the following information: the

identity of the location and animal, the arrival and departure dates, the type of arrival

and departure movements (including details of how they were inferred, if relevant),

and the country imported from or exported to, if relevant. The most recent BMCS

extract contains a third movement table, again the result of an attempt by RADAR to

pair up the source movements; this is a table of ordered movements in the life of each

2The County, Parish, and Holding number of the premises, which should be a unique identifier.
3PAF is the Postcode Address File, which contains details of most addresses in the UK.
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animal, each row containing: the animal’s identity, the source and destination locations,

the order of the movement in that animal’s life, the movement’s date, the on and off

movement codes (and deduction codes), and the type of the holdings moved onto and

off.

The livestock table contains information about cattle in the United Kingdom. For

each animal, it contains that animal’s sex, species, breed, ear-tag number, birth date,

death date (if applicable), country of origin (if not the UK), and import and export

dates (if applicable).

Methods

BCMS data were initially provided by DEFRA in May 2004, based on a data extract

produced on 22nd December 2002. This extract did not contain paired movements, nor

PAF location data. It contained movements from January 1999 until part-way through

December 2002. The pairing of movement data by RADAR commenced in 2005, and

in July 2005 a data extract (containing all the tables described above) covering the

period January 1999 to part-way through April 2005 was provided by DEFRA. These

two extracts were used in initial analyses, and to develop techniques for handling such

large volumes of data. A third extract of data from RADAR was provided by DEFRA

on 24th May 2006, which covered movements from the period January 1999 to April

2006, although data for April 2006 were only partial. This was approximately 21GB of

data4. In revising this chapter, use was made of a RADAR extract provided by DEFRA

to the University of Warwick in June 2009, based on a data extract produced on 2nd

June 2009. This contained movements up to 8th March 2009. Unless otherwise stated,

figures in this chapter are based on this most recent extract.

BCMS data from RADAR were imported into an Oracle database; in revising this

chapter, a Postgresql database containing a RADAR extract was used. The implemen-

tation details between the two database systems are not germane, so are not discussed

here.

The livestock location table was not immediately suitable for generating contact

networks. To derive movements (the edges in a contact network) from this table, it

was necessary to find two stays on locations where the animal concerned is the same,

and the end date of one stay is the start date of the other; additionally, the start and

end locations of the movement should be different, and the movement type by which

4The claim that the size of the database was 148Gb (Mitchell et al., 2005) is confusing. 148Gb might
be intended to mean 148 gigabits (the data extract discussed here is around 168 gigabits), but that would
be an unusual measure of storage; alternatively, the authors might have meant 14.8GB.
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the animal arrives at the destination holding should not be birth or death. Since this is

a database operation, it is expressed formally using relational algebra:

La 1animal,enda=startb,locationa 6=locationb,on typeb 6∈{birth, death} Lb

where 1 is the theta-join operator, La and Lb are both the livestock location table (self

theta-joined together), the entry from La being the start of the movement, and Lb being

the end. This was most readily achieved in Oracle by creating a view using the following

SQL command:

CREATE VIEW lloc paired AS

SELECT a.source loc id lloc from, b.*

FROM livestock location a, livestock location b

WHERE a.source ls id = b.source ls id

AND a.end date = b.start date

AND a.source loc id <> b.source loc id

AND b.on movement type code NOT IN (‘BIRTH’, ‘DEATH’);

The resulting view contains a field named lloc from which is the location the ani-

mal moved from, and then details about the stay on the subsequent location (includ-

ing the date and type of the movement, and the identify of the animal involved, and

the premise moved to). It is often useful to exclude movements beginning or ending

on an unknown location (location id −1), as otherwise location −1 would appear to

be a large, very highly-connected node; this may conveniently be done during post-

processing (or by modification of the view). Where “movements” are referred to later

in this document, they are all generated thus.

For the purposes of the figures that follow, some cattle breeds are classified as

beef breeds or dairy breeds. The classification used is that in DEFRA’s “Cattle Book

2008” (DEFRA, 2008).

Data handling other than that done using SQL was performed with python scripts,

and statistical analyses were performed using R (R Development Core Team, 2006).

Results

The CTS location table contained 358,710 rows, of which 259,304 (72%) had an asso-

ciated PAF location entry. At least one movement started or ended at 137,507 (38%)

of the locations in this table. The PAF location table contained 221,117 rows; this is

smaller than the number of holdings with PAF locations associated with them because
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some locations have more than one CPH number (and so more than one entry in the

CTS location table); these locations have the same address, so correspond to the same

entry in the PAF location table.

The source movement table contained 207,429,166 rows. Of those, 38,435,768

(19%) were births, 32,091,624 (15%) were deaths, 64,457,588 (31%) were normal “off”

movements, 62,133,594 (30%) were normal “on” movements, 149,409 (0.07%) were

importations, and 4,904,896 (2.4%) were inferred (on or off) movements. The livestock

locations table contained 119,581,334 rows. These represented the stays of 41,231,598

distinct animals on 136,245 distinct locations (this figure is slightly smaller than the

number of locations which had an animal on them; this is most likely due to problems

in reconciling the life histories of animals with raw movement data). The new, ordered

livestock movements table contained 151,672,914 rows, representing movements of

41,231,598 distinct animals. The number of movements in each month of 1999 to

2008 is plotted in figure 3.1; the peak in late 2000 is due to the Cattle Count 2000

exercise. Elsewhere in this thesis, 2004 and 2005 are divided into 4-week periods,

to provide twenty-six networks for study; the number of movements in each of these

periods is plotted in figure 3.2. Where the location of an animal cannot be determined,

the unknown location, code ’−1’ is used; figure 3.3 shows the proportion of movements

in each year that involve this unknown location.

The number of movements beginning and leaving premises of different types in

2006 and 2007 is shown in table 3.1; note that births and deaths (where an animal does

not move between two holdings) will not appear in these figures. Table 3.2 is a similar

table, but the type of holding at both ends of each movement is considered. Expected

values (assuming random movements) for the cells of this table may be calculated given

the total number of movements for each holding type. These are shown in table 3.3;

where the observed number of movements was higher than the expected number, the

cell is coloured green, and where the observed number of movements was less than

the expected number, the cell is coloured red. Considering table 3.2 as a contingency

table, the G statistic is 3509702, with 225 degrees of freedom; the p-value is less than

2.2 × 10−16, showing that there is a statistically significant association between the

source and destination holding types.

The livestock table contained 41,231,945 animals, of which 9,136,927 had a birth

date but no death date, giving an upper bound on the number of cattle alive in the UK

at the time the data were provided. The ages at which cattle die is shown in figure 3.4;

the peaks are at 8 days, around 16 months, around 24 months, and around 30 months.

Table 3.4 shows the number of animals that died on each holding type; 99% of deaths

occur on animal holdings or at red meat slaughterhouses. Figures 3.5 and 3.6 show the
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ages at which cattle die on red meat slaughterhouses and animal holdings, respectively.

The distribution of number of times an animal moves in its life is shown in fig-

ure 3.7. The x-axis has been truncated at 15; the largest number of moves in a lifetime

according to BCMS is 124. The distributions are shown for all cattle, as well as beef and

dairy cattle. The distribution of distances animals move in their life is shown, using a

log scale, in figure 3.8, again subdivided into beef and dairy cattle. The x-axis has been

truncated at 1,000km; the greatest distance moved in the life of a single animal ac-

cording to BCMS is 4,838km. The relationship between the number of times an animal

moved in its life and the total distance it moved in its life is examined in figure 3.9; the

colour shows the density of animals at each point on the figure. Spearman’s rank corre-

lation coefficient ρ = 0.518, p < 2.2× 10−16, showing a weak but statistically significant

correlation between distance moved in life and number of movements in life.

The distribution of length of time animals spend on a particular holding is shown

in figure 3.10. The x-axis is truncated at 2000 days (about five and a half years), and

the y-axis is logarithmic; the longest stay of an animal on a location according to BCMS

was 9425 days (around 26 years). The peaks are at around 2 months, and around 30

months. The number of times a movement occurs (i.e. the same source and destina-

tion holdings, on different dates) is shown as a cumulative frequency distribution in

figure 3.11, with a logarithmic x-axis.

The distances of movements across the years 1999–2008 are shown in figure 3.12;

the median and 95th percentiles are plotted. The change in movement batch sizes

across the same time period is shown in figure 3.13. The in- and out-degrees of farms

taking a single static network for each year are shown in figure 3.14. The number of

cattle moved onto and off farms in a year are shown in figure 3.15

Discussion

RADAR’s cattle movement data provide an unprecedented opportunity for epidemiolog-

ical research; previous network-based epidemiological studies have relied on strategies

to try and sample the contact network between people, whereas RADAR contains a

nearly-complete contact network for the entire UK cattle herd. Additionally, it may be

used for considering questions about the demographics of the UK cattle herd, and for

more abstract questions concerning networks (sampling strategies, for example, could

be considered, given that the entire network is available).

Figures 3.1 and 3.2 show the number of cattle movements over time. The large spike

in the autumn of 2000 is an artifact of Cattle Count 2000; when previously unregistered

cattle were registered, and movements from their birth locations to their then-current
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ones inferred. The quality of pre-2001 movement data remains questionable, however.

The foot and mouth disease epidemics in 2001 and 2007 are both noticeable as a

drop in movement volume in figure 3.1. Even at the height of the 2001 epidemic,

however, there was still a certain amount of movement going on; licenses were granted

for movements within the infected area, from the uninfected area to the infected area,

and within the uninfected area.

There is a clear seasonal pattern to movement volumes, with peaks in April and Oc-

tober of each year. Previous work has looked at seasonal patterns in cattle movements

in more detail, and shown both that most movements occur during the working week,

with a peak on Wednesdays; also, there is a seasonal peak in the number of births in

spring, and a smaller one in September (Mitchell et al., 2005).

Figure 3.3 shows how the proportion of movements involving the unknown location

has varied over time. It is noticeable that this value has remained remarkably constant

over time, representing a significant quantity of missing data about the contact struc-

ture of the UK cattle herd. The National Audit Office recommended in 2003 that DEFRA

try and improve the movement data it collects (National Audit Office, 2003); by this

metric at least, there is clearly still room for improvement.

Tables 3.1–3.3 illustrate the types of holdings involved in animal movements. As

would be expected, the vast majority of movements involve agricultural holdings, mar-

kets, and slaughterhouses. Table 3.1 shows that agricultural holdings are net exporters

of animals, the numbers of animals entering and leaving markets are roughly the same,

and that slaughterhouses are net importers of animals. Since animals are born on farms,

pass through markets, and die at slaughterhouses, these figures are reassuringly pre-

dictable. Tables 3.2 and 3.3 show the observed and expected numbers of movements

between holdings of different types; the expected numbers assume random distribution

of movements between holding types (and are rounded to the nearest integer). Com-

paring these two tables shows that there were substantially fewer movements between

animal holdings in 2006–2007 than would be expected by chance; the majority of this

difference is explained by the greater number of movements from animal holdings to

markets and slaughterhouses, and from markets to animal holdings. Similarly, there is

very little movement of animals from market to market, animals instead moving to or

from animal holdings. As well as being an interesting insight into the structure of the

cattle industry in the UK, these figures would be valuable for constructing an economic

model of livestock movements, which in turn might be a useful technique for predicting

future patterns of livestock movement in the UK.

Figures 3.4–3.6 and table 3.4 provide some insight into the mortality of British cat-

tle. Table 3.4 shows unremarkably that the majority of cattle deaths occur at red meat
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slaughterhouses; also that animal holdings and red meat slaughterhouses account for

nearly all (99%) cattle deaths between them. In the light of concerns about the risk

BSE posed to human health, The Fresh Meat (Beef Controls) Regulations 1996 were in-

troduced on 29 March 1996. They banned cattle that were over thirty months old from

entering the human food chain; instead the animals were slaughtered, and farmers paid

compensation under the over thirty months slaughter scheme. This ban was relaxed on

7 November 2005, when older cattle were again eligible to enter the human food chain,

provided they tested negative for BSE. The effect of this so-called “over thirty month

rule” (OTM) is clear to see in figures 3.4 and 3.5 — there is a substantial spike in the

number of cattle dying at thirty months old. Figure 3.5 shows the distribution of ages

of animals dying at red meat slaughterhouses. There is a substantial peak at around

a week of age, particularly among dairy cattle; male dairy calves are worth very little,

so some are slaughtered at a young age to save the cost of rearing them; rennet may

also be extracted from the abomasums of calves. Animals are typically slaughtered for

veal at around 6 months of age; it is clear from figure 3.5 that this remains a insignif-

icant beef product in the UK. Intensively reared beef is produced from beef and dairy

animals of around 18 months of age; these animals are fed cereals and concentrates

and so come to slaughter weight faster than more extensively-reared animals, and the

peaks in figure 3.5 at around 500 days are due to this type of beef production. Finally,

extensive beef suckler systems where beef cattle are reared more slowly on grass result

in animals reaching slaughter weight at around 24 months; they result in the step in the

number of beef cattle dying at around 700 days old. While figure 3.5 shows the relative

importance of different beef rearing regimes, figure 3.6 shows the ages at which ani-

mals die on farms, generally representing a loss to the farmer. As would be expected,

the majority of losses occur in young animals, succumbing to disease early in their life,

although there is a small peak at 30 months, again probably due to the OTM scheme.

Figures 3.7–3.9 illustrate how far and how often animals move during their lives.

The x-axes of figures 3.7 and 3.8 were truncated for clarity; the extreme values should

be treated with some caution — it seems unlikely that an animal would travel 4,838

km (roughly four times the road distance between Land’s End and John o’Groats) in its

lifetime, for example, although pedigree animals may be taken to many showgrounds

during their lives. Figure 3.7 shows that most animals move only a few times during

their lifetimes; a single move (from birth location to slaughterhouse) is most common.

Dairy animals are more likely to make two moves during their lifetimes than beef ani-

mals; this is most likely due to male dairy calves moving once to a fattening unit, and

thence to slaughter. Figure 3.8 shows that while around 20% of animals move less than

a kilometre during their life, there is then a very broad spread of distances travelled,
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with dairy cattle moving less far than beef cattle. Figure 3.9 shows that there is some

correlation between how many times an animal moves in its life, and how far it moves;

Spearman’s rank correlation ρ = 0.52 shows that this is a weak but significant corre-

lation. Intuitively, animals that moved more frequently would be expected to move

further in their lifetimes, so it is a little surprising that this correlation is not stronger.

The length of time animals spend on locations is shown in figure 3.10; some 36%

of all recorded stays are transient, i.e. the animal leaves the holding on the same day

as it arrived there. These will be stays on markets. The effects of the OTM are evident

again, with a noticeable rise in stays of around 30 months.

From the point of view of understanding how cattle are moved, and potentially

predicting future movement patterns, an interesting question is how habitual farmers

are; if they are very habitual in their movement patterns, then one could reasonably

assume that a farm will send its cattle to the same market next year that it did this year.

Figure 3.11 enables this question to be addressed, by showing how often a movement

occurs (on different dates). Whilst nearly 60% of movements occur only once, a fur-

ther 30% occur between 2 and 10 times; so some repetition of movements should be

incorporated into any model of the UK cattle industry, but only to a limited extent.

Given that the regulatory regime regarding animal movements has changed substan-

tially in the recent past, particularly since the 2001 foot and mouth disease epidemic,

it is worthwhile to try and assess what effect these changes have had on the movement

of animals. Figures 3.12–3.15 do this, on a yearly basis. What is striking about these

figures is how little has changed since 2002 overall, in contrast to work by Robinson

and Christley which considered movements in the period 2002 to early 2005 (Robinson

et al., 2007). The availability of data for a longer period of time shows that while there

was an increase in cattle movement in the period they studied (see e.g. figure 3.15),

that increase has not continued. There is an interesting research question here to ad-

dress whether the disease susceptibility (measured, perhaps, by simulation modelling)

of the UK cattle herd has remained similarly unchanged since 2002; if so, it would bring

into question the utility of the changes made to movement regulations.

Some other previous work on related questions based on RADAR data has been

published. DEFRA’s Farming Statistics team have published several “Cattle books” con-

taining descriptive statistics on the size, location, breed make-up, and so on of the UK

cattle herd. The most recent of these described the cattle herd in 2008, with population

statistics captured as at 1 June 2008 (when the annual June Survey of Agriculture takes

place) (DEFRA, 2008).

Previous work on the distance animals move has confirmed that whilst most ani-

mals only move a short distance, there are a small number of animals that move much
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further. Mitchell and colleagues described the mean distance moved as 58km, and the

maximum as 1000km (Mitchell et al., 2005), while Christley and colleagues consid-

ered February 2002, and found the median movement distance to be 39km, and the

maximum 1000km (Christley et al., 2005b). Given the shape of the distribution of

movement distances shown in figure 3.8, the median and 95th percentiles were felt to

be more appropriate measures of location and spread for the purposes of figure 3.12.

Generalised linear modelling has shown that there is a digit preference for dates

recorded for births and on-farm deaths, with the first, tenth and twentieth of each

month being over-represented (Robinson and Christley, 2006). Whilst this finding is

not a significant concern for researchers using RADAR data for contact-network based

work, it represents an important source of error when considering, for example, calf

mortality.

The CTS was not set up with the intention that it might be useful as a control system

for epidemic diseases such as foot and mouth disease (FMD); the 2001 FMD outbreak

in the UK and subsequent enquiries have led to changes in the collection of data, and

the scope of such data. Specifically, the UK government has attempted to increase

reporting of cattle movements by electronic means, and has introduced schemes to

collect details on batch movements (rather than individual-level data) of sheep, pigs,

and goats (National Audit Office, 2003).

Not all movements of cattle are required to be reported to BCMS. Specifically, move-

ments to shared grazing lands are not required to be reported, and neither are move-

ments between holdings that have been “linked”. The latter process is meant to allow

farmers to move livestock between nearby holdings without the administrative burden

of having to report the movements, but it has been abused by some farmers, who have

“linked” holdings which are far away from each other (National Audit Office, 2003).

Given the original purpose of CTS, it is perhaps unsurprising that such movements need

not be reported, but they may represent a substantial epidemiological risk.

A National Audit Office report noted that some keepers may be tempted to avoid the

extra work associated with reporting animal movements, and that furthermore there

may be financial advantages to deliberately contravening the identification and tracking

requirements (particularly given standstill periods); some examples of detected fraud

were illustrated, although there is little idea as to the scale of the problem (National

Audit Office, 2003).

