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A model personal energy meter

Simon Hay

Abstract

Every day each of us consumes a significant amount of energy, both directly through

transport, heating and use of appliances, and indirectly from our needs for the production

of food, manufacture of goods and provision of services. This dissertation investigates a

personal energy meter which can record and apportion an individual’s energy usage in

order to supply baseline information and incentives for reducing our environmental impact.

If the energy costs of large shared resources are split evenly without regard for individ-

ual consumption each person minimises his own losses by taking advantage of others.

Context awareness offers the potential to change this balance and apportion energy costs

to those who cause them to be incurred. This dissertation explores how sensor systems

installed in many buildings today can be used to apportion energy consumption between

users, including an evaluation of a range of strategies in a case study and elaboration of

the overriding principles that are generally applicable. It also shows how second-order

estimators combined with location data can provide a proxy for fine-grained sensing.

A key ingredient for apportionment mechanisms is data on energy usage. This may come

from metering devices or buildings directly, or from profiling devices and using secondary

indicators to infer their power state. A mechanism for profiling devices to determine the

energy costs of specific activities, particularly applicable to shared programmable devices

is presented which can make this process simpler and more accurate. By combining crowd-

sourced building-inventory information and a simple building energy model it is possible

to estimate an individual’s energy use disaggregated by device class with very little direct

sensing.

Contextual information provides crucial cues for apportioning the use and energy costs of

resources, and one of the most valuable sources from which to infer context is location. A

key ingredient for a personal energy meter is a low cost, low infrastructure location system

that can be deployed on a truly global scale. This dissertation presents a description and

evaluation of the new concept of inquiry-free Bluetooth tracking that has the potential

to offer indoor location information with significantly less infrastructure and calibration

than other systems.

Finally, a suitable architecture for a personal energy meter on a global scale is demon-

strated using a mobile phone application to aggregate energy feeds based on the case

studies and technologies developed.
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Chapter 1

Introduction

Information is differences that make a difference. (Edward Tufte)

Contents
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1.4 Research questions . . . . . . . . . . . . . . . . . . . . . . . . . 29

1.5 Dissertation outline . . . . . . . . . . . . . . . . . . . . . . . . . 30

1.6 Limitations of scope . . . . . . . . . . . . . . . . . . . . . . . . . 31

Overview

This chapter introduces the research theme of Computing for the Future of the Planet

and sets out the vision and the need for a personal energy meter. It explains the principal

benefits and discusses the challenges, both technical and social, involved in realising such

a project on a global scale. It outlines a strategy for tackling these problems and states

the research questions addressed in the remainder of this dissertation.

1.1 A personal energy meter

Every day each of us consumes a significant amount of energy, both directly through trans-

portation, heating and use of appliances, and indirectly from our needs for the production

of food, manufacture of goods and provision of services. Controlling the use of natural

resources will be one of the world’s greatest challenges in the years to come; whether for
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reasons of climate change, scarcity, economy or limiting dependence on foreign powers,

reducing our energy requirements has undeniable benefits [119].

An answer to this problem might lie in the use of pervasive computing technologies to

build a personal energy meter: a device which can record and allocate an individual’s

energy usage in order to provide baseline information and incentives for reducing the

environmental impact of our lives [97]. The idea of a personal energy meter has garnered

some media attention (see page 11). It might help suggest areas for improvement and,

if an individual makes a lifestyle change, analyse its impact and significance [128]. This

would depend on a global sensor network and poses a number of challenges: new sensor

systems are required both to account for the energy used and to determine the identity and

activities of users. This dissertation develops the principles and technologies necessary to

build a model system.

Huge imbalances currently exist between the environmental footprint of individuals in

different countries: taking the mean over a year, the average person in North America

consumes around 12,000 W, compared with around 6,000 W in Europe, 1,000 W in India

and only 300 W in Bangladesh.1 The global average is around 2,000 W; this can be

considered a sustainable target for us each to strive to achieve. The Société à 2,000

Watts project calls for a reduction in energy needs to an average of 2,000 W per person.2

This target considers not only personal or household energy use, but the total for our

entire society, divided by the population. The project has gained significant government

backing, with a pilot region in Basel and the cities of Zurich and Geneva announcing their

intentions to become 2,000 W societies by 2050.

This and similar proposals have attracted significant media attention. For example, in an

article for The Sunday Times a journalist described his attempt at ‘the low-watt diet’.3

Despite taking all manner of seemingly extreme measures he ultimately encountered the

perennial problem—it is at present very difficult for an individual to assess whether or

not he is achieving an energy target:

I went to a dinner party in a part of London where everyone seems to drive a

4×4. I sat next to a woman who listened politely as I described the steps I’d

taken towards a 2,000 W life. She wondered if I’d hit the target. Honestly, I

had no idea. . .

To judge the success of a weight-loss programme one requires weighing scales, but all

most people have to judge their energy consumption today is infrequent, coarse-grained

and incomparable billing information.

1World Resources Institute. EarthTrends. http://earthtrends.wri.org/
2http://www.societe2000watts.com/
3John-Paul Flintoff. Energy: How low can you go? The Sunday Times, 23 November 2008.

http://www.timesonline.co.uk/tol/news/environment/article5188314.ece

http://earthtrends.wri.org/
http://www.societe2000watts.com/
http://www.timesonline.co.uk/tol/news/environment/article5188314.ece
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The idea of ‘footprints’ has caught the public imagination; they are readily understood

and much-discussed. A number of websites have sprung up recently claiming to calculate

a user’s personal carbon footprint. For example, AMEE4 calls itself ‘the world’s energy

meter’ while Encraft5 offers a carbon footprint calculator that takes into consideration

household energy bills, private and public transport mileage and flights. These services

are obviously very limited in scope and require manual data input, but demonstrate the

keen interest in monitoring energy consumption.

In reality most estimates of carbon emissions or ecological areas are simply energy con-

sumption figures scaled by a predetermined factor for the type of energy used and divided

equally amongst a large population. Energy seems the best metric because it is easily

quantifiable and does not attract the controversy that sometimes surrounds estimates of

carbon emissions or ecological footprint, but the underlying sensing and calculation tech-

niques are transferable. More careful apportionment can be applied to data, regardless of

how it is collected, and offers more meaningful results.

A personal energy meter that provides live information on consumption apportioned to

individuals represents a significant step forwards from the common situation of a static,

approximate and time consuming audit of a building or organisation. This idea fits into

the Computing for the Future of the Planet framework for identifying ways in which

computing can have a positive effect on our lives and the world [98]; one such way is

to sense the world around us to inform us about the energy consumption and other

effects of our activities on the natural environment. It is dependent on developments in a

number of computing technologies—in particular, sensors and sensor networks to provide

data both on usage and on interactions and a common world model to allow information

to be collected wherever the user might be. Contextual information, such as might be

provided by location systems, will be important to determine how the energy costs of

shared resource should be apportioned.

1.2 Potential benefits and drawbacks

Personal energy data will enable us to identify areas for optimising our consumption of

resources. It will make metering ‘smarter’ by providing itemised breakdowns for indi-

viduals rather than buildings. Projections of consumption will allow us to see the total

cost or benefit of a decision to replace an appliance, install insulation or move house. The

personal energy meter will also make offsetting schemes more realistic and help us identify

alternatives to our current activities. For example, the trace of commuting to work might

be analysed to highlight any suitable public transport available or to inform policy for

providing future facilities. Many energy reducing measures also bring monetary savings,

4http://www.amee.cc
5http://www.encraft.co.uk

http://www.amee.cc
http://www.encraft.co.uk
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but there is insufficient information available to let consumers realise their best courses

of action. A personal energy meter could help its users make more informed decisions.

Aggregate measures may raise awareness, but apportioning consumption to individuals

will be crucial to helping us identify where changes could most effectively be made and if

those changes have had any meaningful impact. A user seeing the breakdown of his share

of an office building’s consumption may realise that significant savings could be made

by switching his computer off overnight; if every user in the Computer Laboratory made

this change the department’s electricity bill could be reduced by around £6,100 each year

(Section 4.2.4). However, the impact of one individual making such a change would be

lost in the noise of a plot of the building’s consumption and so users might be discouraged

from taking action. Personal data might even help bring about improvements that are

outside any individual’s control: when users have made all the changes in their power they

may be frustrated to find that they are still allocated significant energy costs for items

such as heating resulting from poor insulation and so collectively lobby for higher-level

(or even political) changes.

1.3 Architecture

The design and implementation of a personal energy meter embodies many challenges.

Input data must come from a wide range of meters, sensors and systems distributed

globally; calculations can take place either locally or remotely and there are several forms

of output from a personal counter to shared statistics. Effective communication with

a planetary ‘world model’ must be maintained in order to provide up-to-date estimates

of energy consumption. In this sense, the personal energy meter fits within sentient

computing, which Hopper defines as “using sensor and resource status data to maintain a

model of the world which is shared between users and applications” [96].

There are three main parts to personal energy metering:

1. data collection

2. processing

3. presentation

Figure 1.1 illustrates some of the data flows envisaged. Feedback could be presented

using the same data in several separate forms, such as via a website, on a mobile device

or even using shared public displays [205]. A model architecture for disseminating data

is proposed in Chapter 6, while Chapters 4 and 5 describe mechanisms for obtaining the

consumption and context information required.
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Figure 1.1: Example personal energy meter architecture

1.4 Research questions

This dissertation tackles the issue of how sentient computing can apportion the energy

costs of shared resources to individuals and addresses four main research questions:

To what extent can technology be used to apportion personal energy costs?

What would be needed that does not exist already?

One of the most interesting challenges of a personal energy meter is in apportioning

the energy costs of large shared resources such as office buildings and public transport

to individuals. Context awareness offers the potential to apportion energy costs to those

who cause them to be incurred, which may provide incentives to make reductions. Careful

thought should be given to the correct policies for apportionment and to what inputs these

policies require. To what extent is live sensing necessary?

Can energy consumption be inferred without continuous metering? Are there

classes of energy consumer that must be treated differently?

A key ingredient for apportionment mechanisms is data on energy usage. Although more
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and more smart meters are being deployed, it is unrealistic to expect the usage of every

individual device to be monitored in real time in the near future. Instead, can models,

inventories and profiles be used to estimate consumption?

Can context be monitored with minimal additional infrastructure? How can

the benefits of location systems to provide context for apportionment be obtained without

the related costs?

Contextual information provides crucial cues for apportioning the use and energy costs of

resources (Section 5.1), and one of the most valuable sources from which to infer context

is location. Indoor location systems have been the subject of much research over the past

two decades, but while many systems can deliver impressive results very few are suitable

for widespread deployment outside research environments due to the extensive bespoke

infrastructure that must be installed and surveyed. This is costly in terms of both money

and time, and impractical in most buildings. A key ingredient for a personal energy meter

is a low cost, low infrastructure location system that can be deployed on a truly global

scale. Can the necessary information be obtained by repurposing hardware that is already

deployed?

What should be the software architecture of a personal energy meter? How

can it be made to scale to global proportions, and how could users be encouraged to adopt

it?

To piece together the complete picture of his energy usage, each user will require informa-

tion from many separate sensor systems which each meter individual parts of his overall

consumption. How should this information be aggregated?

Although the future may be a world of sensors, it is important to consider how to build

a system that scales gracefully from today’s sparse and unreliable sensing through to a

vision of total knowledge. Most users are unlikely to be prepared to install a large number

of complicated sensors solely in order to use a personal energy meter. Throughout, this

dissertation therefore considers the problem of deployability of sensors, and how much

information can be obtained with as little sensing as possible through the use of humans

as sensors and repurposing other pieces of infrastructure.

1.5 Dissertation outline

The structure of the remainder of this dissertation is as follows:

Chapter 2 reviews related work in relevant areas of research. Existing techniques for

influencing behaviour, measuring energy consumption and inferring context are de-

scribed.
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Chapter 3 presents the results of two studies to motivate the remainder of this dis-

sertation. It describes the importance of apportioning energy costs to individuals,

evaluates a range of strategies and derives the key ingredients required: metering

and context.

Chapter 4 investigates how sentient computing systems can meter or calculate energy

consumption, and the specific sensing requirements of shared resources. It presents

a technique for using crowd-sourced inventories and device profiles to estimate build-

ing energy consumption and explores to what extent it is possible to use existing

ground truths to infer or estimate the consumption of devices not covered by sen-

sor systems. Finally, it describes a novel framework for decomposing power mea-

surements of programmable devices necessary to apportion energy costs of specific

actions to individuals.

Chapter 5 identifies the key characteristics required of a location system to provide

context for a personal energy meter. It presents and evaluates a novel mechanism

for inquiry-free Bluetooth tracking that has the potential to provide the low-cost,

pervasive tracking necessary.

Chapter 6 examines a model architecture for scaling a personal energy meter to plane-

tary proportions. It proposes a federated system of energy feeds and demonstrates

it with a mobile phone application that aggregates and visualises the data from

systems described in previous chapters.

Chapter 7 concludes by revisiting the research questions posed in Section 1.4, outlining

possible avenues for future research and summarising the main contributions of this

dissertation.

1.6 Limitations of scope

The construction of a truly global personal energy meter applicable to anyone, anywhere,

would be an engineering challenge well beyond the scope of a dissertation such as this.

Instead, it addresses mainly the first two challenges set out in Section 1.3 of data collection

and processing; since the HCI aspects and exact form in which feedback is presented makes

a significant difference to its effectiveness (see Section 2.1) only example interfaces are

developed. It focuses on the principles and concepts that are transferable from proofs of

concept and case studies centred on the author and colleagues at the Computer Laboratory

of the University of Cambridge. It identifies and draws together existing work which might

help account for significant sources of energy consumption such as transport, and tackles

only those areas which are lacking, with a particular focus on the apportionment of the

energy costs of shared resources.
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Chapter 2

Related work
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Overview

This chapter provides a detailed survey of related work. The idea of a personal energy me-

ter cuts across a broad range of research areas, from energy monitoring through location

and identity sensing systems to human-computer interaction and social questions. This

chapter first motivates and places in context the personal energy meter through a review

of studies showing the effectiveness of feedback on reducing energy consumption (Sec-

tion 2.1), then discusses existing technologies designed to promote behavioural change

(Section 2.2). It surveys systems for measuring or inferring energy consumption that

might provide useful input to a personal energy meter (Sections 2.3 and 2.4), highlights

the problems with requirements for extensive additional infrastructure and reviews po-

tential solutions in the form of user-deployed sensing or crowd-sourced data (Section 2.5).

Location will provide important context information to help apportion consumption, and
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Sections 2.7 and 2.8 provide a detailed survey of existing systems, focussing on the es-

sential properties for energy metering. Finally, Section 2.9 discusses potential methods

for aggregating data from many disparate sensor systems which will be necessary for

any heterogeneous personal energy meter. This chapter therefore identifies where further

research is needed and guides the remainder of this dissertation.

2.1 The importance of feedback

Behavioural and environmental psychology studies have demonstrated many times the

impact that feedback can have on encouraging people to reduce their energy consumption;

this provides strong motivation for the creation of a personal energy meter which provides

continuous fine-grained feedback across all the aspects of a person’s life rather than on

specific places or types of consumption. The first known study of ‘eco-feedback’ was

in 1976, when Kohlenberg et al. found that even a light bulb which illuminated when

households were within 90% of their peak energy levels changed energy usage behaviour,

reducing time spent above a predetermined peak power level by up to 50% [121]. Real-time

web-based feedback has been shown to produce an overall 32% reduction in electricity

use by dormitory residents, high resolution feedback proving more effective than low

resolution [167]. Feedback is not only useful in its own right, as a self-teaching tool, but

it also improves the effectiveness of other information in achieving better understanding

and control of energy use. This section highlights some of the more significant reviews to

obtain aggregate measures of the effects of feedback.

In a review of 38 feedback studies carried out over a period of 25 years, Darby found typical

energy savings of 10–15% and showed that improved feedback may reduce consumption

by up to 20%; she concluded that “clear feedback is a necessary element in learning how

to control fuel use more effectively over a long period of time” [37].

Fisher surveyed 26 projects from 1987 onward on the effects of feedback of electricity

consumption and on consumers’ reactions, attitudes and wishes concerning such feed-

back [53]. She found that typical energy savings were between 5% and 12% and that

feedback is most successful when it “is based on actual consumption, given frequently

and over a long time, provides an appliance-specific breakdown, is presented in a clear

and appealing way and uses computerised and interactive tools.” Although only three of

the studies reviewed used computerised feedback, these were the ones that resulted in the

greatest change in consumption. She hypothesised that successful feedback has to draw

a close link between specific actions and their effects; this is one of the core aims of the

personal energy meter. Winett et al. also showed the importance of specificity, with more

specific signs resulting in a 60% reduction in days lights were left on compared with more

general feedback [204].

Abrahamse et al. compared feedback to a number of other intervention strategies, such as
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goal-setting and information, through a review of 38 studies from social and environmental

psychology [1]. They conclude that “feedback has proven its merits, particularly when

given frequently” and that it can also increase the effectiveness of antecedent interventions.

They argue that an important first step in any intervention aimed at reducing energy is

a ‘thorough problem diagnosis’ to identify the behaviours that significantly contribute to

environmental problems; this is one of the key aims of a personal energy meter.

Froehlich et al. published a comprehensive survey of examples of what they call ‘eco-

feedback technology’, including 89 papers from environmental psychology and a further

44 from ubiquitous computing and human-computer interaction literature [63]. They

pointed out that although these two fields are closely related they have tended to remain

wholly separate and argued that Computer Science researchers have not yet focussed on

evaluating the potential strengths of their designs with respect to their ability to change

behaviour.

Finally, Fitzpatrick and Smith reviewed the methodology of previous studies of feedback

technologies and set out design concerns and questions that they hope will influence future

work, focussing on how feedback should be presented [54]. They suggested that current

work is too utility-centric and a more holistic view is necessary, imagining that “multiple

resources could be monitored, not just electricity and gas, but also water, garbage, chem-

icals, food, and so on; feedback on light use could be juxtaposed against occupancy and

activity monitoring.” The personal energy meter attempts to take just such a view.

2.2 Persuasive technologies

The personal energy meter is intended to draw people’s attention to specific information

in an attempt to change what they do or think. Fogg has labeled this phenomenon

‘persuasive technology’ and suggested it can be used to change people’s behaviour in

domains such as preventative healthcare and fitness [58, 57]. Interactivity gives computing

a strong advantage over more traditional persuasive media, and ubiquitous computing in

particular means that interactive computing systems embedded in everyday objects and

environments can intervene at precisely the right place and time to have maximum effect.

Unfortunately, there are very few projects taking an overall view of personal consumption

as a personal energy meter should. However, Froehlich et al. bemoaned the dearth of feed-

back technologies in domains other than home electricity consumption and proposed ideas

for automatically sensing use of electricity and water, personal transportation, product

purchases and garbage disposal and their potential impact for reducing consumption [62].

This overview paper surveyed existing systems and refers to their own ideas, all of which

are discussed in more detail in the remainder of this chapter and in Chapter 3. Although

they have contributed excellent work on sensor systems and feedback technology, there
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(a) Active Badge (b) RSS feed

Figure 2.1: Updates on friends in 1990 and 2010

is not yet a unified system for combining the results of these disparate systems in the

manner they suggest; the personal energy meter seeks to fill this gap.

Meanwhile, Mun et al. introduced the idea of a Personal Environmental Impact Re-

port [147]. This is a participatory sensing application that uses location data sampled

from mobile phones to calculate personalised estimates of environmental impact and ex-

posure, including carbon impact, sensitive site impact, smog exposure and even proximity

to fast food restaurants. It highlights the reciprocity between impact and exposure: that

which is good for the person is often also good for the planet, and vice versa.

2.2.1 Sensor data communities

Social networks provide an ideal forum for users to share consumption patterns and re-

duction strategies. There is significant overlap between the fields of sentient computing

and social networking; further details are provided in a separate paper [88]. For example,

the research literature contains numerous examples which demonstrate the potential of

location-based services in wider social networking contexts. One application that is often

touted is a ‘colleague radar’ akin to Harry Potter’s ‘Marauder’s Map’ which shows at a

glance the locations of coworkers within a building. Examples include the ACTIVEMAP

tool [143] and the ‘intelligent Coffee Corner’ [146]. These have been represented in a

variety of forms: the visual similarity between an Active Badge application displaying

a simple list of people and locations and a modern RSS feed of friend status is notable

(Figure 2.1), and 3D representations of the data resemble metaverses such as Second Life.

Location systems provide a way to bridge the physical/digital divide [98].

There are several examples of online communities forming around sensor data to encourage

and assist each other. In the context of sport and fitness, many people find it hard to

motivate themselves to train as hard or as often as they might like. The Nike+ system1

automatically captures details of the user’s runs from accelerometers in his shoe and can

1http://www.nikeplus.com

http://www.nikeplus.com
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share them on a website, allowing him to define goals, compare his progress to that of

others with similar targets, set challenges for friends and exchange training programmes.

Dailymile2 has a similar premise, aiming to make it easier for users to share their workouts,

exchange advice and find training partners. This has a number of parallels to energy

saving measures, and the same strategies can also be applied (for a fuller discussion, see

Section 2.2.2). Dopplr3 lets its users share estimates of their carbon emissions through

travel, and DIY KYOTO has a community site4 based on its electricity monitoring device,

allowing users to share graphs of their power consumption, record their energy reductions

and offer money-saving tips to others. It also shows the total amount of energy and

money saved by all its users combined, highlighting the global significance of seemingly

small scale actions.

Communities have formed around power graphs, sharing advice and experiences. The

CenceMe application provides a good example of a mobile application that allows the

sharing of context information inferred through sensors via social networks [144]. This

includes not only location but also activity: it can detect ‘dancing’ through the accelerom-

eters, for instance, or ‘conversation’ through the microphone.

Other related products and systems are surveyed in the remainder of this section. The

power of the social networking phenomenon might be brought to bear in a similar way to

drive adoption of the personal energy meter and provide impetus and support for changing

lifestyles.

2.2.2 Persuasive technologies for physical activity

There are significant parallels between encouraging people to exercise more and encour-

aging them to use less energy: both are things that most people know they should do but

find it hard to motivate themselves, and indeed similar sensors can provide useful input

data for both. For example, walking to work instead of driving has clear benefits for both

the person and the planet; a continuous location trace for an individual might be used

both to estimate his energy footprint due to transport and to provide feedback on his

personal health based on his physical activity levels. Providing information on personal

health might encourage uptake of sensors that also provide data valuable for personal en-

ergy metering, and many of the lessons on the efficacy of feedback that have been learned

from projects on physical activity are also applicable to energy consumption.

These studies teach that results should be understandable at a glance, show progress

towards goals and allow easy comparisons with others or against historical data.

Rogers et al. investigated a range of ambient installations (see Section 2.2.3.1) to encourage

building occupants to take the stairs rather than the lift [181]. This approach is rooted in

2http://www.dailymile.com
3http://www.dopplr.com
4http://community.diykyoto.com/

http://www.dailymile.com
http://www.dopplr.com
http://community.diykyoto.com/
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behavioural psychology and the belief that a ‘nudge’ at the point of decision-making can

influence the choice. In Follow-the-Lights a display of twinkly white lights was embedded

in the carpet, triggered by foot pressure and highlighting a path to the stairwell. The

Clouds consisted of a set of grey and orange spheres suspended from the ceiling in the

atrium; their relative heights changed in relation to the number of people who used the

stairs versus the lift that day. Finally, The History depicted an aggregate visualisation

on a large public display showing historical trends. The authors conducted a number of

surveys to gauge opinions on these pieces, and also gathered quantitative data on usage

from pressure sensors near the stairs and lifts. During an eight-week study they found

that the ratio of stair to lift use increased significantly (from 1.49 to 2.13), highlighting

the potential of these feedback techniques.

Chick clique is a mobile phone application that targets a specific demographic, aiming to

help motivate teenage girls to exercise by exploiting their desire to confirm to social norms

and stay connected with their peers [194]. Each participant can select a group of up to

three friends to engage in a friendly competition where the group’s walking statistics are

tracked. The final design consisted of a pedometer embedded in a belt whose readings

were entered manually into an application on the mobile phone, keeping track of the

number of steps that were taken each day. Automated text messages should be sent

at opportune times indicating the group performance, including individual fitness level

achieved, but since the prototype was deployed on a PDA with no cellular connectivity,

these also had to be sent manually. The system was tested on two groups of friends and

compared against the pedometer alone; while one group did take more steps when given

the group information, the other actually walked further without the system.

Fish’n’Steps also attempts to increase daily step count, this time by linking it to the

growth and activity of an animated fish [133]. 19 volunteers took part in a 14 week ‘Wizard

of Oz’ study, interacting with a system which they believed to be autonomous but which

was in fact partially operated by an unseen human being. Again, the pedometers could

not be read automatically, but to simplify the procedure and avoid requiring participants

to enter readings, with the attendant potential for tampering with the results, they were

asked to place their pedometer on a platform at a public kiosk and take a picture of

its pedometer screen, including the unique ID. The picture was sent to a member of the

research team who entered the appropriate data into a database. Each participant was set

custom goals relative to their baseline, and success in reaching a participants daily goal

affected the facial expression of his or her fish. They all apparently found the procedure

inconvenient and awkward but participated for the sake of their colleagues’ research; the

authors admit that interest in the game subsided after a couple of weeks, but claim that

it still generated sustainable change in behaviour.

Houston is another application in a similar vein, consisting of a pedometer and a mobile

phone application into which users can enter their daily step counts by hand [31]. A

three-week study was conducted using three versions of the software: a baseline which
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merely collected the data, a personal version which also enabled goal setting and tracking

progress and a sharing version which allowed participants to send their counts to friends

and see friends’ progress towards goals. Average step counts increased, with participants

using the sharing version significantly more likely to meet their goals.

Building on the lessons from Houston, UbiFit Garden is more sophisticated set of per-

suasive technologies to encourage physical activity [33]. 12 participants in a three-week

study wore a Mobile Sensing Platform containing a number of sensors including a 3D

accelerometer and barometer [28]. The sensing platform runs classifiers trained to distin-

guish walking, running, cycling, using an elliptical trainer and using a stair machine; the

list of activities and their current likelihoods are communicated via Bluetooth to an appli-

cation running on the user’s mobile phone. The application builds a journal of activities

which can be added to manually; the user can then review the log and progress towards

a weekly goal. A ‘glanceable’ or ambient display is also included in the background of

the phone’s home screen, using the metaphor of a garden, with flowers and butterflies

representing goal attainments and different types of activity. Feedback was particularly

positive towards the idea of the glanceable display; the authors were sufficiently encour-

aged to conduct a second three-month study with 28 participants focussing on the details

of the feedback mechanism [32]. This trial took place over the Christmas period, which

is traditionally the hardest time of year for people to keep up exercise regimes; the re-

searchers found that the participants with the glanceable display tended to keep up their

level of physical activity while those of the participants without the display dropped sig-

nificantly. Although the specific representation they chose is clearly not to everyone’s

taste, they demonstrated that immediate ambient feedback has an important part to play

in encouraging behavioural change.

With the exception of UbiFit, none of these projects use sophisticated sensor systems to

derive their output; in fact, many rely on manual input (though it is still a valuable lesson

to learn that users are prepared to enter data by hand provided the subsequent feedback

is sufficiently useful). Their utility is therefore not in ubiquitous computing technologies

but in understanding both that feedback can have a persuasive effect and that the way

in which it is presented is all-important.

2.2.3 Persuasive technologies for energy consumption

Much of the Computer Science work published on energy consumption has addressed the

HCI issues surrounding how best to present feedback to engage users. Although this

aspect is outside the scope of this dissertation, which focuses on calculating results rather

than their presentation, it is very relevant to the wider concept of a personal energy meter.

Dillahunt et al. attempted to “leverage the power of the polar bear as a symbol of climate

change by creating a virtual pet” [44]. Participants were shown a Flash-based virtual polar
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bear on an ice floe that would grow as they committed to environmentally responsible

actions such as ‘dry only full loads of clothes’ and ‘use a low wattage night light’ and

decrease as they chose not to commit to actions. Users demonstrated significantly greater

environmental concern and greater care after reading about and interacting with the

polar bear. Those who used the system were found to commit to more actions, fulfil more

commitments and donate more to environmental causes than the control group, but closer

analysis shows that only one of these differences was statistically significant; the authors

pointed out that they could not know how long the differences would be sustained.

Computer games have a natural persuasive power [58]. PowerHouse was a prototype com-

puter game that aimed to promote an energy-aware lifestyle among teenagers, employing

the format of a reality TV show to inform its users about energy-efficient action [12]. The

player managed a simulate domestic environment with the objective of keeping the resi-

dents content within a limited energy budget. Unfortunately, no results were presented

on its effectiveness as an intervention.

EcoIsland presented a virtual island on a household display, with each family member

represented there by an avatar [187]. The family set a target CO2 emissions level and

the system tracked their approximate current emissions using self-reported data. If the

emissions exceeded the target level, the water around the island began to rise; carrying out

suggested emission-reducing activities caused a drop in water level. It also supported a

kind of emissions trading scheme, where reductions could be swapped with neighbours for

credit that could be used to decorate the island. In common with many of the persuasive

systems described here that relied on self-reporting, a survey showed that after a week of

use 17 out of 20 participants felt more conscious of environmental ecology, but there was

no statistically significant correlation with actual energy usage.

Mankoff et al. highlighted the potential of social networks for motivating change and out-

lined a proposal for sharing energy consumption information on sites such as MySpace and

Facebook [140]. It is certainly true that social networks have an overwhelming reach and

influence and might help create peer pressure to reduce environmental impact. A subse-

quent paper described StepGreen.org, a website with accompanying plugins for MySpace

and Facebook which realised some of these ambitions [139]. It encouraged its users to

commit publicly to energy-saving actions which were displayed on their social network

profiles both as reminders to themselves and promises to others, and also to compare their

progress with that of their friends. Although a small internal user study was carried out

which influenced a redesign of the site, little information was provided on its acceptance or

success in a wider sense. Nevertheless, social networking could indeed have an important

part to play in personal energy metering; this idea is discussed further in Section 2.2.1.
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2.2.3.1 Ambient displays

The Power-Aware Cord was an augmented electrical power cord which represented the

amount of energy passing through it with glowing patterns produced by electroluminescent

wires moulded into the transparent cord [75]. The authors argued that electricity, being

invisible and intangible, must be made more perceptible to increase awareness of consumer

energy consumption and lead people to question their behaviours, and that light is a more

natural and intuitive way to symbolise this relationship than a digital readout.

This is an example of ambient display, in the same vein as the famous ‘Live Wire’, or ‘Dan-

gling String’ installation by Natalie Jeremijenko at Xerox PARC during Mark Weiser’s

time there. This was a piece of string attached to a stepper motor and controlled by

a LAN connection; network activity caused the string to twitch, yielding a peripherally

noticeable indication of traffic. Ambient displays complement the idea of augmented re-

ality in which additional information is added to environmental elements [9]: instead of

augmenting the user with a head-mounted display or similar technology physical objects

are themselves enhanced.