DEFRA has recently conducted a review of the livestock movement controls. In ad-

dition to issues regarding abuse of “linked” holdings, the review concluded that the

current regulations are overly complex and should therefore be simplified. It addi-

tionally recommends that abattoirs should report the premises of departure of animals
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arriving at them, and that markets and collection centres should report the source and

destination of animals passing through them, by electronic means. Regarding shared

grazing lands, it suggests that a single Land Management Unit should be formed con-

sisting of the common land and any in-bye land to which cattle on the shared grazing

have free access; movements into and out of this area would have to be reported, and

would induce a standstill period. It also advocates greater regulation of dealers and

traders, specifically that those which hold livestock for mixing and sorting purposes be

treated as collection centres (and so be subject to a formal approval procedure), and

that CTS investigate movements of animals where a few days have passed between an

“off” movement and the subsequent “on” movement, to attempt to determine whether

the animals concerned stayed at an intermediate premises (Madders, 2006).

Problems remain, however. The current regulations are complex, which leads to

errors in reporting, and are somewhat open to abuse. Furthermore, the data are not

collected nor stored in a manner ideally suited to contact-network-based studies (al-

though this latter situation has improved significantly with the production of ordered

movement tables for each animal). How important the delay between movements and

their reporting to BCMS is in terms of intervention during an outbreak is an unan-

swered question; during the brief 2007 foot and mouth outbreak, livestock movement

data were not available to researchers until the outbreak was over.

The importance of movements that are not required to be reported to BCMS in con-

tact networks is unknown, and difficult to quantify nationally; an attempt to consider

this question at a local level is presented in chapter 8.

Another important research question is how models may be derived from BCMS

data, in particular which aspects of a network’s structure are most important for the

dynamics of a disease process across the entire population (rather than, say, for partic-

ular individuals in a population); this is addressed in chapters 6 and 7.
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Figure 3.1: Numbers of movements of cattle per month for 1999–2008.
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Figure 3.2: Numbers of movements of cattle per 4-week period for 2004 and 2005.
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Figure 3.3: Proportion of movements involving the unknown location, by year

Abbreviation Location type Count Movements From Movements To
AH Agricultural Holding 258,791 10,689,779 6,434,750
AI AI Sub Centre 45 296 31
CA Calf Collection Centre 625 27,947 36,245
CC Collection Centre BSE material 49 34,212 39,053
CR Cutting Room 198 74 0
ET Embryo Transfer Unit 9 0 2
EX Export Assembly Centre 76 161,715 152,263
HK Hunt Kennel 370 354 51
IN Incinerator 14 14 63
KY Knackers Yard 141 177 446
LK Landless Keeper 3,992 149,290 149,387
MA Market 612 2,799,243 3,313,128
SG Showground 700 39,476 38,524
SM Slaughterhouse MP & Cold Store 58 117 142
SR Slaughterhouse (Red Meat) 1,155 177,025 3,901,330
XX [Field Left Blank] 88,162 1,529 15,833

Table 3.1: Movements from 2006 and 2007, classified by location type. “Count” indi-
cates the number of holdings of that type.
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Destination holding type
AH AI CA CC CR ET EX HK IN KY LK MA SG SM SR XX

AH 3,968,656 31 29,547 35,067 0 2 150,372 36 33 377 91,052 3,128,042 36,918 110 3,238,177 11,359
AI 291 0 0 0 0 0 0 0 0 0 1 1 0 0 2 1
CA 16,182 0 0 0 0 0 0 0 0 0 183 154 0 0 11,425 3
CC 21,039 0 0 2 0 0 0 0 0 0 242 424 0 0 12,505 0
CR 37 0 0 0 0 0 0 0 0 0 0 37 0 0 0 0
ET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
EX 155,780 0 0 16 0 0 150 0 0 0 184 782 0 0 4,740 63
HK 205 0 0 0 0 0 0 0 0 0 0 84 0 0 65 0
IN 5 0 0 0 0 0 0 0 0 0 0 9 0 0 0 0
KY 107 0 0 0 0 0 0 0 0 0 5 63 0 0 2 0
LK 63,127 0 97 165 0 0 35 0 4 5 2,396 37,128 1,293 0 44,605 435
MA 2,166,522 0 219 1,363 0 0 1,168 15 26 64 53,592 962 4 3 571,351 3,954
SG 37,582 0 0 0 0 0 0 0 0 0 1,315 16 289 0 257 17
SM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 117 0
SR 4,400 0 6,381 2,440 0 0 535 0 0 0 390 145,036 13 29 17,800 1
XX 817 0 1 0 0 0 3 0 0 0 27 390 7 0 284 0

Table 3.2: Numbers of movements between holdings of different types in 2006 and
2007. The first column contains the source holding type. Holding type abbreviations
are defined in table 3.1.

Destination holding type
AH AI CA CC CR ET EX HK IN KY LK MA SG SM SR XX

AH 4,884,940 23 27,515 29,647 0 1 115,590 38 47 338 113,407 2,515,161 29,245 107 2,961,694 12,019
AI 135 0 0 0 0 0 3 0 0 0 3 69 0 0 82 0
CA 12,771 0 71 77 0 0 302 0 0 0 296 6,575 76 0 7,742 31
CC 15,633 0 88 94 0 0 369 0 0 1 362 8,049 93 0 9,478 38
CR 33 0 0 0 0 0 0 0 0 0 0 17 0 0 20 0
ET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
EX 73,899 0 416 448 0 0 1,748 0 0 5 1,715 38,049 442 1 44,804 181
HK 161 0 0 0 0 0 3 0 0 0 3 83 0 0 98 0
IN 6 0 0 0 0 0 0 0 0 0 0 3 0 0 3 0
KY 80 0 0 0 0 0 1 0 0 0 1 41 0 0 49 0
LK 68,221 0 384 414 0 0 1,614 0 0 4 1,583 35,125 408 1 41,362 167
MA 1,279,178 6 7,205 7,763 0 0 30,268 10 12 88 29,696 658,624 7,658 28 775,554 3,147
SG 18,039 0 101 109 0 0 426 0 0 1 418 9,288 107 0 10,937 44
SM 53 0 0 0 0 0 1 0 0 0 1 27 0 0 32 0
SR 80,895 0 455 490 0 0 1,914 0 0 5 1,878 41,651 484 1 49,046 199
XX 698 0 3 4 0 0 16 0 0 0 16 359 4 0 423 1

Table 3.3: Expected numbers of movements between holdings of different types in
2006 and 2007. Green numbers show where the observed number was greater than
the expected number, red numbers show where the observed number was less than the
expected number, and black numbers show where the observed number was within 1
movement of the expected number The first column contains the source holding type.
Holding type abbreviations are defined in table 3.1.
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Figure 3.4: Distributions of ages of cattle at time of death
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Abbreviation Location type Deaths
SR Slaughterhouse (Red Meat) 23,563,465
AH Agricultural Holding 4,877,653
XX [Field Left Blank] 176,737
SM Slaughterhouse MP & Cold Store 130,063
HK Hunt Kennel 30,611
LK Landless Keeper 30,387
KY Knackers Yard 25,619
MA Market 6,526
CA Calf Collection Centre 2,438
CC Collection Centre BSE material 667
EX Export Assembly Centre 651
HB Head Boning Plant 287
IN Incinerator 160
AI AI Sub Centre 62
SW Slaughterhouse (White Meat) 43
SG Showground 20
CR Cutting Room 15
PP Protein Processing Plant 9
ET Embryo Transfer Unit 3
MP Meat Products Plant 2

Table 3.4: Deaths of cattle, by location type.
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Figure 3.5: Distributions of ages of cattle dying on holdings of type “SR” (red meat
slaughterhouse)
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Figure 3.6: Distributions of ages of cattle dying on holdings of type “AH” (animal hold-
ing)
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Figure 3.7: Distribution of number of moves an animal makes in its life
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Figure 3.8: Distribution of distance an animal moves in its life
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Figure 3.10: Distribution of time animals spend on holdings
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Figure 3.11: Cumulative distribution of number of times a movement occurs
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Figure 3.12: Change in distances animals are moved over time
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Figure 3.13: Change in movement batch sizes over time
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Figure 3.14: In- and out-degrees of farms per year
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Figure 3.15: Numbers of animals moved on and off farms per year
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Chapter 4

Software for network analysis &
generation, and disease simulation

Introduction

This chapter describes a software package for the analysis and generation of networks,

and for the simulation of diseases upon those networks. The need for such a piece of

software is discussed, its design, implementation, and validation are described, and the

unique features found in it are highlighted. Its functionality is described in detail.

A wide range of software exists for social network analysis. A recent review at-

tempted to compare some of the available packages, but found it difficult to do so

fairly, due to the differing emphases of the various authors (Huisman and van Duijn,

2005). That review showed, however, that relatively little social network analysis soft-

ware was available for platforms other than Microsoft Windows, and that only three

of the smaller, more specialised applications were free software. Furthermore, most

of the available software packages only provided a graphical user interface (GUI), and

so cannot be usefully automated for processing multiple networks; similarly, many of

them were conceived for use with relatively small social networks, and do not handle

large networks well. Three software packages, in particular, are sufficiently widely-used

that it is worthwhile to discount them here. UCINET (Borgatti et al., 2002) is a com-

mercial package for the analysis of social network data. It will only run on Microsoft

Windows, and only provides a GUI, making automation difficult. Furthermore, it is

only designed to deal with small networks (up to 32,767 nodes). On the other hand,

Pajek (Batagelj and Mrvar, 1998) is designed to deal effectively with large graphs, and

has some support for automation. It costs nothing, but is not free software (this distinc-

tion is discussed below). Additionally, it is only available for Microsoft Windows. It can

be made to run on GNU/Linux systems using a Windows emulator, but that still restricts
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it to Intel i386-based hardware. This limits its utility on all but the most recent Apple

hardware, as well as most UNIX servers; specifically, much of the analysis presented in

this thesis was performed on a Macintosh Powerbook G4 and/or a Sun V440, neither

of which can run Pajek. More recently, and since much of the software here was writ-

ten, an R package called statnet (Handcock et al., 2003) has been released. It is free

software, and can run on any platform to which R has been ported. It aims to provide

a framework for exponential random graph-based network modelling, including tools

for model estimation, model evaluation, model-based network simulation, and network

visualisation. The size of networks it can handle is limited by R’s memory architecture,

and it does not provide facilities for infectious disease simulation.

The software described here allows a range of different network analysis techniques

to be deployed, networks to be stored in memory in four different representations, the

generation of networks according to different criteria, and the simulation of disease

processes upon networks. It is capable of reading and writing networks in a range of

formats understood by other network analysis programs, and is portable across a range

of computing platforms. Whilst the underlying library is written in ANSI C (Kernighan

and Ritchie, 1988) conforming to the latest international standard for the language, BS

ISO/IEC 9899:1999 (“C 99”), the software is also available as a Python module (called

gsalgs). Python is a much higher-level language than C, so the Python version of this

software is much more suitable for users who are not computer specialists; much of

the discussion here will therefore refer primarily to the Python module. This chapter

is not a manual for the software; on the accompanying CD the file gsalgs.html is

documentation for the Python module in the standard format.

Module outline

The structure of this software is object-oriented; that is, networks are represented as

objects which have methods that may be used (e.g. to create edges, simulate epidemics,

etc.); the networks themselves are stored in memory in a range of different structures

(discussed below), but the interface remains the same1. There are various trade-offs

between the different memory structures used, so the user can specify which they de-

sire, but it is not necessary to do so. As an example, the following short Python snippet

generates a Poisson network with 6,000 nodes and 18,000 edges, outputs the sizes

of all the strong components in the resulting network, and then runs an SIR disease

simulation (infecting one starting node, transmission risk 0.5, infectious period 10) on

1In C, this is achieved using a table of function pointers.
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it:

import sys,gsalgs

g=gsalgs.Gsalgs(6000,18000)

g.scc(sys.stdout)

g.sir(sys.stdout,1,0.5,10)

The first line loads the gsalgs module, along with sys, one of the standard Python

modules. The second line creates a new object, containing a network of 6,000 nodes

and 18,000 edges. The third line calculates the strong component sizes and outputs

them, and the fourth line runs an SIR simulation. The output of the simulation model

is described in chapter 5.

Network representations in memory

Uniquely to this software, networks may be represented in memory in four different

ways (and two additional special cases); which one to use may be specified (as an

argument to the object creation function) if desired. For the purpose of argument, a

network is said to consist of N nodes and E edges; ē = E
N

is the mean number of edges

involving a particular node.

Two network representations store the network as an N by N array. These matrix

representations require memory of order N2 (creation is optimised to allocate the nec-

essary memory in two allocation calls rather than N calls as would be the case if each

row of the matrix was allocated separately), and make setting and testing the value of

a particular edge very rapid. Enumerating the edges to or from a particular node takes

order N time. Accordingly, these network representations are typically more suitable

for smaller and/or denser networks. The matrix may either be of integers (in which

case the edges may be valued), or of bits (for dichotomous networks) in which case the

memory usage is reduced by a factor of 8.

Two network representations store the network as an array of N lists of adjacent

nodes (i.e. the ith entry in this list is a list of the nodes at the end of edges from i).

These adjacency list representations require memory of order E. Establishing whether

a particular edge exists takes order ē time, as does enumerating all the edges leaving a

node. Enumerating all the edges arriving at a node requires checking every adjacency

list, so takes order E time. Adjacency-list representations are therefore more suitable

for larger and more sparse networks. The adjacency lists may either just store the

identities of the end-points of edges (for dichotomous networks), or may also store an
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edge weight.

Finally, there are two special immutable network types — the empty (or “null”)

network, and the complete (or “full”) network.

Internal and external node numbering

In any network representation of N nodes, the nodes are numbered from 0 to (N − 1).

Often networks generated from other data sources will have nodes numbered in a dif-

ferent manner. A mapping is therefore maintained (and exposed to the user) between

the internal node numbers, and the external node numbers; it is possible to convert

from internal to external number, and vice versa. This mapping is built up by the input

functions in an efficient manner described below.

Network generation

When a new network object is created, it may be of any of the six types discussed

above; the number of nodes desired must be supplied, in which case an empty network

containing the relevant number of nodes will be created (excepting the case of the

complete network type, when a complete graph with the relevant number of nodes is

created). The edges desired may then be added using the set method.

Alternatively, random networks may be generated according to three different mod-

els, by specifying the gentype argument when creating a new network object. The

first of these generates a Poisson or Erdős-Rényi random network with the specified

number of nodes and edges, which may be directed or undirected. The algorithm

used is näıve: two nodes are chosen at random, and an edge created between them

if same does not already exist; this process is repeated until E edges have been gener-

ated. This approach performs as well in practice as more complex algorithms (Batagelj

and Brandes, 2005). The second random network generation model is a Barabasi-style

preferential-attachment model. Initially, there are x zero nodes and no edges. For t

iterations, a node is added, and x (which must be less than or equal to x zero) edges

made between it and the existing nodes with a probability based on the degree of those

nodes (Barabási and Albert, 1999). This results in an undirected graph with x zero+ t

nodes and x × t edges. The parameters of this function are discussed in more de-

tail on pages 97–98. Finally, random networks can be generated that fit a particular

two-dimensional degree distribution (i.e. for every node in the observed network of in-

degree x and outdegree y, there will be a node in the generated network of indegree x

and outdegree y). The algorithm used is DEGDIST-GEN, which is described on page 99.

Relatedly, any network may be rewired in a manner that maintains its two-dimensional
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degree distribution (and hence number of nodes and edges) whilst adjusting its dyad

census to that specified. The algorithm used is REWIRE-STEP, which is described on

page 100.

Single networks may be generated from a set of Z dichotomous networks using the

valued from set method. The value of a particular edge is based on the number of

times it occurs (z) in the set of Z networks; it is the proportion of times that edge

occurs, z
Z

.

I/O

The other way to generate a network object is, naturally, to read it in from a data file.

Three different file formats are supported, two of which are lists of edges (with and

without values), and the other of which is the “DL” file format used by UCINET (Borgatti

et al., 2002). There are also functions to output networks in these formats.

The code to load in edges (callable via the Python function edges load) can handle

valued or unvalued edges, and single or multiple networks. If edges are dichotomous,

then each line of the input file should consist of two numbers, the source and destina-

tion of an edge; if edges are valued, then there should be a third number describing the

weight of the edge. In both cases, edges may optionally be made undirected during the

loading process. Multiple networks (where relevant) are separated by a blank line. The

code maintains a count of the number of edges (and the number of those which are

duplicates), as well as the mapping between the node numbers in the input file and the

node numbers used internally. The algorithm used is careful not to allocate more mem-

ory than necessary to store the external-to-internal node mapping (using only around 1
3

the memory of a more näıve approach when loading RADAR data), and to use this map-

ping to make looking up the end of each edge a constant-time operation (rather than

the order N time of a simpler iterative approach). The following pseudocode describes

the key part of the algorithm used:
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EDGES-LOAD(file)

1 max ← −1

2 min ← 0

3 n← 1

4 for line in file

5 do PARSE(line,from,to)

6 if from = to or − 1 = from or − 1 = to

7 then continue

8 big ← maximise(from, to)

9 small ← minimise(from, to)

10 if small < min

11 then map[small . .min]← −1

12 min ← small

13 if big > max

14 then grow(map, big)

15 if min > max

16 then map[min . . big ]← −1

17 min ← small

18 else map[max . . big ]← −1

19 max ← big

20 if map[to] = −1

21 then map[to]← n

22 ADD-NODE(G, n)

23 n← n+ 1

24 if map[from] = −1

25 then map[from]← n

26 ADD-NODE(G, n)

27 n← n+ 1

28 G[map[from]][map[to]]← 1

Essentially, an array map[] is maintained, such that the value of map[x] is the in-

ternal node number corresponding to node number x in the input, or −1 if that input

node has yet to be allocated an internal node number. The complication with this ap-

proach is that whilst allocating a large array is quite a quick operation, assigning −1

to every member is time-consuming; an optimisation is therefore employed, where the

highest and lowest node numbers yet observed in the input file are stored, and new

areas of the map[] array allocated and assigned to only where necessary. This substan-

tially increased the speed of loading input files from RADAR, where the individual node
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numbers are high.