The Ténéré was a project in a similar style, again augmenting a electrical extension cord

to provide feedback ‘in meaningful and emotional ways’ [114]. L’arbre du Ténéré was a

solitary acacia in the Sahara that was once considered the most isolated tree on Earth

until it was knocked down and replaced with a metal tree-like sculpture. The authors

used this as a metaphor for the environmental consequences of human activity. Their

device had an OLED display which showed the tree morph into a sculpture if too much

energy was consumed.

Holmes presented a public art installation at the National Center for Supercomputing

Applications entitled 7000 oaks and counting [95]. This operated at a building level but

also used the tree metaphor, composed of a sequence of animated clips using a series of

tree images that corresponded to the carbon loads in the building. It used custom software

to gather electricity, condensate, and chilled water usage figures every minute from the

building monitoring system and convert the aggregate data to reveal the buildings real

time carbon footprint. She called this process ‘eco-visualization’. The estimated footprint

was in turn converted to the number of trees that would be required to offset the carbon

emitted and an animation is displayed which shows greater numbers of trees when the

load is very high and a few larger, more detailed trees when it is low. Users can fill out

a web form claiming to have offset some of this load and their name is incorporated into

the animation and the offset applied to the building’s total.

As in Section 2.2.2, few of the papers surveyed here present novel mechanisms for mea-

suring energy consumption; instead, they generally rely on off-the-shelf meters or self re-

porting. Again, some of the virtual-reality-based feedback methods seem too far-fetched

to become popular, but the same results on the importance of feedback and how it is pre-

sented that became clear from studies of physical activity are apparent in the literature
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on energy consumption. This lends further weight to the belief that the two fields are

closely related, and lessons learned in one can be applied to the other. Although ambient

displays clearly cannot replace more detailed feedback they may complement it well and

further raise awareness of consumption; a personal energy meter should therefore support

multiple separate feedback mechanisms driven from the same data sources.

2.3 Metering electricity consumption

2.3.1 Direct electricity metering

2.3.1.1 Building level

Building-level metering is becoming increasingly prevalent as utility companies deploy

smart meters with machine-readable interfaces. There are also myriad projects, both

academic and commercial, aimed at gathering, processing and storing this data which are

surveyed in this section. Although building-level consumption does not in itself provide

any information on how energy was used, it is a good starting point for a personal energy

meter and various techniques can be applied to disaggregate it by both user and function.

Although over time many buildings will transition to smart meters that can report usage

automatically, for now manually-entered readings remain vital to avoid excluding a large

proportion of the population. ReadYourMeter5 is a free website that allows users to record

and graph their utility meter readings and so aims to help them understand their energy

consumption, compare their data with others and see how much energy organisations use.

Sites like this will provide a useful source of high-level data for the personal energy meter.

Weiss et al. created a lightweight gateway to capture usage data from meters and expose

it through a RESTful API over the web and to users’ mobile phones [203]. Their interface

showed overall consumption and also helped identify the consumption of individual devices

by prompting the user to turn them on and off and measuring the difference. Although

the application itself is not especially noteworthy, the two ideas of exchanging sensor data

using web technologies and presenting disaggregated consumption on a mobile phone are

promising and explored further in Chapter 6.

Patel et al. presented an end-user-deployable, whole house, contactless power consumption

sensing system [161]. It consists of two devices: a sensor on the circuit-breaker panel which

detects the draw from the magnetic field generated from the 60 Hz current flow, and a

plug-in module which cycled through a series of known loads for automatic calibration as

well as sensing the line voltage needed to calculate true power. This design has significant

advantages: its contactless nature means an end user can simply stick it to the panel

5http://readyourmeter.org/

http://readyourmeter.org/
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using double sided tape, while LEDs illuminate to indicate signal strength and help with

positioning; there are no safety concerns. Data is streamed to a PC via Bluetooth at

approximately 1 kHz. Experiments in three different homes showed the average error

after four weeks was around 4%. The authors then conducted a study to determine ease

of deployment; eight participants (chosen from 73 respondents to an online survey) were

asked to install the devices in their own homes, and all completed the task successfully in

an average of 20 minutes. In the online survey, 86% claimed they would be comfortable

installing it on their own. These are very positive results, and this represents the state of

the art in user-deployable high-resolution whole-building metering. The same team go on

to attempt to detect and classify electrical events; see Section 2.3.2 for a fuller discussion.

Agarwal et al. gathered data on the electricity consumption of four representative build-

ings on the campus of the University of California at San Diego, configuring meters to

report data several times a second to a central acquisition server and presenting it to

users in the form of an online Energy Dashboard [7]. They augmented building-level

metering with 15 separate circuit-level instruments in one building to provide a more

detailed breakdown of the load, discovering that much of it is due to IT infrastructure;

other work proposed mechanisms to reduce the base load of computing equipment [5, 6].

Kleissl and Agarwal subsequently conducted further analysis of the sub-metered building

and determined that energy savings of around 80% for lighting, 60% for computing, 50%

for server rooms and 20% for mechanical loads were possible [120].

As well as research systems there are an ever-increasing number of commercially-available

tools for monitoring energy consumption. Any attempt at a comprehensive list would

quickly become outdated, but a few examples are highlighted here to demonstrate the

range of offerings.

Google PowerMeter is an application being developed by Google’s philanthropic arm,

Google.org, to help consumers track their home electricity usage.6 Google has partnered

with both utility companies, who provide usage data directly on behalf of their customers

who have opted in to the service, and manufacturers of energy monitoring devices such

as those described previously. The information is stored on Google’s servers and a web

interface provides visualisations of home energy consumption and allows users to set

targets, track progress and discuss their findings with others in the online community; it

supports both normative and historical self-comparison. Data can also be both uploaded

and retrieved via a public API.

Microsoft Hohm is an equivalent competing offering from Microsoft, though it is at the

time of writing only available in the United States via energy feeds from utility companies

rather than standalone meters.7

TED (The Energy Detective) is a building-level energy meter which is installed in the

6http://www.google.com/powermeter/
7http://www.microsoft-hohm.com/

http://www.google.com/powermeter/
http://www.microsoft-hohm.com/
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breaker panel.8 It will upload its recorded data to Google PowerMeter as well as hosting

a built-in web server which allows remote analysis. Its software also supports load profiling

of up to five individual appliances. Current Cost have a similar range of devices that also

store and report their data to Google; remote display units are also available.9 AlertMe

offer both meter readers and plug monitors that communicate using ZigBee and report

consumption to both display devices and Google.10

Wattson and Holmes, a hardware and software combination from DIY KYOTO, aim to

bring contemporary design to energy metering and offer an ambient display of consump-

tion through mood lighting. They store 28 days of usage information and allow data and

energy-saving hints and tips to be shared in an online community.

2.3.1.2 Circuit level

Taherian et al. described an energy monitoring platform called Cambridge Sensor Kit

Energy designed to measure usage with off-the-shelf clamp meters at aggregation points

such as meters and fuse boards and provide feedback both at the local deployment site

and remotely over the Internet [191]. Data processing and aggregation takes place on an

embedded device which provides a web server to show graphs and details of consumption

as well as an RSS feed and RESTful API to support alternative feedback mechanisms

such as a digital photo frame and three-coloured LED globe.

2.3.1.3 Appliance level

There has been a flood of commercially-produced appliance-level monitors, which are now

available at very low cost. The ‘Kill A Watt’ is just one example, displaying volts, amps,

watts, Hz, and VA for a single electrical socket.11 Many of these are not machine readable,

showing their measurements only on a built-in display, but their popularity indicates

a serious interest amongst the general public in better understanding their electricity

consumption.

Energy Optimizers Limited produce the Plogg12 range of electricity power meters, which

are supplied either as stand-alone end user devices or as embedded hardware for incor-

poration into OEM products. These combined intelligent plugs and data loggers sample

the voltage and current signals and store the values for subsequent wireless retrieval over

Bluetooth or ZigBee. The Bluetooth versions have proved useful but are let down by

software that makes obtaining results in a machine-readable format difficult and unreli-

able. However, as part of the Energie Visible project, Guinard et al. extended the basic

8http://www.theenergydetective.com/
9http://www.currentcost.com/

10http://www.alertme.com/
11http://www.p3international.com/
12http://www.plogginternational.com/

http://www.theenergydetective.com/
http://www.currentcost.com/
http://www.alertme.com/
http://www.p3international.com/
http://www.plogginternational.com/
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functionality of the Ploggs to include continuous reporting and built a gateway that dis-

covered the devices and exposed them to the web through a RESTful API [73]. They

deployed the system on a single floor of their office building to monitor the energy con-

sumption of various devices; a large display enables people passing by to experiment with

the energy consumption of the devices. They argued that HTTP and web technologies

are a good match for sensor nodes, allowing ‘mashups’ to be created of their data using

familiar tools and techniques as part of the ‘Web of Things’ [72]. This idea is discussed

further in Section 6.2.

The Plug sensor network, first mentioned in 2006 [160] was a set of 35 sensor-, radio-, and

computation-enabled power strips distributed throughout the MIT Media Lab [132]. A

single Plug device functioned as a normal power strip but also had range of sensors (sound,

light, electrical current and voltage, vibration, motion, and temperature) for gathering

data about how it was being used and its nearby environment. This is an interesting

approach to the problem of distributing sensors in a building, since it involves replacing

existing hardware with smarter alternatives rather than deploying additional equipment;

many of the traditional problems faced by wireless sensor networks such as battery life

and being as unobtrusive as possible cease to exist. This is closer to the vision of disap-

pearing hardware originally set out by Mark Weiser as ‘ubiquitous computing’ [199]; the

computing is integrated into the infrastructure rather than being a separate artefact.

The power consumption of the monitoring infrastructure itself is also important, especially

if it is intended to meter every device in a large building. Bai and Hung designed a

board to provide remote power control and current measurement for electric sockets via

a ZigBee wireless connection, along with an embedded home server to gather and store

the readings [11]. This approach results in lower power consumption from the measuring

infrastructure itself, with the sockets using 318 mW and the embedded server 1-3 W

(compared to several hundred watts for a conventional PC).

The Bit-Watt system used a network of so-called ‘smart-taps’, which are sockets that

sample their voltage and current at 6 kHz and report the data, again via ZigBee, to a

home server [131]. The server attempted to identify each appliance by matching the wave

shape pattern of the current values against a database of known signatures, although no

results were offered on its accuracy or reliability. A 3D visualisation was then presented

to the user.

Jiang and a team from the University of California, Berkeley built a wireless sensor net-

work called ACme for monitoring AC energy usage in a large building environment [104].

Each of the nodes, which are based on their previously-discussed TinyOS-based Epic ar-

chitecture, plugs into a single socket and exposes its energy consumption to arbitrary

endpoints via a IPv6 interface (they chose to use 802.15.14 as their physical layer rather

an 802.11 because of the difficulty of adding new nodes to an existing wireless network).

The nodes sample at 14 kHz, which is sufficient to identify patterns and potentially
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attempt appliance recognition, but typically report energy readings once per minute via

UDP to a simple Python daemon running on a server. Each node draws an additional

1 W of power from the mains socket it is plugged into; this power consumption is low, but

not negligible if considered on the scale of an entire building which may have thousands

of individual sockets and therefore result in additional load measured in kilowatts. A

preliminary deployment lasted 4 months with 49 nodes split across a university department

and a private apartment. Its scalability and ease of deployment makes this the best

architecture for widespread, scalable device-level power metering presented to date, and

it will probably form the basis of developments in the future.

The ACme design is open source, and in a demonstration of its general applicability

Kazandjieva et al. modified the design slightly, adding an expansion port to support new

sensors and storage and enabling a sealed case, then built and deployed 85 of the meters

throughout the Stanford Computer Systems Lab [112, 113]. They are integrated into their

PowerNet infrastructure, which also includes 55 commercial wired meters; deployment of

the latter was subsequently abandoned due to issues of size and proprietary protocols. The

aggregate measurements of all the power meters amount to only 2.5% of the building’s

total consumption, but by compiling a device inventory from other sources, including

surveys, observations, and IT database records, then cross-correlating these with power

data, the authors constructed a quantitative breakdown. This idea is discussed and further

advanced in Chapter 4.

While standalone monitoring devices provide a straightforward mechanism to roll out

energy measurement technologies today, they do not scale well to cover entire buildings;

their configuration, deployment and maintenance becomes expensive. However, it is easy

to imagine smart plugs and sockets becoming widespread in future, perhaps driven by

a government requirement; this is a logical continuation of the current programme to

roll out smart meters to every home. Every socket could contain circuitry to measure

current and voltage similar to that embedded in the extension modules described above

and report it, either wirelessly or using the power lines themselves for transmission. Plugs

could even contain RFID tags or similar to allow smart sockets to detect the model of

appliance connected; this could be looked up in an online database to obtain details and

characteristics. This would allow maps to be built up automatically of all the devices in

a building and their live energy usage. The problem of actual measurement is therefore

not considered in great depth in this dissertation; real challenges lie in the analysis of this

data.

2.3.1.4 Sub-appliance level

In order to divide the allocate the energy used by a shared appliance to the person

responsible for causing the consumption it is necessary to identify the energy costs of

specific actions it can perform. This problem is discussed further in Section 4.3.
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Dutta et al. presented a simple design for energy metering in situ by augmenting switching

regulators [48], and Fonseca et al. built on top of this hardware platform to apportion

energy costs of components in embedded network devices to individual activities [59]. This

allows developers to quantify the effects of different approaches, but requires significant

hardware and operating system modification.

Flinn et al. have also contributed a significant body of work in the area of measuring

and reducing the power consumption of larger mobile devices, including quantifying the

energy consumption of a pocket computer [51] and the PowerScope tool for profiling energy

usage [55]. These tools produced profiles of energy usage by process and procedure which

could be used to reduce the consumption of adaptive applications. For sensor-based

applications that run continuously in the background of the sort that may contribute

important data to a personal energy meter, it is important to know how varying the

frequency of measurements or how data is stored and transmitted might affect battery

life; this problem is investigated further in Section 4.5.

Significant efforts have been made to reduce the energy consumption of wireless commu-

nication; while some system for measuring the power draw is required to evaluate these

mechanisms, these have generally operated at a fairly coarse level. Pering et al. measured

the voltage and current at the network interface cards, but sampled only every 10 ms

and did not attempt to align the trace with specific actions [166]; similarly, Mohan et al.

looked at the overall power required by the sensors for their pervasive application but did

not investigate any further [145].

A new mechanism for decomposing power measurements of devices to determine the

energy costs of relevant states and actions is required before the consumption of shared

resources can be apportioned by a personal energy meter. Section 4.5 presents one suitable

system.

2.3.2 Indirect electricity metering

Hart, Kern and Schweppe from MIT invented the concept of Non-Intrusive appliance

Load Monitoring, or NILM, in the 80s with funding from the Electric Power Research

Institute [83]. This uses building-level measurements, perhaps taken from outside by the

utility company, and learning algorithms to infer which devices account for the load; it

requires a training phase, then recognises step changes in the total load as appliances are

switched on and off. Preliminary field tests showed that its results were usually within

10% of independent sensors provided when dealing with large appliances such as water

heaters (2 kW) and dehumidifiers (700 W).

In a follow up paper, Hart also worried about the privacy implications of the technology he

had invented [82]. There is significant potential for it to be abused, leading to an erosion
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of civil liberties; illicit printing presses could easily be discovered, and the sophisticated

burglar could determine occupants’ schedules in advance of his break-in.

In 1999, Drenker and Kader from the EPRI described progress with what they now called

the Non-Intrusive Appliance Load Monitoring System (NIALMS); encouraging results in

a beta test in 1998 led to offering the tested products for commercial sale [47]. They

worked in conjunction with utility companies, each of which fitted several homes with

both NIALMS and conventional device-level monitors. The study only investigated ‘large’

appliances as previously described, but the identification success rate was almost 100%

for those with only two states. For some appliances (heaters and pumps) the calculated

total energy used was within 4% of the true value; for air conditioners, fridges and freezers

it was around 13%. They claim that the commercial system has improved accuracy, and

the technology is being extended to multistate loads.

NILM has a number of key advantages: only a single meter is required, minimising the

time, cost and intrusiveness of the installation, and is a very promising technique. How-

ever, there are known shortcomings: uncertainty and undetected error, time and effort in

calibration, and a restricted set of target appliances. It works remarkably well for large

loads (over 150 W) that have few power states — either on or off, or with very simple

operating states such as high, medium and low. Low powered loads and those with a large

number of device states (like a dishwasher) or continuously variable energy usage (like

an electric cooker) are very difficult to extract from whole-house measurements. Fur-

thermore, the technique breaks down when applied to commercial facilities which may

contain dozens or hundreds of indistinguishable devices. Most NILM systems also rely

on processing data in batch using a day or more of stored data, making them unsuitable

for real-time use. Laugman et al. explained and illustrated NILM techniques in more

detail, extending them to noisy and commercial environments, and surveyed the systems

developed over a period of 20 years as well [130].

Marchiori and Han tried to reach a compromise between building-level non-intrusive load

monitoring and individual device-level metering by disaggregating measurements taken

at circuit level. This has the advantages that there are fewer devices on each circuit and

high-powered devices such as ovens tend to be installed on dedicated circuits so will not

interfere with lower-powered ones; the trade-off is an increased hardware cost. They used

an algorithm inspired by NILM but with probabilistic level-based, rather than edge-based,

disaggregation. This makes it better suited to monitoring devices with complex state or

continuously varying demands. Commercial meters were used, though any system (such

as those described in Section 2.3.1.2) could provide the input data; provided some devices

have a control system, and can therefore be turned off remotely, the system can perform

automated training. In a trial with three devices (including a PC with variable power

consumption) on a circuit the system achieved an average error after 24 hours of about

5%; however, in situ household trials have not yet been conducted.
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The team behind the ACme monitors also tried using them to understand better where

energy was being used in their building [105]. They used the concept of additive load trees,

where each node represents the total consumption of its children; instead of metering

every device directly, they evaluated the feasibility of reducing the number of sensors

required by taking advantage of this additive property to infer the consumption of devices

where the consumption of their siblings and parents are already known. While this is

straightforward when only one node in a generation is not monitored, it becomes harder

when there are several, and probabilistic techniques to distinguish between loads are

tried, along with additional hardware such as light and vibration sensors. The authors

also discussed extrapolating the consumption of a group of devices from a sample of the

population and early attempts to disaggregate load spatially and by individuals as well as

functionally. Their apportionment method was fairly simplistic, allocating consumption

of owned devices directly to their owners but dividing the consumption of shared devices

amongst everyone whose ‘home coordinates’ fall within the same enclosing space as the

device. Nevertheless, they highlighted an important area for ongoing research.

ViridiScope combines data from magnetic, acoustic and light sensors monitoring signals

emitted from appliances with measurements from a home’s main power meter to learn and

estimate device-level power consumption [116]. The authors used secondary indicators to

infer a device’s state rather than sensing its consumption directly, propose an automating

sensor calibration framework and demonstrate its use in a two-bedroom apartment where

it attained an accuracy of around 90%. The system can also support directly metered

appliances, and groups together all uninstrumented devices as a single ‘ghost appliance’.

Although using indirect sensors eases the deployment task because they do not need to be

installed inline with power cables, it is still necessary to deploy a sensor for each significant

device in the building; furthermore, an extensive, albeit somewhat automated, calibration

process is required.

Rowe et al. also attempted contactless sensing of appliance state transitions, using a

method very similar to ViridiScope [182]. They found that the calibration burden to

estimate power consumption of each device directly was too onerous, and instead focussed

on detecting state transitions as an input for NILM to quantify consumption. This can

help address some of the key challenges with NILM, namely the need for appliance-specific

training and the problem identifying temporally-close transients. EMF detector sensor

nodes as developed by the authors can be used in a continuous training process and to

resolve ambiguities. They built on ViridiScope by moving filtering into the sensors instead

of transferring raw data to a separate PC for processing.

Jung and Savvides considered the problem of disaggregating total power consumption

by device based on on/off state sensing and propose a possible solution using load trees

which can estimate its own accuracy [107]. They also proposed an algorithm for optimally

placing additional power meters to increase the accuracy to a desired level. The method

was evaluated in two case studies, with approximately 20% average prediction error.
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Patel et al. investigated activity sensing based on detecting and classifying electrical

events on a residential power line [164]. They relied on the electrical noise created by the

abrupt switching of electrical devices and use machine learning techniques to recognise

the patterns caused by individual appliances. Their focus was on understanding occupant

activity, rather than power consumption, but the same data could be used as an input

to any of the disaggregation methods described already; the technique only works for

resistive and inductive loads and so will not help distinguish between electronic devices

or others with switched mode power supplies. An evaluation in six separate homes found

it achieved approximately 90% classification accuracy.

Some of the same authors subsequently introduced ElectriSense, which complemented

the previous system by sensing the electromagnetic interference caused by switched mode

power supplies [74]. This technique has the significant advantage that calibration can be

performed once for a device and then used across homes, rather than requiring per-home

calibration. Experimental trials in seven homes and one six-month deployment showed a

classification accuracy of around 94%.

2.4 Metering other forms of consumption

2.4.1 Embodied energy

As discussed in Section 3.6, a personal energy meter could also try to account for the

embodied energy involved in the manufacture, transport and ultimate recycling of the

products we own and use. There is already a large body of work on Life Cycle Assess-

ment which could provide the necessary data; this section gives an overview of a few

representative examples of work in this field.

WattzOn13 is a website that allows users to estimate their total energy footprint by

answering a series of questionnaires with the stated goal of educating users about energy

efficiency and conservation. It also features a embodied energy database containing details

of the footprints of a significant number of consumer goods.14 Users can select the items

they own to have their costs added to their profiles. As with manual input of meter

readings, this provides a straightforward way for users to derive useful results from a

personal energy meter before widespread sensing can be deployed to automate the process.

Reichart and Hischier investigated the environmental impact of getting the news, observ-

ing that these assessments are not as straightforward as they might appear [173]. Using

a single news item as a functional unit, newspapers appear to have a small environmen-

tal impact compared with news on television or web sites, but this only translates into

reality if it is possible to buy parts of a newspaper. Considering the daily news as a

13http://www.wattzon.com/
14http://www.wattzon.com/stuff

http://www.wattzon.com/
http://www.wattzon.com/stuff
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whole, television fares significantly better than the Internet, which in turns is better than

printed paper. Meanwhile, Shah et al. from Hewlett-Packard Laboratories argued that

accurately quantifying information and communications technology’s footprint is a critical

first step toward reducing its environmental burden and provided illustrative first-order

evaluations of both the embodied and operational costs of a handheld device, notebook,

desktop, blade server and data centre [186].

Sourcemap15 supports sustainable design through both life cycle assessment and supply

chain transparency with shared visualisations [21]. It is a web-based tool that allows

users to specify each ingredient or component of a product and where they come from;

Sourcemap then estimates the embodied energy and draws a map linking each material

at its source to a central assembly hub and thence to the location of the consumer. The

user can also specify the lifetime energy consumption and planned end-of-life scenario to

arrive at a whole-life-cycle assessment. These maps and estimates can be shared with the

wider community, building a database of energy costs of common products; they can be

created either by interested consumers or by the manufacturers themselves. The authors

worked with five small business with a sustainability focus to help them create Sourcemaps

of their products and highlight their environmental credentials through disclosure; they

refined their own tool through the process. The resulting application is both easy-to-use

and attractive, encouraging wider participation.

Dada et al. suggested that mobile phones provide a better interface to view estimates of

the carbon footprints of physical products than static labels, since different instances of

the same product may have footprints that vary spatially or temporally [36]. They demon-

strated a simple prototype system using a phone that supported Near Field Communi-

cation, a short range technology compatible with existing passive RFID tags; products

should be tagged with a unique ID which is used as a key in a unified database. Although

RFID tags may be impractical, the use of mobile phones to interact with physical objects

as a means to discovering their energy costs is adopted in Section 6.2.

2.4.2 Transport

Energy used through transport accounts for about 35% of a typical individual’s total

consumption [136]. It is therefore valuable to understand how, and how far, each person

travels, in order to estimate the energy cost of each trip.

The Sentient Van is a shared vehicle, available for use by all members of the research

group that created it, which contains myriad sensors to record data automatically about

each journey and its environment [39]. Its driver’s identity can be inferred from the

online booking system, or from the RFID transceiver mounted in the sun visor which can

read ID cards. This latter system also allows the cost of journeys to be shared with a

15http://www.sourcemap.org/

http://www.sourcemap.org/
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passenger whose presence would not otherwise be known. When the van is returned to

its parking space it uploads details of its trips to a central computer for later analysis.

With the proliferation of mobile satellite navigation devices and in-built sensors in cars

it can be assumed that in the near future most vehicles will be capable of providing this

level of data. However, it is also necessary to consider obtaining traces for other forms of

transport.

Most new mobile phones include GPS receivers that might be used to record continuous

position logs in the background. The first challenge is segmenting a personal GPS trace

such as might be obtained from a smart phone in a pocket to identify individual journeys

with start and end points and estimate the mode of transport used. Speed alone is enough

to distinguish between walking, mechanised transport and aircraft; combining the trace

with known map data such as the locations of train lines and bus stops helps distinguish

public from private transport. Separating car journeys from cycling is often overlooked

but can be difficult in congested city environments where speeds are likely to be compara-

ble; additional sensors, such as accelerometers or even microphones, have proved valuable

in this context. Zheng et al. have published significant work in this area [211, 212], while

the Personal Environmental Impact Report project used the sensors in a mobile phone to

determine if an individual is stationary, walking, running, biking, or in motorised trans-

port and provided a brief overview and comparison of related work [172]. UbiGreen was

a mobile phone-based application that provided personal awareness about green trans-

portation behaviour through iconic feedback [61]. It attempted to infer mode of transport

based on GSM signal, belt-mounted accelerometers and manual surveys. Thiagarajan et

al. also used accelerometers and GPS data to infer when a mobile phone was being car-

ried on a bus [193]. They observed that previously-suggested techniques, such as using a

threshold on the user’s GPS-derived velocity, are insufficient, since continuously running

the GPS drains the battery, buses may travel at no more than walking speed in heavy

traffic and GPS may not always be available. They therefore used the accelerometers to

detect the difference between walking and vehicular transport (with 99.9% precision and

97.5% recall) before turning on the GPS and using adherence to the bus schedule, stop-

ping at bus stops and inter-stop distance to distinguish buses from cars. Their system

classified only 9% of bus trips wrongly, mostly in the cases of overlapping routes; this

accuracy would be sufficient to provide valuable feedback to the user of a personal energy

meter.

Air travel represents a significant proportion of an individual’s total energy consumption.

Most people take only a small number of flights each year and these tend to be planned in

advance and well documented, making them easier to account for. Sites such as Dopplr16

and TripIt17 use natural language processing techniques to interpret the confirmation

emails generated by airlines and travel agents and parse flight details. Furthermore, these

16http://www.dopplr.com/
17http://www.tripit.com/

http://www.dopplr.com/
http://www.tripit.com/
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sites encourage their users to submit details of forthcoming trips in order to benefit from

their social networking features, pointing out where visits coincide with those of friends

and suggesting hotels and restaurants others have recommended. Their growing popu-

larity suggests that relying on users to volunteer information about their long-distance

travel plans may be a simple and effective solution for the personal energy meter.

2.4.3 Water

A personal energy meter should be able to take account of all forms of energy usage,

not just electricity or fossil fuels. According to the UN, water usage has grown twice

as fast as the population during the past century. Today, already 1.1 billion people

lack access to safe water. There is also a complex interplay between the production of

electricity and water [117]—or example, the American public water supply and treatment

facilities consume about 56 billion kWh per year, which is enough electricity to power

over 5 million homes.18 Accordingly, water consumption is an area of concern for personal

energy metering. As with other utilities, smart meters are likely to become prevalent in

the coming decades;19 in the interim, a number of ubiquitous computing systems have

been designed to fill the gap, and some researchers have started operating at a finer level

to determine the consumption of individual appliances and outlets. These systems could

provide valuable input data for a personal energy meter.

2.4.3.1 Building level

Monitoring water consumption on a fine-grained basis is traditionally quite difficult; flow

sensors require installation within the pipe and so can generally only be installed by

professional plumbers, and a large number of sensors would be required to separate the

consumption of each device.

To get around this problem, Kim et al. proposed a Nonintrusive Autonomous Water

Monitoring System (NAWMS), which used vibration sensors attached to individual water

pipes to construct a self-calibrating system that provided information on when, where,

and how much water they are using [115]. It relied on the existing water meter to provide

details of overall consumption, but used the vibration sensors to estimate the flow to each

individual outlet; since these sensors require calibration, the authors devised an adaptive

self-calibration procedure. This, and the fact that the sensors were installed on, rather

than in, the pipes, mean the system could be user-deployed. Unlike other non-intrusive

systems it did provide data on actual consumption, rather than just user behaviour, and

their testbed deployment showed a mean absolute error of 7%. Nevertheless, a commercial

18http://epa.gov/watersense/index.htm
19http://www.utilimetrics.org/

http://epa.gov/watersense/index.htm
http://www.utilimetrics.org/
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flow rate meter was required, which is expensive, and the process of deploying sensors on

each pipe, specifying their topography and performing the calibration is time consuming.

Kim et al. also collected synchronised water and electricity usage data for 3 months

in a family house using an ultrasonic water flow meter and a commercial mains power

meter [117]. They observed that the combined traces reveal a lot of information about

consumption patterns. Many water fixtures have recognisable usage patterns because they

are mechanically or electro-mechanically controlled; their NAWMS technique detects this

with good accuracy. However, smaller events such as sink usage and compound events

remain difficult to detect; here they argue an electricity trace can help. Since in many

cases both utilities will be metered anyway this seems a sensible approach to resolving

ambiguities in either trace.

Fogarty et al. described a similar approach using microphones attached to the outside

of water pipes to at critical locations to infer water usage and thereby activities within

a home [56]. They focussed on activity recognition; the system could not infer water

consumption, but could provide secondary indicators of usage which could be combined

with profiles of water-consuming devices to come up with an overall estimate.

The HydroSense project also attempted to use the water infrastructure to determine hu-

man activity within a home, but in a significant step forward for incremental sensing

used only a single pressure sensor screwed on at a water connection point [64]. It identi-

fied individual water fixtures within a home according to the unique pressure waves that

propagate to the sensor when valves are opened or closed and, importantly for a personal

energy meter, estimated the amount of water being used at a fixture based on the magni-

tude of the resulting pressure drop within the water infrastructure. The authors evaluated

HydroSense in ten separate homes and found it could identify individual fixtures with 98%

aggregate accuracy and estimate water usage with error rates “comparable to traditional

utility-supplied meters”–though this was left undefined. However, to obtain this level of

accuracy requires a careful calibration process, filling a bucket of known volume from each

outlet in the house, increasing the complexity of deployment. Subsequently Campbell et

al. created WATTR, a self-power water pressure sensor for HydroSense that eliminated

the need for battery replacement imposed by the previous Bluetooth-based sensor [25].