The first three lines set initial state. Then, the following procedure is followed for

every line of the input file. It is parsed, and if it represents a self-loop, or a movement

to or from location −1 (the unknown location), it is abandoned, and the next line pro-

cessed (lines 5–7). Then the two nodes involved (to and from) are compared with the

highest and lowest nodes yet encountered. If a lower node number than previously en-

countered is found, then all elements of the mapping array between the new minimum

node number and the previous minimum are assigned the value −1 (lines 10–12); if a

larger node number is encountered, then the map[] array is grown to encompass this,

and then the elements between the old and new maxima are assigned the value −1

(lines 13–19). Lines 16–17 are a special case to deal with the initial conditions (when

min will be the smaller node number from the first input line, and max will be −1);

they assign−1 to all the elements between the two node values from the first input line,

and set min to the value of small . Then both ends of the new edge are looked up in the

mapping array, and if they have not been encountered before (i.e. the corresponding

map[] element is −1), then new nodes are added to the network G, and map[] updated

(lines 20–27). Finally, the new edge is added to the network (line 28). Some details

of the algorithm (such as error checking, and keeping a count of edges and duplicates)

have been elided for clarity, but they are routine. The variation of this algorithm to

handle valued edges is a trivial extension.

Simulation of diseases on networks

Discrete-time stochastic SIR simulations of infectious diseases may be performed on

networks — either a single static network, or a range of dynamic networks (in which

case the number of time-points to be spent on a particular network may be specified).

The number of starting infectious nodes, transmission risk, infectious period, and max-

imum duration of simulation (in terms of number of time-steps) may all be specified;

simulations halt when the infection dies out unless the maximum duration is reached.

The algorithm employed is SIMULATE, discussed in detail on page 86.

Analysis of networks

A considerable range of functions to analyse the structure of network objects is avail-

able. With the exception of the algorithm to calculate the dyad census, the algorithms

used have all been published by other authors; in some cases, however, this is the first

time that such an algorithm has been implemented in a generally-available piece of

software.
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Shortest paths

The shortest path between a pair of nodes may be calculated. The approach used is

Dijkstra’s shortest-path algorithm, modified to use a Fibonacci heap, giving it a running

time of O(N logN +E) (Cormen et al., 1989); this gives the shortest paths to all other

nodes from one (specified) starting node. Additionally, the mean shortest path of a

network may be calculated; this function uses Dijkstra’s algorithm starting from each

node in the network. In the case of a disconnected network, it ignores pairs of nodes

which are not connected (i.e. the number of pairs of nodes considered when calculating

the mean is reduced by one).

Betweenness centrality

The betweenness centrality of the nodes in a network may be calculated, ignoring the

weights of edges. Optionally, the resulting value may be scaled to enable comparison

between networks (Freeman, 1979). The algorithm used runs inO(NE) time (Brandes,

2001). If the input network is undirected, then the result needs to be divided by 2.

Clustering coefficient

The clustering coefficient of a network may be calculated, for either directed or undi-

rected networks. The algorithm works as follows: considering each node in turn, it

calculates the number of edges between the neighbours of that node; the clustering

coefficient for that node (i.e. the proportion of those neighbours that are adjacent to

each other) is then calculated, and added to a running total. Finally, the running to-

tal is divided by the number of nodes. The behaviour regarding the edge-case of how

nodes with only one neighbour are handled is tunable. In the default case, such nodes

are treated as having a clustering coefficient of zero, so they contribute nothing to the

running total, which will be divided by the total number of nodes in the network, as

per the definition of clustering coefficient (Watts, 1999). Optionally, however, such

nodes may be excluded from the final division (i.e. the running total is divided only by

the number of nodes in the network with more than one neighbour); this behaviour is

solely provided to mimic the incorrect behaviour of UCINET, a popular piece of social

network analysis software (Borgatti et al., 2002).

Degree distribution

The two-dimensional degree distribution of the nodes of a network may be calculated;

the approach is a simple iteration over all edges of the network.

79



Subgraph censuses

Dyad and triad censuses may be performed upon a network; internally, they convert the

network to an adjacency-list structure, as this substantially enhances the performance

of the algorithms used.

Rather than simply iterating over every pair of nodes, the dyad census function uses

in-lists and out-lists for each node (i.e. the list of nodes which send an edge to that

node, and which that node sends an edge to). Starting with the second node in the

network, and considering only the members of the in- and out-lists of a node which are

smaller numbered nodes, M , the number of mutual dyads the node participates in and

A, the number of asymmetric dyads the node participates in can be calculated:

M = | in ∩ out |

A = | in4 out |

that is, M is the number of elements common to both in and out , and A is the number

of elements in one of in or out , but not in both. Whilst simple, it is believed that this

algorithm has not been described in the literature before; it is somewhat swifter than a

simpler iterative approach.

The triad census function uses an O(E) algorithm, so may not be suitable for very

dense graphs (Batagelj and Mrvar, 2001), since there exist O(N2) algorithms (Moody,

1998). A header file (census.h) defines the order in which the counts of different triad

types are presented.

Component counts

The size of every weak or strong component in a network may be enumerated. The

size of each strong component is found using an improved version of Tarjan’s algorithm

that deals better with sparse graphs (Nuutila and Soisalon-Soininen, 1993) and is not

known to have been deployed in any other social network analysis package. It is highly

recursive, so on some operating systems it may be necessary to allow the stack to grow

substantially for this function to work on large graphs. To find and count the size of the

weak components, the network is made undirected, and then the strong components

of that undirected network found.
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Portability

This software has been written in ANSI C, according to the latest standard (BS ISO/IEC

9899:1999); the Python module has been written entirely in ANSI C and standard

Python. It is expected that it should therefore be portable to any platform with relatively

modern C and Python implementations. Specifically, it has been tested on Solaris v9,

Mac OS X, and Debian GNU/Linux (on three different architectures).

Validation

In addition to checking the output of the various routines by hand to ensure they

are behaving correctly, the clustering coefficient and betweenness centrality routines

were validated against an existing standard piece of social network analysis software,

UCINET (Borgatti et al., 2002).

One hundred random Poisson graphs with 45 nodes and 490 edges (these numbers

are based on an unpublished study of communication within the Department of Vet-

erinary Medicine, University of Cambridge) were generated. AutoIt, a software pack-

age for automating graphical user interfaces (Bennett et al., 2004) was used to make

UCINET calculate the clustering coefficient and betweenness centrality values for each

of the hundred networks. The same measures were calculated using the software li-

brary described herein. A bash script was used to convert the outputs from the two

pieces of software into a common format, and then diff was used to compare the two

sets of results. A PC running Windows XP was used to run UCINET, whilst the soft-

ware described here was run on both a Sun V440 running Solaris v9, and a Macintosh

Powerbook G4 running Mac OS X.

The software based on this library produced the same answers on both the V440

and the Powerbook. The automation of UCINET was not robust, however, requiring

significant manual intervention to successfully analyse all one hundred graphs. As

noted above, UCINET incorrectly calculates the clustering coefficient; the cluster()

function produces the same answers as UCINET when its exclude parameter is set to 1.

The results for betweenness centrality were identical between the two sets of software,

with the exception that UCINET scales its results between 0 and 100, rather than 0 and

1, so its answers were 100-fold greater than those produced by the between() function.
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Discussion

The drive behind the development of the software described here was the research

work that is presented in this thesis. Additionally, given the lack of integrated software

for network analysis and generation and disease simulation, producing a piece of free

software that could be put to this purpose was deemed a desirable outcome in its own

right. Free software is not the same as software that costs nothing to acquire. Colloqui-

ally, free software is “free” as in “free speech”, not as in “free beer”. More specifically,

free software grants its users freedom to run the program for any purpose, to study

its workings and adapt them to their needs, to redistribute copies to others, and to

improve it and release such improvements to the wider community. A widely-accepted

definition of free software is the Debian Free Software Guidelines2. Free software has

several advantages that make it suitable for use for scientific computing. Free avail-

ability means that results may be verified by other authors. The availability of source

code means that other authors may not only verify the results of any work, but may

also verify the workings of a piece of software. The freedom to modify and redistribute

free software enables enhancements of algorithms (and bug-fixes) to be disseminated

to the wider scientific community, and avoids duplication of effort. For these reasons,

free software should be considered the gold standard for applications used for scien-

tific research. Accordingly, the software for network analysis and disease simulation

described in this chapter (and included on a CD with this thesis) is released as free

software under the GNU General Public Licence, version 2.

Despite the difficulties in automating UCINET (limiting the latter’s usability some-

what), validating some of the functions written against their equivalents in UCINET

was a valuable exercise; it illustrated one of the problems of proprietary software as a

scientific tool — that you cannot be sure exactly what it is doing, particularly regard-

ing “edge cases” such as how to treat nodes with only one neighbour when calculating

the clustering coefficient. Whilst one might expect the authors of scientific software

to explain in their documentation the algorithms deployed, this is by no means always

the case, and often the outline given does not fully match the operation of the code

involved (Joyner and Stein, 2007). Further, given a recent study that showed that

many authors will not share their data even when it is connected with a publication in

a journal that requires data sharing, it is hard to be confident that authors of non-free

software would describe their algorithms in detail when asked (Savage and Vickers,

2009).

The underlying functionality of this software is all implemented in C, which is a

2Available online at http://www.debian.org/social contract#guidelines
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relatively low-level light-weight high-performance language. Many of the algorithms

implemented are relatively computationally intensive, especially on large networks, so

using C enabled good performance to be achieved. The C library is capable of standing

alone from the Python module, so other investigators may use it directly if they wish

to write high-performance software and are already familiar with C. Python is a much

higher-level interpreted language, and therefore much easier for scientists who are not

specialist programmers to use; it already has a wide range of scientific applications.

Creating a Python module around the C library makes the software usable to a far

greater audience, without compromising the underlying performance of the software.

Furthermore, Python has modules for interacting with other software systems such as

relational databases and the statistical package R; a Python module of this software

therefore facilitates using it in an integrated manner.

This software is the only free software available that integrates network analysis

and generation and disease simulation. Additionally, the algorithms for generating

two-dimensional degree distribution-matched networks and re-wiring them to modify

the dyad census whilst maintaining the two-dimensional degree distribution are new.

The optimisations of the edge-reading and dyad census code are believed to be unique

to this software, as is the use of Nuutila’s refinement of Tarjan’s algorithm in social

network analysis.

The software presented here is a robust, portable tool for scientists intending to

write social network analysis programs, particularly if they wish to tie this analysis into

disease simulations. It has been released as free software prior to the publication of this

thesis; this maximises its utility to the scientific community, as well as enabling effective

peer-review of the algorithms deployed. It is designed to be readily extensible, which

should facilitate its use in future research programmes.
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Chapter 5

Design and implementation of a
stochastic simulation of disease on a
network

Introduction

This chapter describes the disease simulation model used later in this thesis. The

model’s operation is outlined, and details of its implementation given. Sample out-

put is provided, to demonstrate that the model behaves as expected by theory; finally,

the model is discussed in the context of other simulation models of infectious diseases.

The motivation behind the generation of this model was to produce a simple simulation

model which may be used to investigate the impact of network structure upon disease

dynamics.

Model definition

In general, previous authors have chosen the simplest model that suits their require-

ments. This is good practice — simpler models are easier to use, and easier for future

authors to understand. The model described here is also a simple model, since its aim is

to highlight the effect of network structure on disease dynamics in general, rather than

to describe any individual pathogen. It is a stochastic simulation of disease spreading

across a network, based upon an SIR model. It should be easily extensible in future. In

addition, it should be efficient.

A number of nodes α chosen at random begin the simulation in the infected (I) state.

All other nodes begin in the susceptible (S) state. The model is then synchronously
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updated. During each time period, disease is passed along each edge from an I node to

an S node with probability ν. Nodes remain in state I for an integer number of iterations

µ, and then pass into the recovered (R) state. They are not removed from the network;

if later nodes were to be added to the network, for example, they could still form edges

with R nodes. Nodes in the R state remain in that state forever. The parameters ν and

µ remain constant during the simulation.

Formally, the dynamics can be described as follows:

P (State(i, t+ 1) = I |State(i, t) = S) = 1−
∏

State(j,t)=I(1− νGj,i)

P (State(i, t+ 1) = R |State(i, t− (µ− 1)) 6= S) = 1
(5.1)

where State(i, t) ∈ {S, I, R} is the state of node i at time t. As such, it is clear that

only the infection process (first line of equation 5.1) depends on the network structure,

whilst recovery is independent, operating at the farm level.

Implementation

The output of this model is the number of nodes in each state at each time point. This

model requires that each node’s state is recorded, and, for nodes in the I state, that

the length of time until they recover is recorded. The algorithm is best illustrated with

pseudocode in a standard convention (Cormen et al., 1989):
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SIMULATE(N, n, t, ν, µ, α)

1 for a← 1 to n

2 do State[a]← S

3 INITIAL-INFECTION(N,α)

4 for a← 1 to t

5 do for b← 1 to length[Infected ]

6 do bn ← Infected [b]

7 for c← 1 to length[Neighbours [bn]]

8 do cn ← Neighbours [bn][c]

9 if State[cn] = S and rand(1) < ν

10 then append(New ,cn)

11 State[cn]← I

12 Time[cn]← µ

13 Time[bn]← Time[bn]− 1

14 if Time[bn] = 0

15 then remove(Infected ,bn)

16 State[bn]← R

17 append(Infected ,New)

18 New ← 0

Here N is the network, n the number of nodes, and t the number of iterations de-

sired. Lines 1–2 set the state of every node to S. The pseudocode for INITIAL-INFECTION

is not shown here; it randomly selects α nodes, changes their state to I, and sets the rel-

evant elements of the Time array to µ. Lines 4–18 are the main loop of the algorithm,

and will be repeated t times. Each infected node (the members of the Infected array) is

inspected in turn (and bn takes its value during this process). Each of its neighbours is

inspected in turn (variable cn, lines 7–8). If that node is susceptible, a random number

in the range [0, 1)1 is drawn, and compared to ν at line 9. If it is less than ν, then the

node cn becomes infected, and Time[cn] is set to µ (lines 10–12). Once all node bn’s

neighbours have been considered, Time[bn] is decremented by 1 (at line 13). If, at this

point, µ iterations have passed since bn was infected, then Time[bn] will be 0. This is

checked at line 14, and if this is the case, then the node’s state is set to R, and it is re-

moved from the Infected array (lines 14–16). Finally, at lines 17–18, the newly-infected

nodes from this time-step (in the New array) are appended to the Infected array, and

the New array is blanked, ready for the next time-step.

1This notation indicates that the range of numbers may include 0, but not 1.
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The model is implemented as a C function, with the following prototype:

void sir net(struct gennet *g, const int n, const int istart,

const double risk, const int remain, const int t,

FILE *out);

Here istart represents α, risk represents ν, and remain represents µ.

This function maintains a count of the number of nodes in each state, and at the

beginning of each time-step outputs the time-step number, and then the number of sus-

ceptible, infected and recovered nodes, separated by spaces, on one line. A typical line

of output at the start of a simulation, with n = 6000 and α = 1, would be:

0 5999 1 0

Output

Example output from the model was generated, using a network (N) of 6,000 nodes (n)

and 18,000 random edges; this is a size of network that is relatively quick to generate

and to perform simulations upon. Simulations were allowed to run for up to 10,000

time-steps, but in all cases the disease had ceased before that limit was reached. 100

simulations were run in each case, and the means plotted. Confidence intervals are not

shown for the sake of clarity; the 95% confidence interval was typically around ±100

nodes. In all cases, α was 1, simulating an epidemic started by one infectious “invader”.

In figures 5.1, 5.2, and 5.3, the infectious period µ was fixed at 5 time steps, whilst

ν, the transmission risk, was increased. In figure 5.1 ν = 0.1, in figure 5.2 ν = 0.5, and

in figure 5.3 ν = 1.

The simulations described by figures 5.4 and 5.5 had the same infectious period

µ = 5, and were parameterised (by varying the transmission risk) to have the same

final epidemic size. For figure 5.4, a complete network of 6,000 nodes was used (i.e.

every edge between every pair of nodes existed), and the transmission risk was small

(ν = 0.00007). For figure 5.5, a random network with 6,000 nodes and 18,000 edges

was used as before, and the transmission risk was substantially larger (ν = 0.2).

In figures 5.5, 5.6, and 5.7, the transmission risk ν = 0.2, whilst the infectious

period µ was varied. In figure 5.5 µ = 5, in figure 5.6 µ = 10, and in figure 5.7 µ = 3.

In figures 5.8 and 5.9 the infectious period µ = 10 whilst the transmission risk

was varied from 0.001 to 1 in 1,000 equally-spaced values. At each ν value, 10,000

random networks were generated (with 6,000 nodes and 18,000 edges as before), and
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one disease simulation run on each. The mean final epidemic size and extinction times

were recorded, and are plotted in figures 5.8 and 5.9 respectively.

Discussion

The model described here represents a simple and readily comprehensible stochastic

discrete-time SIR model. A stochastic model is mathematically simpler than a deter-

ministic model, and can be deployed on a range of networks including those whose

structure is poorly understood. Furthermore, while deterministic models approximate

network structure, for example by moment closure (Keeling, 1999), stochastic simula-

tions can use the complete network structure rather than having to find an analytically

tractable approximation.

The model described here is based upon the basic SIR model, without any demo-

graphic processes (such as birth and death); such a model typically exhibits a single

epidemic, unlike an SIS model, where several epidemic peaks would be expected, some-

times leading to a stable level of infection within the population (Anderson and May,

1991).