This used the same pressure impulses as both a power and sensing source, and so further

reduces the cost of deployment.

2.4.3.2 Device level

Bonanni et al. described a range of ‘smart sinks’, including WaterBot, which was a per-

suasive water conservation device that attached to a tap and provided context-sensitive

feedback to its users [20]. It monitored the water flow and presented visual and auditory

prompts by lighting up the stream, showing a continuous visual reminder of how long the
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tap had been on and providing ‘positive auditory messages and chimes.’ Users reported

that it made them more aware of their water usage and more likely to turn off the tap

when not required.

Kappel and Grechenig presented show-me, which adopted a similar approach of presenting

feedback at the point of use but focusses on water conservation in the shower [110]. It

consisted of a flow meter, microcontroller and feedback mechanism; a stick of blue LEDs

would light up one-by-one as the shower was left on and so present an ambient display

by way of a stylised representation of a column of water. In a user study with nine

individuals in four households for three weeks the mean water consumption decreased by

approximately 25%.

Both these devices relied on inline flow meters, which are unlikely in practice to be de-

ployed to every water outlet; furthermore, it is more readily apparent to most people how

they might reduce their water consumption and so the disaggregation is not as essen-

tial as for electricity. However, the projects do show that even very simplistic feedback

mechanisms can have a positive effect on behaviour.

2.4.4 Gas

Natural gas is the most widely consumed energy source in many homes20 and should

therefore be included in a personal energy meter, but there has been little work in the

field of ubiquitous computing attempting to understand where, why and how it is used.

Han et al. from LS Industrial Systems Co. of the Republic of Korea have built a wireless

sensor network to read physical gas meters [80]. Unlike most systems described in the

literature which are research prototypes deployed only in a handful of test homes, their

units have been in use for actual billing purposes in 20,000 apartments in South Korea for

three years. The system consists of sensing nodes, which attach physically to gas meters

and use magnetic sensors to determine the meter reading, and relay nodes, which collate

readings from hundreds of sensing nodes once a day and pass them on to the meter data

management system. The sensors cost around US $20 each to manufacture, and have a

battery life of at least five years. In terms of both hardware and installation labour this

is an impressively low-cost alternative to replacing every single gas meter with a smart

alternative.

GasSense is an example of infrastructure-mediated sensing which automatically monitors

gas use and attempts to disaggregate it down to its source based on a single sensor [30].

A microphone is attached at the gas regulator, which controls the pressure of gas before

it enters the meter. It does not require direct contact with the gas; this means it can

safely be installed without the need for a professional. The resulting audio is analysed

to infer the flow volume, which is shown to be directly proportional to the magnitude

20http://tonto.eia.doe.gov/kids/energy.cfm?page=us_energy_homes

http://tonto.eia.doe.gov/kids/ energy.cfm?page=us_energy_homes
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of the resonant frequency in the sample. A kNN classifier is trained for the appliances

in each house and then recognises them based on both flow volume and rate-of-change;

the aggregate accuracy across the sample of nine homes was 95%. However, these results

were obtained in idealised conditions: the short duration of the trials means the effects

of changes in temperature, humidity and pressure on the acoustic signal produced by

the regulator were not accounted for; simultaneous events cannot be distinguished, and

although the sensor can in theory be installed by the end user in this trial an extensive

calibration process was performed in each house by the researchers. No results were given

for accuracy of consumption estimates.

2.5 Reducing deployment costs

2.5.1 User deployed sensing

To be deployed on a global scale any additional sensing infrastructure required for per-

sonal energy metering must be inexpensive not only in monetary cost but also in terms

of installation. Many systems, such as flow meters and circuit-level monitors, require

professional deployment, which at a stroke makes them unlikely to be adopted in most

homes and small buildings. Sensors which can be installed without specialist knowledge

are much more likely to succeed.

Beckmann, Consolvo and LaMarca explored the viability of domestic sensors being in-

stalled not by skilled researchers but by end users through an in situ evaluation in 15

homes of the installation kit for a hypothetical Home Energy Tutor, which is designed to

help homeowners track their household energy use and learn about ways to reduce it [17].

The kit included vibration and electrical current sensors and microphones to detect the

use of major appliances and motion detectors and cameras to monitor activity and elec-

tric lighting. Although many of the sensors included were non-functional mockups, they

are representative of the kind of devices that would be required for an application not

dissimilar to a personal energy meter and so the study is of particular relevance. Users

were required to place sensors on appliances and in rooms around their homes and create

an association between sensors at their targets by scanning their barcodes with a hand-

held computer; different types of sensors had different requirements in terms of placement

(both position and directionality) and association. Overall, 115 of the 150 sensor instal-

lation tasks were completed successfully; 5 participants completed all the tasks, while

2 failed to complete any. The failures reveal more about principles to which systems

should adhere so as to maximise the chances of acceptance and straightforward end-user

installation:
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1. Make appropriate use of user conceptual models for familiar technologies

2. Balance installation usability with domestic concerns

3. Avoid use of cameras, microphones, and highly directional sensors if possible

4. Detect incorrect installation of components and provide value for partial installa-

tions

5. Educate the user about data collection, storage, and transmission

They also found many negative reactions to the intrusion of sensors into the living space,

including objections to the potential for damage caused by the adhesive used for instal-

lation, concerns that sensors were placed in locations accessible by children or pets, and

objections to the placement of cameras and microphones in the home.

Kawsar et al. also investigated do-it-yourself deployment of ubiquitous computing sys-

tems in a home context and presented an infrastructure that provided the foundation for

involving end users in the deployment process through manipulating RFID cards [111].

Although much of the framework revolved around assembling control applications and re-

quired tasks to be written in a specialised manner, their custom-built end user deployment

tool which allowed end users to install, uninstall, run and stop artefacts and applications

was a lower-cost alternative to the handheld computer used by Beckmann et al. and a user

trial was a success. 25 participants were asked to attempt 4 deployment tasks each; all of

them successfully finished the assigned tasks, though 6 needed active support; subjective

evaluations were positive. The system introduced significant overheads, with dedicated

additional hardware; this is likely to prove an obstacle to adoption in itself, but their

experiment confirmed the principles listed above to which sensors should adhere.

2.5.2 Crowd-sourcing inventory information

Constructing an inventory of all the energy-consuming devices in a building and their

owners is laborious and error-prone, and keeping it up-to-date requires ongoing effort;

audits carried out by a single person or team tend to diverge from reality shortly afterwards

as occupants acquire or move appliances without notifying building services.

Fortunately, a inventory need not necessarily be perfect to be useful for estimating energy

consumption. In 2010, the vast majority of energy consumers in the William Gates

Building were low power electrical devices consuming less than 100 W. Individually, each

device accounts for less than 0.05% of the total building consumption, although their

combined consumption does amount to a significant figure. The inventory therefore need

not contain every single device as long as it contains a representative sample and an

estimate of its coverage (devices missed that are unusually power-hungry will skew the

result). Obviously, confidence in the sample will increase with its size.
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Figure 2.2: The OpenRoomMap interface provides an editable plan of the building and a

toolbox to add new items [178]

The phenomenal success of Wikipedia is a prominent example of the ability of a large

community to generate and maintain an enormous repository of knowledge, motivated not

by necessity or reward but by factors such as fun and ideology [152]. The OpenStreetMap

project has demonstrated how volunteers can build accurate and detailed maps com-

parable with commercial counterparts simply through the annotation of data collected

through commodity GPS receivers [78]. OpenRoomMap explores how such techniques

could be applied to make creating and updating the inventories that are required easier,

more accurate and more enjoyable.

Although one-off surveys by designated individuals are clearly a possibility for personal

energy metering, a possible alternative is OpenRoomMap, a crowd-maintained building

inventory system initially developed by Woodman and Rice at the University of Cambridge

which delegates the job of maintaining an accurate building inventory to the occupants

of the building [178]. This section reviews the system and describes some extensions and

new results on its uptake after it was deployed.
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Figure 2.3: Number of updates made to OpenRoomMap each week since launch.

An OpenRoomMap model consists of a non-editable floor plan on which instances of

defined object types can be dragged (Figure 2.2). Object types currently include furniture

as well as electronic equipment including computers, monitors, printers and telephones.

Certain object types also have semantic data fields that can be edited by the user—

for example, each instance of a telephone has an associated telephone number and each

computer has a name, which allows network traffic to be used as a secondary indicator for

power state. For the sake of simplicity, the current model does not encode relationships

between objects. For example, a monitor is not explicitly associated with the computer

to which it is attached. Nevertheless it is often possible to automatically infer such

relationships from the model, for instance by considering the distance between two objects.

The crowd-sourcing aspect of the data collection means it is much more likely that a

representative selection of the building inventory will be collected than by attempting to

persuade building managers to perform surveys manually. As an example, OpenRoomMap

was launched by email to staff members at the Computer Laboratory who placed around

3,000 objects over 5 hours. After a period of approximately 6 months the map was

approximately 70% full with 139 out of 207 rooms completed [178]. To determine whether

this usage was sustained, further investigation was carried out. By December 2010, 183

of the building’s 313 users had updated the map; 104 of these had made more than 50

changes. 5,988 separate items had been created in total, and 1,427 deleted. Figure 2.3

shows the number of updates made each day after launch (the first day had over 7,000

updates and so is not included). The clear peaks correspond to the start of each new term,
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when new students join the department and offices and equipment are therefore reassigned.

Although the crowd-sourced data is not perfect, it is the most reliable inventory available

for the building; production use of the system to display printer details, book meeting

rooms and help visitors locate offices helps ensure it is kept up to date since the same

people who can update it benefit directly from its accuracy.

An informal email survey of 15 of the top contributors revealed four main reasons why

they chose to update the map, listed here under the same motivational categories proposed

by Clary et al. [29] and also used for a study of what motivates Wikipedians [152]:

Understanding 7 people contributed to the map because they themselves found the

data useful. One specifically mentioned its potential value for monitoring energy

consumption, although this was not part of the original release.

Fun 6 people used it simply because it was fun or provided a good excuse for procras-

tination. One commented “I enjoy getting it to match reality;” another “I like

world-building games like Civilisation, and I think the appeal is the same.”

Values 4 people were motivated by altruistic values, stating “I admire user-edited projects

like Wikipedia” and “I wanted the project to succeed.”

Social 3 people cited social reasons, including peer pressure: “I also remember notic-

ing that some people in my corridor already had their rooms mapped while mine

wasn’t.”

Additionally, 2 people commented that they were interested in finding out more about

the technical aspects, features, limitations and interface of the tool; this is less likely to

be generally applicable outside the research community.

To better fit the needs of apportionment for personal energy metering, OpenRoomMap

was extended to store details of the owner of each item in its database. Each room or

space can be associated with one or more occupants. To estimate ownership from the

existing world model in OpenRoomMap, it is assumed that devices in a room with only

one occupant belong to that person, while those in a room with more than one occupant

are owned by the person who placed them on the map, provided he is is one of the

occupants. This allows estimation of a personal load for each individual based on the

devices he owns; in office environments there is often a relatively homogeneous set of

equipment, so a device can be profiled once and that profile used for each instance of the

device.

2.6 Occupancy detection

Occupancy information alone is useful in refining initial estimates of energy consumption

(Section 3.5). In the field of detecting a user’s presence, Garg and Bansal showed how to
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improve on the estimates of simple occupancy sensors by adapting to changing activity

levels [65]. Dodier et al. explored the use of belief networks with occupancy sensors [45].

There is a significant body of work on simulating occupancy profiles using Markov chains

where live data is unavailable [179, 196].

To determine who is in a space at any given time or keep track of the movements of

named individuals requires a system more sophisticated than the occupancy-detection

mechanisms surveyed in this section. This more fine-grained data is necessary to divide

up the consumption of shared resources accurately (Section 5.1), and the following sec-

tions set out the key requirements for a location system for personal energy metering

and provide a thorough survey evaluating existing systems against these requirements.

Chapter 5 demonstrates a novel mechanism for tracking location with minimal additional

infrastructure.

2.6.1 Force-based

A person standing on the ground exerts a force on it equal to his weight; at the same time,

the ground exerts an equal and opposite reaction force on the person. By instrumenting

the floor to measure the application of this force, it is possible to determine the locations

of people and objects on it; additional knowledge about possible weight signatures may

allow their identities to be inferred. These so-called “active floors” appeal because they

promise low-power, inexpensive sensing with minimal hardware deployment and no user

augmentation.

The first example was the Active Floor from Olivetti Research [4]. This consists of a

square grid of conventional 0.5× 0.5 m carpet tiles, supported at the corners by load cells

which are instrumented to give the total vertical force. Bending moment analysis is used

to determine the centre of pressure, which is equated to the position of a user or object.

Clearly, the system cannot distinguish between two people standing on the same tile, so

smaller tiles increase reliability and resolution but also deployment costs and effort. ORL

used Hidden Markov Models to attempt to identify users from a set of 15 known subjects;

this achieved some success, but clearly limits the utility of the system to a small number

of regular users rather than occasional visitors.

As part of the Aware Home project to build technologically advanced house to serve

as a living laboratory, the Georgia Institute of Technology built a very similar hardware

system [154]. They used a nearest-neighbour search over a feature space to match footsteps

against a set of known users, and achieved a 93% overall user recognition rate from a set

of 15 subjects.

As an indication of ease of deployment, the authors wrote that they intended to install ten

Smart Floor tiles in strategic locations in the house, including house entrances, hallway

entrances, kitchens, and bedroom entrances; cost prohibited augmenting the entire floor.
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All these systems rely on expensive components and deployment is complicated. Subse-

quent attempts to address the problem have instead used a mesh of wires. For example,

the Magic Carpet developed at MIT uses a grid of piezoelectric wires hidden under a 6×10

foot carpet to monitor foot position and pressure [159]. The POISE system (POsition

Information through Static Electricity) can localise foot falls and lifts with a floor aug-

mented to sense local electrostatic charges [49]. This augmentation amounts to a series

of standard, low-cost, PVC-sheathed wires. The wires draw no power, acting as passive

sensors. This approach has the advantages of being extremely low-cost (a few pounds

for the prototype pad), drawing minimal power (milliwatts) and being straightforward to

deploy and configure. Unfortunately, the passive sensing is unable to distinguish between

individuals without other sensor data; with no pressure sensors it cannot identify users

through their known weights.

2.6.2 Sound-based

Tarzia et al. proposed a technique to detect the presence of computer users via ultrasound

using only hardware that already exists on commodity laptops [192]. The system works

by detecting the changing reflections of a generated sine wave caused by a movement. A

study with 20 volunteers found it was possible to detect the presence or absence of users

with near perfect accuracy after around 10 s of measurement. The ability to repurpose

existing infrastructure in this way makes it a much more realistic candidate for widespread

deployment, since no additional deployment costs are involved. Unfortunately, as with

active floors and other tagless systems, it is unable to differentiate between individuals; it

can only infer presence, not identity. However, this may well be an appropriate technique

for learning when a user is in his office for the purposes of apportionment if he has a

personal computer that is not shared with anyone else.

2.7 Purpose-built location systems

This section provides a review of purpose-built indoor location systems described in the

literature and assesses their suitability for use in personal energy metering. In general,

it is difficult to compare different systems since their performance is dependent on the

physical parameters including size, furniture, layout of walls and partitions and beacon

positions. Nevertheless, several surveys have been published on this subject [71, 93, 94].

Unlike most surveys, this section does not focus on features, accuracy or resolution, but

rather on those properties such as cost and ease of deployment which have been identified

as crucial for the widespread adoption necessary for a personal energy meter. It only

includes technologies that have the potential to track users continuously, and therefore

excludes techniques such as barcode-based [174] or markerless [125] visual tracking which
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are designed for user-driven, interactive localisation. Although these could in principle be

implemented on today’s mobile phones, they require that the camera always has a good

view of its surroundings, which is rarely the case.

2.7.1 Infrared

Infrared signals can be used to transmit information wirelessly and also to provide location

information: since they cannot pass through walls, if a signal transmitted from one device

is received by another then it is highly likely that they are located in the same room.

Infrared light is strongly reflected by walls, meaning that line-of-sight is not required, and

this mechanism also has the advantages that infrared transmitters and sensors are cheap

and require little power. These characteristics make it a good candidate for room-level

location.

2.7.1.1 Active Badge

Olivetti Research pioneered the concept of indoor location systems with their development

of the archetypal Active Badge in 1990 [198]. These badges were worn by employees and

would emit a unique code at 15 s intervals via pulse-width modulated infrared, which

was picked up by a network of sensors placed around the host building. A master station

polled the sensors for badge sightings, processed the data and made it available to clients.

A badge is a culturally-accepted identification and access control system, but to be viable

it must be small, light and convenient to wear. To boost user acceptance, the Active

Badges were a designed in a convenient form factor to wear on clothing (55×55×7 mm),

and weighed around 40 g; the infrequent signals and a light sensor that turned the badge

off when it was dark meant batteries lasted about a year.

This early system has in fact been more widely deployed and adopted than most research

prototypes: at the time of the original paper there were over 100 badges, 200 sensors

and 5 badge networks in use at 4 sites in Cambridge. A follow-up paper introducing an

authenticated variant explains that a year after the introduction of the system and with

no requirement for compliance all employees continued to wear badges, and that together

with an installation at the University the user group size was about 150 people [197].

By 1994, when the badge evolved to use a hybrid RF/infrared approach in an effort to

make the system more scalable and offer desk-level location, over 1,500 badges and 2,000

sensors were deployed throughout the research community in Cambridge and at a number

of other universities and laboratories21 in Europe and the USA [84].

These are impressive statistics, but they nevertheless highlight a problem with this ap-

proach: a large number of sensors are required, and although these can be manufactured

21http://www.cl.cam.ac.uk/research/dtg/attarchive/ab.html

http://www.cl.cam.ac.uk/research/dtg/attarchive/ab.html
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relatively cheaply their installation is a significant undertaking. They need to be placed

high up on walls or ceiling tiles of offices and on the entrances and exits of corridors and

other public areas, and they must all have a power supply and be connected to a com-

mon, wired network. The original application for the Badges—routing telephone calls to

wherever the intended recipient was located—has been rendered largely irrelevant by the

advent of mobile phones, and the burden of deployment is probably too high for most

outside the research community to consider.

2.7.1.2 ParcTab

The ParcTab system developed at Xerox PARC is widely held as one of the first ex-

amples of ubiquitous computing [2, 200], and its history was closely tied to the parallel

developments taking place at ORL [183]. It consisted of palm-sized mobile computers that

can communicate wirelessly through infrared transceivers to workstation-based applica-

tions. It adopted a very similar mechanism to the Active Badge, transmitting a beacon

every 30 s even when idling in low-power mode that allowed the system to continue to

monitor each ParcTab’s location.

The first ParcTab system released in March 1993 consisted of 20 users and 25 transceivers.

By the time of the second release in 1994 there was community of about 41 users and

50 transceivers at the Xerox PARC Computer Science Laboratory, and a further 10

transceivers at EuroPARC.22 Again, the cost and effort of deploying the necessary in-

frastructure seems to have hindered wider adoption.

2.7.1.3 Smart Badge

A further derivative of the Active Badge concept was the Smart Badge [16], which also

used infrared for location in the same manner but added a collection of sensors and

actuators, allowing it to discover and control its physical environment and report data

using the infrared communication channel. Once again, the project seemed never to get

past the prototype stage, with the authors reporting that just ten Smart Badges and ten

Badge Transceivers were constructed.

2.7.1.4 Locust Swarm

The Locust Swarm improved deployability by inverting the Active Badge methodology

and adopting an inside-out approach: instead of individual badges broadcasting their

identifiers and being detecting by a network of sensors, a ‘swarm’ of independent Lo-

custs were deployed throughout the building which broadcast their location to interested

devices [118]. This removed the need for Locusts to be interconnected, and the clever

22http://www.ubiq.com/parctab/

http://www.ubiq.com/parctab/
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inclusion of a solar cell meant no separate power source was required either. Locusts

were instead placed in the grilles beneath overhead fluorescent lights, and covered a 20 ft

diameter circle underneath them; no batteries or mains connection were necessary, easing

installation and maintenance. In 1997, 300 units were being deployed throughout the MIT

Media Lab after a successful trial with 10 systems. However, a large number of bespoke

sensors must still be installed in carefully surveyed locations.

2.7.2 Ultrasound

2.7.2.1 The Bat System

The concept of using ultrasound for indoor location and context-awareness was first intro-

duced by Ward, Jones and Hopper from the University of Cambridge and the Olivetti and

Oracle Research Laboratory (ORL) as a follow-up to their successful experiments with

the Active Badge [201]. Measurements are made of times-of-flight of sound pulses from

an ultrasonic transmitter to receivers placed at known positions around it. Transmitter-

receiver distances can be calculated from the pulse transit times, from which, in turn, the

transmitter’s location is found by multilateration. They expanded on the principles and

described prototype hardware; with 16 ceiling receivers operating over a volume of 75 m3,

95% of raw readings lay within 14 cm of the true position. This prototype developed into

the Bat system [3, 85].

The system required deployment of not only a dense array of network ultrasound receivers

but also radio transmitters and thermometers in each room (used to compensate for the

effect of temperature on the speed of sound). The location of each ceiling-mounted re-

ceiver had to be surveyed as accurately as possible; even millimetres of error degrade

localisation accuracy significantly. AT&T Labs Cambridge developed a mechanical mea-

surement system called the crate for this purpose, which employed three one-dimensional

measurement sensors23—retractable steel cables whose current extended length is mea-

sured with shaft encoders. The measurement sensors were mounted at known locations on

a large rigid metal frame to triangulate the position of objects in three-dimensional space.

By touching the end of each cable to a survey point, trilateration could be used to deter-

mine the points’ locations. When the system was subsequently installed at the University

of Cambridge theodolites were used to survey the deployment. Both of these devices are

expensive and cumbersome, and Scott and Hazas report that with either method a typical

room took one person-hour to survey [185].

The Bat system is probably the most accurate of all indoor location systems, but it has

only ever been deployed in one or two locations at a time due to the prohibitive costs in

both time and money involved in installing all the necessary equipment. It is therefore a

valuable research tool but not a practical, general solution for personal energy metering.

23http://www.asm-sensor.de/

http://www.asm-sensor.de/
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2.7.2.2 Cricket

The Cricket Location Support System used a very similar principle to the Bat system but

was designed to address privacy concerns arising from its centralised design and therefore

adopts an inside-out approach similar to that of GPS [169]. Instead of deploying a network

of receivers, a series of beacons were installed at known locations. They periodically both

emited an ultrasonic pulse and broadcast their location over a radio channel, allowing

mobile devices which received both signals to infer their own positions independently.

The beacons were uncoordinated, using independent, randomised transmission schedules;

although this degrades positioning accuracy it does make their deployment simpler and

reduces overall system costs.

As described in the original paper, the system could provide a location granularity of

4 × 4 ft by placing the beacons in a 4 × 4 ft grid. A subsequent modification to the

system, the Cricket Compass improved on this to provide not just position but also

orientation, and increased the resolution to centimetre-level, at the cost of a more dense

beacon deployment [170]. Nevertheless, almost all of the disadvantages of the Bat system

also apply to Cricket.

2.7.2.3 Dolphin

The Dolphin system by Hazas and Ward was an evolution of the Bat system. It replaced

the standard narrow-band ultrasonic transceivers with custom ones capable of generating

broadband signals, which are more resilient to noise and interference. This helped avoid

some of the problems exhibited by the Bat system, which would sometimes accurately

determine the position of a crisp packet being opened, or keys being jangled, instead of

the Bat it was seeking. Broadband signals also allow multiple devices to be addressed

simultaneously, meaning the update rate does not drop as the number of devices increases.

Several variations on the scheme were explored in a prototype deployment, although no

system suitable for production was ever constructed. The technique can be used to build

either a centralised system with an architecture similar to that of the Bat [91] or an inside-

out, privacy-preserving variant [92]. In either case, the positioning accuracy was similar

to the Bat system (better than 5 cm in 95% of cases). The Bat system required all the

ceiling-mounted infrastructure to be connected to a common network. With the Dolphin

system it was possible to reduce the time required for installation by using battery-powered

transmitters and radio-based synchronisation, meaning only placement and surveying is

needed; the tradeoff is an increased regular maintenance burden.

The system suffered from most of the same barriers to widespread deployment as the

Bat does—extensive arrays of sensors still had to be installed in the ceilings in carefully-

surveyed locations, and in the inside-out system their locations must be distributed to all

the clients to allow them to position themselves. Furthermore, the broadband hardware is
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more complicated and expensive, relying on custom-built components, and the positioning

algorithm depends on Fast Fourier Transforms to correlate the received signals with the

expected spread spectrum waveforms. This is computationally very expensive—the oper-

ations were run on a workstation PC in the prototype described—and the authors noted

that it is likely that specialised hardware correlators would be needed in a deployable

version of the mobile receiver unit.

2.7.2.4 Other

Constellation was a combined inside-out ultrasound and inertial system designed for track-

ing both position and orientation with the high accuracy and update rate required for aug-

mented reality applications [60]. Data from triaxial accelerometers is double-integrated

to provide high-frequency position updates, while time-of-flight based ultrasonic range

measurements correct the drift that is incurred. This provides tracking accuracy of the

order of millimetres at a rate of around 500 Hz—comparable to optical systems—but at

an extremely high hardware and deployment cost. The authors mentioned that accurately

measuring the beacon locations can be time consuming and a dominant source of tracking

error, and suggested an auto-calibration mechanism might be possible in future.

Randell and Muller described a simple combined RF/ultrasound system which they

claimed could be implemented for around US $150 [171]. This system did not aim to

rival commercial systems, but they claimed accuracies of 10–25 cm. A short range FM

transmission was used to synchronise the mobile device with the four fixed ultrasound

transmitters mounted in the ceiling. The transmitters then emitted short chirps, which

are detected by a receiver with a PIC microcontroller that is either connected to a hand-

held device or worn on the shoulder. The PIC is programmed to measure the number

of 100 µs delay units occurring between transmission and reception of each chirp. These

delay units correspond to 3.4 cm, giving an optimum resolution of 2.4 cm at one and a half

metres below the centre of the transmitter square. Although it is much less expensive,

it still suffers from the same problems as other ultrasound systems, requiring dedicated

hardware to be installed in carefully-surveyed positions in the ceiling. A further major

limitation was that it did not provide continuous resolution between cells—that is, the

system was limited to four receivers to cover a single room, which is sufficient for research

purposes but means a user cannot be tracked as he moves throughout a building.

2.7.3 Radio-based

Ubisense is a commercial indoor location system developed by many of the team behind

the Bat system which uses ultra-wideband radio to position tags to within 13 cm of their

true positions 95% of the time.24 The wide frequency range of UWB pulses mean they can

24http://www.ubisense.net/

http://www.ubisense.net/
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be extremely short, making reflected signals easier to detect. The main benefit of radio

over ultrasound is that the signals can pass through many materials, meaning line-of-sight

is no longer required between tags and receivers and so the number of receivers required

is far lower; unfortunately, although the system’s properties make it well suited for energy

metering, the infrastructure remains very expensive and so it is unlikely to be deployed

for that purpose.

SmartMoveX was an RF-based active badge system from Microsoft Research designed to

be low-cost [126]. Users wore small transmitters; receivers around the building reported

signal strength readings to a central PC which attempted to match them against a library

of training vectors to determine the user’s location. They estimated the parts for a badge

cost $6 and for a receiver $16; the receivers connected to existing PCs on users’ desk

and so used the existing network infrastructure, further lowering costs. Four receivers

were used to cover an area of 350 m2, giving a cost excluding badges of around $0.18 per

square metre. This is a significant improvement on most other active badge systems, and

the concept of reusing existing PCs as base stations is promising and developed further

in Section 5.1.1. However, gathering the training data requires a very significant time

commitment, discussed in Section 2.8.3.3; if this is not considered prohibitive, as it will be

in many environments, the same technique could be used with existing radio transmitters

such as WiFi, DECT or FM stations, reducing the infrastructure cost further. Systems

based on these ideas are surveyed in Section 2.8.

2.7.4 Inertial

Inertial navigation is a promising approach for infrastructure-free indoor tracking. Ini-

tially developed for aircraft and submarines where opportunities for position fixes are

few and far between, advances in Micro-Electro-Mechanical Systems (MEMS) technol-

ogy means accelerometers and gyroscopes are now sufficiently small and cheap that they

can be attached to individuals as well. These devices suffer from significant inaccuracies,

and it has been demonstrated that general-purpose inertial navigation algorithms are un-

suitable for pedestrian tracking due to the rapid accumulation of errors in the tracked

position. However, purpose-built systems have produced impressive results: by detecting

when the foot is stationary and applying zero velocity corrections a pedestrian’s relative

movements can be tracked far more accurately than is possible using uncorrected inertial

navigation.

Woodman has done pioneering work in this area [206]. He used particle filters to enforce

constraints such as impassable walls and floors and thereby narrow down the absolute

position of a pedestrian as he moves through an indoor environment [207]. Once the user’s

position has been uniquely determined the same filter can track this absolute position to

sub-metre accuracy.
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Regrettably, the Xsens hardware used cost in the region of £1000,25 and cheaper devices

have not been shown to provide the level of accuracy required for position to converge.

Furthermore, the inertial tracking unit must be worn on the foot, which is limiting in a

real-world situation; although Nike have demonstrated an accelerometer-based device for

running training which fits neatly into a training shoe and transmits data wirelessly to

an iPod26, in general it is unlikely that such hardware will be integrated into every shoe

a user might wear.

Modern smartphones typically have triaxial accelerometers built in to support gesture

recognition and novel interfaces; the iPhone 4 was the first also to feature a triaxial

gyroscope,27 and it seems reasonable to suppose that other major vendors will follow suit.

The ideal would be to make use of these sensors to perform inertial navigation continuously

in the background when position fixes from GPS or other sensor systems are not available.

At present the error they introduce is too great, but this is likely to improve as MEMS

technology matures; the most significant challenge is that phones are not generally carried

in a known location and not even fixed rigidly to the body. This makes even step detection

difficult, and prevents techniques such as the footfall zero-velocity update relied upon by

current state-of-the-art tracking systems.

Through observation of 419 urban residents, Ichikawa et al. found out that most (around

60%) men carried their phones in a front trouser pocket while women carried theirs

in a handbag [102]. Even sensing the device’s own location is difficult using accurate

accelerometers alone at present; Jin and Fujinami achieved an average of 73% accurate

online classification between five different on-body locations [106], while Kunze et al.

managed success rates in the low nineties while the user is walking [127].

As a small step towards the larger goal of inertial navigation, Blanke and Schiele at-

tempted to recognise known location trajectories within buildings using a Xsens inertial

navigation unit with unknown placement and orientation in a trouser pocket, achieving

classification rates of about 95% on average [18]. Steinhoff and Schiele then conducted an

experimental study of several approaches for dead reckoning in this scenario with uncon-

strained placement of a device in the user’s trouser pocket; because the devices position

inside the pocket is quite stable and the motion and rotation are coupled with the thigh

motions they believe this location is promising [189].

Inertial navigation using dedicated foot-mounted accelerometers is clearly impractical for

most users of a personal energy meter, but it remains an interesting avenue of research with

much potential, particularly as the sensors embedded in phones improve and new methods

are discovered to tackle the problem of unconstrained placement. Another limitation is

the drain on the phone’s battery from the continuous sensing required.

25http://www.xsens.com/en/general/mti
26http://www.apple.com/ipod/nike/
27http://www.eetimes.com/electronics-news/4199985/First-MEMS-gyro-packed-into-

smarter-iPhone-4

http://www.xsens.com/en/general/mti
http://www.apple.com/ipod/nike/
http://www.eetimes.com/electronics-news/4199985/First-MEMS-gyro-packed-into-smarter-iPhone-4
http://www.eetimes.com/electronics-news/4199985/First-MEMS-gyro-packed-into-smarter-iPhone-4
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2.8 Opportunistic location systems

Another approach to reducing installation costs is to leverage existing infrastructure that

has been installed in the building for a different purpose and exploit its characteristics to

obtain contextual information. This section surveys a number of systems that adopt this

technique.

2.8.1 Sound

Beep was a 3D location system which used audible sound for positioning [138]. This has

the significant advantage of being almost universally supported by existing mobile phones

and other devices, meaning no additional infrastructure at the user end is required. It

used a similar technique to the Bat system (Section 2.7.2.1): when a user requested

positioning, his roaming device synchronised with dedicated acoustic sensors though a

wireless network and transmitted a pre-defined audible signal. The sensors detected this

signal using specialised digital flights and made an estimate of the time-of-flight, which was

reported to a central server. This performed multilateration to derive a position estimate

and reported the results to the roaming device. Heterogeneous mobile devices introduced

unknown hardware delays between a positioning request and the emitted signal caused

by the sound card. The authors described a novel multilateration algorithm that takes

this into account, and studied the number of sensors required to cover a given tracking

volume. They concluded that to cover a warehouse of area 10,000 sq. ft and height 10 ft

with sensors having range 25 ft would require between 30 and 38 sensors, depending on

the deployment pattern. The testbed used six desktops with microphones placed on the

ceiling as the sensors in a room measuring 32 × 18 × 8 ft; their results showed that in a

2D plane the system has an accuracy of about 2 ft in more than 97% of cases, while in

the 3D case this dropped to about 3 ft in 95% of cases.

The system as described was dependent on mobile devices requesting they be localised

and the central server queueing these requests to avoid interference and is therefore more

suitable for interactive applications than ongoing, passive tracking, though the same un-

derlying technique could be used to achieve this.

An obvious downside is that the signals themselves are audible to humans; although their

duration is kept to 100 ms to minimise irritation, the more devices being tracked and the

more frequent the updates the more distracting this will become. Noisy environments

also degrade the reliability of the system. The testbed used dedicated desktop PCs as

sensors; while this is clearly a barrier to deployment, the authors proposed to use custom

hardware in a future development, which they argued could be built at low cost and

require little power. An alternative approach might be to use the desktop PCs already in

use throughout office buildings as sensors, though their locations, typically on the floor

under desks, are unlikely to be well-suited to multilateration applications.
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In a similar vein, WALRUS (Wireless Acoustic Location with Room-level resolution using

UltraSound) is a system that uses the built-in wireless networking interfaces and micro-

phones of mobile devices to determine location with no special hardware [22]. It has a

similar design to the Cricket system, with unsynchronised beacons periodically transmit-

ting both their location via radio and a pulse of ultrasound, but uses PCs with standard

desktop speakers to transmit ultrasound and WiFi as the communication channel instead

of specialised radio.

Client devices do not attempt to perform multilateration; instead they record audio when-

ever they hear a location broadcast over WiFi, and if subsequent analysis finds energy

in the ultrasonic range it is likely the device is in the same room as the beacon that

generated the last packet since ultrasound tends to be blocked by walls. Tests showed the

system is robust to background noise.

The lack of synchronisation between beacons means the chances of collisions increases

with the number of rooms. With only 6 beacons, the mobile client was able to determine

its location correctly about 84% of the time, but this dropped below 50% with 50 bea-

cons. This may limit its viability in larger buildings—although a centralised, round-robin

approach like that used by the Bat system could be adopted. The use of 802.11 broadcast

packets does preclude clients from using a wireless network and the location system at

the same time; addressing this would require changes to both access points and network

card device drivers. These two constraints combine to make the system impractical for

continuous tracking of users for a personal energy meter, but its philosophy of repurpos-

ing the PCs on every desk as base stations is a good approach that is adopted in Section

5.1.1.

2.8.2 Home infrastructure

A team at the Georgia Institute of Technology introduced PowerLine Positioning, or

PLP, which used the residential powerline as the signalling infrastructure to create a

whole-house indoor location system with sub-room-level accuracy [165]. They called this

approach ‘infrastructure mediated sensing’, or ‘home bus snooping’ (as opposed to ‘direct

sensing’). It required only the installation of two small plug-in modules at the extreme

ends of the home and claimed an accuracy of 87–95% for classifying regions at 3 m and

67% at 1 m resolution; however, subsequent repetitions achieved only 54% room-level

accuracy [190]. On closer inspection, there are a number of serious problems that limit

its practicality. Most importantly, like all fingerprinting solutions, it is susceptible to

accuracy degradation over time due to variability in the fingerprint. This is particularly

problematic in this system since it requires a pair of frequencies independently injected

into the power lines at separate points in the house. It is not possible to select a specific

pair of frequencies that can be guaranteed to work in every setting over a period of time,

necessitating frequent labour-intensive recalibration of the entire system.
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In a subsequent paper, Stuntebeck and other members of the original team proposed the

use of wideband signals, which are less susceptible to temporal variation, to counter this

problem [190]. This also has the advantages of improving accuracy by providing additional

features to the classifier and working in commercial spaces. The system they described

required a trolley full of equipment, making it impractical for real-world deployment, but

the authors argued that their prototype has more functionality than is necessary and

described how a deployable version might be built.

The same team from the Georgia Institute of Technology have explored the possibil-

ity of detecting human movement and room transitions by using a single sensor in the

HVAC system ductwork [163]. Disruptions in airflow, caused by human movement includ-

ing room-to-room transitions and doors being opened or closed, result in static pressure

changes in the HVAC air handler unit. Sensors mounted on the air filter allowed them

to detect these pressure variations and classify where in the house the events are tak-

ing place with up to 75-80% accuracy. Occupancy of individual rooms could be derived

probabilistically from a series of room transition and door events.

Clearly this approach suffers from the same problems as all occupancy and movement

detection systems in that it is impossible to identify individuals without additional sources

of information, but given this constraint the installation of a single instrumented air filter

is clearly far simpler than that of an array of motion detectors throughout the house, each

of which must be carefully aligned and surveyed.

One problem with relying on home infrastructure is that the techniques are very dependent

on the style of building construction, and therefore in many cases their applicability is

geographically limited. Powerline positioning does not work in most offices and is unlikely

to work without significant modification in homes in Europe since they tend to be of a

very different construction to those in Georgia; clearly HVAC-based systems are not an

option in countries whose climates do not require air conditioning. They may yet be a

useful tool in the arsenal, reducing the need for additional sensors in situations where

they can be applied.

2.8.3 Radio techniques

Several techniques have been devised to take advantage of radio beacons that are already

widely deployed. Individual systems are described in the following sections, classified by

technology; this section provides an overview of the possible mechanisms which can be

applied regardless of the radio source used.

2.8.3.1 Proximity

Proximity-based systems are the simplest conceptually. They assume that if a target

is in range of a fixed base station then it must be approximately co-located with that
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base; this can be extended to assume that the target is co-located with the base from

which it receives the strongest signal. Their resolution is therefore determined by the

radio range, making this technique well-suited only to relatively short-range technologies

such as Bluetooth if, as for the personal energy meter, indoor, approximate room-level

location is required. Such systems cannot provide coordinate locations for the targets,

but the major advantage is that no information beyond the locations of the base stations

is required.

2.8.3.2 Signal propagation models

A more sophisticated alternative to simple proximity-based systems is to attempt to

infer the distance from a base station from its received signal strength; if several base

stations at known locations are visible, multilateration can be used to calculate a co-

ordinate position. The main problem with this approach is that signal propagation in

busy building environments is very different from what models predict for free space;

furniture, doors and people all cause changes in received signal strength that are very

difficult to anticipate.

2.8.3.3 Fingerprinting

Fingerprinting is one of the most prominent and successful techniques for building location

systems. Since predicting the signal strength from a base station at any given point is

very difficult, it relies on building up in advance a radio map of the entire tracking area

consisting of measurements of the signal strengths from a number of fixed base stations

at each location; to position a mobile target, its measurements of these signal strengths

are compared in some way to those at each location on the map and the target is assumed

to be at the position whose recorded measurements most closely match its own. This can

be very accurate, but has a number of disadvantages, the most significant of which is the

ongoing effort required to build and keep up-to-date the radio map.

Even the proponents of fingerprint-based systems acknowledge that this calibration pro-

cess is likely to hinder adoption. Castro et al. described map-building as “tedious” [26];

Matic et al. rated it “laborious and time-consuming” [142] while Schwaighofer et al. stated

“taking calibration measurements is a very costly process, in particular if larger areas need

to be covered” [184]. In one of the few large-scale deployments of an RF-based location

system, 28 man-hours were required to construct a radio map covering a 12,000 m2 build-

ing [77]. Several techniques have been suggested to mitigate this problem, though each

introduces its own issues.

Ocana et al. used a robot capable of autonomously collecting WiFi signal strength mea-

surements in different locations [153]. In addition, they proposed a number of strategies

to reduce the calibration effort by optimising the number of collected training samples,
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thus decreasing the time spent on calibration. This is useful, but a robot is unlikely to

be practical in most settings.

Woodman and Harle used an inertial pedestrian tracking system (see Section 2.7.4) to

speed up the process of building a radio map for a building by doing away with the need

to annotate positions where measurements were taken by hand [208]. Instead, a user

walked around the building taking signal strength measurements continuously while his

position was tracked. Using this method they constructed a map for a large (8,725 m2)

three-storey building in 2 hours and 28 minutes, travelling a total distance of 8.7 km.

This is a significant improvement, but requires an expensive and unusual tracking system

and is still an arduous process; data collection had to take place on a Sunday to avoid

disturbing building occupants.

Alternatively, maps can be built up by users themselves. Matic et al. developed a spon-

taneous recalibration mechanism which works by having the mobile device capture a new

fingerprint when it is in a known location, such as a docking station or charger, that can

be detected by other means, such as the presence an external power supply; the change is

then applied to other points based on a radio propagation model [142]. Their evaluation

used five defined reference points, and improved the median error of a FM-based system

from 1.45 m to 1.2 m after one month’s degradation. In practice, this method is unlikely

to provide sufficient accurate data points to make a significant difference, and even the

example of charging is prone to introduce more error if the phone is ever plugged in in a

different location from that configured.

The most practical suggestion is that radio maps could be crowd-sourced directly by

asking end users to take measurements in locations that are not well mapped. This

is similar to the technique adopted for outdoor WiFi-based localisation by Google for

its Android phones, which, every time they fix their position using GPS, also record a

WiFi fingerprint and submit it automatically to the central database. Redpin is one such

system, consisting of software deployed on mobile phones that could capture fingerprints

using GSM, Bluetooth and WiFi, though it was not deployed or evaluated on a large

scale [19]. Lee et al. used a similar system to evaluate the feasibility of crowd-sourcing

a radio map, concluding that it begins to offer reasonable accuracy when the number of

fingerprints in the database is larger than 5 for a typical office of 30 m2 but the recognition

accuracy decreases beneath 70% when about 7% of fingerprints are incorrect.

Barry et al. conducted one of the most thorough evaluations of such a system across the

five buildings of a college campus over the course of a year, involving more than 200

users [14]. They found that uptake was good, motivated in part by a colleague finding

application, with 95% of users contributing and over 1,000,000 location updates in total.

They assessed that the system could localise to within 10 m in 94% of cases, although

this figure was based only on 57 user estimates of error. These results are very encour-

aging, but the paper does highlight some significant remaining problems. Changes in the
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MAC addresses and locations of access points invalidate collected fingerprints and their

results may not be indicative of buildings in general since all the users were engineering

students or staff who might be assumed to be highly technically literate and all were using

institution-issued laptops, mitigating problems with diverse chipsets reporting different

RSSI values. Most importantly, initial training is still required to produce a minimally-

usable system to which users can be encouraged to add data. There is a chicken-and-egg

problem: without good manual training data, users will not use (and therefore train)

the system—but without users using it the system will not improve its accuracy. Google

addresses this issue in its outdoor system described earlier by recording WiFi fingerprints

continuously from the cars used to gather data for Street View. The authors estimated

this manual training required 1–3 minutes per location. One improvement suggested is

to use shared calendars as a source of training data to help solve the cold start prob-

lem [15]. In the same environment they found it yielded similar accuracy to the pure

crowd-sourcing approach but in a much shorter time, though it can only be applied in

offices where shared calendars with meeting location are the norm.

2.8.4 GSM

Although Place Lab [129] and other systems, including commercial offerings, used GSM

towers as beacons to identify a general locality, they were working within the constraints

of mobile phones which only reported the cell tower to which they were connected. More

recent phones also expose programatically the full list of visible towers and their sig-

nals strengths, which has opened up the possibility of using fingerprinting to make more

accurate position estimates.

The first such system to promise accurate indoor localisation was introduced by Otasson

et al. [155, 195]. Their key idea to make GSM suitable for localisation indoors is the use

of wide signal-strength fingerprints including not just the strongest 6 visible GSM towers

but all of them, even if they are too weak to be used for efficient communication. They

found this could result in up to an additional 29 channels: this higher dimensionality

increases localisation accuracy. They collected fingerprints at points located 1–1.5 m

apart to achieve a median two-dimensional accuracy ranging from 2.48 m to 5.44 m in

large multi-floor buildings; correct floor classifications ranged from 89% to 97%.

Although using a network with almost complete international coverage and a technology

that is always enabled on mobile phones is an attractive proposition and some of the sys-

tems have attained appropriate accuracy, all of the standard problems with fingerprinting

described in Section 2.8.3.3 apply to these systems, making it unlikely that GSM will be a

suitable approach to obtain the location information needed by a personal energy meter.
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2.8.5 WiFi

RADAR was one of the earliest systems to use fingerprinting based on WiFi signal strength

for indoor localisation [10]. It calculated the Euclidean distance between the signal

strength vector observed by the target and each entry recorded in the pre-constructed

radio map, and produced a best guess of the target’s position as the position in the map

with the smallest difference. Although this algorithm is relatively simple, it resulted in an

error in the original experiments of less than 9 m 95% of the time. Place Lab implemented

a very similar system and obtained an accuracy ranging between 3–30 m depending on

access point configurations [70, 129]. Horus used a different approach, computing a prob-

ability distribution of the target’s position with a claimed error of less than 1.4 m 95% of

the time [210].

Although some of the accuracy measurements claimed by these fingerprinting-based sys-

tems are impressive, there are serious obstacles to achieving them in real deployments.

WiFi is a power-hungry protocol and using it for continuous tracking will quickly deplete

the battery of any mobile device. All of the papers mentioned tested the systems in

buildings with far denser deployments of wireless access points than is required just for

communications, since it is only necessary to talk to one access point to join a network but

a vector of signal strengths from multiple access points is needed to perform matching.

Although WiFi networks are almost ubiquitous, most office buildings would not be able to

achieve similar levels of accuracy, and the vast majority of homes with WiFi have only a

single access point. These are the key locations in which personal energy metering is most

important. Furthermore, all the problems described in Section 2.8.3.3 apply; variability

of signal strength is a particular concern with WiFi since its propagation is dependent on

dynamic factors such as the locations of furniture, doors and even people. A single person

between the target and an access point can attenuate the signal by up to 9 dBm [109].

Since the range and the measurement of RSS depends on the wireless card, it is also im-

portant to use the same card for collecting the location fingerprints and determining the

location; this makes the technique less applicable to devices already carried by users [108].

2.8.6 FM

FM broadcast stations seem a good candidate as the basis for location estimation since

they are pervasive across the globe, operate at high power using a very stable reference

frequency and, unlike GPS, can be received indoors and in the presence of obstructions.

The number of stations visible almost anywhere is a significant advantage; while it may be

reasonable to assume that many WiFi access points are visible in an office environment, it

is less likely to hold in a rural home. WiFi also shares the 2.4 GHz frequency range with

many other electronic devices such as cordless phones and microwave ovens that make it

more prone to interference, and its use is prohibited in certain sensitive environments such
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as hospitals. Furthermore, FM receivers can consume very little power (around 15 mW

for one example,28 compared to 300 mW for WiFi);29 there are even several solar- or

human-powered radios.30

Giordana et al. first suggested the use of FM radio signals for localisation beyond simply

depending on their limited range so that only devices within range of a particular tower

will get information relevant to its coverage area [67]. Krumm et al. introduced the first

working prototype based on this idea; the RightSPOT system used a vector of radio

signal strengths taken from existing public FM stations on different frequencies to allow a

wristwatch with a built-in FM receiver to identify its approximate location [124]. However,

although they suggested it may be possible to use a signal strength simulator to anticipate

the characteristics of different locations without visiting them all, it is still necessary to

build a radio map which is a time-consuming and tedious process; furthermore, although

FM signals do propagate indoors, the system could only offer suburb-level resolution.

In a later extension, Youssef et al. improved the RightSPOT algorithm to classify a

device into a uniform grid of locations rather than identifying one of a few, spatially

separated suburbs and validated the simulated signal strength maps suggested previously

to eliminate the need for manual training [209]. This allowed the user to be located with

median 8 km accuracy.

Fang et al. described a similar system, but performed their experiments in a 1 km2 area

of the campus of the National Taiwan University in Taipei, training the system with 20

reference locations separated by 85–135 m [50]. They compared positioning based on FM

signal level with GSM and reported that FM measurements provide a lower temporal vari-

ation but weaker spatial separation; with the same number of channels, GSM positioning

is more accurate. However, FM stations are more widespread, and by using more radio

channels and a calibrated spectrum analyser as the receiver, they achieve much better

resolution than RightSPOT. With 12 channels, roughly 80% of readings were within 50 m

of the true position. For comparison, the Federal Communications Commission require-

ment for Enhanced 911 to facilitate emergency services is that 67% of position estimates

should be within 50 m. However, once again an accurate radio map is required, and the

hardware used is significantly more sophisticated than a standard FM receiver.

Papliatseyeu et al. conducted the first experimental study of FM performance for indoor

location by employing a dedicated set of short-range FM transmitters built into commer-

cial MP3 players as wireless beacons and a programmable radio on a Nokia N800 Internet

Tablet and HMC Artemis smartphone [158]. Their FINDR (FM INDooR) system used a

radio map and k-nearest neighbour classification of RSSI vectors to yield a median accu-

racy of 1.0 m, with 95% of readings having a position error of less than 5 m. A comparison

28http://pdf1.alldatasheet.com/datasheet-pdf/view/19431/PHILIPS/TDA7088.html
29http://pdf1.alldatasheet.com/datasheet-pdf/view/175096/BOARDCOM/BCM4326.html
30http://www.freeplayenergy.com/

http://pdf1.alldatasheet.com/datasheet-pdf/view/19431/PHILIPS/TDA7088.html
http://pdf1.alldatasheet.com/datasheet-pdf/view/175096/BOARDCOM/BCM4326.html
http://www.freeplayenergy.com/
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with WiFi positioning in the same environment showed a similar accuracy. The authors

also shared valuable evaluations of the suitability of various relative position-dependent

features and of RSSI stability over time. However, three transmitters had to be installed

to cover a single 12× 6 m room; each had to be tuned manually to frequencies with little

interference from commercial radio stations, and each had a 1.8 m audio cable connected

to act as an antenna. Furthermore, a radio map was built based on a 1× 1 m grid of cells

within a single room; clearly, such a fine-grained data collection would be impractical on

a wider scale, and to avoid performance degradation it is necessary to perform periodic

recalibration of the system to cope with changing conditions in the environment.

In a subsequent paper, the authors improved the accuracy of their system, introduced

a combined, hybrid WiFi and FM approach and introduced a spontaneous recalibration

mechanism in an effort to avoid the need to repeat the training regularly [142]. By using

a training grid of 0.5 m instead of 1 m (increasing the number of training points from 40

to 140) they reduced the median error by 30 cm. The combined system, fusing FM and

WiFi fingerprints, further improves the positioning accuracy by up to 22% to 0.85 m at

the 95th percentile. This approach may capture some of the benefits of both technologies,

allowing FM to be employed to provide positioning in areas not well covered by WiFi or

to manage battery life. In general, however, FM radio is not well suited to building a

location system suitable for personal energy metering; its accuracy is insufficient without

extensive and time-consuming radio maps, and almost no devices already carried have

appropriate receivers built in.

2.8.7 DECT

Digital Enhanced Cordless Telecommunications (DECT) is a European Telecommunica-

tions Standards Institute radio standard for short-range cordless communications; it has

an exclusive frequency band with no interference from other technologies that can be used

in more than 100 countries with a maximum range of up to 500 m. Its lower frequency

allows it to propagate through walls better, and it is permitted 2.5 times the transmit

power of WiFi. Being a relatively old and simple standard, DECT chips are comparatively

simple and cheap to manufacture; prices for DECT handsets start at around £10.

While not everyone owns a wireless access point, nearly everyone has a cordless phone at

home, including those who are not technologically adept. This means the node density of

DECT base stations makes it a very good candidate for localisation, particularly in homes

and rural areas where it is unlikely that several WiFi base stations will be visible. Kranz

et al. reported seeing 5 to 10 times more DECT base stations than WiFi access points

across urban, suburban and rural locations in Germany [123]. However, while DECT was

standardised in Europe in 1995 it was not standardised in the US until 2005, meaning it is

far less widespread there; indeed, their measurements in more than 20 different locations

in California did not give a single sighting. Furthermore, very few commercial cards that
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support it are still available; many have been discontinued in the face of the rise of WiFi

and VOIP.

Schwaighofer et al. presented an probabilistic algorithm for localisation in generalised

cellular networks and evaluate it using DECT [184]. The key idea was to use Gaussian

process models for the signal strength received from each base station, and to obtain

position estimates via maximum likelihood. Again, a radio map was required; in a 250×
180 m assembly hall, measurements were made at 650 points. The total number of base

stations installed was not specified, but localisation was typically based on around 15;

this is rather higher than would be expected in most homes or offices. Using the full

set of calibration measurements, their algorithm performed slightly worse than k-nearest

neighbours, with an average error of 7.5 m; its strength is that it performs well with less

calibration, achieving an average error of around 17 m with only 12 calibration points 75 m

apart (kNN achieves 29 m at best). This is a significant advance, and many subsequent

systems adopt the idea of Gaussian processes, but the use of DECT was incidental to the

evaluation of the algorithm and it does not really offer any information about its merits

and demerits relative to other radio technologies.

Kranz et al. built the first real-world system based on DECT and performed a comparative

study of DECT and WiFi signals for indoor localisation [123]. It used fingerprinting and a

weighted kNN method in a very similar way to many early WiFi-based systems; additional

accuracy could be obtained by the use of more sophisticated probabilistic algorithms.

They evaluated it in urban, suburban and rural settings. In an apartment in a residential

urban area both DECT and WLAN fingerprinting performed very poorly, with results

comparable to selecting a location at random. However, in a suburban office, using 24

reference points surveyed with sub-centimetre accuracy but no artificial DECT stations,

more than 55% of the location estimates showed less than 5 m error and more than 90%

less than 10 m error. This was slightly better than the equivalent WiFi figures. Similarly,

in the rural setting, DECT outperformed WiFi, with 80% of all estimates showing less

than 5 m error.

As a technology, DECT seems well-suited to positioning, but there are significant obstacles

to a global system. Mobile phones and wireless networks mean its days are likely to be

numbered, though it may have a part to play in a hybrid system. More importantly, very

few mobile computing devices that people carry with them each day feature DECT; it

is designed for a cordless phone that remains within a single building. While it might

therefore work well for context-aware applications within a home or office environment, it

is less suitable for a personal energy meter that requires the device to be able to position

itself indoors in a number of different locations; a separate, dedicated device would have

to be carried.
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2.8.8 Bluetooth

Madhavapeddy and Tse conducted an extensive survey of Bluetooth signal strength in the

William Gates Building [137]. The Bat system was used as a ‘location oracle’ to gather

a large number of samples of Bluetooth signal strengths from transceivers placed around

a building. They concluded that Bluetooth was ill-suited for the purpose of accurate,

low-latency location sensing due to:

1. common chipsets only exposing a running average of signal strengths and updating

it infrequently;

2. the high variance in signal strengths for longer distances; and

3. the inability for consumer mobile phones to maintain multiple Bluetooth connections

simultaneously for triangulation purposes.

Their third point has been addressed by most modern mobile phones, but it is the second

one that poses the most significant problem: most other authors of papers concerning

Bluetooth location agree that the coarse RSSI metric is not a good indicator of dis-

tance [13].

Most Bluetooth tracking systems are proximity-based — that is, if a user can be contacted

by a base station (or vice versa) then the user is coarsely located to the base station’s

position. Bluetooth was designed as a short-range communications system with range of

comparable size to a room (class 2 Bluetooth devices have a nominal range of 10 m in free

space, less indoors), so proximity-based location is simple to implement and sufficiently

accurate for many purposes, including energy metering.

Anastasi et al. conducted some of the first experiments to demonstrate the potential of

Bluetooth as the basis of an indoor location system [8]. Their Bluetooth Indoor Positioning

System (BIPS) is proximity-based and outside-in; users must register their user ID and

Bluetooth device address with a centralised server that then orchestrates a network of

fixed base stations to track the movements of mobile devices using the Bluetooth inquiry

mode [23].

Huang implemented a proximity-based, inside-out system, where Bluetooth devices are

placed in key locations throughout a building and respond to enquiries from a mobile user’s

phone or PDA [100]. The work has a refreshing emphasis on practicality: existing PCs

were used as beacons, with USB Bluetooth adaptors installed in computers approximately

every 10 m on six different floors. An advantage of the inside-out approach is that no

software beyond the device drivers is required on the fixed PCs; Huang asserted:

On average, configuring a machine to host one of our beacons took less than

three minutes. The most time consuming part of the deployment was actually
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tracking down the system administrators for the machines we wanted to use,

and obtaining their permission.

Client software was written for both Linux PCs and Symbian mobile phones. The main

obstacle encountered was the time taken to perform a Bluetooth enquiry (up to 10.24 s);

to help get around this, Huang installed two separate Bluetooth adaptors in each beacon

PC instead of one. Experiments showed that they responded to enquiries independently

from each other, and the locator only needs to wait for a response from either one.

Unfortunately, this doubles the cost of deployment.

In order to remove the dependence on host PCs outside his control, Huang also evaluated

the possibility of deploying dedicated low-cost beacons constructed by connecting a USB

Bluetooth adaptor directly to a powered USB hub. A PC is then only required to be con-

nected to the hub to initialise the adaptor, after which it can be removed. Unfortunately,

this method requires significant manual effort to re-initialise every adaptor in the event

of even a momentary power loss. While this may not be an insurmountable problem in a

Computer Science laboratory, it is likely to be impossible in a general deployment.

With any proximity-based system it is clearly desirable to use beacons with a range ap-

proximately equal to the required spatial resolution. Cheung et al. built on Huang’s work

and proposed a new type of dedicated beacon, constructed from a Bluetooth headset

placed inside a cardboard carton and wrapped in foil tape to reduce the range to ap-

proximately 2–3 m [27]. This does not suffer from the initialisation problems of Huang’s

solution. The short range improves resolution, but would require a very large number of

beacons to offer complete coverage. Removing the headset battery and leaving it con-

nected to mains power meant it remained permanently in standby mode, where it was

not discoverable but would respond to page attempts to its own address. They therefore

built a new test client that instead of performing Bluetooth scans continuously attempted

to connect to the addresses of known beacons; each attempt took between 1.5 and 6 s.

Clearly, a näıve algorithm like this will not scale to a large building-wide deployment with

hundreds of beacons.

Naya et al. proposed a Bluetooth-based proximity detection method in a nursing con-

text [149]. They too relied on the Bluetooth discovery mode, but by an exhaustive search

through the inquiry parameter space they reduced the mean turnaround time of inquiry

responses to less than the expected time of the Bluetooth default settings at the cost of

some reliability. The method only appears to have been tested with a single master and

slave, and there is no record of subsequent development and deployment of a working

system.

Hallberg et al. implemented an inside-out, proximity-based system with two separate

mechanisms for resolving a visible Bluetooth device to an absolute position: either the

mobile client could look up its address in a central database, or it could connect to a
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special service running on the fixed target and ask it directly [79]. The latter approach

has the advantage of not requiring any additional network connection or any co-ordination

between target devices, which can be completely independent provided they know their

own locations, but clearly only works if the targets are PCs running custom software.

The client performs a Bluetooth inquiry, then establishes a connection to each discovered

device to ask its position; the position estimate is a simple geometric combination of the

positions of the devices in range. The time taken to arrive at a position estimate therefore

scales linearly with the number of devices.

Bluetooth tracking has also been demonstrated using the received signal strength mea-

surement techniques first developed for WiFi location systems [76, 157], based either on

radio propagation models or ‘fingerprinting’. For example, Bluetooth Local Positioning

Application (BLPA) was an attempt to use received power levels to infer distance from

base stations using a radio propagation model learned from a calibration process [122].

There are significant problems with this approach, not least of which is that the model

will be subject to continuous change and RSSI readings are dependent on the particular

chipset. Although the authors claim sub-room-level accuracy, the system was only tested

in a single room with all WiFi devices disabled to avoid interference. Genco et al. adopted

a fingerprinting approach in a castle in Sicily and noted the difficulty in predicting signal

propagation [66]. They proposed methods for iteratively determining the optimal posi-

tions of base stations and achieved an apparent accuracy of around 0.5 m using 10 base

stations, but this relied on techniques specific to the castle in question that they admitted

would not be generally applicable.

Bargh and de Groote took a different approach and demonstrated a fingerprint-based

solution that relies only on the response rate of Bluetooth inquiries [13]. Target devices

must be discoverable; fingerprints are based on the percentage of responses to inquiries

sent by dongles that are located at a specific distance from each other. This has the

advantage of working even if different devices are used for the calibration and localisa-

tion phases; it produced an accuracy of around 98% correct room estimation with full

overlapping Bluetooth coverage and around 75% with only partial coverage. However,

the experiment involved leaving the target device in each position for an hour; this will

always produce better results than attempting to track a moving target; furthermore, the

authors acknowledged the method for obtaining the fingerprints is infeasible when the

number of locations is high.