The model output presented here is in accordance with known features of SIR mod-

els; this concordance demonstrates that the model is behaving as expected. This is

important to demonstrate, so that the results of the model being applied to different

networks in later chapters can be interpreted with confidence. Figures 5.1, 5.2, and 5.3

illustrate the effect of varying transmission risk. With ν = 0.1 (figure 5.1), the disease

persists for a relatively long period of time, but only ever infects a small proportion of

the network. With ν = 1.0, every possible node is infected at every time-point, so all

the nodes reachable from the starting node become infected rapidly (figure 5.3); when

ν = 0.5, the total number of nodes infected is similar, but the process takes longer

(figure 5.2). The “blip” in the number of infected nodes at around time point 45 in

this figure is due to one of the hundred simulated epidemics infecting 1,500 nodes

rapidly at that point. Figures 5.8 and 5.9 illustrate further the effect of changing the

transmission risk on the final epidemic size and extinction time. Figure 5.8 shows that

this model demonstrates epidemic threshold behaviour on Poisson graphs, as would be

expected. The mean giant strong component size is 5,306 nodes (based on 10,000 sim-

ulations, standard deviation 26.1), and the final epidemic size approaches this value

as ν tends towards 1. Figure 5.9 shows that at low ν, the epidemic dies out quickly

(having infected few nodes), and at high ν the epidemic is also relatively short-lived

(having infected a large number of nodes very swiftly); the epidemic is longest-lived

at around ν = 0.1. At that value, the disease infects new nodes at just high enough
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a rate to not die out, but without exhausting all the susceptible nodes (as happens at

very high ν). Figures 5.8 and 5.9 are somewhat “noisy”; this is because the disease

simulation process is stochastic, so some variation in the output of individual runs is

expected. Even with very high ν, an infection may fail to progress beyond its initial

node, for example, and similarly a disease with low ν may occasionally infect large

numbers of nodes. That element of chance is part of the dynamics of real infectious

diseases, though, so it is not a flaw in the model.

Figures 5.5, 5.6, and 5.7 illustrate the difference changing the infectious period, µ,

makes. With a very short infectious period (µ = 3, figure 5.7) the infection dies out

after infecting around one third of the nodes; as the infectious period increases in length

(figures 5.5 and 5.6), so the proportion of nodes infected during the epidemic increases.

This is an intuitive result — if a person is infectious for longer, they would be expected

to be able to infect more people. The SIR model predicts this behaviour (Anderson and

May, 1991).

Figures 5.4 and 5.5 illustrate the difference between the relatively sparse network

used for these simulations and a complete network (i.e. one with all possible edges

present, which approximates a homogeneous mixing model). Values of ν were selected

which gave a similar final epidemic size — 0.2 for the random sparse network, and

0.00007 for the complete network. The large difference between these risk values re-

flects the much greater connectivity between nodes in the complete network.

In the cattle movement networks discussed in this thesis, cattle holdings of all kinds

are nodes, and movements of cattle between them are edges. The model presented

here treats farms as a single unit, comparable to the basic assumptions within the mod-

els developed for the 2001 foot-and-mouth epidemic in the UK (Kao, 2002; Keeling,

2005). Additionally, all farms are considered identical, such that neither number of

cattle, breed nor farming practices have any effect on the transmission dynamics; this

is clearly a somewhat crude assumption, but allows the impact of network structure to

be examined in isolation from other heterogeneities. Given the nature of nodes, the

decision not to include birth or death of nodes is entirely natural.

Whilst no attempt is made within this thesis to model specific diseases, this model is

readily extensible to do so. In that case, it would be worthwhile to reconsider some of

the assumptions inherent in this model. Particularly, the addition of some heterogeneity

of nodes (in terms of infectivity or infectious period) would be worth considering —

the likely timescales of an invasion of an infectious disease upon a small croft in the

Outer Hebrides or a large dairy herd in the West of England would be very different,

for example.

Finally, a virtue of this model is that it is computationally lightweight — each of the
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100-simulation “runs” on the sparse random networks illustrated earlier took less than

a second to run on an Apple G4 Powerbook running Mac OS X. This is important if it

is to be used to simulate a disease process on large networks, particularly as one of the

advantages of modelling networks of farms rather than considering the disease status

of individual animals is the increased speed of model runs.
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Figure 5.1: Sample model output, ν = 0.1, µ = 5
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Figure 5.2: Sample model output, ν = 0.5, µ = 5
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Figure 5.3: Sample model output, ν = 1.0, µ = 5
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Figure 5.4: Sample model output, complete network, ν = 0.00007, µ = 5
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Figure 5.5: Sample model output, ν = 0.2, µ = 5
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Figure 5.6: Sample model output, ν = 0.2, µ = 10
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Figure 5.7: Sample model output, ν = 0.2, µ = 3
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Figure 5.8: Sample model output, showing the effect of ν upon final epidemic size
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Figure 5.9: Sample model output, showing the effect of ν upon time to extinction of
epidemic
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Chapter 6

Structural measures of networks and
disease

Introduction

The aim of this work is to determine structural features of a network that have a sig-

nificant effect upon the dynamics of a disease process on that network, and to gener-

ate model networks which exhibit similar disease dynamics to networks derived from

BCMS data. In order to achieve that, it is necessary to have available structural mea-

sures that are readily measurable on large networks, and for which there exist algo-

rithms to generate random networks with particular values of those structural mea-

sures (e.g. the same distribution of values for a centrality measure). Some potentially

suitable structural measures has been reviewed (and defined) above in chapter 2.

There is a vast range of measures of network structure. Whilst many of these are

unsuitable for considering BCMS data as they require a network that is undirected,

connected, or relatively small, there has to date been little effort to examine which

of the remaining structural measures of a network are important for the dynamics

of disease transmission within a population as a whole (rather than merely looking

for structural features that put individuals at risk). The approach taken here was to

endeavour to create artificial networks that shared certain structural features with the

BCMS network and that were “similar” from the point of view of disease dynamics.

If two networks share a structural feature, and similar disease dynamics are observed

on those networks, then it is likely that that structural feature is important for the

dynamics of infectious disease on that network.

In common with other authors, in this chapter networks are assembled from 4-week

“snapshots” of BCMS movement data, although the correspondence that some authors

have maintained between snapshot length and infectious period has not been used.
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Methods

BCMS data from 2004 and 2005 were divided into 26 4-week periods, to provide an

estimate of the repeatability of results, as well as the seasonal variation in disease

dynamics. Initially, 1,000 SIR simulations were run on each 4-week period, using the

model described in chapter 5. For each 4-week period, 5 networks were generated

with the same number of nodes and edges according to each of two different models,

and then 1,000 disease simulations were run on each network. The BCMS network

was converted to be undirected, because the preferential-attachment process can only

produce an undirected graph.

The first of these network models was an Erdős-Rényi (or Poisson) random graph,

in which the edges were randomly assigned between nodes. The number of nodes n,

and edges E to use were taken from the relevant BCMS-derived network.

The second model was the scale-free network model, generated using a preferential-

attachment process. Such a network started with a small number (x0) of vertices, and

then at every one of t steps, a node was added along with x (≤ x0) edges between that

node and the existing nodes, with the probability that a new node was linked to an

existing node being proportional to that existing node’s degree divided by the sum of

degrees of existing nodes (Barabási and Albert, 1999). The values of x and x0 to use

were calculated as follows.

From the model definition, it is clear that after t iterations of the preferential-

attachment process, n and E will have the following values:

n = x0 + t, E = xt

∴ x0 = n− E

x

In this case, the largest value of t (to get the greatest range of node degrees), and hence

smallest value of x was required. Given the requirement that x0 ≥ x, consider when

x0 = x, and let ρ ≡ x = x0:

ρ = n− E

ρ
⇒ ρ2 − nρ+ E = 0⇒ ρ =

n±
√
n2 − 4E

2

If n2 = 4E, then there is one solution to this equation, x = x0 = n
2
, although if n is odd,

then there is no integer solution (an integer solution is required because a fractional

quantity of nodes or edges is nonsensical). If E > n2

4
, then there is no solution, so a

preferential-attachment network cannot be constructed using this approach. Finally, if

n2 > 4E, then there are two roots to the equation, so the lines x0 = x and x0 = n − E
x
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cross twice. Consider x0 = n− E
x

:

dxo
dx

=
E

x2
and

d2x0

dx2
= −2E

x3

So the gradient of this line is positive but decreasing when x > 0. Accordingly, between

the two crossing points, n − E
x
> x, i.e. x0 > x. Thus, if there is an integer value

between the two roots, then that is a valid value of x; given the requirement of high t,

the smallest integer greater than the smaller root (i.e. n−
√
n2−4E
2

) should be chosen for

x. t and x0 may then be calculated as follows:

t =
E

x
, x0 = n− t

Networks from the BCMS data are typically sparse; an example may serve to illustrate

the calculations. The network representing the first four weeks of 2004 has n = 39699

nodes and E = 108523 edges.

ρ =
39699±

√
396992 − 4× 108253

2
= 39696.27 and 2.73

The smallest integer greater than the lower root is 3, so:

x = 3⇒ t =
108253

3
= 36084.3̇ ≈ 36084⇒ x0 = 39699− 36084 = 3615

This results in a scale-free network with 39,699 nodes and 108,252 edges, with one

edge being lost due to rounding.

For each 4-week period, the mean number of nodes in the susceptible state at

each time point was calculated for the observed network, the Poisson networks, and

the scale-free networks. For these simulations (and those later in this chapter, except

where otherwise noted), the following parameter values were used: number of initially-

infected nodes, α = 1, transmission risk, ν = 0.015, and infectious period, µ = 14.

It is possible to generate networks with the same two-dimensional degree distri-

bution as the observed network (e.g. for every node in the observed network with

indegree 10 and outdegree 5, there will be one node in the model network with inde-

gree 10 and outdegree 5). The algorithm is described with the following pseudocode,

following a standard convention (Cormen et al., 1989):
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DEGDIST-GEN(E, n, dd)

1 for x← 1 to n

2 do if dd[ind ][x] > 0

3 then for y ← 1 to dd[ind ][x]

4 do append(in,x)

5 if dd[outd ][x] > 0

6 then for y ← 1 to dd[outd ][x]

7 do append(out ,x)

8 G = NEW-GRAPH(n)

9 x← E

10 while x > 0

11 do i← in[x]

12 y ← rand(x)

13 j ← out [y]

14 if i 6= j and G[j, i] = 0

15 then G[j, i] = 1

16 remove(out ,y)

17 x← x− 1

Here n and E are the number of nodes and edges, as before, and dd is a data struc-

ture describing the two-dimensional degree distribution of the observed network. It

contains two arrays of length n, named ind and outd ; the nth element of each array

contains the in- or outdegree of node n, respectively. Lines 1–7 create two data struc-

tures, called in and out . If node n has indegree y, then it will appear y times in in

(lines 2–4); if it has outdegree y, then it will appear y times in out (lines 5–7). A new

empty graph with n nodes is created on line 8. It is then populated with E edges. The

in array is worked through in reverse order, variable x keeping track of progress. Each

time through the loop in lines 10–17, a random entry (j) in the out array is selected

(lines 12–13), if the edge j → i does not exist, and j 6= i (i.e. the edge isn’t a self-loop),

then the edge is created, x decremented, and the entry j removed from the out array.

This results in a random network with the same two-dimensional degree distribution

as the original network.

For each 4-week period, 20 two-dimensional degree distribution-matched networks

were generated using this procedure, epidemics simulated upon these networks, and

survival curves plotted. Dyad censuses were performed on the BCMS and the model

networks. Reciprocity values were calculated from these censuses, and the values for

model and BCMS networks compared statistically using a single-value t-test, imple-

mented by the software package R (R Development Core Team, 2006).
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Figure 6.1: Rewiring a network to increase reciprocity whilst maintaining two-
dimensional degree distribution

In order for the model networks to better match the structure of the BCMS net-

works, it was necessary to increase the reciprocity of the model networks, whilst pre-

serving the two-dimensional degree distribution. This may be achieved with the fol-

lowing procedure: a two-dimensional degree distribution-matched network is gener-

ated, and then re-wired to increase the reciprocity of the network, without altering

the two-dimensional degree distribution. A step in the re-wiring process is illustrated

by figure 6.1, which also shows the change in dyad census that results; the following

pseudocode describes the algorithm:

REWIRE-STEP(G)

1 B ← rand(G)

2 C ← rand(G[B][out ]−G[B][in])

3 A← rand(G[B][in]−G[B][out ])

4 D ← rand(G[C][out ]−G[C][in])

5 assert(A 6= B 6= C 6= D)

6 assertG[A,D] = 0 and G[D,A] = 0

7 G[A,B]← 0

8 G[C,D]← 0

9 G[C,B]← 1

10 G[A,D]← 1

The node labels here correspond to those used in figure 6.1. First, a random node

B is selected from the graph G. Then, a node C is chosen at random from among those

nodes which have a link from B, but not to B, and a node A chosen from among those

nodes which have a link to B, but not from B. Fourthly, a node D is chosen at random

from among those nodes which have a link from C, but not to C. Lines 5 and 6 check

that A, B, C, and D are distinct, and that there is no edge between A and D already.

The edges are then rewired to replace A → B and C → D with C → B (creating a
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mutual dyad) and A→ D (maintaining the two-dimensional degree distribution). This

process was iterated until the model network had the same dyad census (and hence

reciprocity value) as the BCMS network. For each time period, 20 such networks were

generated, and 1,000 simulations of disease run on each. For figures 6.4 and 6.5, 1,000

model networks were generated. At each time point, the mean from the 1,000 simula-

tions was calculated; the mean, 2.5% and 97.5% quantiles were calculated from these

1,000 means, and additionally the 2.5% and 97.5% quantiles are calculated from all

million data points. For comparative purposes, one million simulations were performed

on the BCMS network, and the mean and 95% interquantile range calculated.

Results

Survival curves (i.e. a plot showing the proportion of nodes remaining in the susceptible

state at each time point) for the undirected version of the BCMS network, the Poisson

network, and the scale-free network with the same number of nodes and edges for a

typical four-week period are plotted in figure 6.2
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Figure 6.2: Representative survival curves comparing the BCMS network (made undi-
rected) to Poisson graphs and scale-free graphs with the same n and E

Figure 6.2 shows that epidemics fail to invade sparse Poisson networks of the type

generated here, making them poor models for the BCMS network. The scale-free net-

work model performs somewhat better, but it requires an undirected network, which is

not a good model for the directed BCMS network; table 6.1 below shows that there is

very little reciprocity of links in the BCMS network, i.e. edges typically connect nodes
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in one direction only.

The key feature of a scale-free network is its degree distribution, which may be

described by a power law distribution: P (k) ≈ k−γ where k is the degree of a node,

and γ is a constant; this means the degree distribution will produce a straight line if

plotted on log-log axes (Albert et al., 1999). In a digraph, nodes have both indegree

and outdegree; the degree distributions for a typical time-period of BCMS data are

plotted on log-log axes in figure 6.3, from which it is apparent that whilst the indegree

distribution follows a classical scale-free pattern, the outdegree distribution does not,

having too few high-degree nodes.
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Figure 6.3: In- and outdegree distribution for one 4-week period of BCMS

Reciprocity values (i.e. the proportion of edges that are bi-directional), derived

from the dyad census, for the BCMS networks from 2004, and the mean of 20 two-

dimensional degree distribution-matched networks with the same number of nodes and

edges as the BCMS network for the relevant period are shown in table 6.1. The p-values

derived from a single-value t-test show that the model networks are substantially less

reciprocal than the BCMS networks.

An exemplary survival curve comparing simulated epidemics on the BCMS network

and the relevant two dimensional degree distribution and dyad census-matched model

network is illustrated in figure 6.4. The BCMS network here is directed, whereas in

figure 6.2 it had been made undirected, to enable comparison with the preferential-

attachment model network (which has to be undirected).
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Time BCMS Mean Model
Period Reciprocity Reciprocity p-value

1 0.0154 0.0020 1.7× 10−40

2 0.0157 0.0023 3.4× 10−41

3 0.0157 0.0023 3.2× 10−43

4 0.0177 0.0024 5.5× 10−41

5 0.0210 0.0028 2.3× 10−42

6 0.0238 0.0027 9.6× 10−44

7 0.0251 0.0027 2.8× 10−46

8 0.0290 0.0024 6.1× 10−45

9 0.0272 0.0025 2.2× 10−45

10 0.0191 0.0025 2.9× 10−43

11 0.0123 0.0027 7.6× 10−39

12 0.0183 0.0025 2.5× 10−42

13 0.0159 0.0021 1.9× 10−42

Table 6.1: Reciprocity values for BCMS and model networks.

 0.91

 0.92

 0.93

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 0  20  40  60  80  100  120  140

su
rv

iv
al

time

Real (BCMS)
(95th percentiles)

Model
(95th percentiles of means)

(95th percentiles)

Figure 6.4: Representative survival curves comparing the BCMS network to 1,000
model networks with the same two-dimensional degree distribution and dyad census.
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Figure 6.5: Representative survival curves comparing the BCMS network to 1,000
model networks with the same two-dimensional degree distribution and dyad census.
Here, ν = 1 and µ = 1
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The disease process on the model networks with the same two-dimensional degree

distribution and dyad census as the BCMS network matches the dynamics of the disease

process on the BCMS network much better than the Poisson and scale-free models

discussed above do. This is true across a range of parameters; an example of a different

parameter set is figure 6.5, where ν = 1 and µ = 1, representing a very short-lived

but highly infectious disease. In both figures 6.4 and 6.5, the dark blue dashed lines

represent the 95% interquantile range of the means from each of the 1,000 model

networks (so illustrate the variability between model networks), whilst the light blue

dashed lines represent the 95% interquantile range of all million simulations on model

networks.

Figures 6.6 and 6.7 further demonstrate the quality of the two-dimensional degree

distribution and dyad-census matched model networks. They show mean final epidemic

size (as number of nodes, rather than proportion of nodes) against period number for

the various network models. Figure 6.6 compares the undirected version of BCMS

data with a Poisson network and a scale-free network with the same number of nodes

and edges across the 13 4-week periods of 2004. Figure 6.7 compares the (directed)

BCMS data with the means of simulations run upon 20 networks with the same two-

dimensional degree distribution, and upon 20 networks with the same two-dimensional

degree distribution and dyad census, across the 26 4-week periods of 2004–2005. It is

clear from these figures that not only do two-dimensional degree distribution and dyad-

census-matched models perform better than Poisson or scale-free models by resulting

in more numerically close final epidemic sizes, but that they better follow the trend

in changing epidemic sizes between 4-week periods. In figure 6.7, the benefit of the

re-wiring process is modest but consistent.

Figure 6.8 is the same figure as figure 6.7, but using the same short-lived highly-

infectious disease parameters as in figure 6.5, i.e. ν = 1 and µ = 1. It is notable that the

pattern across the 26 4-week periods is very similar between figures 6.8 and 6.7, and

that in both cases the correspondence between model networks and BCMS networks is

good. In figure 6.8, however, the benefit of the re-wiring process is very small (and, in-

deed, for a few of the time-periods, results in a very marginally poorer correspondence

with the real network). For figures 6.9–6.12 which follow, the parameters ν = 1 and

µ = 1 are used, as this results in final epidemic sizes of similar magnitude to the giant

components whilst not substantially changing the month-to-month pattern, resulting in

clearer figures.