Although signal-strength-based systems generally claim greater accuracy, that comes at a

significant cost; all of the problems with these methods described in Section 2.8.3.3 apply

in addition to problems caused by using the inquiry scan described in this section. Since

the resolution offered by proximity-based systems is sufficient for most personal energy

metering applications and the variability of Bluetooth signal strengths over time and with

different chipsets is well known [137], systems based on signal strength are discounted here.
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Bluetooth’s short range makes it the most promising technique for indoor location that

does not require fingerprinting or other extensive calibration processes; the systems de-

scribed above demonstrate the potential of this technology. However, their common re-

quirement for devices to be permanently ‘discoverable’ is a major concern. This problem,

and a possible solution, is discussed in Section 5.1.1.

2.9 Syndication of sensor data

The personal energy meter will need to aggregate data from a number of different sensor

systems to present a unified view to its end users.

Pachube31 is a data brokerage platform for Internet-connected sensors, which can provide

data in either CSV or an XML feed format.32 The site acts as a central point, storing

all of the data collected and serving it to consumer applications; this model has proved

successful for sites such as YouTube, from which Pachube takes inspiration, but has the

same disadvantages as all centralised systems described earlier.

Guinard and Trifa noted the popularity of mashups on the web and discussed how the

REST principles [52] can be applied to embedded devices, either by implementing a web

server directly where resources permit or via a gateway [72]. As part of the Web of

Things project they showed how an eco-system of these devices can facilitate the creation

of ‘mashups’ consuming real-world data, but noted that REST can complicate the creation

of certain more complex composite services.

sMAP is a design for RESTful web services to allow sensors and other producers of phys-

ical information to publish their data directly [40, 41]. It adds a layer of sophistication

to simple syndication formats, including support for actuators and basic transactional se-

mantics. The evaluation deployment in a building at the University of California, Berkeley,

provides about 2,000 measurement channels monitoring electricity consumption, environ-

mental quality data, HVAC parameters and weather data. The system is intended for

a different level of operation from the personal energy meter, allowing separate sensor

systems within a building to communicate with each other; as such, it promises to be

a good basis on which to build individual components that report to a personal energy

meter.

To demonstrate the potential of sMAP the team created what they call a Human-Building-

Computer Interaction (HBCI) system, consisting of an Android mobile application, a

number of RESTful services implemented using sMAP and 2D barcodes placed on physical

objects [99]. By scanning the tags with a mobile phone’s camera users can interact with

physical objects, switching appliances on and off and viewing graphs of their current and

31http://www.pachube.com/
32http://www.eeml.org/

http://www.pachube.com/
http://www.eeml.org/
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historic energy consumption. Although its triggers demonstrate the support sMAP offers

for actuators they are unlikely to prove convenient for most people, but the use of barcodes

to identify objects or spaces of interest is a straightforward and easily understood mode of

interaction that is also adopted by the example aggregator described in Chapter 6. HBCI

also includes preliminary support for apportionment developed from the principles and

ideas set out in Section 3.5. Overall, HBCI is a good demonstration of several ideas set

out in this dissertation.

2.10 Summary

Personal energy metering stands at the intersection of a number of disparate strands of

research, from wireless sensor networks to persuasive technologies and location systems,

and it is necessary to consider established work in these fields and how it could fit into the

overall architecture. This chapter has shown that feedback is a valuable tool for reducing

energy consumption; based on results from previous projects, it should be understandable

at a glance, show progress towards goals and allow for easy comparisons. Many systems

already exist for metering consumption in each category, and these could all feed into

a personal energy meter, but few attempts have been made to infer consumption using

minimal sensing. Similarly, although many indoor location systems have been suggested

and location will provide an invaluable form of context for energy metering, all require

investment in either equipment or calibration that makes it unlikely they will be deployed

solely the purpose. The remainder of this dissertation therefore focusses on methods to

derive the necessary data in an incremental fashion.



Chapter 3

Methodology and apportionment

The. . . most mysterious piece of nonabsoluteness of all lies in the relation-

ship between the number of items on the check, the cost of each item, the

number of people at the table and what they are each prepared to pay for.

(The Hitchhiker’s Guide to the Galaxy)
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Overview

This chapter demonstrates the importance of apportioning energy costs to individuals

and the potential of sentient computing technologies to contribute crucial information.

It enumerates the concepts of apportionment, including a taxonomy of resources and the

data requirements to handle them, evaluates a number of different apportionment poli-

cies and derives the principles that are generally applicable: completeness, accountability

and social efficiency. It describes a method for estimating building occupancy and the

technology required to estimate each form of energy consumption. It also presents the

methodology used for the remainder of this dissertation.

Some of the contributions presented in this chapter have also appeared in separate publications

[86, 90]. Figures 3.2 and 3.4 are reproduced courtesy of Andrew Rice.
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Figure 3.1: Estimated energy consumption of a “typical moderately-affluent person”

3.1 Methodology

An energy stack adds up our energy consumption in its various forms and represents

the answer by a stack of blocks whose height is proportional to the energy used. This

allows for immediate visual comparisons. Figure 3.1 shows MacKay’s estimate of the

consumption of a ‘typical moderately-affluent person’, which comes out to a total of

195 kWh per day [136]. The personal energy meter should be able to refine this estimate

incrementally to produce a personalised and dynamic energy breakdown for an individual.

The estimates provided by MacKay’s stack also provide a systematic basis for identifying

which areas of consumption are most significant and therefore merit most effort.

Although future buildings might have sophisticated management systems, future vehicles

might make available all their sensor data and that everyone might carry smart devices

which provide a wealth of data from which to derive accurate personal energy accounts,

it is necessary to consider the current situation in which sensor network deployments

are sparse and unreliable. A successful personal energy meter must make worthwhile

estimates based on very little hard information which can be progressively refined as more

data becomes available. Clearly, if users are to be billed for their energy consumption then

dependable and definitive data is a necessity, but if the objective is to provide a feedback

tool to help users who are already committed to reducing their footprint then absolute

numbers are less important than scales and trends. It is unlikely that anyone will deploy

expensive dedicated sensor systems just to drive energy metering, so the output of any

such scheme must adjust as the input improves from zero to total knowledge; between

the two extremes will lie a sweet spot that offers the best compromise between cost and

utility. The theme of incremental sensing runs throughout this dissertation: as discussed

in Section 1.4, it should be possible to start with minimal data and increase the quality

of the result by adding additional sensing.

With no sensor data or other inputs, the best that can be offered is an estimate based

on aggregated knowledge about the habits and trends of the entire population—such as

in MacKay’s stack (Figure 3.1). Given answers to questions about lifestyle and habits, it
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is possible to personalise the estimates in the stack to an individual; this is the approach

adopted by a number of ‘carbon footprinting’ services on offer today.1 This remains

a static allocation because changes in lifestyle require updating old answers, but it does

provide a foundation on which to build. Individual segments can be incrementally replaced

with live data as it becomes available, while others remain an estimate.

The remainder of this chapter discusses in detail how these estimates can be obtained,

working from top to bottom through MacKay’s stack.

3.2 Transport

3.2.1 Jet flights

Air travel is relatively easy to record by monitoring email communication of airline book-

ings. This technique often forms the basis of the carbon footprinting calculations made

by online tools, as described in Section 2.4.2. More sophisticated data mining techniques

could factor in airline data on seat occupancy and fuel burn to improve estimates of each

passenger’s share of the energy for a flight.

Unlike the embodied energy in goods which should be amortised over the expected lifetime

of the item, flights have a definite duration over which the energy should be allocated.

3.2.2 Car

The locations of bus and railway stations can be combined with a GPS trace of jour-

ney start and end points to estimate mode of transport and hence energy consumption.

However, distinguishing between travel by foot, bicycle or car is much more difficult in

a congested urban environment. Additional data from inertial sensors (now common in

many phone handsets) might help with the classification problem; see Section 2.4.2 for a

survey of possible solutions. Where several people share a car, the energy cost for that

journey should be split between them. This requires contextual information on location

or identity to determine who is traveling in a given vehicle (see Chapter 5).

3.3 Public services

It seems reasonable to divide the energy cost of essential public services amongst the

population, in the same way that these services are funded through general taxation.

This is a specific case of the general principle that energy allocated to someone for work

1such as http://wattzon.com/

http://wattzon.com/
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done on behalf of others should be delegable, in the same way that the lecturer printing

thousands of pages of course notes should not be held personally responsible for the energy

costs, but should be able to pass on a small fraction to each undergraduate he teaches.

3.4 Buildings

In 2004, buildings accounted for 37% of total energy consumption in the EU.2 This figure

includes heating and cooling, ‘gadgets’ and other electric devices and lights. The planned

national roll-out of smart meters in every home will commodotise the collection of live

data on household consumption. Devices aimed at the consumer have recently reached

the market which monitor and record total electricity consumption; these are discussed

further in Section 2.3.1.1. Andy Stanford-Clark has for many years has published real

time graphs of his house’s electricity and gas consumption on the Internet.3 He explains

that although he had to built his own hardware to achieve this, the emergence of this batch

of packaged devices has led to hundreds of his colleagues implementing similar systems

in their homes. Nevertheless, these devices are not yet widespread; most individuals still

have old-fashioned meters, and a personal energy meter will have to cope with anything

from sporadic manual readings to live up-to-the-minute streams.

MacKay breaks down his estimate for building energy use into home, work and public

sector. In order to make use of the collected data for an office or other shared building it

is necessary to decide what proportion of its energy demand is attributable to the individ-

ual in question. This process is referred to as apportionment. As discussed in Chapter 2,

there is little discussion in the literature of methods for disaggregating consumption by

person, so additional studies were conducted. Section 3.5 evaluates the differences be-

tween a number of possible policies, while the examples in Section 3.6.2 demonstrate the

importance of apportionment.

3.5 Apportionment

Apportionment is defined by this dissertation as the process of dividing the total con-

sumption of a building, organisation or other entity and allocating it to individuals in

proportion to their use. A number of different possible strategies can be considered. The

most obvious of these is simply to apportion a static fraction of the building’s power

consumption to all those who work there—and such a strategy might well be suitable for

a private residence. However, for larger buildings this is a poor solution. Lutzenhiser ar-

gues that overlooking the variability of human social behaviour “significantly amplifies and

2International Energy Agency. Key world energy statistics. 2006.
3http://stanford-clark.com/power/

http://stanford-clark.com/power/
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(a) Electricity consumption plotted against time (b) Heatmap showing weekly and seasonal patterns

in electricity consumption. Brighter colours indi-

cate higher consumption.

Figure 3.2: Half-hourly electricity consumption for the William Gates Building in 2007

dampens the effects of technology-based efficiency improvements” [135], while economists

warn of ‘grave inefficiencies’ resulting from scenarios where bills are split evenly without

regard for individual consumption as each person minimises their own losses by taking

advantage of others [68]. It is this phenomenon that encourages people to order the most

expensive items from the menu when out for dinner with a group of friends: if the final

sum is to be divided evenly, nobody wants to be subsidising his fellow diners. The same

is true of energy consumption in shared buildings: in a house of four where all bills are

split, the marginal cost to any individual of turning on an appliance is only a quarter of

what it would otherwise be. Here lies the tragedy of the commons [81]; if the incremental

cost of an action is always less than the expected benefit because of the apportionment

scheme in use it will tend to lead to undesirable behaviour.

Sensors offer the potential to change this balance and apportion energy costs to those who

cause them to be incurred: the person standing at the photocopier should be responsible

for the energy it consumes during that period, and the cost of the electricity required

by a television should be split between all those watching it. There are many challenges

to overcome in order to achieve an appropriate level of sensor coverage to provide this

information.

3.5.1 Apportionment policies

Dynamically varying the proportion of the building’s consumption assigned to each indi-

vidual allows a policy to capture the variation in energy due to their activity. There are

numerous possible policies to determine how it should be carried out and different ones

will suit different buildings and organisations. Nevertheless, there are certain desirable

properties that all apportionment policies should exhibit:

Completeness: the sum of the energy apportioned to all individuals should be equal to

the total energy to be apportioned
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Description Pattern Hours

1 Member of staff 0900-1700 Mon–Fri 40

2 PhD student 1100-1900 Mon–Fri 40

3 Visiting professor 1100-1700 Tue,Thu 12

Table 3.1: Working patterns of example individuals

Person 1 Person 2 Person 3

Static 150 150 150

Occupants 132 107 28.9

Occupants+base 168 160 135

Personal load 160 160 143

Table 3.2: Total energy (kWh) allocated by the apportionment policies for a week in

November 2007

Accountability: actions by an individual should have a maximal effect on their own

allocation and a minimal effect on others

Social efficiency: actions taken by an individual to reduce his allocation should also

reduce the total energy used

To evaluate the differences between a number of possible policies a separate case study

was carried out based on energy and usage data for the William Gates Building4 collected

over the course of a year (Figure 3.2). Initial estimates were iteratively refined through

the addition of further sensing. The remainder of this section describes the details and

results of this study.

The result of apportionment is necessarily specific to a particular individual and three

hypothetical working patterns based on representative individuals for the building in

question were considered: a member of staff working a standard 9–5 day, a PhD student

who arrives later but works the same number of hours and a visiting professor who works

part time and has a long commute. Details are shown in Table 3.1. In this section, a

variety of apportionment policies are described and evaluated with respect to these three

individuals for a typical week in November 2007. The total apportioned energy for each

policy is given in Table 3.2; these are explained in more detail in the following subsections.

4The William Gates Building was opened in 2001 as the new home of the University of Cambridge

Computer Laboratory. For more information on its architecture, see http://www-building.arct.cam.

ac.uk/westc/cl/cl.html

http://www-building.arct.cam.ac.uk/westc/cl/cl.html
http://www-building.arct.cam.ac.uk/westc/cl/cl.html
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Figure 3.3: Power apportioned to each individual under the ‘equal’ policy

3.5.2 Static apportionment

The most obvious policy is simply to apportion a static fraction of the building’s power

consumption to all those who work there. The number of people allocated desks in the

building is around 250 and total energy consumed in 2008 was 2,025,778 kWh, meaning a

user allocated a 1
250

share would be responsible for 8,103 kWh. For comparison, the total

energy consumption for one participant’s house for the same year was around 2,200 kWh.

The electricity meter of the office building, in common with those of many large buildings,

logged half-hourly measurements of the total energy consumed. The resulting power

apportioned for the example week is shown in Figure 3.3. The line is a scaled version of

the overall power consumption (Figure 3.2(a)); all users pay more on weekdays, regardless

of whether or not they were present. This policy violates the principle of accountability

by making no accommodation for working patterns or individual actions—any and all

consumption is shared amongst all building users.

3.5.3 Dynamic apportionment

To improve upon static apportionment it is necessary to take into account the behaviour

of individuals. In the first instance it is assumed that all building users behave similarly

and so apportionment is based on the current occupancy of the building.

As one might expect, building occupancy varies significantly over time. Low occupancy is

expected over weekends and holiday periods but also due to less predictable causes such as

travel disruption—for example, the UK transport infrastructure copes poorly with snow.

For this reason some form of sensor data will be required for occupancy estimation.

A variety of sensor systems could be used to provide this information, including fully

fledged location systems, existing building access control mechanisms and second order

information such as computer activity. Clearly, dedicated sensors provide the best quality

data, but we are unlikely to see widespread adoption of these technologies (with their

own associated energy consumption) solely to improve energy metering. It is therefore
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interesting to investigate how to make use of systems that are in place today before

adding more sensing. Chapter 5 provides a full discussion of the importance of context

and possible sources of contextual cues and presents a novel low-infrastructure location

system designed to provide input to a personal energy meter.

3.5.3.1 Estimating occupancy

Although some parts of the building in this case study such as the café and lecture theatres

are open to all during the normal working day, access cards are required to access most

of the office space or to gain entry to the building outside office hours. Holding a card up

to a reader unlocks the door from the outside; from the inside, a green button releases it

to let people out. The security system keeps logs of all the ‘entry’ and ‘exit’ events and

identifies each user on entry with a pseudonym that changes each day. Since multiple

people can enter or leave for a single unlock if someone holds the door open, and the

identity of those leaving is not determined, it is not possible use these to infer who is

in the building at any given time. However, the logs can provide a reasonable estimate

of the overall occupancy. Many buildings have similar systems, but use gates instead of

doors and require users to swipe out as well as in; clearly, the records from these systems

would be ideal for these purposes.

Under the assumption that one person enters or leaves for each logged event, the running

estimate of the occupancy of the building would rapidly drop below zero since, in general,

there are approximately 1.25 ‘exit’ events logged for each ‘entry’ event. In order to

maintain a stable estimate of the building occupancy the following algorithm was used:

1. Count the total number of distinct pseudonyms in a 24 hour period, and assume

this is the maximum occupancy for that day (this will under-count people who only

entered while someone else held the door open, but it will also over-count because

not everyone seen in a day will necessarily have been in the building at once);

2. Calculate the ratio between people entering on ‘entry’ events and people leaving on

‘exit’ events so that the occupancy drops to zero at 5 AM (the logs show this is

statistically the quietest time);

3. Scale each day’s estimates so that the peak occupancy is equal to the total number

of ‘entry’ events calculated in step 1.

Figure 3.4 shows the estimated occupancy trace for 2008. Dark colours correspond to

a large number of people in the building and lighter colour correspond to fewer people.

It shows quiet days which correspond to UK public holidays and a general ebb and flow

corresponding to term and vacation periods. Note there are a number of exceptions such
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Figure 3.4: Estimated occupancy trace for the William Gates Building for 2008
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Figure 3.5: Estimated occupancy and power usage for the William Gates Building

as public holidays during term time (which the university does not observe) and the

especially quiet period for the two weeks surrounding Christmas.

The estimates this produces for the example week are illustrated in Figure 3.5. Estimated

occupancy and power usage are strongly correlated; the occupancy drops off dramatically

at weekends, and dips at lunchtime are clearly visible.

3.5.4 Occupants policy

The first dynamic policy is to split the instantaneous power consumption amongst only

those individuals who are in the building at the time. The results of this policy for the

example week are shown for several typical working patterns as the dark lines in Figure 3.6.

There is significant variation dependent on working hours: the example visiting Professor

(bottom graph) has a small allocation, but this policy penalises the staff member who now

sees large spikes early in the morning when few people are in. This is because the building
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exhibits cyclic load: many lights and other devices operate on timers or are triggered by

movement detectors, so as soon as a few people arrive in the morning the load jumps. In

fact this policy strongly discourages any use of the building at unusual times (but this

might be the goal). Critically, however, the principle of completeness is violated in that

the sum of the energy allocated to all the individual users is not necessarily equal to the

total energy consumed by the building: if nobody is in, no energy is apportioned.

3.5.4.1 Base load

To improve on this policy, the base load can be estimated and divided amongst all those

who work in the building before splitting the remaining power amongst the actual occu-

pants. The results of this calculation are also shown as the pale lines in Figure 3.6. The

base load is estimated as the lowest power consumption seen so far that day. As expected,

the peaks during the working day are lower, and the graph no longer drops to zero when a

person leaves, instead reflecting his share of the ongoing base load. The sum of the energy

apportioned is now equal to the total energy consumed, so from this point of view this

policy represents an improvement. Intuitively, the policy is also better because now all

those who have reserved office space in the building are held responsible for some share

of its ongoing costs.

The graphs still display several peculiarities. In particular, two people working the same

number of hours are allocated substantially different amounts of energy because fewer

people are in at 9 AM than at 11 AM but a large proportion of the shared energy consumers

(lighting etc.) have already been switched on.

The policy also runs into problems with accountability: if the base load is shared evenly

amongst all users of the building while the additional energy consumed is divided between

the occupants at the time, it is in an individual’s best interests to maximise the base load

(of which he is only allocated a small fraction). One way to exploit this policy is by leaving

computers and lights on overnight—this results in a lower energy cost to the individual

than switching them off, since they are then included in the base load and split between

many more people.

3.5.5 Personal load policy

Instead of estimating the base load and assuming the remainder is personal, the problem

can be approached from the opposite direction by estimating the personal load and assum-

ing the remainder should be divided evenly. The ‘personal load’ policy allocates a certain

amount of power to each occupant of the building and then divides the remainder evenly

amongst all users. A survey of one of the offices with a simple power meter revealed that

the devices everyone typically switches on when they arrive, such as lights and monitors,
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Figure 3.6: Power apportioned under the ‘occupants’ policies to example individuals (1:

top, 2: middle, 3: bottom)

consume between 100 and 200 W, depending on office size and computer configuration.

Supporting this observation, the dataset reveals that 150 W is a sensible average figure

to allocate to each occupant—any more results in the total energy allocated to occupants

dipping beneath the earlier estimate of the base load. Figure 3.7 shows the results of this

policy for the same three sample individuals as before.

The output of this policy is reminiscent of the previous one, as one might expect, but the

incentives now work in the correct direction: the motivation for an individual is to do his

best to reduce his own energy consumption. For these incentives to work the effect of any
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Figure 3.7: Power apportioned under the ‘personal load’ policy to example individuals (1:

top, 2: middle, 3: bottom)

changes made must be visible in the results, and this entails a more detailed measurement

of power consumption than has been considered so far. Instead of simply dividing up the

total energy bill for the building, it will be necessary to identify which specific devices

an individual uses and how much power they all require. This problem is addressed in

Chapter 4.

Clearly, the different policies make a significant difference to the end results, but it is

interesting to note that the ‘occupants+base’ and ‘personal load’ policies produce broadly

comparable numbers. This supports the intuition that both are reasonable strategies and

the only difference between them is a result of an inaccurate estimate of the base load:

with omniscient sensors that could tell exactly which devices were consuming power the

two policies would become the same.

3.6 Gadgets and ‘stuff’

The overall energy consumption trace for an appliance (Figure 3.8) consists of a) the

embodied energy which is incurred during manufacture; b) energy due to usage; and c)
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Car:

40 kwH/d

http://www.cl.cam.ac.uk/research/dtg/planet

Computer Laboratory
Digital Technology Group

{sjeh3,acr31,ah12}@cam.ac.uk

Transporting stuff: 12 kwH/d

Food, farming, fertilizer:

15 kwH/d

Stuff:

48 kwH/d

Heating, cooling:

37 kwH/d

Jet flights:

30 kwH/d

Defence: 4 kwH/d

Gadgets: 5 kwH/d

Light: 4 kwH/d

Andy Hopper, Andrew Rice. Computing for the Future of the Planet. Phil. Trans. R. Soc. A, 366(1881):3685--3697, October 2008.

David JC MacKay.  Sustainable Energy – without the hot air.  UIT, Cambridge, England.

Air travel is relatively easy to record by monitoring email communi-

cation of airline bookings.  This technique often forms the basis of 

the carbon footprinting calculations made by online tools.  Increasing 

the sophistication of these data mining techniques could provide im-

proved estimates by factoring in airline data.

The energy consumption trace 

for an appliance consists of a) 

the embodied energy which is 

incurred during manufacture; b) 

energy due to usage; and c) re-

covered energy from the return 

or recycling of the device.  One 

model for apportioning usage 

is apply the direct costs to the 

current user but to share the in-

direct energy costs between all 

possible users of the appliance.  

This means that an individual’s 

energy bill will reduce as addi-

tional users of the appliance are 

registered and thus take a share 

of its energy cost.

Context information will 

be crucial for apportioning 

the use and energy costs 

of resources.  In order to 

obtain this it will be neces-

sary to develop low cost, 

low infrastructure loca-

tion systems that can be 

deployed on a truly global 

scale.

Every day each of us consumes 

a significant amount of energy ei-

ther directly through transporta-

tion, heating or use of appliances 

or indirectly from our needs for 

production of food, manufacture 

of goods or provision of services.  

We envisage a Personal Energy 

Meter (PEM) which can record and 

apportion an individual’s energy 

usage in order to provide baseline 

information and incentives for re-

ducing the environmental impact 

of our lives.

PEM data will enable us to iden-

tify areas for reducing or optimis-

ing our consumption of resources.  

Projections of consumption will al-

low us to see the total cost or ben-

efit of a decision to replace an ap-

pliance, install insulation or  move 

house.  The PEM will also help us 

identify alternatives to our current 

activities.  For example, the trace 

of commuting to work might be ex-

ploited to highlight any available 

public transportation or to inform 

policy for providing future facility.

We imagine the future genera-

tions of mobile phones containing 

a PEM as an integral part.  This 

will minimise the energy overhead 

of using a PEM and also provide 

widescale communication abil-

ity.  Social networking sites pro-

vide an ideal forum for users to 

share consumption patterns and 

reduction strategies.  The social 

effects of these communities may 

well also help provide support for 

changing lifestyles and impetus 

for change.

It will probably be infeasible to mea-

sure all of many ways in which we 

consume energy.  We are there-

fore beginning our investigation 

around the most significant areas 

of consumption as shown in the 

energy stack (below) for a ‘typi-

cal moderately-affluent person’ 

[MacKay08].  Our research into 

the PEM builds on existing efforts 

for environmental footprinting by 

considering the technology neces-

sary to apportion these estimates 

to individuals.

Apportionment policies 

may vary not just in dif-

ferent scenarios but even 

from institution to insti-

tution, building to build-

ing and object to object.  

We need a language for 

specifying these policies 

in terms of the contextu-

al information that drives 

them.

The locations of bus and railway stations can be combined with a 

GPS location trace of journey start and end points to estimate energy 

consumption due to transportation.  However, distinguishing between 

travel by foot, bicycle or car is much more difficult in a congested ur-

ban environment.  Additional data from inertial sensors (now common 

in many phone handsets) might help with the classification problem.

 operational cost
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Computing for the Future of the Planet

Automated recording of the electric and heating costs for a building is 

increasingly common.  However, there are many plausible schemes 

for apportioning this cost to building users.  For example, costs could 

be divided among those entitled to use the facilities, or split based on 

physical occupancy time.  The PEM must be able to accept building 

specific allocation policies and must be able to access the contextual 

information required to implement them.
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Figure 3.8: Total energy cost of ownership

recovered energy from the return or recycling of the device.

A large proportion of the typical energy stack represents the embodied energy of the things

we buy or use; this includes raw material extraction, manufacture, assembly, installation,

disassembly and deconstruction. A further significant contributor is the energy required to

transport ‘stuff’ from the point of manufacture to the point of use; MacKay also separates

food, farming and fertilizer from other classes of product, but similar principles apply to

all. Much like the principle of depreciation in accountancy, the embodied energy of a

product can be amortised over its expected lifetime—though this allocation may change

if the product is subsequently shared with others. Knowledge of items purchased could

come from an inventory which would also provide profiles detailing their embodied energy,

expected lifetimes and other users. Looking ahead, barcode reading applications are now

included in many camera phones, while more and more products are shipped with RFID

tags, offering opportunities to catalogue purchases automatically.

One model for apportioning usage is apply the direct costs to the current user but to share

the indirect energy costs between all possible users of the appliance. This means that an

individual’s energy bill will reduce as additional users of the appliance are registered and

thus take a share of its energy cost. A ‘refund’ of embodied energy could be credited if

the device is recycled; alternatively, if it is thrown away before the end of its anticipated

life, the remaining embodied energy not yet allocated must be accounted for.
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For each resource, there is a set of people who have access to it and a subset who are

using it at any given time. These sets are likely to be needed by most apportionment

policies to allocate shares of the energy costs appropriately. For ease of discussion, it is

possible to categorise certain cases of set membership and thereby categorise resources:

Owned resources are those which are only used by a single person who should always bear

the responsibility for their energy consumption. Someone with a private office might

be considered to own everything in it; certainly everyone will ‘own’ the computers

and monitors on their desks. No contextual information is needed to allocate their

energy costs; a simple inventory is sufficient, though building and maintaining this

inventory is not an insignificant undertaking.

Shared resources are those to which several people have access but which are only used

by one person at a time; examples are printers, photocopiers and showers. It may

be appropriate to share their embodied energy and baseline costs amongst all po-

tential users but to allocate their instantaneous consumption to the user directly

responsible.

Communal resources are those which benefit several people simultaneously: examples

are heating and lighting, or public transport. It may not be reasonable to divide

their instantaneous consumption amongst those using them at the time: energy

spent on heating a building while nobody is in it benefits those who arrive later.

3.6.1 Owned resources

To apportion the energy costs of owned devices requires only an accurate inventory asso-

ciating devices with owners and, if direct metering is not possible, with appropriate power

profiles.

3.6.2 Shared resources

The obvious mechanisms for handling shared and communal resources are either simply

to divide their total energy cost amongst all those entitled to use them (static appor-

tionment) or to attempt to ascertain who is using them at any given time and allocate

the energy used accordingly. The energy used must now be measured at a much finer

resolution; additional sensors are required that can measure the usage of a corridor, room

or specific device. Previously knowing the cumulative energy consumed was sufficient

and the required update frequency was dictated only by the desired reporting period; to

apportion energy costs based on usage, it is necessary to measure the energy consumed

in each individual interaction. Device profiles must identify the energy costs of specific

events, such as printing a page or making a cup of coffee. This is discussed in more depth

in Chapter 4.
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3.6.2.1 Printing

Printing provides a good case study of the value of apportioning use of shared resources

since print server logs provide second order information on usage. This allows accurate

analysis without the need for the sensor systems that would be required to determine

usage for most other equipment.

The printer logs for the building were analysed. The logs cover 28 printers for a period of

47 days, during which time 198 users printed a total of 82,349 pages. During this period

there were 313 users with accounts who were entitled to use the printers.

The data shows a large deviation between different users’ printing habits. The heaviest

user printed 3,452 pages, while the lightest printed just 1, and the top 15 users accounted

for over half the total printing between them. The average number of pages printed was

416, and the mean percentage deviation from this average was 86.5%, highlighting the

importance of profiling and a dynamic apportionment policy rather than a simple static

division of the printer’s energy usage.

Energy measurements can be combined with these logs to improve on the ‘personal load’

policy; see Section 4.4.2 for details.

3.7 Summary

This chapter has ascertained the categories of consumption that are significant and the

inputs required to build a personal energy meter using incremental sensing: metering and

context.

The simulation of several policies for each participant has shown that apportionment is

important and the correct choice merits careful consideration. Different policies have

significant effects on the total energy allocated to individuals, but all should abide by

the general principles of completeness, accountability and social efficiency. Personal load

provides the best opportunity to personalise results and improve accuracy incrementally

and offers valuable incentives for users to reduce their consumption.

Although reasonable estimates can be made from sensor data commonly available today,

more precise analysis requires investment of time in power profiling and inventory man-

agement (Chapter 4) as well as low-infrastructure identity and location sensing systems

(Chapter 5).
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Chapter 4

Modelling and profiling
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Overview

This chapter shows how computing systems can be used to measure or calculate energy

consumption. It demonstrates that device profiles and inventories can be combined with

secondary indicators of activity to infer consumption without live metering (Section 4.1),

and presents a novel method for modelling building energy consumption based on profiles

and crowd-sourced inventory data (Section 4.2). It then explores how these device pro-

files can be created (Section 4.4) and describes a new technique for decomposing power

measurements of programmable devices to profile them in an automated manner (Section

4.5); this is necessary to apportion the energy costs of shared resources.

Some of the contributions presented in this chapter have also appeared in separate publications [177,

175, 176]. Dan Ryder-Cook created the physics model described in Section 4.2. Brian Jones assisted with

the design of the circuit boards shown in Figures B.1 and B.2. Ee Lee Ng recorded the LCD data in

Section 4.4.3.
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4.1 Profiling and secondary indicators

The previous chapter demonstrated how a building’s energy consumption can be appor-

tioned among its users to present personalised feedback to each individual. While this

apportionment is important, it is of limited use to a user to know only his or her total con-

sumption; without a breakdown by function, it is difficult to identify where changes could

be made. This chapter therefore presents mechanisms for disaggregating consumption

when only limited data is available.

Live metering of energy consumption is becoming more prevalent. Taking electricity

as the most common example, Section 2.3 describes some of the myriad technologies

now available to deploy. It is easy to imagine homes and offices of the future in which

every socket is ‘smart’ and reports the consumption of the device attached in real time

over a common network—perhaps even over the power line itself. Plugs might contain

tags to identify the device in question, allowing an inventory of a building to be created

automatically. Such an infrastructure would be a boon for personal energy metering,

but it remains some way off. In the interim, circuit-level submetering is becoming more

prevalent, but this provides a spatial, rather than functional, disaggregation. Although

the two may be roughy equivalent for some centralised loads, such as server rooms or

heating, cooling and air conditioning, this is not generally the case.

For a personal energy meter to be useful it must be able to function without ubiquitous

sensing; early adopters should derive benefit from its results even with very little input

data available. This chapter therefore investigates ways in which energy consumption

can be inferred or estimated rather than measured directly and continuously. One such

mechanism is to profile a device, enumerating its power states and the energy costs of

performing each possible action. Assuming devices have regular, deterministic profiles, a

profile built for one device can be applied to others of its type in a building inventory, and

secondary indicators, such as cheap or repurposed sensors, logs or even human input can

be used to determine which state each device is in or which actions it has performed—thus

removing the need for continuous metering (see Section 3.6.2).

This method is well-suited to apportionment, since it makes clear the costs of individu-

als’ actions rather than the cumulative costs of devices, and also aids the evaluation of

hypothetical scenarios, answering questions like “what would be the saving if PCs were

switched off overnight?”

4.1.1 Low-fidelity estimates of lighting energy demand

Lights are a good example of a resource that often cannot easily be metered; the wiring for

ceiling-mounted lights in office buildings is generally inaccessible except to electricians and

several rooms or corridors share a single lighting circuit. Fortunately, it is easy to infer
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Figure 4.1: Sensor node built to record lighting state

their consumption using profiling and secondary indicators: most lights have only two

states—‘on’ and ‘off’—and a known, static power usage, while light sensors cost pennies

and are readily deployable. Provided it is known which lights are on which circuits, it is

not even necessary to instrument each light; knowing that one is on is enough to know

that all the others on the same circuit are on as well.

This was demonstrated by LightWiSe (LIGHTting evaluation through WIreless SEnsors),

a wireless tool which aimed to evaluate lighting control systems in existing office build-

ings [42]. The experiment used a set of TinyOS-based motes, each with an on-board light

sensor used to detect ambient light and luminary state and an additional sensor board

containing a long range PIR sensor used to detect occupancy. The authors concluded

that significant savings could be made from turning off lights automatically when they

are not required.

A manual survey revealed the number and model of lights installed in each room of the

William Gates Building; the manufacturers’ specifications include their power usage. This

data can also be ‘crowd sourced’ by asking users to mark the lights themselves [178]—see

Section 2.5.2 for details.

A small and cheap microcontroller-based sensor node was developed which can be attached

to a light with sticky tape and will log to internal Flash memory the times at which the

light was switched on and off (Figure 4.1, and Figure B.1 on page 198). A simple light

dependent resistor and binary threshold suffice if the sensor is mounted directly on the

light, since the increase in light levels when it is switched on dwarfs any variation due to

sunlight coming through the windows.

Although the nodes were powered by batteries that will last many months between

charges, to ease deployment and maintenance costs, such devices could be powered by

harvesting energy from the lights themselves in a similar way to that used by the Locust

infrared location system [118]. This approach was not adopted both to speed up design

and development and to keep costs low. These sensors were deployed in the offices in the
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research group; in each room, there was a single switch or motion sensor that controls

all of the lights so knowing whether one light is on is sufficient to infer the energy con-

sumption of all of them. The lights in corridors operated on a timer, so no sensing was

required; Building Services provided the details of all automatically-controlled lighting.

To verify the correct operation of the sensors, a manual log of the times the lights were

switched on and off was also kept in one office for comparison.

Most lights are in individual offices and can therefore be classed as owned resources and

their power allocated to the owner whenever they are on. Others, such as external and

corridor lighting, are a public service in the same way as heating and certain computers;

they benefit everyone connected to the building and can be counted as part of the base

load. The most interesting case are those in shared offices, where it is necessary to combine

knowledge of the lighting state with occupancy data to apportion a share of their power

to each office owner who is present while they are on.

The sensors provided an accurate log of when the lights were on, but in keeping with the

principle of attempting sensible estimates from limited data which can then be refined as

more detailed information becomes available, the possibility of estimating the state based

on knowledge of external light levels was investigated. Every office in the building in

question has external windows; in offices without, which can be determined from Open-

RoomMap (Section 2.5.2), it would be reasonable to assume the lights are on whenever

the room is occupied.

A weather station on the roof of the building1 includes a binary sunlight sensor, which

indicates whether or not the light level exceeds a predefined threshold. This can be used

to guess when the lights are on by assuming that they are whenever the office is occupied

and the sun is not shining (’Weather’ policy): this was accurate 88% of the time during the

week period. Given the limited significance of lighting in the overall energy consumption

picture and the fact that this method allows one sensor per room to be replaced by one

per building—or even one per city—for a relatively low degradation in accuracy, it seems

a reasonable tradeoff. More accuracy could perhaps be obtained by using more detailed

weather data and information from OpenRoomMap about the positions of windows in

offices.

It is possible to go one step further and attempt to predict lighting state without any

sensor data whatsoever, using only calculated sunrise and sunset times. Assuming the

lights are on when the office is occupied between dusk and dawn was accurate around

84% of time (‘Sunset’ policy); refining this estimate to include the two hours before sunset

improved its accuracy to around 92% (‘Sunset-2’ policy, Figure 4.2). Again, knowledge

of occupancy is a key piece of data that allows others to be estimated with surprisingly

good results and shows that large scale sensor deployments are not always necessary.

1http://www.cl.cam.ac.uk/research/dtg/weather/

http://www.cl.cam.ac.uk/research/dtg/weather/
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Figure 4.2: Orange shows when lights are on. From top to bottom: ground truth from

sensor; when occupied and sun is shining; when occupied between sunset and sunrise;

when occupied between 2 hours before sunset and sunrise

4.2 Modelling building energy consumption

Crowd-sourced inventory information can be used even without any additional sensing

to produce useful estimates of building energy consumption, disaggregated by function;

this can then be used as an input for apportionment. Even where live building-level

metering data is available, the ability to estimate a breakdown of how this energy is being

consumed is valuable for a personal energy meter. This section describes a novel tool for

modelling consumption and its evaluation in the William Gates Building. It relies only

on data that is easily gathered and sensing which could plausibly be done on a large scale,

meaning a personal energy meter could operate even in buildings where no specific energy

monitoring hardware installed.

The model operates by estimating the energy consumption for categories of devices in

the building inventory and uses a variety of estimation methods to model different energy

use patterns. The summation of energy consumption for each category is then compared

with the recorded energy consumption from the building’s electricity and gas meters. The

category totals can also be used to estimate the breakdown of measured consumption to

provide more information to personal energy meter users.

4.2.1 Building modelling tools

There are dozens of existing energy modelling packages [35], though most focus on ex-

ploring design options or performing one-off examinations of buildings. Although capable

of producing accurate results they require expert users and detailed building survey in-

formation. Perhaps the best known example is the DOE-2 software2 produced by the US

Department of Energy. DOE-2 uses hourly weather data to calculate the hour-by-hour

performance and response of a building with a known description; heat gains to building

spaces are converted to cooling or heating loads on the air using pre-calculated ‘weight-

2http://www.doe2.com/

http://www.doe2.com/
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ing factors’. An accessible interface to DOE-2 is provided through the eQuest package.3

eQuest is designed to make it easier for a single user to capture a building design and

parameters in contrast to the new approach described here in which data is reported by

a large number of users.

An alternative ‘heat balance’ method uses a detailed heat model of the thermal transfer

processes in the rooms to calculate loads from heat gains; this is generally slower but

more accurate. The best known example is the Building Load Analysis and System Ther-

modynamics (BLAST) system, also supported by the US government. It was developed

for predicting energy consumption and systems performance and costs of new or retrofit

building designs. A very simplified form of this method is used for the predictions here.

EnergyPlus4 combines many of the features from these programs. It uses a modular system

to permit the construction of detailed building models. Many new building technologies

and building and systems simulation models are accessible which represents a significant

step forwards in terms of both computational techniques and program structure [34].

TRNSYS5 is a general simulation package which makes use of modules to model a wide

range of systems. The modular and extensible nature of these two systems provides a

huge degree of flexibility and both would be candidates for hosting modules implementing

the various aspects of the model described here.

4.2.2 Energy estimation methods

A number of energy estimation methods are required to model different device usage

characteristics:

4.2.2.1 Simple modulated devices

Constant rate The constant rate method simply assumes a continuous consumption for

a device. This is appropriate for always-on devices such as safety lighting, VOIP

telephones and printer standby power. The energy consumption of an example of

each device is measured using a plug-in power meter and assumed to apply to all

devices of the same type.

Timed The building management system in the William Gates Building controls the

lighting in public areas (approximately 12 kW) according to a timer. This method

applies the measured energy consumption of each device type at a constant rate

during the programmed on periods.

3http://www.doe2.com/equest/
4http://apps1.eere.energy.gov/buildings/energyplus/
5http://sel.me.wisc.edu/trnsys/

http://www.doe2.com/equest/
http://apps1.eere.energy.gov/buildings/energyplus/
http://sel.me.wisc.edu/trnsys/
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Sub-metered It is increasingly common to install sub-metering to monitor the consump-

tion of large energy consumers within a building. In the William Gates Building, for

example, sub-meters were used to profile the energy consumption of the machine

rooms and associated air-conditioning. These account for an average of 89 kW,

which is a significant proportion. Note that sub-metering by building region (e.g.

specific corridors) is not directly useful here because many different types of device

will be connected to the same circuit. This helps provide a spatial breakdown of

energy consumption but not an itemised one. Similarly, the problem of providing an

itemised breakdown cannot be fully solved by sub-metering large energy consumers.

For example, office lighting for the William Gates Building can consume more than

100 kW (when all switched on). Direct measurement of this would require metering

every lighting circuit in the building and then removing the consumption of all the

other (timed) lighting from this total.

4.2.2.2 Occupancy-modulated devices

Some devices in the building are switched on and off by occupants and so their power

estimate should be modulated by the number of people in the building. This method

scales the total power consumption of a set of devices by the proportion of the maximum

expected building users currently present, and is applied to devices such as computer mon-

itors and office lighting (see Section 4.1.1 for an evaluation of the accuracy of estimating

lighting state based on occupancy).

Here the estimate based on the access logs from the security system described in Section

3.5.3.1 is used. This is a somewhat broad approximation because:

1. the system is based around electronic door locks and so many people can pass

through a door for a single access entry; and

2. the system only authenticates ingress events and so only generic unlock events rather

than (anonymised) identifiers are recorded when someone exits.

Alternative or complementary approaches might be to determine occupancy based on

wireless traffic from smart phones or workstation activity or to use GPS to determine

when a user is en-route to or from the building. Better still would be to use a location

system as discussed in Chapter 5.

4.2.2.3 Heating, Cooling and Ventilation (HVAC)

The final method provides a simple estimate of the energy consumption of the building’s

HVAC system. The approach is to estimate the amount of energy required to keep the
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Figure 4.3: Thermal model for the building HVAC [177]

interior of the building at a desired set-point temperature (Ti) given the heat input to

the building from device energy use (including computers) and the heat loss (or gain) due

to the outdoor temperature (Te(t) at time t). The system is modelled as thermal energy

movement between three bodies (Figure 4.3):

1. the interior

2. the exterior walls

3. the exterior

The exterior walls act as a buffer between the interior and exterior temperatures. Outdoor

temperature is measured by a weather station on the roof of the building.6 P (t) represents

the power lost by devices in the building as heat; each device profile also includes an

estimate of its efficiency. The system can therefore be modelled by the following simple

differential equations:

dQi

dt
= −Hi(Ti − Tw(t)) + P (t) (4.1)

dQw

dt
= Cw

dTw
dt

= −He(Tw(t)− Te(t)) +Hi(Ti − Tw(t)) (4.2)

The first of these equations gives the HVAC load—the energy required to maintain the

internal fixed point temperature Ti (which in this case averages 21 ◦C). The (numerical)

integral of the second equation tracks the temperature of the wall, Tw, over time (t). A

negative HVAC load indicates that energy must be put into the building to maintain the

temperature (heating demand), and a positive HVAC load indicates that energy must be

removed (cooling demand). Thus, raw load can be interpreted in three different ways:

6http://www.cl.cam.ac.uk/research/dtg/weather/

http://www.cl.cam.ac.uk/research/dtg/weather/
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Wall - solid masonry 2.4 [136]

Wall - modern building standards 0.45-0.6 [136]

Wall - best methods 0.12 [136]

Single glazing 6 [156]

Double glazing 1.4-3.12 [156]

Roof 0.16-0.25 [156]

Figure 4.4: A selection of typical U-values

1.
∣∣∣dQi

dt

∣∣∣ is the total power required to maintain the building temperature;

2. max(0, dQi

dt
) is the total power required to cool the building;

3. max(0,−dQi

dt
) is the total power required to heat the building.

Hi and He correspond to the ‘leakiness’ of the wall towards the interior and exterior

of the building respectively. These are derived by multiplying the surface area (m2) by

the thermal transmittance or U-value (W/m2/K). The surface area of the building was

estimated manually (40,000 m2) but such information could also be obtained from the

floor area in OpenRoomMap and an estimate of ceiling height and roof-pitch. U-values

are normally quoted for a single surface and a typical value suggested by MacKay for best

building methods of 0.15 was adopted [136]—the building in question won an architectural

award for its heating and cooling efficiency.7 The model uses separate U-values for the

inner shell (Ui) of the wall and the outer shell (Ue) and so it is further assumed that the

outer shell has 2.5 times the thermal resistance of the inner shell. Given that U-values

combine in the same manner as resistors in parallel:

1

U
=

1

Ui

+
1

Ue

(4.3)

and substituting Ue = 2.5Ui gives:

Ui = 3.5U = 0.53 (4.4)

Ue =
3.5U

2.5
= 0.21 (4.5)

Although this model is very simple, it does produce acceptable results (see Section 4.2.3)

and so serves the purpose of demonstrating that little input data is genuinely necessary;

of course, it could be replaced with more sophisticated physics in subsequent versions.

4.2.3 Results

Figure 4.5 shows the model output and recorded electricity consumption in kW for Novem-

ber 2009 to August 2010. The dark ‘metered consumption’ line is the half-hourly measure-

7http://www.cabe.org.uk/case-studies/william-gates-building/design

http://www.cabe.org.uk/case-studies/william-gates-building/design
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Figure 4.5: Daily breakdown (Nov 09 to Aug 10) shows trends in electricity consumption

are correctly estimated [177]
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Figure 4.6: Half-hourly breakdown (Jan 2010): electricity requirements during winter

vary mostly due to lighting needs [177]
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Figure 4.7: Half-hourly breakdown (Jul 2010): cooling dominates the electricity require-

ments during summer [177]

ments of electricity consumption as recorded by the electricity company. The categories

in the breakdown are as follows:

HVAC is the output of the heat model for the building. Initially only cooling is consid-

ered to account for electricity usage.

Lights includes lighting within offices (modulated according to the occupancy of the

building) and in public areas (modulated according to a timer function).

PCs covers the energy use of personal computers and monitors in offices, assuming that

the PC itself is left on continuously whereas the monitors are switched on or off

according to the occupancy of the building. Both are assumed to consume 70 W.

Machine rooms considers servers, uninterruptible power supplies and air conditioning

units in the machine rooms. This is a mixture of sub-metered readings and manual

estimates.

Other contains minor items from the OpenRoomMap inventory such as printer idle

power, telephones and a small number of electric heaters.

Notable from the graph is that the predicted consumption displays similar trends to the

true measured value. Over the annual period the load on the HVAC system increases
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Figure 4.8: The model underestimates combined heating and cooling energy consumption

during winter. Note that metered consumption here includes both electricity (recorded

half-hourly) and gas (recorded only monthly and interpolated) [177]

during the summer months and falls to nothing over the Christmas period when the

building is quiet and the exterior temperature is low. Unfortunately, no ground truth

data disaggregated by function could be obtained as the equipment in each category is

distributed throughout the building so a very large number of sensors would be required.

Nevertheless, the HVAC estimate fits the trends in the metered electricity consumption

particularly well in the summer months when the heating load is highest, suggesting that

it is indeed responsible for many of these variations.

Figure 4.6 shows a two week period in January. The peaks in consumption during working

weekdays are clear in the model and the breakdown shows that this is mostly due to lights

being switched on (in offices). Figure 4.7 shows a two week period in July. In this case

the HVAC energy usage is significantly higher due to higher outdoor temperatures.

The effect of including heating in the model is now considered. The heating system is

assumed to be 70% efficient and from the gas consumption over the summer when no

space-heating is needed an additional cost of 1.4 kW for water heating is derived which is

included in the ‘Other’ category. There is what seems to be a more significant deviation

from the measured trace (Figure 4.8, showing both electricity and gas8). However, this

8Converted to kWh in accordance with Conversion factors - Energy and carbon conversions - 2010

update (CTL113) http://www.carbontrust.co.uk/publications/pages/publicationdetail.aspx?

id=CTL113

http://www.carbontrust.co.uk/publications/pages/publicationdetail.aspx?id=CTL113
http://www.carbontrust.co.uk/publications/pages/publicationdetail.aspx?id=CTL113
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is due in part to the fact that the gas consumption data for the building is measured

monthly and must therefore be interpolated linearly so day-scale changes in consumption

as predicted by the HVAC model are not reflected in the measured consumption trace

(Figure 4.9). There are many factors which could be altered to obtain a better fit, such as

changing the U-value of the building, the efficiency of the heating system or the fixed point

temperature but this is not done for fear of over-fitting what is a very simple model. The

results are sufficient to show how a personal energy meter could provide individuals with

useful insights into the breakdown of their consumption without the need for extensive

device-level metering.

4.2.4 Energy saving scenarios

One aim of the personal energy meter is to suggest savings which could be made, and

an advantage of modelling, even if live metering is also deployed, is that it can also be

used to consider the effects of hypothetical energy-saving scenarios. The model for the

William Gates Building suggests three big potential areas: machine rooms, PCs and

lighting. Figures 4.10 and 4.11 show the results of these scenarios. Of course, reducing

computing load also reduces the heat output from these computers and so decreases the

cooling required in summer (leading to further savings) but increases the heating required

in winter; the integrated model is therefore more valuable than simple calculations as it

takes these effects into account.

Normal computing An estimate of the energy consumption of the building if (like many

other buildings on the estate) it contained no significant server infrastructure and a

single workstation per occupant.

PCs off An estimate of the impact of building occupants switching off all workstations

when not in the building.

LED lighting An estimate of the impact of switching to LED lighting, replacing the

current 50 lm/W lighting with LED equivalents achieving 160 lm/W.9

Finally, since the goal is to produce a modelling tool which can be automatically applied

across many buildings the sensitivity of the model to the building U-value should be

considered. Figure 4.12 shows the result of running the simulation with 4 different U-

values. These results show that a good choice of value is probably around 0.15. Its

clear that the wrong choice of U-value can have a significant impact on the quality of

fit. However, it is easy to notice that the fit is incorrect. If building-level metering is

available, one technique might be to collect data as to the point in the year when the

9The US Department of Energy estimates that 160 lm/W LED lighting will be market-ready by 2025:

http://www1.eere.energy.gov/buildings/ssl/efficacy.html

http://www1.eere.energy.gov/buildings/ssl/efficacy.html
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Figure 4.9: Gas consumption is recorded only monthly

Scenario Av. Power Change Saving

Metered 275 kW

Current conditions 213 kW

Normal comp. 118 kW 95 kW £83,000

PCs off 206 kW 7 kW £6,100

LED lighting 192 kW 21 kW £18,000

Figure 4.10: Predicted reductions in average power consumption over a year

building’s heating system is first switched on for a significant period of time and to adjust

the building U-value to produce a similar effect.

The model can be used by a personal energy meter to estimate what proportion of the

consumption belongs in each category of device, making the feedback presented to end

users more informative. This strategy is adopted in the model described in Section 6.4. If

the inventory is believed to be representative then consumption left unaccounted for can

be attributed to errors in the model, and it is reasonable to scale the estimates for each

category up so their total matches the true consumption; alternatively, the remainder can

simply be apportioned in the same way that the entire building’s total would have to be

if no model existed.

4.3 The need for fine-grained measurements

The estimates made by the model described in the previous section can be incrementally

improved by adding sensing; more devices can be metered directly and their actual con-

sumption fed back into the model to help calculate the heating or cooling load as well as

being reported to a personal energy metering system. This works well for owned resources

as described in Section 3.6.1, whose entire consumption can be allocated to their owner,

but as soon as a device is shared, knowing its total cumulative energy consumption is

not enough: it is necessary to understand how and why that energy was used in order to
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Figure 4.11: Increases in heating load and decreases in cooling load follow from energy

savings [177]
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Figure 4.12: Varying the choice of U-value has a significant impact on the model predic-

tion [177]

determine who was responsible. In the simplest cases of devices which consume energy

only when in active use, knowing the instantaneous consumption may be sufficient since

the entire consumption may be allocated to the person using it at the time. However,

many devices can serve more than one user at a time: even simple things like printers

and coffee machines use power to heat fuser elements or water that benefit all subsequent

users. It is therefore necessary to understand the energy cost of printing a page, or making

a cappuccino, and separate it from the base costs.

Computers are also an excellent, and significant, example of this class of device. By 2007

Gartner was estimating that datacentres accounted for almost a quarter of global CO2

emissions attributable to IT and by themselves as much CO2 as the aviation industry.10

The world has moved away from the mainframe model of hundreds of users sharing a sin-

gle machine through to the era of the personal computer to the dawning age of Weiser’s

ubicomp vision [202]. The previous sections have discussed the problem of the prolifera-

tion of electronic devices whose consumption must be metered; however, with the growth

10http://www.gartner.com/it/page.jsp?id=530912

http://www.gartner.com/it/page.jsp?id=530912
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in popularity of cloud computing the model is returning full circle, with computing power

centralised and shared amongst, in some cases, millions of users. Every user may have

dozens of devices but expects to access the same data and applications on each; the

natural tendency is therefore towards applications as services, potentially hosted by third

parties and accessed over the Internet. This idea has been discussed for a number of years,

originally in the context of thin clients and remote desktop systems such as VNC [180];

it is the explosion of web applications that now makes it seem an attractive proposition.

Clearly, some users will be much more active than others, with some people merely regis-

tering once to explore a site and never visiting again while others rely on it for their daily

business. In order to allocate a fair share of the energy costs of shared devices to each

individual based on his actual consumption, it is necessary to meter power consumption

at a far finer level than discussed so far, investigating the energy implications of each

action a user commands.

4.4 Manual device profiling

As discussed in Section 4.1, understanding the power states of a device and the energy

costs of actions it performs allows the total cost of an individual’s usage pattern to be

calculated. The simplest way to build a device profile is to study the power trace of a

sequence of known actions. This section demonstrates this technique for two different

devices.

As a middle ground short of continuous online measurement, custom hardware was built

based initially on the design used by Hylick et al. to analyse hard drive energy con-

sumption [101]. An ATMEL microcontroller was used to integrate the readings of an

off-the-shelf clamp meter. Figure B.2 on page 199 shows the schematic circuit diagram;

a current probe designed for microscopes11 was attached to and powered by the board

and the timestamped results were logged to a memory card at 20 Hz. This frequency

allows the resulting trace to be aligned by hand with an activity log so the energy costs

of specific events, such as printing a page or making a cup of coffee, can be identified.

4.4.1 Coffee machine

As one example, the consumption of a shared coffee machine12 was measured using the

apparatus described above, which revealed that the additional electrical energy required

to make a single cup of coffee is approximately 62 KJ, or 0.02 kWh. The standby con-

sumption is 4 W.

11A LEM PR 20
12A Jura IMPRESSA X7
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Figure 4.13: Power drawn printing five single pages

4.4.2 Printer

The same technique was used to measure the energy consumption of one printer.13 An

example trace is shown in Figure 4.13. The printer draws 32 W when idle (in power save

mode), and consumes, on average, an additional 11,200 J to print a single page. Printing

multiple pages at once costs less per page than printing a single page on its own as the

warm up costs are amortised; the average energy cost per page for the whole workload

over several days was 8,720 J. Assuming these figures to be typical of all printers, the

average energy cost per day of having the printers switched on was 21.5 kWh, with an

additional 4.24 kWh consumed by printing.

The energy measurement can be combined with the logs from the print server to improve

on the ‘personal load’ policy described in the apportionment case study in Section 3.5

(Figure 3.7). The energy consumed by a particular print job was originally spread over all

occupants and so for each job a share of the energy consumed is removed from each per-

son’s allocation before the total is reassigned to the individual who printed the material.

The results of this policy for one staff member, who printed a large set of lecture course

material in the week in question, are shown in Figure 4.14 and represent an increase of 8

kWh for the week. Neither of the other example users referred to in Section 3.5 printed

anything; their results show a reduction in allocated energy of around 0.5 kWh for the

week.

4.4.3 LCD monitor

Profiling a LCD monitor14 showed it has an average idle consumption of 2.0 W and

average active consumption of 30.0 W, but the high frequency of measurements revealed

that the power draw is in fact dependent on the brightness setting and the colours and

movement displayed. At full brightness, a black screen used 29.2 W on average while a

white one used 30.8 W; displaying a moving screensaver used 31.1 W, probably because

13A HP LaserJet 4200dtn
14A Samsung 170T
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Figure 4.14: Apportionment with printing costs

Figure 4.15: Energy consumption of an LCD monitor with different settings and displays

of the additional switching required. Figure 4.15 shows the full results, and also shows

that reducing the brightness also reduces the energy consumption approximately linearly

to an average of 16.4 W. Despite these minor variations, the data supports the simple

profile used in the building model.

4.5 Automated profiling of programmable devices

Determining the energy costs of tasks on devices as described above is a manual and

lengthy process; it becomes vastly more complicated on programmable devices because

of their much greater range of possible activities. Furthermore, these devices tend to

perform operations much more quickly—millions of times per second, in the case of
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Figure 4.16: Execution stages

microprocessors—making manual alignment of power traces with activity logs very dif-

ficult. This section therefore outlines a mechanism to achieve task-level metering for a

programmable device, allowing a profile to be built up of the energy costs at a function

call level based on taking a large number of measurements of particular operations in an

automated fashion. Automating the process means each measurement can be repeated to

reduce error.

4.5.1 Requirements

There are a number of desirable properties that an automated framework for decomposing

the power measurements of devices should exhibit to ease the task of building profiles:

Automated test execution The tests should proceed (as much as permitted by the

device) without requiring user interaction. This removes a major source of variability

and allows the tester to increase confidence in a result by repeatedly executing the

same sequence of actions to eliminate random noise (but not systematic error).

Batch operation It should be possible to run a whole sequence of tests without inter-

vention.

Untethered operation No physical connections (except those for the metering itself)

should be required required to any of the interfaces on the test device.

No hardware modification It should not be not necessary to modify the test device

at all other than to fit a meter and install a standard application.
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4.5.2 Implementation

To achieve these goals, a novel power measurement system was devised. The system is

centrally orchestrated by the Power Server, which is responsible for sending test scripts

to the device to be profiled and collecting and aligning the various traces and log files. A

single client program is run on the test device itself which is responsible for acquiring a

test script and executing the required actions. Test scripts written in a purpose-designed

simple language are interpreted dynamically without requiring any changes to the software

running on the test device. The client program collects a timing log of these events which is

uploaded to the Power Server at the end of the test. There are no networking requirements

beyond the initial download of the test script and final upload of the results. This means,

for example, that tests can easily be run examining the costs of changing network or using

an external device.

The client running on the test device process proceeds as in Figure 4.16. It first connects

to the Power Server and downloads a test script. It then enters the preparation phase

and stabilises its power consumption. A predetermined sequences of actions is performed

to create a synchronisation pulse. This is used in the data analysis phase to correlate the

timing log from the device with the recorded data. The client next executes the test script

recording the time at which each action is performed. Once the script is complete the

power consumption is stabilised once more and a final synchronisation pulse is emitted

before uploading the timing log back to the Power Server. These phases are described in

more detail in the remainder of this section.

4.5.2.1 Measurement hardware

The system for decomposing measurements is independent of the mechanism for metering

consumption; different techniques will be necessary for different types of device. The

examples described in this dissertation were obtained using either versions of the custom

measurement hardware described in Section 4.4 or a commercial sampling board, but

many of the research or off-the-shelf metering devices described in Section 2.3.1.3 such

as the ACme [104] would also be appropriate. The main constraint is the sampling rate;

the more frequent the voltage and current measurements, the more detailed the resulting

profile will be.

Although modern motherboard designs often contain sophisticated mechanisms for report-

ing power consumption to the operating system these tend not to be suitable for profiling

purposes since sampling at the necessary rate itself entails a significant additional power

draw. If the metering is performed on a separate device this source of potential inaccuracy

is removed.
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Figure 4.17: Energy consumption of a G1 mobile phone when idle [176]

4.5.2.2 Stabilising the power trace

The primary goal is to break down the overall power consumption of the test device into

its constituent parts. Ideally one would identify components which are causing variation

in the trace, characterise their consumption and then switch them off. For components

such as the CPU this is not an option because the operating system is preemptively mul-

titasking and so other processes are intermittently waking up and consuming resources:

Figure 4.17 shows the variation in power when even an example mobile phone15 is osten-

sibly idle. Instead, a low-priority background process runs in a busy-loop. This consumes

all spare CPU cycles and contributes greatly to stabilising the power trace. A small un-

certainty is introduced by this technique because it is not possible to distinguish between

CPU load created by the test and the background load. However, for the purposes of

understanding the peripheral hardware in the device (such as the networking hardware)

this should have little effect.