Research published since this study was performed highlighted fluctuations in the

size of the giant weak and strong components of snapshots of BCMS movement data as

potential indicators of changing disease risk within the UK cattle herd (Robinson et al.,
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Figure 6.6: Mean final epidemic size for the 13 4-week periods of 2004, comparing the
BCMS network (made undirected) to Poisson networks and scale-free networks with
the same n and E.
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Figure 6.7: Mean final epidemic size for the 26 4-week periods of 2004–2005, com-
paring the BCMS network to model networks with the same two-dimensional degree
distribution (“Degree only” in the key), and networks additionally re-wired to have the
same dyad census (“Model” in the key).
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Figure 6.8: Mean final epidemic size for the 26 4-week periods of 2004–2005, com-
paring the BCMS network to model networks with the same two-dimensional degree
distribution (“Degree only” in the key), and networks additionally re-wired to have the
same dyad census (“Model” in the key). Here, and in the following figures, ν = 1 and
µ = 1

2007). Figure 6.9 compares the giant weak component size of the 26 4-week periods

of BCMS data with the mean giant weak component size of 20 two-dimensional degree

distribution and dyad census-matched model networks, and figure 6.10 illustrates the

same comparison, but considering the giant strong component size instead. It is notable

that BCMS networks have higher mean final epidemic sizes and giant strong component

sizes than the model networks, but that the model networks have larger giant weak

components.

Inspection of figures 6.8 and 6.10 shows a marked similarity in the pattern of final

epidemic sizes and giant strong component sizes; this is made clearer in figures 6.11

and 6.12, both of which compare final epidemic size and giant strong component size

across the 26 4-week periods of 2004–2005. Figure 6.11 compares mean final epidemic

size with giant strong component size for BCMS networks, and figure 6.12 compares

mean final epidemic size with mean giant strong component size for networks with the

same two-dimensional degree distribution and dyad census as the BCMS network for

the relevant period. Figure 6.13 plots mean final epidemic size against giant strong

component size for BCMS networks as a scatter-plot. Pearson’s product-moment cor-

relation coefficient between giant strong component size and mean final epidemic size

was 0.99, with a p-value less than 2.2×10−16, showing a very strong positive correlation

between them. The line of best fit in figure 6.13 was derived by linear regression, re-
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Figure 6.9: Giant weak component size for the 26 4-week periods of 2004–2005, com-
paring the BCMS network to model networks with the same two-dimensional degree
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Figure 6.10: Giant strong component size for the 26 4-week periods of 2004–2005,
comparing the BCMS network to model networks with the same two-dimensional de-
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sulting in a line with intercept −19.6 (not statistically significantly different from zero),

and gradient 1.15 (p-value less than 2.2× 10−16).
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Figure 6.11: Giant strong component size and mean final epidemic size for the BCMS
network, for the 26 4-week periods of 2004–2005.

Discussion

Static network models of the UK cattle herd have been used to consider the interplay of

cattle movements and infectious disease epidemiology (Kao et al., 2006; Christley et al.,

2005b; Bigras-Poulin et al., 2006). The generation of good artificial network models

that give rise to the same disease dynamics as real BCMS data has a number of benefits,

both in terms of addressing issues of biological interest, and in policy applications. The

model networks presented here, based on the two-dimensional degree distribution and

dyad census of BCMS networks, perform better than existing model networks.

The edges of a network of cattle farms are naturally directed; if farm i sells cattle

to farm j, then there is little or no risk of disease transmission from j to i, so it is in-

tuitive that the edge i → j exists, but not the edge i ← j. The preferential-attachment

model which generates scale-free networks, however, is only applicable to undirected

networks (Barabási and Albert, 1999), which is why an undirected version of the BCMS

network was used for comparison with it and Poisson graphs. The degree centrality of

individual nodes is a good predictor of their risk of acquiring or transmitting infec-

tion (Bell et al., 1999), and scale-free networks, which are defined by their extreme

degree distribution, have a range of distinctive epidemiological behaviours (Pastor-
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Figure 6.12: Giant strong component size and mean final epidemic size for model
networks with the same two-dimensional degree distribution and dyad census as the
relevant BCMS network, for the 26 4-week periods of 2004–2005.

Satorras and Vespignani, 2001a; Pastor-Satorras and Vespignani, 2002; Dezső and

Barabási, 2002). It was therefore natural to consider the two-dimensional degree dis-

tribution of BCMS networks as a starting point for the generation of model networks

which would exhibit similar epidemiological behaviours.

The requirement to maintain the two-dimensional degree distribution restricted the

selection of further structural measures to include in the model networks. Reciprocity

is straightforward to measure using a dyad census, and a network’s reciprocity may

be manipulated (by the novel algorithm described above) whilst maintaining the two-

dimensional degree distribution; furthermore the two-dimensional degree distribution-

based network models had substantially lower reciprocity values than the BCMS net-

works. The resulting model networks (with the same two-dimensional degree distri-

bution and dyad census as the relevant BCMS network) exhibit very similar disease

dynamics to networks based on BCMS data. In particular, not only is the numerical sim-

ilarity between model and BCMS networks greater than that observed with the Poisson

or scale-free networks, but the model networks follow the pattern over time observed

in the different BCMS networks much better (cf. figures 6.6 & 6.7). The larger final

epidemic sizes for the BCMS network in figure 6.6 compared to those in figure 6.7 are

because the BCMS network in figure 6.6 has been made undirected, which has the ef-

fect of increasing the density of the network. Figure 6.7 shows that the improvement in

fit resulting from the re-wiring procedure is modest. Re-wiring the model networks to

increase reciprocity also increases the mean final epidemic size, an effect not observed
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when the infectious agent is much more infectious and shorter-lived, as in figure 6.8.

Further investigation of the structural impact of the rewiring process on e.g. cluster-

ing would be warranted to understand these effects further. With the highly-infectious

agent, final epidemic size is very closely correlated with with giant strong component

size, and so it may be that the modest improvements observed with a less infectious

agent in figure 6.7 are swamped by the large final epidemic sizes (and the structural

features related to the size of the giant strong component).

Figures 6.9 et seq. allow the importance of giant component size to be considered.

Figures 6.9 and 6.10 compare the giant component (weak and strong, respectively) of

the BCMS network with the mean giant component size of the relevant model network.

The model networks have a slightly larger giant weak component than the BCMS net-

works, and a slightly smaller giant strong component. Figures 6.11 and 6.12 compare

final epidemic size and the size of the giant strong component for the BCMS networks

and model networks respectively. It is interesting that whilst the final epidemic size

is larger than the giant strong component size, the temporal pattern of both is very

similar, and that this is replicated in both the BCMS and model networks. Figure 6.13

shows how closely correlated giant strong component size and mean final epidemic size

are.

The size of the giant strong component has been used as a measure of the likely

epidemic size in the UK cattle herd before (Robinson et al., 2007); these results sup-

port that approach. The model networks described here result in similar giant compo-

nent sizes (both weak and strong) to BCMS networks, without component sizes being

considered in the model construction. However, this observation cannot demonstrate

whether giant strong component size is simply an emergent property of the key struc-

tural features of these networks that drive disease dynamics, or whether it is giant

strong component size itself that is key. In either case, however, breaking up of the gi-

ant strong component would be expected to substantially reduce epidemic sizes—doing

so reduces how many nodes are reachable from any given starting node. A targeted ap-

proach based on nodes with high indegree and/or outdegree would seem an obvious

starting point, based on work on scale-free (undirected) networks (Albert et al., 2000;

Dezső and Barabási, 2002); such nodes are likely to be large dealers, so whilst it would

be economically infeasible to prevent these dealers from trading, they might at least be

targets for more careful disease surveillance. The significance of the two-dimensional

degree distribution to the generation of model networks also supports the idea of tar-

geting highly-connected nodes as a potential control strategy.

The simulation technique employed here allowed different networks to be compared

using a relevant measure (the dynamics of a disease process) rather than simply using
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structural features; thus the biological feature of interest (disease dynamics) is used

as the basis for the theoretical approach—rather than using a structural feature which

might or might not drive disease dynamics as an outcome measure, disease dynamics

is directly employed. A problem with this approach is that selection of candidate struc-

tural features from the vast range developed for social network analysis (Wasserman

and Faust, 1994; Carrington et al., 2005) is significantly constrained by the need to be

able to generate model networks with a particular structural feature (or set thereof).

Particularly, there are structural features of networks which have been shown to be

important in some disease scenarios, such as clustering (Keeling, 1999), that have had

to be excluded due to the difficulty of incorporating them into the network model pre-

sented here. Furthermore, whilst the model networks with the same two-dimensional

degree distribution and dyad census as the BCMS networks produce similar survival

curves when disease outbreaks are simulated upon them, there is scope for further re-

finement of this model. Exponential random graph models allow the production of

model networks with a large range of structural features (Snijders, 2002), so could be

used in the future to generate additional information as to the key structural features

of the BCMS network with respect to disease dynamics. The drawbacks of such an ap-

proach include the computational cost of generating such models, and the comparative

difficulty in interpreting them, especially when compared with the relatively simple and

efficient to generate model presented here.

For simplicity’s sake, and because no disease in particular was under considera-

tion, some simplifications have been made in performing this work. In the future it

would be useful to model specific diseases using the BCMS data, at which point these

simplifications could be reconsidered; in the mean time, this approach of simulating

arbitrary infectious disease processes as a way of understanding aspects of the biol-

ogy of diseases in general has been widely used (Vernon and Keeling, 2009; Christley

et al., 2005a; Dezső and Barabási, 2002; Eames and Keeling, 2002; Pastor-Satorras and

Vespignani, 2001a). Dividing the BCMS network into 4-week periods, and then treat-

ing the resulting networks as essentially static was a convenient assumption to make,

and has been used by others to analyse cattle movement networks (Bigras-Poulin et al.,

2006; Christley et al., 2005b). Nonetheless, since the time of movements is recorded

(with twenty-four hour granularity), it would be sensible to consider incorporating this

information into a model; the network would then change every time-point during a

simulation, but otherwise the model would work as before. This approach would be

substantially more complex to implement, as well as taking much longer to run; if it

were to be used, it would be valuable to compare any results generated to those from

a static network approach as used here. Whilst static and dynamic network represen-
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tations of BCMS data are compared in chapter 7, it has not proved tractable so far

to generate dynamic model networks. Exponential random graph models can be used

to model dynamic networks, but the complexity and resource problems noted above

become even more acute in this case.

A current shortcoming of models of disease spread in the UK cattle herd is that they

are only able to replay movements from the past; they cannot predict what the UK cattle

movement network might look like in the future. This limitation is especially important

when control measures based on regulating the trade in cattle are considered—without

a model of what movements will be like in the future, it is hard to, for example, predict

the effect of increasing the standstill period upon the network structure of the UK cattle

herd (and hence on disease dynamics). The generation of model networks that are

similar from the point of view of disease dynamics to past movement networks has the

potential to be a starting-point for such models in the future.

Additionally, there are geographic data in BCMS, including easting and northing

values. These data could be used in two ways to enhance disease modelling. Firstly,

for diseases in which aerosol spread is important, such as foot-and-mouth disease,

nodes which are geographically proximate could be connected by edges (with a dif-

ferent transmission risk associated with them than livestock movement, depending on

distance). Secondly, the geographic spread of a simulated infection could be plotted.

Finally, if a specific disease were being modelled, then the underlying simulation model

could be refined to match available biological data about the pathogen under consider-

ation. These enhancements would produce a powerful, if complex, tool for simulating

potential outbreaks of real diseases in the UK cattle herd, and would enable disease

control measures to be evaluated in silico.
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Chapter 7

Dynamic and static network
representations of cattle movements

Introduction

A common approach when analysing cattle movement networks has been to consider

all the movements within a fixed period (typically 7 or 28 days, or a year) as a static

network, and then to analyse the properties of the resulting network (Christley et al.,

2005b; Bigras-Poulin et al., 2006), or to repeat this process for a consecutive sequence

of such periods and look for trends in the properties of the resulting networks (Robin-

son et al., 2007). Indeed, most social network analysis concentrates on static net-

works, and there is a paucity of strategies for addressing the structure of dynamic

networks (Wasserman and Faust, 1994). Research into dynamic networks has concen-

trated on models based on how individuals create or change their ties in a network, in

response to their perception of that network’s structure (Snijders, 2005), how popular

other individuals in the network are (Barabási and Albert, 1999), their social distance

from and shared activities with other individuals (Kossinets and Watts, 2006), or how

the other individuals perform in a game-theoretic framework (Skyrms and Pemantle,

2000; Zimmermann et al., 2004). The dynamic pattern of movement between farms is

also likely to be governed by some underlying set of rules linking livestock population

dynamics with economics; the aim of this work was not to attempt to model these rules

but rather, given the comprehensive nature of the recorded movements, to understand

how they influence disease transmission.

The UK cattle movement data, and the network of connections that can be derived

from them, are one of the most detailed data-sets available on dynamic network struc-

ture. As such these data have provided an ideal test of many theories and concepts

from network theory. What is more, the presence of information about infection on
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cattle farms (Gilbert et al., 2005; Wint et al., 2002) provides a real-world comparison

to the ideals of network theory. Predicting the spread of actual infections through the

cattle movement network requires models that can accurately capture the epidemiol-

ogy and natural history of a particular pathogen, and produce results that are specific

to the particular infection studied. Here an alternative, and more generic, approach

was adopted, using simple disease models to understand the implications of dynamic

cattle movements, as opposed to static network connections. These simple models treat

the farm as a single epidemiological unit.

In this chapter, a range of static and dynamic network representations of the UK’s

cattle herd are considered. Since the purpose of constructing network models of cattle

movement is to understand the impact of movements upon the dynamics of infectious

disease, simulated disease processes were employed to assess the suitability of the dif-

ferent network representations. The aim of this work was to ascertain if any static

network provides a consistent approximation to the fully dynamic network, or to iden-

tify regions of epidemiological parameter space where static network approximations

may be valid.

Methods

Disease simulation

The spread of disease on the network representations discussed in this chapter was

modelled using the stochastic discrete-time SIR model described in chapter 5. In the

case of dynamic networks, the network was updated after every model time-step.

Network representations

The cattle movement data from 2004 were abstracted to form networks in six different

ways. In general, these networks either represented plausible approximations to the

fully dynamic network or allowed the exploration of various aspects of the fully dy-

namic network. In each case, agricultural premises (such as farms or slaughterhouses)

were represented as nodes, and movements of cattle were represented as directed edges

(edge direction being the same as the direction of cattle movement). Transient stays

of less than 1 day on a location were not included in the network representations; this

will have excluded most stays on markets. For each resulting network (except where

otherwise noted), 10,000 disease simulations were run with values of transmission risk,

ν, ranging from 0.01 to 1 at intervals of 0.01 and with values of infectious period, µ,
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ranging from 1 to 50 (time-steps, which are equal to days) at intervals of 1 (a total of

fifty million simulations per network).

For each of the networks defined below, a graph matrix representation (G) was

determined, which was related to the recorded pattern of movements. The recorded

movements were represented as:

Ĝij(d) =

1 if movement from i to j on day d

0 otherwise

Hence Ĝ(d) was an N by N matrix linking the N livestock premises in Great Britain. It

should be noted that Ĝ(d) is solely based on the presence or absence of movements on

a given day and does not capture the number of animals that are moved.

Dynamic

The dynamic network (G full) was used to represent the consequences of all 366 days’

movements for 2004. In practice the dynamic network was effectively 366 static net-

works, one for each day of the year; if cattle moved from farm i to farm j on day d, then

the network for day d would contain an edge i → j. To accommodate long-duration

epidemics that lasted more than one year, the dynamic network was made periodic.

Accordingly:

G full =< Ĝ(0), . . . , Ĝ(365) >

where < . . . > denotes an ordered set. The behaviour predicted by the dynamic net-

work was considered to be the ‘gold standard’, and although the epidemiological as-

sumptions are too simplistic to match any real infection, the dynamic network most

faithfully captured the true pattern of contacts between farms.

Periodic dynamic

This network representation was constructed in the same manner to the full dynamic

networks, but only movements from a limited number of days (either 7 or 28) were

considered. The periodic-dynamic network representation G pd(x1, n), for a period of n

days starting on day x1 was defined as:

G pd(x1, n) =< Ĝ(x1), ..., Ĝ(x1 + (n− 1)) >

As such, comparing results from the periodic dynamic network with those from the fully

dynamic network allowed the assessment of the degree of variation in network struc-
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ture throughout the year. The periodic dynamic network captured the full movement

pattern from a short interval, the issue is whether such an interval is representative of

a year. In this chapter, x1 = 0 and either n = 7 or n = 28 days.

Static

This network was by far the simplest one considered. A number of days’ movements

(either 7 or 28) were combined, such that any movement of animals between two

premises within that period would result in an edge between the nodes corresponding

to those premises in the network. The static network representation G stat(x1, n), for a

period of n days starting on day x1 was therefore defined as:

G stat
ij (x1, n) =


1 if

x1+(n−1)∑
d=x1

Ĝi,j(d) ≥ 1

0 otherwise

This static network did not take into account the number of times a dynamic connec-

tion was present and was therefore expected to substantially over-estimate transmis-

sion compared to its fully dynamic counterpart for the same epidemiological parameter

values. In this chapter, x1 = 0

Weighted static

The weighted static network represented a straightforward refinement of the previous

static network, but accounted for the assumption that the frequency of movements

between farms is likely to be relevant to disease transmission. It was constructed in the

same manner as the static network representation, but the resulting edges were given

a weight equal to their frequency in the time period considered. The weighted static

network representation Gws(x1, n), for a period of n days starting on day x1 was again

an N by N matrix, the entries of which were defined as:

Gws
ij (x1, n) =

x1+(n−1)∑
d=x1

Ĝi,j(d)

n

In addition to the standard n = 7 and n = 28 day periods, a weighted static network was

constructed considering all movements in 2004 (n = 366); in all cases, x1 = 0. In many

ways, the weighted static network represented the natural static version of the fully

dynamic network (Bell et al., 1999; Corner et al., 2003). The key issue is the effect of
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replacing the brief strong connections of the dynamic network with permanent weaker

connections in the static model. Although both network assumptions should lead to the

same expected transmission from a given infected farm, the timings and distributions

of secondary cases were anticipated to be very different.

The final two network representations examined ways in which the dynamic net-

work could be smoothed. As such they provided a simple test of the implications of

daily movement structure as opposed to more slowly varying network structures.

Sequential weighted static

This representation consisted of a series of weighted static networks (based on 7 or 28

days’ movements), each being used for the number of simulation time-steps equal to

the number of days’ movements it had been constructed from. For example, where 7-

day weighted static networks were used, the first 7 simulation time-steps would be run

on the weighted static network constructed from days 1–7 of the original movement

data, the second 7 simulation time-steps on the weighted static network constructed

from days 8–14 of the original movement data, and so on. For this representation, due

to computational overheads, only 1,000 simulations were performed for each ν and µ

value. The sequential weighted static representation considering n days, G sws(n), was

defined thus:

G sws(n) =< GW (0), . . . , GW (X) > , where GW (x1) = Gws(n
⌊x1

n

⌋
, n)

where bxc represents the integer value of x, rounding down.

Smoothed

The smoothed network consisted of a series of weighted static networks, one per day,

to effectively produce a moving average of the fully dynamic network. For example,

using a 7 day moving average, the first network in this representation was a weighted

static network constructed from days 1–7 of the original movement data, the second

was a weighted static network constructed from days 2–8 of the original movement

data, and so on. Again, both 7 and 28 day moving averages were considered. For this

representation of the network, only 1,000 simulations were performed for each ν and

µ value. The smoothed network representation using a moving average over n days,

G smooth(n) was defined as:

G smooth(n) =< Gws(0, n), Gws(1, n), . . . , Gws(365, n) >

119



Results

Throughout, for greater clarity of the figures, only results from 28-day networks are

shown. Smoothing using 7- and 28-day windows generated similar behaviours. Epi-

demics run upon the 7-day periodic dynamic, static and weighted static representations

behaved similarly to those run on the equivalent 28-day representations, but with a

smaller final epidemic size (data not shown). This is to be expected as the shorter

7-day sampling interval leads to fewer movements being included and therefore a net-

work which is not as well connected.

The effect of varying infectious period when transmission probabil-

ity is constant

Figures 7.1(a) and 7.1(b) show mean final epidemic size against infectious period for

a transmission probability of 0.3 and 0.7 respectively; comparable results are obtained

for all transmission probability values investigated. When transmission probability was

relatively low (as in figure 7.1(a)), disease simulations upon the (28-day) static net-

work representations1 resulted in significantly larger final epidemic sizes than those

upon other network representations; this effect was especially marked with short infec-

tious periods. The static network representation combined multiple days’ movements

into one single network, resulting in a comparatively dense network; accordingly a rel-

atively large number of nodes were infected, even during a short-lived epidemic. For

all but the smallest infectious periods, the static network gave rise to an approximately

constant final epidemic size (of around 3000 farms); this signified that the epidemic

had reached all available nodes within the network — in this case it was the sample size

of 28 days and not the transmission process that limited the epidemic. This means that

epidemics generated on networks that utilised all the movements in 2004 could poten-

tially exceed 28-day static network epidemics if the infectious period and transmission

probability were large enough.

Other networks based on 28-day samples (the periodic dynamic and 28-day weighted

static network representations) produced results that approached asymptotically to

those of the static network as the infectious period became sufficiently long, as shown

in figure: 7.1(b). However, for shorter infectious periods both of these models pro-

duced smaller epidemic sizes due to the weaker strength of connections (in the case

of the weighted static) or intermittency of connections (in the case of the periodic

dynamic network). Interestingly the periodic dynamic network consistently produced

1Labelled as “static” in figure keys
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Figure 7.1: Infectious period versus final epidemic size for different representations of
the UK cattle herd in 2004. Transmission probability, ν = 0.3 (a), 0.7 (b)

121



larger epidemics than the weighted static, due to the way that the fixed infectious pe-

riod interacted with daily movements.

The two smoothed networks generated similar sized epidemics to the fully dynamic

network; with all three showing increasing final epidemic size with increasing trans-

mission probability and infectious period.

For low transmission rates, the year-long weighted static network (the most natural

static approximation) produced final epidemic sizes similar to those of the fully dynamic

model; hence it might be argued that, in terms of this simplest measure, the weighted

static network performs well. However, as the transmission probability increased, the

weighted static network produced far larger epidemic sizes. This discrepancy is due to

which element limits the epidemic spread — when transmission rates are high spread

through the dynamic network was limited by the intermittent presence of connections,

whereas for the year-long weighted static network connections were always present

and it was the probabilistic nature of transmission that limited the infection process.

This argument is made more precisely later.

The effect of varying transmission probability when infectious pe-

riod is constant
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Figure 7.2: Final epidemic size against transmission probability for different represen-
tations of the UK cattle herd in 2004. Infectious period, µ = 50 days.

Figure 7.2 again shows final epidemic size, but now the infectious period is fixed

(at µ = 50 days) and the transmission probability is varied. A similar pattern is visible

here as in figures 7.1(a) and 7.1(b) — but it is now more noticeable that both the
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smoothed and sequential weighted static networks underestimated the final epidemic

size predicted by the fully dynamic network. This underestimation was in part due

to the way that transmission probabilities were modified by the smoothed networks.

For the extreme case where the transmission probability ν = 1, a single connection in

the dynamic network was guaranteed to transmit infection (assuming the source farm

is infectious). This was not the case for the smoothed networks where the reduced

transmission rate (over a longer period) meant that infection may fail to transmit.

Differences in epidemic time-courses between different network rep-

resentations

Turning to the epidemic dynamics in more detail, figure 7.3(a) illustrates typical time-

courses for outbreaks simulated on the various network representations. It shows the

mean number of recovered nodes (total epidemic size so far) at each time-step from

simulations run with a transmission probability of ν = 0.36 and an infectious period of

µ = 12 days; lines stop when the epidemic dies out. Figure 7.3(b) shows the same in-

formation, but with the static network representation result removed, for clarity. These

figures give the clearest indication so far that the different networks give rise to differ-

ent epidemic profiles; as expected for these parameters the static network produced by

far the largest and most rapid epidemic. In all cases, the epidemics followed the typical

sigmoidal time-course of an SIR epidemic — initial slow spread, followed by a period

of rapid growth, which then slowed again as the susceptible population was depleted

(Anderson and May, 1991). It is interesting to note that the weekly farming cycle is

observable in the dynamic network with far less transmission occurring on Sundays; a

similar feature is seen for the periodic dynamic network.

The differences between the network representations are not merely

a matter of scaling

It is not clear from the above results whether epidemics on different network repre-

sentations are systematically different, or merely represent different scalings of the

underlying parameters. Therefore, the relationship between early growth and final

epidemic size was examined, to look for a consistent pattern between them across all

networks. Figure 7.4(a) enables this question to be addressed, plotting final epidemic

size against the number of infectious nodes after one infectious period (comparable to

R0) across the full range of transmission probability and infectious period values (each

point represents the outcome of a single model run). The relationship between early
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Figure 7.3: Mean number of recovered nodes at each model time-step for the different
network representations; static network representation removed for clarity (b). Trans-
mission probability, ν = 0.36; infectious period, µ = 12.

124



 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 0  500  1000  1500  2000  2500  3000

F
in

al
 e

pi
de

m
ic

 s
iz

e

Infectious nodes after one infectious period (≈ "R0")

dynamic
periodic dynamic

static
year-long weighted static

28-day weighted static
sequential weighted static

smoothed

(a)

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 1  10  100  1000  10000

F
in

al
 e

pi
de

m
ic

 s
iz

e

Infectious nodes after one infectious period

dynamic
year-long weighted static

(b)
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125



epidemic growth and final epidemic size was different for all the different represen-

tations (excepting the smoothed and sequential weighted static representations, which

are similar to each other in this regard). In figure 7.4(b), the x-axis is a log scale, which

clarifies the differences between the year-long weighted static representation and the

dynamic representation for smaller epidemic sizes. These figures highlight the fact that

the differences between networks are not due to a simple re-scaling of transmission

probabilities, but a more subtle interplay between total probability of transmission,

time to infection and the scale of the interconnected network.

Theoretical Considerations

The differences observed so far are now interpreted with the use of some simple an-

alytical calculations, focusing in particular on the somewhat unexpected differences

between dynamic and weighted static networks.

Traditionally, analytical techniques for considering disease spread through networks

are based upon concepts from percolation theory — which itself assumes that the net-

work is static and assigns probabilities to each link. However, working from first prin-

ciples in considering the spread of infection between nodes (farms) is necessary to

understand the differences between dynamic and static networks. Consider the con-

tacts and interaction between two farms; one of the simplest situations is if animals are

moved between them just once in a year. In the fully dynamic network Gfull
ij (d) will be

one on the day of movement and zero on all 365 other days; in contrast the year-long

weighted static network will have GWS
ij = 1/366 for all time points. Comparing these

two network representations, the probability of transmission is given by:

P full = ν
µ

366
PWS = 1−

(
1− ν

366

)µ
It follows that there is a non-linear scaling between the two probabilities. That

the probability of transmission in the fully dynamic representation is equal or greater

than that probability in the weighted static representation (i.e. P full ≥ PWS) may be

demonstrated as follows:

Define D as the difference between the two probabilities:

D = P full − PWS

D = ν
µ

366
−
(

1−
(

1− ν

366

)µ)
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For convenience, define x = ν
366

, so:

D = µx− 1 + (1− x)µ

Differentiating with respect to x:

dD

dx
= µ− µ(1− x)µ−1

= µ(1− (1− x)µ−1)

Since 1 − x ≤ 1, (1 − x)µ−1 ≤ 1, so 1 − (1 − x)µ−1 ≥ 0. When x = 0, D = 0 and
dD
dx

= 0, so in the parameter space of interest (where µ is between 1 and 366) D ≥ 0,

and P full ≥ PWS. The ratio of these probabilities at the level of individual contacts

can be translated into relative population-level epidemic sizes, with the prediction that

higher transmission probabilities should (on average) lead to larger epidemic sizes —

this is observed when comparing the 28-day periodic-dynamic with 28-day weighted

static representations in figures 7.1, 7.2, and 7.3.

The calculation of transmission probabilities can also be extended to the situation

where there are n movements from one farm to the other; assuming movements occur

at random throughout the year. For the weighted static network, this is straightfor-

wardly:

PWS
n = 1−

(
1− νn

366

)µ
For the fully-dynamic network, the derivation is a little more complex. Defining m

as the number of movements that occur during the infectious period, the probability of

transmission is:

P full
n =

n∑
m=1

P (m within infectious period) [1− (1− ν)m]

The number of ways of distributing n movements in a year is

366!

n!(366− n)!

The number of ways of distributing m movements within the infectious period µ is

µ!

m!(µ−m)!

The number of ways of distributing (n−m) movements across the days of the year not
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within the infectious period µ is

(366− µ)!

(n−m)!(366− µ− n+m)!

Therefore:

P full
n =

n∑
m=1

µ!

m!(µ−m)!
× (366− µ)!

(n−m)!(366− µ− n+m)!
÷ 366!

n!(366− n)!
[1− (1− ν)m]

P full
n =

n∑
m=1

µ!

m!(µ−m)!
× (366− µ)!

(n−m)!(366− µ− n+m)!
× n!(366− n)!

366!
[1− (1− ν)m]

This may be simplified a little further, given that(
m

n

)
=

n!

m!(n−m)!

∴ P full
n =

n∑
m=1

(
m

n

)
(366− n)!µ!(366− µ)!

366!(µ−m)!(366 +m− n− µ)!
[1− (1− ν)m]

As expected, this form simplifies to that given earlier for P full when n = 1.

Although these forms are more complex, it can be shown that, as before, the fully

dynamic model has a higher probability of transmission compared to the weighted

static network and therefore it is expected to generate larger epidemics (Keeling MJ,

personal communication); this effect may be observed in the results from artificially

created dynamic networks and their associated year-long weighted static equivalents.

In addition, it can be readily seen that a weighted static network sampled over a shorter

time-scale has a lower transmission probability compared to the year-long version.

For the case when n = 1 the expected time to transmission may be calculated (as-

suming infection has occurred):

T full =
µ+ 1

2
TWS =

µ∑
i=1

i
(

1− ν

366

)i−1 ν

366PWS

and hence it is shown that the weighted static network is likely to transmit infection

more rapidly (ibid.). When ν and µ are both large (and noting the assumption that

n = 1) it will be observed that transmission is likely in both models but occurs far more

rapidly in the weighted static model.

Comparing these theoretical results with the simulation studies, it is apparent that

two of the theoretical predictions are supported: 1) the year-long weighted static net-

work gives rise to larger epidemic sizes than weighted static networks sampled over
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shorter time-scales; 2) the year-long weighted static network gives rise to epidemics

that grow much more rapidly than the fully dynamic network (and faster than shorter

weighted static networks). However, in contrast to the theoretical predictions, the

year-long weighted static network gives rise to larger epidemics than the fully dynamic

network. The most likely cause of this theoretical failure is the inaccuracy of the as-

sumption (for the case where n > 1) that movements occur randomly throughout the

year; the true pattern of movements from a given farm shows both positive and nega-

tive correlations at a range of temporal lags. This temporal pattern reflects both live-

stock management (and dynamics) on the farm and legal constraints on the movement

of livestock. In particular, the 6-day standstill period prevents multiple on- and off-

movements within a 6-day period, while the natural cycle of births leads to increased

number of movements in both spring and autumn. It is clear, therefore, that the tempo-

ral correlation between movements to and from a farm leads to a significant reduction

in disease spread compared to a random pattern of movements, which is the primary

aim of the legal restrictions on animal movements (Madders, 2006).

Distribution of Epidemic Sizes

One applied use of such between-farm movement networks is to examine the early

spread of foot-and-mouth disease. A replaying-movements approach has been used,

similar to the dynamic network representation discussed here (Green et al., 2006), and

the properties of weighted static networks constructed from 28-day periods have also

been studied (treating the infectious period of foot-and-mouth as 28 days, and assum-

ing that foot-and-mouth would not remain undetected for longer than four weeks) (Kao

et al., 2006). Given the arguments above concerning the differences between static and

dynamic networks, it would be expected that using a shorter interval for both networks

would lead to greater similarity — given that 1-day networks will be identical. It is

therefore reasonable to consider the suitability of simpler network representations for

modelling such truncated epidemics.

A rapid infectious disease was simulated, with parameters (ν = 0.9, µ = 8) chosen

such that the final epidemic size between the 28-day weighted static representation and

the dynamic representation were comparable. The simulated epidemics were halted af-

ter 28 days, and one hundred million disease simulations were run. Figure 7.5(a)

shows the frequency distribution (on a log scale) of epidemic size after 28 days from

these simulations. The mean final epidemic size for the dynamic network represen-

tation was 121, and for the 28-day weighted static representation 155. A two-sample

Kolmogorov-Smirnov test (Conover, 1999) shows that these two distributions are sig-
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nificantly different (p < 2.2 × 10−16). From the difference between the means, it is

clear that for the same parameter values epidemics simulated through dynamic and

weighted static networks do not agree even at the shorter 28-day time-scale.

To generate a more fair comparison, the transmission probability within the 28-

day weighted static network was changed to achieve agreement between the mean

epidemic sizes predicted by the two network representations. One hundred million

disease simulations were again run with this new transmission value (ν = 0.8327) on

the 28-day weighted static network representation, and the results plotted against the

original dynamic network representation simulation outputs as figure 7.5(b). Although

the mean final epidemic size was 121 in both cases, a two-sample Kolmogorov-Smirnov

test again showed that the two distributions were significantly different (p < 2.2 ×
10−16).

The differences between the weighted static and dynamic network representations

in figures 7.5(a) and 7.5(b) are particularly noticeable at the higher final epidemic

sizes, which would lead to the worst-case scenario being considerably underestimated

if a weighted static network representation were used to inform policy-making. The

peaks observed in the dynamic network representation are an interesting example of

the importance of the dynamic nature of cattle movement. If a single movement acts

to connect two large interconnected groups of farms, then in a dynamic model trans-

mission between the two group relies on infection reaching the interconnecting link at

the appropriate time. Those epidemics that reach the link at the appropriate moment

and therefore infect both groups of farms are likely to give rise to far larger epidemics

than those that fail to reach the link — leading to bimodal distributions of epidemic

sizes. This sort of dynamic effect is lost in static network representations, yet may be

important to understanding the dynamics of infectious diseases in the UK cattle herd.

This bimodal nature is, in fact, observable in figure7.4(b) for the dynamic network.

Discussion

The cattle movement network from the UK provides one of the most detailed examples

of a well-documented network that has been continuously sampled over an extended

period. As such it is an ideal data set for testing many ideas about dynamic networks,

and how they can be understood and analysed. In particular there are clear reso-

nances with human contact networks, where connections are often seen as static, but

in practice contacts only occur intermittently. The key question is whether this complex

dynamic pattern of interactions can be captured by a suitable scaling of a static network

or whether the dynamic complexities have to be modelled explicitly for their effects to
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Figure 7.5: Frequency distribution (from 100,000,000 runs) of final epidemic sizes
from 28-day weighted static and dynamic network representations; simulations halted
after 28 model time-steps in each case. Transmission probability, ν = 0.9; infectious
period, µ = 8 (a); transmission probability for 28-day weighted static representation
adjusted to ν = 0.8327 to give same mean final epidemic size as the dynamic network
representation (b).
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be captured.

Figures 7.1 and 7.2 show that the different network representations of the UK cattle

herd exhibit differing behaviours as the two simulation parameters (infection proba-

bility, and infectious period) are varied. Therefore, for a given set of epidemiological

parameters, which set the local dynamics, no other representation was able to cap-

ture the population-level behaviour. Moreover, plotting early epidemic growth against

final epidemic size (figure 7.4(a)) demonstrates that these differences are systematic

and cannot be removed by a simple rescaling of epidemiological parameters: even if

network models are all parameterised to match the same observed early epidemic be-

haviour they fail to agree with predictions of final epidemic size. This shows that the

differences between the epidemics reflect fundamental differences in the way that the

infection dynamics interact with the network properties.

Weighted static network models were compared with results from the dynamic net-

work and a scenario designed to minimise the differences was considered. Both net-

work models were simulated for just 28-days (minimising the impact of longer-term

temporal correlations) and the epidemiological parameters were determined such that

the mean epidemic size (at the end of 28 days) was in agreement. However, despite

these measures, significant differences between the distributions of epidemic sizes were

still observed, with the dynamic network predicting more extreme values.