4.5.2.3 Trace synchronisation

Many of the features in the energy traces of electronic devices last only a fraction of a

second. For example, a scan for available wireless networks lasts around 500 ms, while

the transmission of a single packet takes only a few milliseconds. For this reason it is

important to align precisely the times recorded for different events on the test device with

15http://www.htc.com/www/product/g1/overview.html

http://www.htc.com/www/product/g1/overview.html
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Figure 4.18: Part of a synchronisation pulse produced by varying the CPU load on a

desktop PC.

Figure 4.19: A synchronisation pulse (in red, approximately between seconds 12 and 42)

and the SSD function with the hypothesised signal (in green) [176]
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Figure 4.20: A partial hypothesis trace (bottom) is necessary because a square hypothesis

(middle) will misalign on the true trace (top) [176]

the samples recorded on the measurement PC. This alignment allows annotation of the

power trace at each instant with the action taking place on the device.

This is achieved by embedding a synchronisation pulse inside the energy trace by switching

on and off a component with significant power draw in a predetermined pattern. On a

mobile phone, for instance, switching the backlight from off to full brightness increases

the power consumption of the device by more than half a watt over a period of a few

milliseconds (Figure 4.17); on a desktop PC, varying the CPU load can make a difference of

tens of watts (Figure 4.18). This effect can be exploited to embed two easily-recognisable

32-bit Gold codes [69] at either end of the trace, with on representing a 1 and off a 0.

The pulse sequence is shown in Figure 4.19.

At the end of the test the timing log recorded by the device contains the switching times

for each edge in the synchronisation pulses. These times are combined with estimated

values for the power consumption in the two backlight states to generate a hypothesised

sequence representing the expected power trace for the pulse. It is valid to assume in this

case that the relative drift of the two clocks over the synchronisation time period will be

negligible.

To find the sample which corresponds to the start of the synchronisation pulse, a function

of the power trace and the hypothesised signal is computed by incrementally increasing

the offset of the latter and computing the sum of the squares of the difference (SSD)

between the signals (also shown in Figure 4.19). This relatively simple function works

well as a measure of similarity and drops to zero at the point where the two signals line

up; the fact that the Gold codes have small cross-correlations within a set ensures it is

very unlikely that they will match in the wrong position. In all tests a visual inspection

has shown this to be a robust way to determine the sample number of the start of both

pulses. The cross-correlation function could equally have been used instead of the sum of

the squares of the difference, and any pseudorandom bit sequence could have been used in

place of Gold codes: the Gold codes simply minimise the chance of the pattern repeating

and so matching well against an offset version of itself.
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Components take time to switch on and off, and this problem is sometimes exacerbated

by software. For example, some recent versions of operating systems fade the display

backlight on and off as a visual effect, resulting in diagonal lines in the synchronisation

pulses on the power trace rather than sharp edges (Figure 4.20(top)). Attempting to

match the square hypothesised signal against this results in them lining up incorrectly,

with the vertical edges half way along the sloping lines where we should have the rising

edge at the base of the upward sloping line and the falling edge at the top of the downward

one (Figure 4.20(middle)). To counteract this, the edges must be removed from the

hypothesised signal to leave gaps where the slopes will be.

Changing hardware power state generally requires an inter-process or kernel call so there

is sometimes a slight delay between making the API call and the change taking effect. The

start of each hypothesised pulse section is therefore also left blank (Figure 4.20(bottom)).

These blank ‘don’t care’ section mean that there are multiple points along the trace that

are good matches, so the latest maximum is chosen.

This calibration procedure gives four values: s1 and s2 corresponding to the sample num-

ber for the start of the first and second pulse, and t1 and t2 which correspond to the time

that the first and second pulses began. From this the sample rate between the two pulses,

r can be calculated:

r =
s2 − s1
t2 − t1

(4.6)

o = t1 − s1/r (4.7)

where o is the time offset between the start of the power log and the start of the timing

log. The sample s which corresponds to some time t is therefore calculated as

s = r(t− o) (4.8)

Once the alignment has been calculated in this way, new estimates are formed for the

power consumption with the component on and off and the calibration process is re-run

with a new hypothesised signal based on these estimates to ensure as accurate a result as

possible regardless of the physical device.

4.5.2.4 Baseline calibration

Many of the tests involve switching on some component of the test device, waiting for

it to initialise and then examining the additional energy costs of using the device. This

process is supported by embedding baseline power calibration in the test scripts. The test

writer first annotates the script to indicate that a particular set of steps should be used
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as calibration information. When processing the log files the average power consumption

of these steps is computed and subtracted from subsequent steps. As an example, this

allows the energy cost of transmitting data over a network interface to be dissociated from

the ongoing power requirement to keep the interface active.

The example script in Figure 4.21 measures the power consumption for switching on the

Wireless LAN, holding it on for baseline calibration and sending 25 KB of data using a

1448 byte buffer. Each line of the script corresponds to a step in the test and contains a

number of fields separated by the ‘:’ character. The first field indicates the type of action

to be taken by the measurement framework. The most relevant of these are the BASELINE

action which informs the measurement system to calculate a baseline power consumption

using the average power consumption for the duration of the step. The MEASURE action

causes the power consumption (minus the current baseline power measurement) of the step

to be recorded. The average power consumption (watts) and the total energy consumed

(joules) are calculated. The number in the second field indicates the number of units

of activity present in the step which is used to produce a normalised, unit-cost, energy

consumption. In the example there are 25 units in the SendTCP step sending 25 KB of

data. This causes the system to automatically calculate the cost of sending 1 KB of data

and add it to the logs. The MEASURE CONT action indicates to the system that it should

treat this step as a continuation of the previous one and make a measurement over the

entire duration of both.

4.5.3 Results

The technique can be applied to anything from a printer to a rack of servers, provided it

is possible to write an interpreter for the scripting language; a case study using Android-

based mobile phones as a testbed is described in Appendix A and the power measurements

described in Section 5.7 demonstrate its utility and flexibility.

One measure of the accuracy of the synchronisation is to look at the variance in r across

runs in the testbed deployment described in Appendix A. In a perfect world this would

have a value of 4,000 and the experimental results were never out by more than 3 ns.

4.6 Summary

Understanding how energy is being used is an important first step to improving efficiency.

It is impractical to sense directly the consumption of each energy consumer within a

building; as an alternative, it can be estimated based on inventories, device profiles and

second-order indicators of use such as occupancy.

This chapter has described a modelling technique which could be practically applied across

many buildings. The system described can operate with a minimal amount of live sensing
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NONE:1:ToggleWakeLock:true # Force the device to remain awake

NONE:1:ToggleTelephony:false # Disable the cellular radio

NONE:1:ToggleWifi:false # Disable the WiFi radio

NONE:1:WaitTelephonyDisconnect

NONE:1:WaitWifiDisconnect

NONE:1:ToggleCPU:true # Start a background busy thread

PRESYNC:1:SetBacklight:1 # First synchronisation pulse

NONE:1:DoSleep:800

PRESYNC:1:SetBacklight:0.1

. . . # Remainder of sync pulse omitted

BASELINE:1:DoSleep:5000 # Calibrate baseline power

MEASURE:1:ToggleWifi:true # Enable the wireless network

MEASURE CONT:1:WaitWifiConnect # Wait for a connection

NONE:1:DoSleep:5000 # Wait for 5 seconds

BASELINE:1:DoSleep:10000 # Calibrate WiFi idle power

MEASURE:1:OpenSocket:192.168.0.210:8060:1 # Open a TCP connection

NONE:1:DoSleep:5000 # Wait for 5 seconds

MEASURE:25:SendTCP:25:1448:false # Send 25 KB TCP using 1448 byte buffer

MEASURE CONT:1:DoSleep:3000 # Wait for 3 seconds

NONE:1:CloseSocket # Close the TCP connection

. . . # Start of sync pulse omitted

POSTSYNC:1:SetBacklight:0.1 # Trailing synchronisation pulse

NONE:1:DoSleep:800

NONE:1:ToggleCPU:false # Release CPU

Figure 4.21: Parts of an example test script

information but could still extend to accommodate more sources as they are installed.

Minimising the effort involved in initial data collection is important to this goal and so

OpenRoomMap is used to crowd-source this information from building users.

To create device profiles one must break down the consumption of a device into the energy

costs of its various actions. This chapter has shown how this can be achieved manually

using custom hardware; it has also described a measurement framework which can be

used to create a fine-grained understanding of the energy consumption of a programmable

device. The synchronisation information required can be embedded in the measurement

trace itself, making the entire process automated and repeatable.
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Overview

This chapter demonstrates that location can be used to determine the usage patterns of

shared resources, and to apportion energy costs to individuals. It discusses the problems

with today’s location systems and identifies the key characteristics required of a system

for use in a personal energy meter: low cost, low infrastructure and easily deployable.

The most successful approaches to date have repurposed existing infrastructure and user

devices to provide tracking. Bluetooth has been a particularly popular tracking medium

due to its ubiquitous implementation in modern devices, its low power design and its low

cost componentry. This chapter enumerates the different techniques on which Bluetooth

tracking can be based, some of which are novel, evaluates their properties experimentally

and theoretically and shows how to use them to construct a large scale tracking system

suitable for apportioning energy use.

Some of the contributions presented in this chapter have also appeared in a separate publication

[87]. Figure 5.3 is reproduced courtesy of Robert Harle.
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5.1 Context awareness for personal energy metering

A research group in the William Gates Building shares a coffee machine. In this case,

as for most shared resources, there is no second order information available on its usage.

All that are left are several possible options that require varying investments of time and

infrastructure. Devices like this could be counted as part of the base load and their usage

ignored entirely; users could be asked to keep track of their usage manually; some form of

identity prompt could be deployed, such as the PINs often required on photocopiers for

accounting purposes, or a separate sensor system could be installed. The most appropriate

will depend on the significance of the resource in question.

Measurement apparatus described in Section 4.4 showed that two cups of coffee per day

accounts for about 3% of an individual’s 150 W personal load (see Section 4.4.1 for further

details). This is insignificant relative to the power draw of the whole building and it may

not even be worth the energy cost of a sensor system to apportion its use. Even ignoring

it altogether would probably be justifiable—but lessons learnt from the coffee machine

can be applied to all sorts of other equipment, so it is a valuable case study.1

To evaluate the feasibility of the manual method, during the course of one week members

of the research group were asked to make a mark against their name on a tally sheet

every time they had a coffee. An ‘Anonymous’ row was also included to allow those who

preferred not to have their usage recorded to participate in the study.

25 separate people logged their consumption, ranging from only 1 cup in the whole week

to 17. For comparison, there were 53 registered members of the research group or visiting

students during the week in question. An equal apportionment policy would therefore

divide the total energy cost (20,646 kJ) amongst everyone and allocate 390 kJ each for this

week. If instead the energy costs of those cups of coffee that were logged were allocated to

the appropriate individuals and then divided the costs of the remainder equally amongst

everyone, the mean difference from the equal policy is 63%. Finally, assuming that the

logging method was entirely accurate and captured all cups of coffee made and therefore

all energy costs are allocated to the individuals responsible, the mean difference from the

equal policy is 164%.

Out of 212 cups of coffee logged, 58, or 27%, were anonymous. However, the machine’s

own audit trail shows that in fact 333 cups of coffee were produced over the period in

question; only 64% of cups were logged. This suggests that a number of people chose not

to record their usage on grounds other than privacy concerns, even for research purposes

when no attempt at charging was being made—most probably on account of the extra

time and effort involved. Any attempt to apportion the use of these resources as part of

1The University of Cambridge Computer Laboratory has a long and proud tradition of augmenting

coffee machines (http://www.cl.cam.ac.uk/coffee/coffee.html), with the first ever webcam being

used to determine when a fresh pot of coffee had been made [188].

http://www.cl.cam.ac.uk/coffee/coffee.html
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SN13

SN14

Kitchen

Figure 5.1: Location trace of walking to the coffee machine

a personal energy meter must therefore be entirely unobtrusive and automatic, requiring

no additional intervention on the user’s part; schemes such as RFID readers that require

swiping an access card, or logon systems, will probably irritate users and not be adopted

unless they are made compulsory (i.e. integrated with the appliance itself). This is unlikely

to be practical in the majority of real world situations.

Contextual information [43, 46] will therefore provide crucial indications for apportioning

the use and energy costs of resources. This context can come from many different sources;

for example, one straightforward option is to mine data from calendars [134] and for shared

resources such as the Sentient Van or meeting rooms the online booking system provides

the most reliable information on who is using it at any given time.

In general, however, one of the most valuable sources from which to infer context is

location [43]. Location systems promise to provide all the input required for accurate

apportionment, revealing exactly who is in a building at any given time and (generally)

who is using a particular device (although depending on the resolution of the system

ambiguities may remain where a number of people are gathered around). Figure 5.1

shows the trace of a user walking from his office to the coffee machine recorded using

the Bat system (see Section 2.7.2.1)—but note that since no sensors are installed in the

kitchen, it is ambiguous exactly which device he was using. Matching locations against

usage logs may reveal the user in most cases.
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custom base custom target cost calibration granularity

Infrared 4 4 medium low room

Ultrasound 4 4 high high cm

Radio 4 4 high medium cm

Inertial 7 4 high low cm

Sound 7 7 low low m–room

Power line 4 4 low high m–room

GSM 7 7 low high m

WiFi 7 7 low high m

FM 7 4 medium high m

DECT 7 4 medium high m

Bluetooth 7 7 low low m–room

Table 5.1: Summary of characteristics of location system technologies

5.1.1 Low infrastructure location systems

Unfortunately, GPS positioning continues to struggle indoors due to the failure of satellite

signals to penetrate buildings and is available for as little as 5% of a typical person’s

day [129]. To address this shortcoming, there have been many attempts at indoor location

tracking, achieving a wide range of accuracies; these are surveyed in depth in Sections 2.7

and 2.8, and Table 5.1 summarises their key characteristics relevant to energy metering.

While many systems can deliver impressive results the majority of these systems have

not spread outside research labs, primarily due to the cost of deploying and maintaining

building wide location technologies. Large amounts of custom hardware must be deployed,

surveyed and calibrated; users must all remember to wear an additional device, and

in many existing environments the infrastructure requirements are simply impractical.

Furthermore, all the additional equipment comes with an associated embodied energy

cost.

A personal energy meter requires a reliable location technology that is viable for deploy-

ment across entire buildings using standard infrastructure and without extensive calibra-

tion. This rules out fine-grained tracking systems such as the Bat system (Section 2.7.2.1)

since these require the retro-fit of dedicated infrastructure and the need to issue building

occupants with custom tracking devices.2

Personal experiences with indoor location in many forms over many years have shown

that even coarse location can provide useful location-aware applications. The Active

Badge project was adopted so widely because the room-level location it provided was

2Experience shows that users tend to forget to wear their Bats. Additionally, there is a constant

maintenance task in keeping Bats operational (especially with respect to battery power) and keeping the

model of the world up-to-date.
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sufficient to enable a key application: finding co-workers quickly (see Section 2.7.1.1).

This simple application demands only that users can be reliably located with room-level

accuracy. The usage of that system waned because users forgot to carry their badges,

didn’t take responsibility for replacing batteries, and found that tracking failures were

common (badges were easily obscured by clothing).

Precise location information is necessary to distinguish which of several nearby devices an

individual is using, but even very coarse-grained data can be valuable for personal energy

metering:

building-level location—knowing whether an individual is present or absent—is suffi-

cient to enable the sort of apportionment described in Section 3.5. This is therefore

the minimum required for energy metering, but even this provides a very significant

improvement in the quality of data a personal energy meter can provide. Without it,

only static apportionment, or apportionment based on standard working patterns,

is possible.

area-level location—knowing which room, corridor or wing a person is in—additionally

allows the energy consumed by shared resources, such as lighting, in that area to be

divided among its occupants.

fine-grained location is necessary to determine the user of anonymous shared devices as

described in the previous section.

A location system for the personal energy meter must also satisfy the following goals:

1. The system should be able to track users continuously

2. The system must be able to track multiple users simultaneously.

3. The system must be easily adopted by a very high percentage of building users and

remain in regular use, avoiding the issue of users forgetting to enable tracking in

some way.

The final criterion is one of the hardest to achieve. Mansley et al. explored a number of

strategies for encouraging use of location systems, with particular reference to the Bat

system, and discovered three main barriers to adoption [141]:

A significant minority of people still do not regularly wear their Bat. An

informal survey threw up a number of reasons: (1) apathy or forgetfulness—

they just do not feel it is worth the effort or forget to put it on; (2) privacy—

there are some who are concerned about their privacy, and so do not wear

one on principle; and (3) discomfort—some people find wearing a Bat around

their neck uncomfortable or annoying.
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In order to get around the first and third of these problems, it makes sense to derive

indoor location from the devices that people already carry. Mobile phones in particular are

ubiquitous in many societies, feature an increasing array of communications technologies

and are carried everywhere by their owners who find them useful and are motivated to

ensure they remain charged and functional. Although it has been suggested that mobiles

are sometimes farther from their owners than one might expect [162], they are more likely

to be carried than any other device that could be used for location tracking.

To obtain in-building tracking using unmodified mobile telephones it is necessary to over-

lay location tracking on established technologies. Such tracking has been demonstrated

using signals from the mobile telephony networks, using WiFi and using Bluetooth; these

systems are surveyed in depth in Section 2.8. At present, positioning from the telephony

networks is too coarse for in-building location (Section 2.8.4). WiFi-based tracking has

received much attention in recent years (Section 2.8.5), but it is not ideal for general

tracking. It is associated with high power demands (and the resultant difficulty in con-

vincing users to leave handset WiFi turned on), difficulty in set up and maintenance,

small market penetration of suitable (WiFi-enabled) handsets.

Bluetooth-based systems are particularly attractive as they have low power requirements

by design and almost everyone already carries a mobile phone that supports Bluetooth

and has a computer on his or her desk. This is therefore the option adopted here to build

example location systems suitable for personal energy metering.

5.2 Bluetooth review

This section provides a brief overview of the parts of the Bluetooth specification rele-

vant to the remainder of this chapter. Bluetooth was developed as a low-power wireless

replacement for RS232 serial communication, and has become almost ubiquitous in mo-

bile devices. The protocols are quite complex; the specification contains full technical

information.3

5.2.1 Bluetooth connections

The Bluetooth standard defines three different types of connection that are layered to form

the Bluetooth stack, shown in Figure 5.2. The most fundamental is the Asynchronous

Connectionless Link (ACL). No more than one ACL can exist between any two Bluetooth

devices at any given time, and it must be established before any other connection can be

made. An ACL will disconnect only when no higher-layer connections have existed for a

certain time (2 s seems to be the preferred value of current stacks).

3http://www.bluetooth.org

http://www.bluetooth.org
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Radio

Baseband

Link manager (ACL/SCO)

HCI

SDP RFCOMM

Applications

L2CAP

OBEX

Figure 5.2: The Bluetooth protocol stack.

Directly above the ACL is the Logical Link Control and Adaptation Protocol (L2CAP)

layer. This is a packet-based layer that provides guaranteed packet sequencing and a

selectable degree of delivery reliability. Once established, an L2CAP connection remains

open until either end explicitly closes it, or the Link Supervision Time Out (LST) expires.

The LST is the time for which communicating devices are out of range before the ACL

connection is reported as destroyed. The default LST is 20 s in many stacks, but can be

configured dynamically per-ACL.

Above L2CAP sits the Radio Frequency Communications (RFCOMM) layer, which is the

reliable stream-based protocol used by most Bluetooth applications. It represents the

type of connection most people mean by ‘Bluetooth connection’.
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5.2.2 Adherence to the specification

The Bluetooth specification is large, complex, and ever evolving. Implementations of it

are not completely consistent in their interpretation and furthermore manufacturers have

chosen to adapt some parts of the protocols to increase security. Only a few stack imple-

mentations are mature enough to be considered stable. This can lead to unpredictable

behaviour, especially when using consumer devices with embedded Bluetooth stacks. A

number of the mobile phones tested here exhibited occasional instability and unexplained

Bluetooth behaviour, some of which appears to be intentional. The Nokia 6300, for ex-

ample, appears to have a connection timeout associated with L2CAP connections—after

20 s, the ACL is dropped if no RFCOMM connection has been established.

5.2.3 Paging and inquiry

Bluetooth uses frequency hopping within the 2.4 GHz radio band for channel robustness.

Every device retunes its transceiver every 625 µs to one of 79 Bluetooth channels. The

precise sequence of changes is derived from its address and its local Bluetooth clock. For

two devices to communicate they must have the same hopping sequence and phase at any

given moment. To reach this state, Bluetooth defines a protocol that the two devices must

follow. The protocol is known as paging and involves the master device sending search

packets (‘pages’) addressed to the slave device until it replies. It is useful to consider the

behaviour of the master and the slave separately; Figure 5.3 illustrates the process.

Slave. The slave device periodically listens for page requests on a particular radio

channel for 11.25 ms. A total of 32 channels are used for paging, and the frequency

the slave listens on is changed every 1.28 s according to a sequence also derived

from its clock and its device address. If the slave does not detect a page, it sleeps

for set period of time, Tpg scan. The Bluetooth specification defines three SR modes

which a device can adopt and which provide a limit on Tpg scan. These modes are

R0 (Tpg scan = 0), R1 (Tpg scan ≤ 1.28 s) and R2 (Tpg scan ≤ 2.56 s). The default

mode is R1, but some mobile devices adopt R2 to save power.

Master. With each page sent out, the master needs to estimate the frequency that the

slave will be listening on. The device’s address tells it the hopping sequence, but it

can only know the current sequence position by having an estimate of the Bluetooth

clock on the slave. Once it has such an estimate, it then computes the most likely

frequency to transmit on. However, in the 11.25 ms that the handset listens for,

it has time to send pages to 16 channels. Thus it chooses a set of 16 frequencies

that are adjacent in the hopping sequence and centred on its best estimate of the

listening frequency. This set of 16 frequencies is known as ‘train A’ and allows for

a degree of error in the estimate of the slave’s clock. It then cycles over this train
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Figure 5.3: The paging process with parameters marked. A slave periodically listens on

a single frequency for Tw pg scan. When paging, the master pages the 16 A frequencies in

turn, each cycle taking 10.24 ms. After Npage cycles, it repeats using the B frequencies.

In this example, shaded cycles for the master indicate the cycles needed to connect to the

slave shown [87].

of frequencies continuously for some for Twindow ≥ Tpg scan seconds. Assuming the

slave is listening on a train A frequency, it will hear the page and respond, implicitly

syncing the two devices. On average this should take 1
2
Tpg scan to complete.

5.2.4 Radio interference

Whenever a device is paging or inquiring, it is flooding the 32 channels used for those

purposes. In fact, the specification recommends (but does not require) that any estab-

lished connections be temporarily parked during a page or inquiry. Inevitably established

connections will be disrupted by continuous scanning or paging, meaning that tracking

in this manner may limit the use of Bluetooth as the communications medium it was

intended to be.

This was evaluated using three machines: one a nominal master; one a slave; and one

used to provide interference in the same area (a nominal ‘external’ machine). Figure 5.4

depicts how long it took to transfer a 1 MB file from the master to the slave and back

again under different conditions, which showed that external scanning or paging had little

effect. However, when either the master or slave were continuously scanning or paging,

the data throughput for the established connection fell dramatically. The connection was

slowed rather than severed or permanently parked. These data apply only to the BlueZ

stack, but indicate that the tracking techniques may be able to co-exist with ‘normal’
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Figure 5.4: Measuring connection disruption. The chart shows the mean time taken to

transfer a 1 MB to and from a Bluetooth device whilst the master, slave or an external

device was continuously scanning or paging a fictional device address. The error bars

show ±1 standard deviation.

Bluetooth usage, albeit reducing the data throughput.

5.3 Scan-based tracking

As discussed in Section 2.8.8, most existing Bluetooth-based tracking systems locate a

device using the inquiry, or scan, mode of Bluetooth. In this mode, a base station trans-

mits a discovery packet on each of 32 radio channels. Devices set to ‘discoverable’ respond

to this packet, identifying themselves. However, the response follows a random delay in

order to minimise the chance of response collisions when multiple devices respond. The

result of this protocol is that an inquiry must run for 10.24 s to detect reliably all devices

in range (and longer still if the radio conditions are unfavourable).

Such a system has two possible configurations. Initially, many systems tracked mobile

devices by continually issuing inquiry packets from a network of fixed beacons (hereafter

referred to as Base scans Target, or BsT). This has the advantage that no custom code

need be deployed on the handset, but is often perceived as a privacy risk since anyone

can track a handset by creating their own network of beacons. Additionally, handset

manufacturers are increasing security by changing the ‘discoverable’ mode to be a time-

limited handset state; this is the case for the iPhone4 and Android.5 The system must

therefore regularly renew the discoverability request on the target. This introduces at

least two problems: firstly, the device may miss an inquiry packet in the gap between

4up to and including at least iOS 4.2
5up to and including at least Android 2.2
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discoverability being disabled and re-enabled, and secondly, it must be running custom

software to perform the renewal which limits universality and complicates deployment.

More recent tracking attempts have therefore concentrated on the mobile handset scanning

for the fixed beacons (Target scans Base, or TsB) [27, 79, 100]. This is more secure since

Bluetooth does not require that a scan packet identify its source address. However, it

requires custom application code on the handset, will typically draw more power, and

requires a data communications channel to publish positions. Regardless of these issues,

both schemes have traditionally suffered from further problems:

High tracking latency. Since each scan can take 10.24 s, these systems have a very

slow update rate that does not support dynamic tracking.

Devices in the system must be discoverable. In order for a scan to locate a nearby

device, that device must be discoverable. It therefore announces itself to the world,

and becomes a target for hackers regardless of whether it is a handset or a beacon.

This chapter investigates potential improvements that could create a Bluetooth-based

tracking system suitable for personal energy metering.

5.3.1 Update rates

Unlike a page, an inquiry does not complete once a response has been heard. Instead, most

Bluetooth systems require that an inquiry request specifies the duration of the inquiry.

Some stacks support the option of terminating a scan once a specified device is observed,

but in tests this has merely prevented subsequent events from being passed up to higher

levels; a new scan cannot be started until the hardware has completed the last one and

the duration of that must be set at the start of the inquiry. Therefore the update rate for

a scan-based system would seem to be determined by the chosen scan duration.

Figure 5.5 shows the effect of varying Tinq scan on the time taken to spot a particular

device. The data were collected by continuously scanning for five minutes (30 10.24 s

scans) with each Tinq scan value and using the BlueZ HCI event API to record when

responses were received. The device was successfully found in all 30 scans at each setting,

and always within the first 5.12 s. The CDF shows that even when small Tinq scan values

are in use, the device may be missed in the first inquiry train, and thus each scan must

last at least 3 s regardless of the Tinq scan value. This bounds the update rate to 0.333 Hz.

However, since a listening slave cannot identify the source of an inquiry by design, it

must respond to every inquiry it receives. It is possible that, having already responded

to an inquiry, a slave continues to listen and hears and responds to another of the inquiry

requests from the same inquirer. Thus each scan can result in multiple responses from

the same device. Many stacks allow applications to register with the HCI layer for all
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Figure 5.5: Analysis of the inquiry time before first finding discoverable device whilst

varying Tinq scan (shown in number of slots).
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response events, even repeats. This gives an effective update rate that is higher than the

inquiry rate.

Care must be taken in using this property. Not hearing from a particular device during

an inquiry is strong evidence that it is out of range. However, not hearing from a device

multiple times within a single inquiry is not strong evidence that it has moved out of range

during the inquiry; merely that the transmitter and receiver did not sync their frequencies

again. Nonetheless, the repeated responses are particularly useful for a fingerprinting

system, since each response may be set to carry an independent RSSI estimate. Then

a single inquiry can produce multiple RSSI estimates to multiple devices, allowing for

better matching.

Figure 5.6 illustrates the distribution of all HCI inquiry events associated with the data

used for Figure 5.5. There were nearly 2,000 scan events (each with an independent RSSI

estimate) generated across the 30 scans when Tinq scan was set to 32. This implies an

average update rate of almost 7 Hz although these results were tightly clustered at the

start of each 2.56 s interval. This is merely a reflection that there is a higher chance of

the master and slave matching frequencies shortly after they have just done so before.

However, for Tinq scan ≥ 512 there is a more uniform distribution of events, with a regular

update rate of up to approximately 1.7 Hz. Even the default value of Tinq scan = 4, 096

can provide an regular update rate of 0.95 Hz using this approach. These results are very

useful for fingerprinting.

Figure 5.7 shows also the effects of varying Tw inq scan whilst holding Tinq scan at its default

of 4,096 slots. As expected, there is a general trend of faster/more inquiry events with a

larger window, although the random nature of the inquiry procedure means that nearby

values of Tw inq scan may not behave as expected in some circumstances. In Figure 5.7, for

example, Tw inq scan = 32 gave an unexpectedly high update rate; this can be attributed

to fortuitous alignment between the hopping sequences. Nonetheless, the general trend is

evident and, if consuming all inquiry events, average update rates of between 0.4 Hz and

1.1 Hz were observed.

5.4 Connection-based tracking

Scan-based tracking detects proximity between handsets and fixed beacons by continually

scanning for all devices. An alternative, novel notion described here is connection-based

tracking, whereby two specific devices are characterised as proximate if one can connect to

the other i.e. if beacon B can connect to handset H then B and H are proximate. Either

the target initiates the page (Target connects Base, TcB) or vice-versa (Base connects

Target, BcT). It is possible to track a moving target by continuously attempting to connect

and immediately disconnect in a manner analogous to the standard ping tool. If the target
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(a)

(b)

Figure 5.6: Analysis of all inquiry events corresponding to one device whilst varying

Tinq scan (Tw inq scan =18). (a) Histogram of sighting times (b) cumulative number of

sightings made.

is static, however, it may be preferable to maintain a single connection, monitoring its

properties to determine when the target is moving again.

In many senses this is notionally similar to an scan-based system where each inquiry

targets a specific device rather than every device. This has the obvious disadvantage

that multiple such inquiries would be needed to find all the local devices. However, the

specificity also allows devices to be targeted quickly rather than with extended broadcasts

i.e. a single inquiry should complete faster, allowing for multiple inquiries.

The key motivation for investigating connection-based tracking is that its Bluetooth im-

plementation can potentially address the scan-based shortcomings identified. The remain-

der of this section is devoted to characterising both theoretically and experimentally the

relevant properties of Bluetooth that permit this connection-based tracking.
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Figure 5.7: Analysis of inquiry events whilst varying Tw inq scan (Tinq scan = 4, 096). (a)

First inquiry events only (b) All inquiry events.
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5.4.1 Connection authorisation

Connection-based systems may be based on one of several different connection types. At a

fundamental level all of them use an ACL (see Figure 5.2), but implementation constraints

mean that the choice of connection type may be important.

5.4.1.1 RFCOMM

The biggest obstacle to connection-based tracking using RFCOMM connections is the

requirement for explicit pairing of every handset with every fixed base. The pairing

process is governed by the Bluetooth security manager and involves creating a shared

secret (a passphrase or PIN) between the two devices. Because each pairing operation

requires human input, it is not generally practical to pair every handset with a large

deployment of bases. However, one novel workaround is possible. Although platform-

specific, easy pairing is achievable if the base addresses are spoofed to the same address

and the BlueZ stack is used as follows:

1. Pair the target with a particular base.

2. Copy the relevant entry in the linkkeys file (found in /var/lib/bluetooth/) on the base

to the equivalent file on every other base.