Whilst simpler network representations of the UK cattle herd have their advantages,

these results show that great care must be taken if such representations are to be used

for epidemiological prediction. This chapter has considered a range of alternatives

to the most realistic representation (i.e. the fully dynamic network), and shown that

they can give misleading results even when considering a relatively simple SIR dis-

ease simulation. In particular, when comparing fully dynamic network models to their

weighted static equivalent (probably the most natural approximation) the temporal cor-

relations between movements substantially reduces the epidemic size associated with

the dynamic model. If network models are to be employed to investigate infectious

diseases in the UK cattle herd, and used to make detailed quantitative predictions, then

they should be based upon dynamic directed network representations of the available

movement data.

Addendum

One approach adopted in the literature is to construct weighted static networks with

a snapshot length equivalent to the infectious period of the infection being consid-

ered (Kao et al., 2006). To address the difference between this approach and both
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dynamic networks and weighted static networks where the snapshot length is different

to the infectious period, consider an infected node x, that forms z out-edges (each last-

ing a day) over µ days, and N out-edges in a year. As before, transmission probability is

denoted by ν, and infectious period by µ. In the dynamic network representation, the

number of nodes x infects is described by a binomial distribution, and the probability

of infecting I nodes is:

P(I) =

(
z

I

)
νI(1− ν)µ−I

∴ R1
0 = νz

Here R1
0 refers to R0 for the dynamic network representation. In the year-long

weighted static network representation, at each time point during the infectious period,

infection may transmit to any of x’s N neighbours with probability ν
Y

where Y is the

number of days in a year, i.e. Y = Nµ
z

, and the transmission probability may be written
νz
Nµ

. If p = 1 − (1 − νz
Nµ

)µ, then the probability of infecting I nodes, and R0 for this

weighted static network model (denoted R2
0) are:

P(I) =

(
N

I

)
pI(1− p)N−I

R2
0 = N(1− (1− νz

Nµ
)µ)

Turning to the weighted static network where the snapshot length is µ, then the

situation is similar to above, but p = 1 − (1 − ν
µ
)µ. If R0 for this representation is

notated R3
0, then:

P(I) =

(
z

I

)
pI(1− p)µ−I

R3
0 = z(1− (1− ν

µ
)µ)

From these observations, two things of note follow. Firstly, an argument could me

made that ν should be tuned for weighted static network representations to make R0

the same as for the fully dynamic network representation. In the case of weighted

static networks where the snapshot length is µ, this may be performed as follows. If

ν is redefined in terms of a transmission rate Q, such that for the dynamic network

representation ν = 1 − e−Q, then R1
0 = z(1 − e−Q). For the weighted static network

representation, if ν is rescaled such that ν
µ

= 1− e−
Q
µ , then R3

0 = z(1− e−Q) = R1
0.

To investigate the relevance of this R0 rescaling to dynamics at the network level,

further simulations were run. For the fully dynamic network representation of 2004,

100 ν values between 0.01 and 1 were chosen, and 10,000 simulations run with µ set to

133



28. As a comparison, a 28-day weighted static network representation was created from

the first 28 days of 2004. For each ν value used in the dynamic network representation,

Q was calculated, and then a ν value for the weighted static network representation

was calculated such that R0 for the two network representations was the same. As

before, 10,000 simulations on the 28-day weighted static network representation were

run. The mean final epidemic sizes for both network representations are plotted in

figure 7.6; the ν values on the x-axis are those for the fully dynamic network repre-

sentation. It is notable that despite this re-scaling of ν such that R0 for both network

representations is expected to be the same, final epidemic sizes are different, and that

the relationship between the two is not linear. The re-scaling of ν, however, does result

in a better correspondence between the weighted static and dynamic network repre-

sentations. This supports the view that link saturation effects (Keeling and Grenfell,

2000) are having some impact on disease dynamics on these network representations,

although they are clearly not the only source of difference between the weighted static

and dynamic network representations.

Secondly, it follows that

R2
0 = N(1− (1− R1

0

Nµ
)µ)

...and that therefore the relationship between R0 for these two different representations

can be considered. In 2004, the maximum N is 4067. Ignoring seasonality, this gives a

maximum z (and hence R1
0) of approximately 312. If µ is fixed, then R2

0 may be plotted

in terms of N and R1
0; this is plotted with µ = 28 in figure 7.7. Whilst care needs to

be taken in over-interpreting individual-based values of R0 when comparing static and

dynamic networks (as figure 7.6 shows), this is still an interesting figure. Particularly,

R2
0 (the weighted static network representation) is typically lower than R1

0 (the dynamic

network representation), but the relationship is non-linear, being most marked when N

(the number of movements in a year) is small. This re-inforces the argument advanced

earlier in this chapter that static network representations of cattle movement data need

to be used with care.
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Chapter 8

A postal survey of contacts between
the cattle farms on the Isle of Lewis

Abstract

The British Cattle Movement Service (BCMS) database contains an unprecedented

quantity of data on the movement of cattle within the United Kingdom (UK). These

data may be used to construct models of the contact structure of the UK cattle herd,

for epidemiological purposes. There are two significant potential sources of inaccuracy

within such models: contacts between farms that are not required to be reported to

BCMS (such as movement of animals to common grazing lands, or sharing of agricul-

tural equipment), and movements which are incorrectly reported to BCMS. This field

study addressed these issues. Cattle farmers on the Isle of Lewis were recruited with

the assistance of the local veterinary surgeon, and asked to record a range of poten-

tial risk behaviours (moving livestock, sharing pasture, etc.) for a one-month period.

They were also asked questions about husbandry practices on their farm. Compari-

son of the BCMS contact data with that reported by Lewis’ farmers highlighted use of

common grazing land as a significant source of contact between cattle (and potential

disease transmission) that currently goes unreported; around half of responding hold-

ings on Lewis use common grazing land at some point during the year, and none of

these movements are reported to BCMS.

Introduction

RADAR’s animal movement data may be an inaccurate measure of the contact structure

of the UK cattle herd if some movements are not reported to BCMS (whether due

137



to fraud, lack of understanding of the finer points of movement regulations, or some

other reason), or if there are significant levels of contact between holdings that might

transmit infection but are not cattle movements (e.g. the sharing of transport vehicles,

cattle contacting each other in neighbouring fields, etc.).

A National Audit Office report raised the following concerns about the data held in

BCMS: information about 8% of animals was incomplete, the location of 2% of animals

could not be determined, 20% of movements were reported late (so the BCMS database

was out of date), and 3% of movements were anomalous. The report also expressed

concern about the effect of linked holdings upon BCMS’s ability to accurately locate

cattle (National Audit Office, 2003). BCMS’s data quality has improved over time,

although attempts to construct movement histories for animals have highlighted in-

consistencies in the recorded movements (Mitchell et al., 2005). Statistical analyses of

BCMS movement data have highlighted biases in the reporting of birth dates (Robinson

and Christley, 2006), and the fact that certain classes of movements (specifically, those

of older animals, longer-distance movements, and movements to slaughterhouses) are

under-reported (Green and Kao, 2007).

The aims of this study were to characterise as completely as possible the contact

structure of a geographically limited region, to assess the extent to which movements

not reported to BCMS and contacts other than cattle movements between holdings

affected that structure, and to attempt to compare this contact structure with the inci-

dence and spread of an infectious disease within that region.

The Isle of Lewis (one of the Western Isles of Scotland) was selected for this study

because of an existing professional connection with the veterinary surgeon on the is-

land, whose support was thought to be key to ensuring a good participation rate from

the farmers. Additionally, as an island, it has a clear boundary, and contains sufficient

farms to provide a useful but manageably small data set. There is an abattoir on the

island in Stornoway (the largest settlement), and shows are held at Barvas (in July)

and Carloway (in August). Some of the communities on Lewis own common grazing

land; this is land which can be used for grazing cattle by the residents, but is not com-

mon land as the term is used in English law, i.e. it is not land over which people may

exercise rights of common such as grazing or cutting bracken (there is no such concept

of commoning in Scottish law).

Milk-sampling of dairy cattle was considered as an economic and uninvasive method

for measuring disease prevalence and spread on the island; individual milk-sample

tests exist for Infectious Bovine Rhinotracheitis, Bovine Viral Diarrhoea, and Leptospira
hardjo. The cattle of Lewis, however, are thought to be free of these diseases following

the implementation of a cattle health plan for the island. There are a “few” Johne’s
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disease cases, and the only disease of note detected at the abattoir is hydatid disease

(Echinococcus granulosus) (H. Low, personal communication).

The relevant contact between holdings for the transmission of hydatid disease is

dog roaming, which would be difficult to measure accurately, and is likely to correlate

well with geographic proximity. Furthermore, the disease is difficult to detect at all in

live stock, and at post-mortem detection is possible only in those animals over eighteen

months.

Accordingly, it was concluded that there were no economically feasible disease mon-

itoring schemes that could be adopted. This chapter describes a postal survey of the

cattle farmers of Lewis to collect data on their movements of cattle in August 2005 and

other potential routes of disease transmission between their holdings, and the compar-

ison of these data with movement data for the same period collected from RADAR.

Materials and Methods

The addresses of cattle holdings on the Isle of Lewis were obtained from the Scottish

Executive Environment and Rural Affairs Department (SEERAD) based on data from

the 2004 agricultural census. Movement data from RADAR were based upon an ex-

tract provided by the Department for Environment Food and Rural Affairs (DEFRA)

in May 2006. A letter inviting cattle farmers to participate in this study was posted

in June 2005, along with a questionnaire upon which they were requested to record

any movement of cattle between 1 and 31 August 2005 inclusive. Additionally, farmers

were requested to record occasions when they shared agricultural equipment with other

farmers as this was a potential route of disease transmission (Wilesmith et al., 2003).

They were also asked to record if and when they used shared grazing, or attended

agricultural shows or sales (all of which are opportunities for livestock to transmit in-

fectious diseases to one another) within the same period. The questionnaire is included

as appendix A, scaled down from the A3 original.

A second letter was posted to those farmers who had not opted out of the study

on 29 August 2005. It included a questionnaire about the number and breed(s) of

cattle held on the farm, the county/parish/holding (CPH) number of the farm, the

ownership of the land the farm was on, the artificial insemination (AI) company used

(if any), when (if at all) the cattle were housed or put on shared grazing land, as well

as a prompt for any further comments about BCMS. This holding details questionnaire

was sent separately to the movement questionnaire to reduce the burden of paperwork

arriving with farmers at once, as well as to remind them about the request to record

movements during August. This questionnaire is included as appendix B.
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Non-responders were sent further letters encouraging them to participate (by re-

turning the questionnaires about their holding and any movements in August 2005) on

27 September and on 30 November 2005.

A contact network for August 2005 was derived from the movement data supplied

by the farmers; RADAR was interrogated for movements during the study period from

or to those holdings which had returned movement questionnaires. Where movements

reported by farmers were not recoverable from RADAR in this manner, the following

steps were taken, in order, to try and locate a suitable movement record in RADAR:

1. Interrogate RADAR about any movement between the two holdings in July or

September 2005.

2. Interrogate RADAR about any movement between the two holdings in 2005.

3. Consider other movements in August 2005 in RADAR where one end-point is

correct (i.e. corresponds to the movement record supplied by the farmer), and

see if the “incorrect” end-point of the movement is likely to have been incorrectly

entered by the farmer or by BCMS staff.

4. Extend the previous search to include July and September 2005.

5. Extend the previous search to include all of 2005.

6. Extend the previous search to have no date restriction.

7. Locate the animal(s) involved in the movement in RADAR by ear-tag, and search

for movements involving that animal during July, August, and September 2005.

8. Where the ear-tag supplied by the farmer could not be matched, search through

the ear-tags of livestock that have stayed on the holding in question for a similar

ear-tag, and then repeat the above search.

Three further contact networks were constructed by interrogating RADAR for move-

ments in August 2005 between all the cattle farms of Lewis - one taking SEERAD’s list

as definitive (referred to later as “SEERAD Holdings”), one using all holdings listed in

RADAR with the string “ISLE OF LEWIS” in their address (referred to later as “‘ISLE

OF LEWIS” Holdings’), and one using RADAR’s location data based upon the postcode

address file (PAF) to collect holdings with HS1 or HS2 postcodes i.e. those postcodes

corresponding to Lewis (referred to later as “PAF Holdings”).
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Results

Response level, and holding details

Letters were sent to 154 distinct addresses. Four were returned by the Post Office as

“address inaccessible” or “addressee has gone away”. Of the remaining 150 addresses,

54 returned at least one of the two questionnaires (38 of these returned both), and 17

explicitly refused to participate in the study. Nine of these refusing holdings reported

that they no longer had any cattle (and thus were useful responses). The only replies

to the letter of 30 November were refusals to participate in the study, so sending out

further reminder letters was considered unlikely to be productive. A summary of the

responses to the holding details questionnaire is shown in table 8.1.

Variable Number
Land ownership

own 5
rent 45
other 2
no response 1

AI use
yes 7
sometimes 7
never 36
no response 3

Cattle housed
yes 24
no 28
no response 1

Shared grazing used
yes 28
no 24
no response 1

Type of cattle kept
beef 49
dairy 4

Table 8.1: Summary of responses to the holding details questionnaire

Four holdings reported having small numbers of dairy cattle, the maximum number

of cattle held being 5. Forty-nine holdings reported having beef cattle; the median

number of beef cattle on these holdings was 6 (the range was 1–50).

Fifty holdings supplied information regarding land ownership, of which 5 (10%)

owned their land, and 45 (90%) rented it. Of the 50 holdings answering the AI ques-
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tion, 14 (28%) used AI, 11 of which used the same local operator, and 3 used a national

company; 36 (72%) holdings specified that they never used AI. No holdings said they

shared a bull.

Twenty-eight of 52 (54%) holdings specified that they made some use of shared

pasture; 18 of those used shared grazing during the summer (May to October), and 4

specified that they use it all year; the remaining 6 holdings made use of shared grazing

outside the summer months.

Reportable contacts

Responders reported 36 movements of livestock. These included movements to or from

11 holdings on the island to which questionnaires had not been sent, and other con-

nections to 4 other such holdings. These 15 holdings included the showground and

abattoir on the island, 8 holdings in the BCMS database, but not in the list of holdings

provided by SEERAD, 3 properties with no entry in either the BCMS database or the

SEERAD list, and 2 patches of common grazing land.

Three holdings reported movements between two other holdings (i.e. movements

that neither began nor ended on the responding holding); this accounts for the fact that

there are 15 nodes in the network described by questionnaire returns, even though only

14 holdings reported movements. The 36 reported movements of animals resulted in

only 10 edges in a movement network; this is due to two factors. Firstly, multiple

animals moved in a single batch only contribute one edge to a movement network; sec-

ondly, movements between two holdings on separate days only contribute one edge to

a static movement network. Forty-seven responding holdings reported no movements;

this figure includes the nine holdings who refused to participate because they had no

cattle.

A summary of the size and density of the reported network of movements, as well

as the networks derived from RADAR, is in table 8.2; only holdings with at least one

movement reported to or from them are included in the node counts. It is apparent from

table 8.2 that the contact structures of the different sets of holdings (i.e. the RADAR

networks corresponding to the holdings supplied by SEERAD, the holdings with Lewis

postcodes in the PAF, and the holdings with “ISLE OF LEWIS” in their address field) are

similar; whilst the set of PAF-matched holdings is somewhat smaller due to problems

with address quality in the underlying BCMS data, it is of similar density. It is difficult

to meaningfully compare these three networks with the two networks based on the

questionnaire holdings, due to the substantial difference in their sizes (for example,

a larger network will have lower density than a smaller network with similar mean
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degree). The degree distribution (summed in- and out-degree) according to RADAR

for those holdings that responded compared with all the holdings on Lewis (according

to the SEERAD data) is shown in figure 8.1.

Questionnaire RADAR – RADAR – RADAR – RADAR –
Network Data Questionnaire “ISLE OF LEWIS” SEERAD PAF

Holdings Holdings Holdings Holdings
Nodes 15 8 54 51 43
Edges 10 5 74 66 53

Density 0.05 0.09 0.03 0.03 0.03
Largest 4 4 36 34 29

Component

Table 8.2: Summary network properties of the five different representations of the Isle
of Lewis in August 2005. Only holdings with at least one movement on or off during
the study period are included.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0  5  10  15  20  25

F
re

qu
en

cy

Degree

All nodes
Responders

Figure 8.1: Line plot showing the degree distribution (summed in- and out-degree) of
responding holdings and all holdings on Lewis (according to the SEERAD data).

During the study period there were two agricultural shows locally — the Carloway

Show on 3 August, and the North Harris Show on 13 August; one holding reported

attending these, but did not report them as movements on the questionnaire, and

RADAR records movements of animals from that holding to and from the relevant

showgrounds. RADAR records the movement of animals to and from one other re-

spondent to these shows, but that respondent did not report having attended either
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show. One holding reported a movement of an animal which RADAR reports as having

never moved from the holding it was born on, in mainland Scotland.

Non-reportable contacts

Whilst 54% of holdings reported making some use of shared grazing land during the

year, three holdings reported movements during the study period to common grazing

lands (none of these movements were in RADAR). One of these supplied a CPH number

for the common grazing land; the relevant location in RADAR has no movements to or

from it reported ever. Whilst no holdings in RADAR are specified as being of type “CL”

(common grazing land), none of the 3 holdings on Lewis with “common grazing” in

their addresses have had any movements to or from them recorded in RADAR. Including

the available data on shared grazing (from the questionnaires) adds one component of

size 2 to the contact network.

There were eight instances of holdings sharing agricultural equipment related to

cattle such as cattle trailers; one respondent mentioned that they cleaned the equip-

ment between uses, although the circulated questionnaires did not ask about this.

Three holdings (of the forty-seven who supplied a CPH number) filled in an incor-

rect CPH number on their form. Two holdings’ addresses as supplied by SEERAD were

not found in RADAR, although a similar address was found in both cases.

A free comment box was available on the questionnaire. The following points were

raised: “birth registration forms seem too large for the information required”; “pass-

ports are dated when cattle are delivered to the local mart, but the mainland mart date

will be forwarded to BCMS, so producing a discrepancy when SEERAD do checks”;

“stock not registered soon enough after birth should be able to leave their birth holding

as long as they do not enter the food chain”; “paperwork should be reduced (and made

easier to fill in)”; “[BCMS does] a good job in difficult circumstances”.

Discussion

A substantial proportion of cattle holdings on Lewis use shared grazing, and their move-

ments of cattle to and from these shared grazing lands are not reported to BCMS. This is

a significant source of contact between animals, and potentially of disease transmission,

that is not represented in BCMS cattle movement data.

Not all movements of cattle are required to be reported to BCMS; specifically, move-

ments between linked holdings, within crofter townships, or to or from temporary grass

lets or common grazing land are exempted, although they must still be recorded in the
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herd register. Across the UK, there are only 28 holdings in RADAR with “common graz-

ing” in their address (and none classified as type “CL”), of which 17 have ever had

livestock recorded as staying on them. If this search is widened to just requiring “graz-

ing” in the address field, then 90 holdings are found, 31 of which ever have livestock

stays reported in RADAR; some of these may well be rented grazing lands, rather than

common grazing land. In some areas of the UK (including the Isle of Lewis) this means

that a substantial number of cattle movements are not being reported to BCMS; whilst

movements to common grazing land are not relevant to BCMS since the animals stay

under the same ownership, they are clearly significant from the point of view of epi-

demiology. It is difficult to assess the contribution of these unreported movements to

contact network structure nationally, but this issue highlights one of the problems of

BCMS as an epidemiological tool — it was not designed to be one. Sensitivity analysis

of network-based models is important, therefore, so that they are not invalidated by

omissions in BCMS.

Some respondents who declined to participate said that they thought their holdings

were “too boring” to participate in the study, suggesting there may be bias against

holdings with no cattle movements in August amongst the respondents. Comparing

the summed in- and out-degree distribution of those nodes that responded (the study

group) with all the holdings on Lewis (the study population) suggests that this was not

a significant factor, although the small sample size prevents any meaningful statistical

analysis.

As is typical for the Western Isles, most of the study group are small rented crofts.

Small holdings are only selected for the annual census every 3 years, so it is unsur-

prising that some respondents said that they had not had any cattle for a number of

years.

There were a number of basic errors in the data supplied by farmers, regarding the

ear-tag of their cattle or the CPH number of their holding. These particular errors are

harder to make when reporting movements to BCMS, since passports are pre-printed

with the correct ear-tag, and keepers have adhesive labels with their CPH number on

them to use on the passports; nonetheless, the system does largely rely on keepers ac-

curately reporting movements, and there is a potential source of error here. A review of

livestock movement controls has noted that the current regulations are overly complex,

and prone to fraud (Madders, 2006). Whilst it would have been much more labour-

intensive to check the movement record books of each farm, this would have been a

useful way to validate both the questionnaire responses, and BCMS data. Additionally,

further piloting of the questionnaire might have resulted in better quality data (for ex-

ample, one responder noted that they attended a show, but did not record the relevant
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movements of animals on their movement questionnaire, suggesting that this aspect of

the survey was unclear).

The differences between the three sets of Lewis holdings extractable from RADAR

are interesting; RADAR lists some holdings on Lewis that were not in the list of holdings

SEERAD provided, but the quality of address details of some of the holdings on Lewis

stored in RADAR is sufficiently poor that it is not possible to look these addresses up in

the PAF. Only 74% of holdings in RADAR have an associated PAF entry, so the problem

of address quality in RADAR is clearly somewhat widespread. Although this study

has highlighted problems with the census data, performing the agricultural census on

individual premises more frequently has significant cost implications. From 2007, cattle

populations are being reported based on data from RADAR, not the Agricultural Survey.

This survey detected only a very low level of contacts between farms that had the

potential for disease transmission but were not cattle movements (whether reported

to BCMS or otherwise); that reinforces the use of cattle movement data for contact

network analysis for epidemiological purposes in the UK. A larger-scale study would be

needed to establish more fully the level at which such contacts occur throughout the

year.

A potential criticism of this study is that the Isle of Lewis does not represent a typical

population of UK cattle farms. Given the heterogeneity of the UK’s cattle farms, it would

be difficult to define a typical cattle farm (or set of cattle farms). The conclusions drawn

from this study, furthermore, do not depend for their validity upon the typicalness of the

population of farms studied. The similarly populous but smaller mainland of Shetland

had a similar movement network (based on number of nodes and edges, and giant

weak component size) in August 2005, whilst the similarly sized isle of Skye (which

has about half the human population) had many more animal movements (data not

shown). Accordingly, the results from Lewis should not be naively extrapolated to

other Scottish islands. It would have been preferable to use a longer study period than

one month, but this would have increased the burden on farmers, and might well have

resulted in a lower response rate.

Further work in this area would usefully include the measuring of prevalence and/or

spread of infectious disease amongst a small cattle population alongside the collection

of movement data. This would allow the utility of contact network-based methods

to be compared with simpler modelling techniques. Additionally, larger-scale studies

to establish the levels of non-reportable movements (and infectious contacts that are

not animal movements) across the UK throughout the year would be beneficial for the

formation of more accurate models of the contact structure of the UK cattle herd.
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Chapter 9

Discussion

The availability of cattle movement data from RADAR provides an unprecedented op-

portunity to model disease processes on a large and almost complete contact network.

In this thesis, these data have been used to construct a variety of different contact net-

works for UK cattle farms, as well as to investigate the demographics of the UK cattle

herd. These are not the only types of question that could be investigated, however.

An important open question in social network analysis is how to gather a representa-

tive sample of a network (Marsden, 2005); having such a large and complete network

would enable different sampling strategies to be tested. In particular, from an epidemi-

ological perspective, networks could be “sampled” from the complete RADAR network,

and disease simulations run upon the sampled networks; this would enable different

sampling strategies to be assessed for their suitability for epidemiological investigations

in areas of the world where movement data are not usefully collected, such as Canada

(where some movement data are collected by the Dairy Herd Improvement scheme)

and the United States of America. A specific concern in some states of the USA is bovine

tuberculosis (BTB); in Michigan, for example, the wild white-tailed deer (Odocoileus
virginianus) population has endemic BTB (Hickling, 2002), which sometimes results in

infections in domestic cattle (Schmitt et al., 2002). There is concern that cattle move-

ments might be responsible for spreading BTB further through the state, and yet the

only movement records available are based on contact tracing from farms where BTB

has been detected. UK cattle data could be used to study the biases resulting from only

collecting movement data in this manner, which might then be combined with data on

the location of cattle in Michigan to go some way towards predicting any likely spread

of BTB in Michigan by cattle movement.

Examination of the trends in cattle movement since 2002 showed that there was lit-

tle overall trend in the way cattle were moved; the upwards trend observed when con-

sidering 2002–2005 (Robinson et al., 2007) has not continued since that time. Given
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that the regulatory regime regarding animal movements has changed repeatedly since

2002 with the aim of “improv[ing] notifiable disease control through a lower risk of

outbreaks, quicker control of outbreaks, [and] reduced cost of outbreaks” (Madders,

2006) and has become overly complex and prone to fraud, this is a significant finding.

Further work, using simulation of a range of infectious diseases over time, is ongoing

to investigate how and whether the susceptibility of the UK cattle herd to infectious dis-

eases has been changed by the shifting regulatory landscape. This is important work,

as without an understanding of the benefits (or lack thereof) of livestock movement

controls, it is impossible to assess whether the costs associated with regulation are

worthwhile.

A vast range of measures of the structure of networks exist; whilst most of these

arise from an interest in the sociological properties of networks of humans, several

have proved valuable in investigating the importance of contact networks in disease

transmission. Broadly, the two approaches used have been to consider the centrality of

nodes as an indicator of their role in disease dynamics (Borgatti, 2005; Christley et al.,

2005a; Bell et al., 1999), or to consider the giant component sizes as indicators of the

upper or lower bounds of a likely epidemic (Robinson et al., 2007; Kao et al., 2006;

Kao et al., 2007; Kiss et al., 2006b). By contrast, the approach taken here has been

to consider the network as a whole, and to investigate how its structure impacts upon

the dynamics of disease across the network. Firstly, 4-week snapshots of cattle move-

ment data were taken as the basis for modelling, an approach which has been used by

other authors (Christley et al., 2005b; Bigras-Poulin et al., 2006); they were then used

to generate model networks (via a novel technique based on the two-dimensional de-

gree distribution and dyad census) that exhibit very similar epidemiological properties

as assessed by disease simulation. The success of this approach shows that the two-

dimensional degree distribution and dyad census are key structural features of these

static movement networks from an epidemiological point of view; the correlation be-

tween giant strong component size and final epidemic size observed also supports its

use as a measure of likely epidemic outcome, although that approach has been criti-

cised by other authors (Dubé et al., 2008). It is perhaps even more important, though,

that the generation of model networks that are epidemiologically similar to the cattle

movement network of the UK has the potential to lead to predictive models of cattle

movement; this is discussed further below.

Whilst most work on cattle movements in the UK has abstracted the movement data

to a static network or series thereof, movement data are in fact collected with 24-hour

granularity. This raises the important question of whether important aspects of disease

dynamics are being sacrificed on the altar of convenience. By comparing a substan-
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tial range of different network representations using simulated diseases, it has been

demonstrated that simpler static network representations are seriously deficient when

compared to a fully dynamic network representation, and that this deficiency is not

merely a matter of scaling. This has significant implications for future work on network

models of the UK cattle herd. Particularly, there is a shortage of strategies for addressing

the structure of dynamic networks (Wasserman and Faust, 1994), and previous work

on dynamic networks has tended to concentrate on how individuals create or change

their ties in a network, in response to their perception of that network’s structure (Sni-

jders, 2005), how popular other individuals in the network are (Barabási and Albert,

1999), their social distance from and shared activities with other individuals (Kossinets

and Watts, 2006), or how the other individuals perform in a game-theoretic frame-

work (Skyrms and Pemantle, 2000; Zimmermann et al., 2004). There is both a chal-

lenge and an opportunity here to develop new ways of understanding the structures of

dynamic networks in a way that relates to the dynamics of infectious diseases on those

networks.

In the light of these findings of the inferiority of static network representations of

the UK cattle herd, it is worthwhile considering again the merits of models with epi-

demiologically similar properties to 4-week snapshots of cattle movement data. Whilst

dynamic model networks that were epidemiologically similar to dynamic network rep-

resentations of the UK cattle herd would clearly be highly desirable, they have remained

elusive so far. Not only are these static models the only epidemiologically similar net-

works to the UK cattle herd generated to date, they also provide a starting point on

which others may build. Furthermore, it should be noted that static network mod-

els have provided insights into the structure of UK horse-racing (Christley and French,

2003), sheep movement (Webb, 2006), and cattle movements (Christley et al., 2005b),

so these model static networks clearly have some intrinsic utility.

To date, no effort has been made to predict the future contact structure of the UK

cattle herd. This is a significant shortcoming, both from a policy perspective, and from

an epidemiological one. Additionally, it is difficult to predict the effect of any proposed

policy intervention; indeed some of the results in this thesis suggest that the impact of

policies designed to reduce the UK cattle herd’s susceptibility to infectious diseases by

regulating livestock movements may be less effective than hoped. In order to address

these issues, it would be very desirable to have an accurate model of the movement

of cattle within the UK. This would enable questions such as “What happens if FMD

returns to the UK next year?” and “How would changing the standstill period to 14

days affect such an outbreak?” to be addressed. Also, given the time delays between

movements happening and their details being available to researchers, it would enable
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questions of the form “FMD has just been found in Surrey. What is going to happen

next?” to be addressed with more confidence; during the 2007 FMD outbreak, current

movement data were not available to researchers, which hampered the modelling ef-

fort. The static model networks generated in this thesis are a useful starting point, but it

is clear that a dynamic network model of the UK cattle herd is desirable. Demographic

data from RADAR (such as which types of holding tend to move animals to which other

types of holding) along with economic models of cattle farmer behaviour might fruit-

fully be combined to produce a model of why farms move animals in the way that they

do; such a model would help policy-makers to understand the likely reaction of farmers

to a proposed policy intervention, as well as enabling the impact on disease dynamics

of these reactions to policy changes to be assessed, and predicting the likely shape of

the UK cattle movement network in the months and years to come. This would be very

valuable in the face of an outbreak of a new infectious disease in the UK, as well as

enabling future movement regulations to be produced from a much stronger evidence

base.

The field study carried out on the Isle of Lewis highlighted some of the issues as-

sociated with using RADAR data for contact network analysis, particularly regarding

errors in data entry, and the fact that some movements which are not required to be

reported to RADAR represent a significant disease transmission risk. Further work to

establish the level of use of common grazing land nationwide would be useful to quan-

tify this problem further. It does highlight, however, the fact that BCMS was not ini-

tially designed as a tool for epidemiological modelling, but rather as a food assurance

programme (Lord Phillips of Worth Matravers et al., 2000). From a food assurance per-

spective, common grazing land is of little consequence, whereas it is potentially very

important to the dynamics of infectious diseases. Additionally, the time delays in the

reporting of movements (up to 7 days are allowed), and the further delays in collating

the movement records and making them available to researchers are insignificant in a

food assurance scheme, but are much more important in the face of an outbreak of in-

fectious disease. By contrast, for example, Italian researchers have access to movement

data as soon as they are reported to the government (Natale et al., 2009). The speed of

data collection could be enhanced by the use of RFID chips in eartags or similar, along

with electronic scanning of animals as they leave and enter holdings; such an exercise

would be costly, however, and more work needs to be done to establish whether such

a cost is worthwhile in terms of the benefits it could bring to disease prevention and

control. Since the study on Lewis was performed, another field study of the contacts

between farms has been published (Brennan et al., 2008). That was a much more

labour-intensive study of a smaller population of farms; it seems plausible that visiting
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farms rather than relying on farmers filling in a form and posting it back to the inves-

tigator contributed to the enhanced response rate; if more funding were available, the

Lewis study (or a similar study on another suitable population of cattle farms) could be

repeated in this manner. Furthermore, Brennan and colleagues did not attempt to com-

pare the movement records they obtained from farmers with those recorded in BCMS.

It is interesting to note that whilst there was no use of common grazing land in the area

of North-West England they studied, a quarter of farmers sometimes had stock belong-

ing to other people living on their farms. There is clearly more work to be done on the

nature and frequency of indirect contacts between farmers, and how these change the

contact structure of the UK cattle herd.

There are two main refinements to the models presented in this thesis that should be

considered in the future. Firstly, there are geographical data about the location of many

holdings in RADAR; this should be incorporated into the network models. There would

be two advantages to doing so: firstly, it would enable the outputs of model simulations

to be plotted on maps of the country (which would be useful for investigating the geo-

graphic spread of outbreaks, as well as for communicating research findings to a wider

audience), and secondly, it would enable the proximity of farms to be incorporated into

network models. Given that geographic proximity of farms has been found to be asso-

ciated with direct and indirect contacts between farms (Brennan et al., 2008) and that

some diseases may spread by aerosol (e.g. FMD), via a wildlife reservoir (e.g. BTB),

or via nose-to-nose contact where fencing is inadequate, this would be a significant en-

hancement to disease simulations. From a network perspective, the most natural way

to represent these geographic data would be a second mode in the network, with edges

between nodes being based upon the distance between those farms. Secondly, whilst

simple disease simulations are valuable for considering the role of network structure in

disease dynamics, there would be considerable value in being able to model outbreaks

of specific diseases of interest. This would need to be achieved by modifying the simple

SIR simulation model used here in the light of basic biological data about an infectious

agent, possibly involving adding more compartments to the model. Where an agent

infects other species on which movement data are available (e.g. sheep), it would also

be wise to incorporate farms with that species on them into the movement network.

Another, more radical, improvement to simulation models of disease spread in the

UK cattle herd would be to model the disease status of each individual bovine. There

are around nine million cattle alive at any time in the UK, so clearly this is a much

more computationally challenging task — initial work suggests that such individual-

based models are around 7,500 times slower than equivalent network models. It will be

informative to observe how well individual-based models correlate with network-based
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models, and to see whether network models of the UK cattle herd can be improved by

this process.

The software developed during this research is a valuable tool for network-based

epidemiology. It can readily read in networks extracted from a database containing the

RADAR data (or from other sources), analyse those data, build specific models based on

them, and simulate diseases on them. Furthermore, it is readily extensible to include

the suggestions for further research discussed above. By making it generally available

as free software to the scientific community, it is hoped that it will become a useful

resource for epidemiology.
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Appendix A

Movement questionnaire sent to Lewis’ cattle farms

Please record below all movements of bovine livestock between 1st August and 31st August, continuing onto a separate sheet if necessary. Please
give as much information as possible regarding locations.

Date Ear Tag Breed Sex Premises moved to Premises moved from
(M or F)

Please record below any occasions where you have shared vehicles for agricultural use or other agricultural equipment with another farmer between
1st August and 31st August.

Date Description of equipment/vehicle Name & address of person/people shared with

Please record below any occasions where you have kept cattle on pasture shared with another cattle farmer between 1st August and 31st August.

Date Location of Pasture Name & address of person/people shared with

Please record below any shows or sales you have attended between 1st August and 31st August, and the number of cattle you took to the show/sale
(if any), or purchased there.

Date Name & Location of Show or Sale Number of Cattle taken Number of cattle purchased
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Appendix B

Holding details questionnaire sent to Lewis’ cattle farms

Name
Address 1
Address 2
Address 3
Postcode

Please answer the following questions about your farm:

What is your CPH number?
Do you own or rent your land? own/rent/other
If “other”, please give details:

Do you use an AI service? yes/no/sometimes
If yes or sometimes, which company/ies do you use?

How many beef cattle do you have? adults
young stock (< 1 year old)

How many dairy cattle do you have? adults
young stock (< 1 year old)

Which breeds of cattle do you have?

Do you house your cattle at all? yes/no
If yes, in which months of the year
do you house your cattle?
Do you use shared pasture for your cattle? yes/no
If yes, in which months of the year
do you use shared pasture?

I would be grateful if you would provide me with the following information, in case I
need to contact you again regarding this study:

How would you prefer that I contacted you? phone/fax/email/other
If “other”, please give details:

Your email address:
Your telephone number:
Your fax number:
Would you be willing to participate in further studies? yes/no/maybe
Would you prefer to complete questionnaires like this
using the internet?

yes/no/no opinion

Do you have any other comments about the BCMS that might be relevant?
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