3. Using address spoofing, set every base to have the same address as the base used in

pairing.

Note that a failure to pair (rather than a failure to connect) may be sufficient to indicate

presence, avoiding any need for the pairing attempt to be successful. Unfortunately, few

stack APIs support a distinction between failure to pair and failure to communicate.

Furthermore most mobile devices will automatically initiate a graphical pairing prompt

under these circumstances rather than fail silently.

If addresses are spoofed, an alternative method must be used to distinguish between bases

such as hostnames transmitted over the connection or individual logs kept by each base.

This is discussed further in Section 5.4.6.

Handset Description

T-Mobile G1 Android 1.1

Apple iPhone 3G iPhone OS 2.2

Nokia 6300 Series 40 3rd Edition, Feature Pack 2

Nokia N80 Series 60 3rd Edition (Symbian OS 9.1)

Table 5.2: The test handsets used
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5.4.1.2 L2CAP

There are some communications services that do not usually require this level of authen-

tication. In particular, the creation of an ACL and a basic L2CAP connection is almost

universally authorisation-free. Although the resultant connections are limited in use for

communications (they support little more than low-level testing) they are sufficient for

tracking usage because if they are successfully established, the two devices must be within

range of each other. Additionally, the low-level tasks they do support, such as RSSI mea-

surement and L2CAP echo requests (directly analogous to the familiar ICMP ping packet

in IP), allow continual monitoring of the connection. However, not all Bluetooth stacks

feature explicit L2CAP support—this is a particular issue for embedded devices such as

mobile phones, meaning that while L2CAP is a viable option for BcT systems it is less

practical for TcB systems.

One possible workaround is the use of the Service Discovery Protocol (SDP) channel. Most

general purpose Bluetooth devices use an SDP server to advertise the logical channels

linked to the services they offer. SDP itself is built on an L2CAP connection with a

preset channel number of 1. Therefore it may be possible to issue an SDP lookup for a

non-existent service to a device. If the stack API in use differentiates between failure to

connect to the SDP server and failure to lookup the service, it is possible to infer locality

of the device or otherwise.

5.4.1.3 LM name request

As discussed above, any L2CAP or RFCOMM connection implies an underlying ACL

connection. However, the lifetime of the ACL is not matched to the lifetime of the

logical channels that prompted its creation. Since the cost of a page is high, the ACL

is maintained for a short period of time in case the application wishes to re-establish a

logical connection to the remote device. This time is known as the ACL timeout. In the

context of tracking, care must be taken to ensure that any requested disconnect at the

logical level results in a disconnect at the ACL level before proceeding to reconnect to the

same address.

Unfortunately, few stacks expose the ACL to the developer. Instead, the remote name

request feature in the Bluetooth specification can be used. This function queries the

human-readable name of a remote device. To do so it first establishes a connection (via

standard paging), exchanges the necessary data and then, crucially, disconnects immedi-

ately, so maintaining the ACL for only a minimal length of time.

BlueZ provides the HCI read remote name() function to initiate such a name request

from the HCI layer. This has been used in the RedFang system to detect the presence of

Bluetooth devices that are not discoverable, connected or paired to the enquirer but has
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not previously been used for tracking.6

The initial motivation for using low-level L2CAP connections was to avoid the Bluetooth

pairing procedure, which is often invoked automatically for higher-level connection pro-

tocols such as RFCOMM. Unfortunately, some manufacturers are now creating consumer

devices that use Bluetooth security mode 3. In this mode, pairing is required for the

establishment of a full ACL, and therefore needed for L2CAP connections too.

However, the temporary ACL established through the HCI read remote name() call may

not be subject to authentication for a device in security mode 3. This appears to be true

for the BlueZ stack in particular. The use of the name request therefore remains a viable

option for tracking.

Alternatively, the distributed pairing technique described in Section 5.4.1.1 can be used

to allow L2CAP connections to be used for tracking when pairing is required. However,

there is then little advantage of L2CAP over RFCOMM—indeed, the latter is generally

better supported.

5.4.2 Connection time

A connection-based tracking system will constantly attempt connections between devices.

The expected latencies in tracking will be dictated by the connection times, which are

quantified here.

If the master has a good estimate of the slave’s clock, it should be able to connect in train

A (see Section 5.2.3). On average this should take 1
2
Tpg scan to complete.

The master normally obtains the important clock estimate by completing a lengthy inquiry

process. If it does not have an estimate (e.g. inquiry is avoided as in the connection-based

technique) it is forced to centre train A on a randomly chosen paging frequency. There

is now a 50% chance that the slave will not be listening on a train A frequency. After

Twindow seconds without a reply, the master repeats the entire process using the other 16

frequencies; ‘train B’. On average, the pager will have to use train B half of the time.

Thus, the average connection time (ignoring train changes) is

Tconn ≈
1

2
.
1

2
Tpg scan +

1

2
(Twindow +

1

2
Tpg scan) (5.1)

≈ 1

2
(Tpg scan + Twindow) (5.2)

and Tpg scan ≤ 2Twindow.

6http://www.securiteam.com/tools/6L00K008LE.html

http://www.securiteam.com/tools/6L00K008LE.html
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Therefore for default values of Tpg scan = 1.28 s and Twindow = 2.56 s a successful page will

take 0.64 s on average in train A, and 1.92 s on average otherwise. In the worst possible

case, a page should complete within 5.12 s, which is still twice as fast as a default inquiry.

Once a connection is established, the master can cache the clock offset for the slave and

use it for subsequent connections to the slave. Over time, however, the clocks drift apart

and the estimate will degrade.

None of this analysis, however, incorporates any setup overheads at the master or slave

once paging has succeeded. One would expect there to be a systematic increase to the

connection times. Figure 5.8 shows the connection times to an Apple iPhone. For each

datum, a new connection was created and its creation time measured using the UNIX C

function gettimeofday() on the connecting system. The start of each connection was

spaced by 5,000 ms, chosen to be indivisible by 1,280 ms.

Since the iPhone has Tpg scan = 1.28 s, each subsequent connection attempt would start at

a different point in the page scan cycle of the iPhone.7 Ignoring connection overheads, the

connection time should move linearly between zero (connection starts just as the slave’s

page cycle does) and 1,280 ms (the connection starts just after the cycle ends). The

experimental connection times incorporate an additional offset of approximately 200 ms,

which is the connection setup overhead. Additionally, one connection attempt failed

altogether, resulting in a connection time of two page slots.

Ideally, connection would be near instantaneous for connection-based tracking. Figure 5.8

shows that with unmodified handsets, it is realistic to expect connection times to be

bounded by about 1.5 s. Until a connection is established or 1.5 s has elapsed, a given

beacon will not be able to verify whether or not a handset is in range. The equivalent

figure for scan-based searching is 10.24 s, although as noted previously, multiple handsets

can be queried simultaneously.

This time can be reduced if the paging parameters can be tuned. This is not often the

case on mobile devices without modification, but is generally possible on PCs. As can

be seen from Figure 5.3, there are three parameters that can be used to minimise the

duration of a paging attempt:

• reduce Tpg scan on the slave;

• increase Tw pg scan on the slave;

• reduce Npage on the master.

Potential update rates were evaluated using two machines, each with a Belkin Mini Blue-

tooth adaptor, separated by a metre or so of free space (i.e. no interference expected).

7Note that BlueZ cached the clock offset so all connections are expected to occur in train A



146 5.4. CONNECTION-BASED TRACKING

 0

 500

 1000

 1500

 2000

 2500

 3000

 0  10  20  30  40  50  60  70  80

Co
nn

ec
tio

n 
tim

e 
(m

s)

Connection attempt

Figure 5.8: Experimentally measured L2CAP connection times for the iPhone [87]

Both machines ran a modern Linux kernel8 and used the BlueZ stack. BlueZ allows

dynamic tuning of the Tpg scan and Tw pg scan parameters but not Npage. Similarly, the

analogous inquiry parameters can be set, with Ninquiry hard coded.9

Figure 5.9 shows the result of varying Tpg scan and Tw pg scan on the duration of an LM

name request, which is dominated by the paging time. The durations were remarkably

consistent for each setting. Update rates of almost 5 Hz were achievable by increasing

the Tw pg scan value; more conservative settings gave approximately 0.7 Hz; and the worst

case update rate observed was approximately 0.35 Hz.

5.4.3 Disconnection time

Bluetooth connections can be either be shutdown in an orderly fashion by either end

or severed when out of range. For the latter, there are two separate relevant timeouts,

introduced in Section 5.2.1:

ACL timeout. This timeout is the amount of time that an ACL waits before discon-

necting itself after all higher level logical connections are closed, as discussed in

8Linux 2.6.32
9Technically the Bluetooth specification allows for no other value for Ninquiry than 256. However

lower values do not break functionality.
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Figure 5.9: Distribution of paging times for (a) Tw pg scan = 18, varying Tpg scan;

(b)varying Tw pg scan, Tpg scan = 2, 048.

Section 5.4.1.3 above. The default timeout is 2 s. Some stacks provide tools to

forcefully disconnect an ACL (BlueZ being one), but these are not standard.

Link Supervision Timeout (LST). When two Bluetooth devices have their commu-

nication disrupted, the Link Supervision Timeout (LST) defines how long they will

wait for the other party to return before a disconnection event is issued to higher

layers. Bluetooth sets the default LST at 20 s, although it can be changed dy-

namically once a connection is established. The LST is per-link, not per-device, so

setting it at one end of the connection sets it for the other.

The issue with the ACL timeout has already been mentioned: if a host simply disconnects

and immediately attempts a reconnect, the ACL timeout will not have been triggered and

the baseband connection will be maintained rather than re-established.

In the context of tracking, the LST is triggered whenever the device goes out of range

without first negotiating a disconnection. A complete disconnection then occurs only

after the link supervision timeout (LST) has elapsed without communication. However,

experimenting with test phones showed that when a connection was lost due to range,

the connection did not re-establish itself if the handset re-entered the radio range before

the LST completed. This means that if a handset leaves communications range of a host

and returns within the LST, the original host may not be able to ‘see’ it until the LST

has expired.

The connection-based techniques described continuously connect and disconnect, and min-

imising the time between these two events reduces the chance of triggering the LST since

there is less opportunity for a device to move out of range. The remote name request is

the optimal choice here, since it maintains an ACL for as little time as possible.
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Handset Echo process rate (Hz)

T-Mobile G1 13.00

Apple iPhone 3G 20.14

Nokia 6300 21.97

Nokia N80 20.26

Table 5.3: Experimentally measured ping rates for different handsets.

Another approach is to reduce the LST once a connection is established. If this is done

immediately after a successful page, there is a relatively small window within which the

default LST can be triggered. This window does exist, however, so an LST trigger is

always possible. Note also that a reduced LST value will negatively impact the reliability

of any other data connections between the two devices.

In practice the use of the remote name request is sufficient to avoid triggering the LST

anything but irregularly.

5.4.4 Connection monitoring

Once a handset and beacon are connected, a forced disconnection signals that they are

no longer co-located. Whilst this is useful information, it may be possible to infer more

by monitoring the connection quality.

In general there are three metrics used to monitor a Bluetooth connection: Received Signal

Strength Indicator (RSSI), Link Quality (LQ) and echo response time. The standard does

not require a Bluetooth chip to report the RSSI or LQ, although most do. It is safe to

assume that the Bluetooth chip of the beacons, where the metrics are to be collected, can

be chosen to support these features.

The advantages of using the RSSI or LQ measurements are twofold. Firstly, they do not

involve sending extra data wirelessly and so do not consume power at the mobile handset.

Secondly, experiences indicate that many manufacturers update the reported RSSI value

at 1 Hz or even faster, allowing for fast monitoring of a link if so desired.

An alternative method to monitor the connection is to use the round-trip time for an

echo packet, similar to an ICMP ping in TCP/IP networks. Poor connections result in

packet loss and retransmission and corresponding increases in round-trip time. Table 5.3

shows the experimentally-measured maximum rate of echo requests for each of the test

handsets when close to the sending host. All testing was carried out using a desktop Linux

machine (running Ubuntu 8.04 with the BlueZ 3.26 Bluetooth stack) with an attached

class 2 generic Bluetooth 2.0 USB dongle and a range of mobile telephones taken as

representative of those available on the market (see Table 5.2).
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The round-trip time is of the order of 40 ms for a strong connection, so update rates

faster than 1 Hz are easily achievable. However, this approach does require the handset

to be more active and therefore reduces its battery lifetime; this is described further in

Section 5.7.

5.4.4.1 RSSI/LQ and proximity

Although these metrics can be read, it is not immediately clear how useful they are. There

is a growing body of work on the use of RSSI values for location determination through

fingerprinting techniques (see Section 2.8.3.3). The ideas described so far could be used

to gather RSSI readings at a higher rate than the usual approach (using inquiries) and

so may improve those methods. However, fingerprinting requires detailed surveying (and

continual re-surveying) which does not meet the goals of minimal maintenance and so it

is not pursued here.

There have also been attempts to relate the RSSI or LQ values to absolute distances with

which to derive position estimates [76]. Such approaches have demonstrated only limited

success to date; much coarser use of the RSSI seems prudent.

A series of offices were surveyed using an iPhone to measure RSSI and a co-located Bat

to measure locations simultaneously to within a few centimetres. The office wing was

representative of a typical situation where Bluetooth had to co-exist with WiFi, walls

attenuated signals and people unrelated to the experiment were permitted to work as

usual. The traces from four hosts are shown in Figure 5.10. Figure 5.11 shows the ob-

served relationship between the reported RSSI and the distance from the fixed Bluetooth

master, based on data collected for 10 different masters. Note that an RSSI of -13 is

actually a disconnection. Madhavapeddy and Tse performed further studies of Bluetooth

propagation in the same offices using a similar technique [137] (see Section 2.8.8). It is

clear from Figure 5.11 that there is no deterministic relationship between distance and

RSSI, but that there is a qualitative trend (larger distances are associated with more

negative RSSI values). This trend is used simply to associate a falling RSSI reading with

a handset leaving the area, which is generally sufficient for these purposes.

5.4.5 A base-connects-target tracking system

Having characterised the fundamental properties of Bluetooth in the context of connection-

based tracking, the next issue that arises is how to exploit these properties to build a

wide-area tracking system.
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(a) (b)

Figure 5.10: Experimentally measured RSSI values from four hosts, plotted against loca-

tions recorded using the Bat system [87]
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Figure 5.10: continued

5.4.5.1 System architecture

The system architecture assumes that a large number of inexpensive Class 2 Bluetooth

radios are distributed throughout a building. Each radio must be connected to a host

machine of fixed, known location and the host machines must be networked together

in some way. In most scenarios, this would entail at most simply adding a Bluetooth

dongle to desktop PCs, making deployment both quick and easy; in fact, many new

computers ship with Bluetooth adaptors built in. These fixed machines with Bluetooth are
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Figure 5.11: Measured RSSI against Euclidean distance from the host [87]

referred to simply as hosts. Their locations can be obtained directly from OpenRoomMap

(Section 2.5.2), removing the need for any additional manual calibration or data entry to

benefit from indoor tracking.

A central system that can connect to any host maintains a database of handset device

IDs, their owners and any known properties of the handset (Tpg scan etc). Each entry in

the database is the result of a one-off registration of the handset with the system.

The central system then maintains a model of where people are and uses this to instruct

hosts to monitor associated handsets at appropriate times. For example, as a user left

their office the system may instruct hosts at either end of the corridor to monitor the

handset in order to infer the direction in which he or she went.
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5.4.5.2 Distributed clock offsets

This system involves continually connecting and disconnecting hosts and handsets and so

it is extremely important to minimise the connection times. From the analysis of Sec-

tion 5.4.2, ideally the host always incorporates the handset’s current listening frequency

within the paging train A. If only one host was involved, this could be achieved by ac-

cepting a lengthy first connection and thereafter caching the clock offset associated with

that handset.

However, the connection/disconnection here involves many hosts, typically in sequence.

Once a host discovers the offset between its local Bluetooth clock and that of a handset,

it should distribute the offset to other hosts. For this to work, each host must be able

to estimate the offset between its local Bluetooth clock and that of the handset. The

estimate must be sufficiently accurate that the host predicts a listening frequency for the

handset that is within 8 frequency hops of the true value. This ensures that the true

frequency will be in train A.

The handset advances its listening frequency every 1.28 s. Thus, hosts other than the

original may incorporate an error of up to 8 × 1.28 = 10.24 s in their clock offset and

still connect using train A. Therefore distributing clock offsets can be trivially achieved

by using NTP to synchronise the system clocks of all hosts, and having them report two

offsets: the clock offset between their system clock and their Bluetooth clock, and the

offset between their Bluetooth clock and that of the handset.

To verify this approach in principle, two desktop machines were time-synchronised using

NTP. Both machines in turn were connected to a particular handset and the offsets

between the local Bluetooth clock and both the handset clock and the local system clock

were measured. It was possible to predict the offsets of one machine given only the data

from the other to an accuracy far greater than was required to connect in train A. In

practice, however, the BlueZ code that permits specifying the clock offset to use for a

particular connection is not yet functional. It is therefore justifiable to assume that all

connections take place within Tpg scan seconds, which gives an expected connection time

of 0.64 seconds in the default case.

5.4.5.3 Search

At its simplest level, this setup can be used to emulate an scan-based system for a single

user. A subset of hosts that represents the minimum set needed to cover the entire building

would simultaneously be instructed to connect to the associated handset. Any successful

hosts then report back, allowing the central system to localise the user. Those devices

that are out of range and still attempting to connect after localisation has completed can

simply cancel their paging, allowing the user to be localised quickly and the next update

to begin.
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Whilst this algorithm will localise the user significantly faster than an equivalent scan-

based system, it does not scale well with the number of users. An scan-based system may

only provide position updates every 10.24 s, but it handles multiple handsets simultane-

ously. A connection-based system used in the manner described should be able to localise

around ten handsets in the time that an scan-based handset would localise almost all

handsets.

This shortcoming can be addressed in two ways. The first is to use the connection moni-

toring techniques of Section 5.4.4 to identify those users who are moving away from their

nearest host (the current ‘home’ host) and who therefore need to be tracked. From previ-

ous analysis of people’s working habits it is known that the vast majority of workers will

be sedentary at any given time and therefore the number of mobile users should be small

enough to localise all users within reasonable time-frames [89].

The second is to limit the extent of search where possible. If, for example, a user’s current

home reported a very weak RSSI (indicating lost proximity) t seconds ago, the only hosts

that can reasonably observe him now are those within approximately vt of the reporting

host, where v is the speed of the user. This type of information permits simultaneous

searching for different handsets known to be in different building areas. This, combined

with the fact there may be disjoint subsets of hosts that completely cover any given region,

should permit tracking of many users simultaneously with update rates similar to that of

scan-based tracking. However, the system will struggle to cope with many users moving

at once or collected within a small area with few covering hosts. In such a scenario,

the update rate for tracking will degrade, but the system will self-heal when the crowd

disperses.

5.4.5.4 Bootstrapping

The discussion of TcB systems so far has ignored how a registered handset returning to

the building will be discovered before being tracked. There are currently two options:

Constant round-robin polling. The obvious solution is to cycle continually through

all the registered handsets that are not being tracked and poll them from a variety

of hosts. Because a connection can take up to 5.12 s to connect (worst case),

cycling through 100 registered handsets can take over eight minutes to complete.

Additionally, it places an extra load on hosts that may be in use for monitoring

tracked handsets, reducing update rate.

Out-of-band events. The preferred solution is to use out-of-band events to signal that

a particular handset is likely to be in the building. These events can be easily

generated from computer system events (e.g. the associated user logs in) and from

building security (e.g. the user gains access to the building by swiping their ID card).
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It may also be possible to infer presence based on cell ID from the mobile telephony

network.

Additionally, many people follow a daily routine which there is potential to learn au-

tonomously. Doing so could allow prediction of when a user is likely to arrive, permitting

for targeted polling in future of the subset of expected handsets rather than all handsets.

5.4.6 A target-connects-base tracking system

The predictive approaches to connection-based tracking described so far work well for

small systems, but the need to bootstrap ultimately limits scalability. In a BcT system

without the benefit of out-of-band events to bootstrap, each base must continuously scan

for all possible targets in case a new target appears; in a TcB system the need to initially

search for the full set of bases slows the technique.

One remedy is to make use of spoofed Bluetooth addresses, as mentioned in Section 5.4.1.1.

Some Bluetooth platforms allow for a Bluetooth device to temporarily and arbitrarily

alter its BDADDR.10 A TcB system can exploit this by using a network of bases each

with the same (spoofed) address. Targets then continually attempt connections to that

address, exchanging data with any successfully paged device in order to identify it. For

this technique to work reliably the paging ranges for each device should not overlap. If

they do, there is a chance for reply collision, with multiple bases responding to the same

page. Such collisions greatly confuse some Bluetooth stacks, and it is best to place the

spoofed bases such that they do not have overlapping coverage.

It is possible to invert this system to form a spoofed BcT system where the targets all

adopt the same address, which the bases duly page. When multiple targets are within

range of a base, however, their page replies may collide. Therefore this system is only

appropriate when the targets are expected to be spatially disparate at all times. This is

an unlikely scenario and therefore not considered further here.

5.5 Security and privacy

5.5.1 Location privacy

Many people are sensitive about divulging their whereabouts automatically, with good

reason. There are three separate privacy concerns: privacy from observers external to the

system (attacker privacy), privacy from components of the location system itself (system

privacy) and access control to dynamically opt in or out of tracking altogether.

10See the bdaddr tool in the BlueZ source code.
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5.5.1.1 Attacker privacy

Ideally a system will have high attacker privacy, meaning devices that are not part of

the tracking infrastructure cannot track the target. In practice this is difficult to achieve.

This discussion assumes that the attacker has no access to the location system as a whole,

but can plant Bluetooth devices of their own at will.

A TsB system offers good attacker privacy since the attacker cannot identify the origin of

an inquiry. Conversely, the BsT system requires that the target be discoverable, meaning

it is discoverable to the attacker too.

The BcT technique has the significant advantage that target can remain undiscoverable.

There is, however, an important caveat: in the paging process the pager must identify both

the device it is paging and itself. This must be done openly since otherwise the listening

device would not know which decryption key to use. In principle, a Bluetooth sniffer

could detect any paging messages exchanged and hence identify the target. However,

such sniffing equipment is expensive, bulky and highly specialist and so this risk is small.

If the TcB approaches make use of address spoofing, an attacker’s device could adopt the

same address and act as a base. The target would then connect to the fake base, revealing

its presence. Whilst this cannot be prevented, it can be detected if the target periodically

compares connection logs with the system.

5.5.1.2 System privacy

The Bluetooth specification has the property that any device initiating an inquiry cannot

be identified by those that receive the request. In a TsB system, the bases know they

are being scanned, but not the device that is scanning. The target can therefore decide

whether or not to disseminate its location information and TsB has good system privacy.

In BsT, the bases must be able to identify the target and hence the location information

is gathered by the system and not the target, resulting in poor system privacy.

The two connection-based techniques also have weakened system privacy, since each end-

point of a connection must know the address of the other. Address spoofing may allow a

target to adopt a pseudonym address that it changes regularly.

5.5.1.3 Access control

It is also important that there is some degree of access control for the target device—

a user should be able to opt out of tracking at any time. By default most Bluetooth

devices enable the page scan mode, by which they periodically look for pages as described

previously. When in this state, a BcT approach will be able to identify the presence of

the target. However, the attacker would need to know the native address of the target
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for this to work (assuming the target has no reason to spoof its address in general), and

tracking multiple devices is difficult.

Hence the best technique to limit tracking of a device is to turn off the transceiver al-

together. Although this makes for a clear tracking indicator to the user, it does limit

normal Bluetooth functionality.

5.5.2 Security

Since the mobile targets for personal energy metering are likely to be personal devices,

any vulnerabilities introduced by the Bluetooth tracking modes must be assessed for

risk. The most obvious security risk is for the target to advertise its presence through

discoverability, as per BsT. With inquiry scanning permanently enabled attackers can

quickly find the device and exploit any vulnerabilities in the Bluetooth stack in use to

gain unauthorised access to the device. Even without such vulnerabilities an attacker can

reduce the battery life of the target by continuously performing inquiries on it. Worse,

because inquiry responses do not raise any HCI events in the inquired device and the

inquirer does not identify itself, it is generally not possible to observe such an attack. In

the course of gathering the power measurements of Section 5.7, a rogue device performing

a continuous scan was inferred from observed regular power spikes and it was necessary

to search for and turn off all devices before the rogue device was identified.

For the connection-based techniques there is only the potential for an attacker to snoop

at a low level using specialist equipment. This would allow them to identify a nearby

device similar to it being discoverable. However, a standard Bluetooth device could not

be used for this snooping without extensive modification.

5.6 Tracking evaluation

Working with Bluetooth can be a frustrating experience since different manufacturers may

not have a fully consistent interpretation of the specification, different stack implementa-

tions support different subsets of the specification and stack stability is still improving.

Consequently Bluetooth systems should never be analysed purely theoretically. This sec-

tion demonstrates a number of tracking systems formed using the techniques described

above. Although quantitative results are very dependent on a number of factors including

the geometry of the base deployment, the layout and construction of the tracking space

and the path and time taken during the trials, they nevertheless reveal a lot about the

performance and utility of the systems.

Although each of the systems has use cases where it will be most appropriate and the

personal energy meter will rely on input from heterogeneous systems deployed in different
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buildings, in general TcB and TsB are most likely to scale well to large areas with many

users where no additional bootstrapping information is available. These two systems are

therefore evaluated further in this section.

5.6.1 TsB tracking evaluation

To test a TsB system seven bases were positioned throughout an office corridor as shown

in Figure 5.12(a). As before, the situation was as representative as possible: Bluetooth

had to co-exist with WiFi, walls attenuated signals and those not participating continued

to work as usual. Each base was set to discoverable with the following parameters (quoted

hereafter in 625 µs slots):

Tw inq scan 4,000

Tinq scan 4,096

In effect, this meant that each base was almost continuously listening for inquiries. This

prevents them from having meaningful Bluetooth connections themselves, but means re-

sponse rates are fast and that the target therefore saves energy by not having to transmit

inquiry packets for as long. To have a chance of discovering all the bases, the target needs

to inquire until at least the first train change occurs (2.56 s for the specification-required

Npage = 256). In the test each scan was run for 5.12 s.

A walking test was performed with a laptop set to continuously scan and to collect all

HCI inquiry responses. The ground truth location of the device was determined using a

Bat attached to the laptop user.

Figure 5.12 illustrates the results for each of the seven bases. The thin purple line shows

the route taken by the user, whilst the thicker blue lines indicate parts of the walk where

inquiry events for the relevant base were being received. In practice, however, a target

cannot know that it will not receive any further inquiry events from that base until a

complete scan has occurred without an event. The thicker green lines show the parts of

the walk that a real target would have to consider itself in range of the base.

5.6.2 TcB tracking evaluation

The most scalable TcB mode involves the use of bases with a common spoofed address.

This technique was applied to the arrangement of bases shown in Figure 5.12(a), all of

which were set to have the same arbitrary address. As is clear from the TsB results, the

bases had overlapping coverage, which is problematic when multiple devices assume the

same address. To limit the paging area for each base EMI shielding tape was applied to

the Bluetooth adaptor in the laptop. Two layers of 3M 1345 EMI shielding tape were
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 5.12: TsB system results. (a) Positions of the seven bases. (b–h) Tracking results

for each base.
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sufficient to reduce the range such that overlap was minimal. This tape could instead be

applied to the base adaptors if the target does not have an exposed Bluetooth antenna

(e.g. on a mobile phone). The shielding increases granularity at the cost of requiring an

increased number of base stations to ensure coverage; the appropriate tradeoff will vary

depending on the level of energy apportionment required. If building-level apportionment

is sufficient (perhaps because no more fine-grained consumption data is available), Class 1

Bluetooth devices with a nominal range of 100 m could be used instead, reducing further

the deployment complexity.

A similar test to that for TsB was then performed, setting the base paging parameters to

be:

Tw pg scan 18

Tpg scan 2,048

These parameters were chosen because higher duty cycles have two disadvantages in a

TcB system using spoofing. Firstly, where coverage areas do overlap, it greatly increases

the chance of collisions when multiple bases respond to the same page. To see this the

target was placed near to one base, but potentially in range of three others with the

same spoofed address. It was then left (without EMI shielding) performing remote name

requests on the spoofed address, varying the duty cycle. A failure rate of 0.38% was

observed with a Tw pg scan:Tpg scan of 18:2,048, which rose to 4.01% using 18:512. With

the shielding tape applied, only the adjacent base was sighted, and the failure rate was

only 0.003% using 18:2,048.

The second disadvantage of a high duty cycle for connection-based tracking is that it

requires the base radios to be almost constantly listening and therefore unable to main-

tain even the remote name request connections long enough for reliable communication.

Neither disadvantage is present for the TsB system because it does not use spoofing nor

does it need to maintain connections.

The particular settings used were trialled because they are the default BlueZ settings.

The results were sufficiently good that there was no need to alter the duty cycle further,

although other system implementers could optimise the parameters for their particular

usage scenario.

Figure 5.13 illustrates the test results, which were collected using remote name requests

from the laptop to the special address. A coloured line is drawn from each base to the

position of the user at the moment the HCI layer reported the remote name. Black crosses

are used to indicate the report of a name request failure. There is a strong spatial locality

for each of the bases, and a good update rate when in range of the bases. The connection

failures can be attributed to both unintentional areas of overlapping coverage and coverage

holes from an unoptimised distribution of bases. Even without these optimisations, as

would probably be the case in the majority of deployments intended solely for energy
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Figure 5.13: TcB system results.

metering, the connection-based approach provided results comparable to the scan-based

equivalent.

5.7 Battery costs

5.7.1 Energy proportional location systems

There is little point building sensor systems with a view to reducing global energy con-

sumption if the energy used by those systems outweighs the possible savings. Instead, we

must strive for an optimal digital infrastructure which is implemented in energy-efficient

ways and is operational only when delivering a service for some real end-use [97].

To date, very little consideration has been given to the energy consumption of location

systems. For example, the Bat system relies on a network of ultrasound receivers installed

in the ceiling [3]. These receivers are permanently on, drawing approximately 25 W per

room; assuming a personal load of 150 W (Section 3.5.5) and an 8 hour working day, the

Bat receivers in a single office account for half as much energy as the rest of the devices.

Some attempts have been made to reduce the infrastructure required by a location

system—in particular, Jevring et al. demonstrated dynamic optimisation of their Blue-

tooth localisation network [103] and Nishida et al. investigated the number of receivers

required in ultrasound-based systems [150]. These are generally aimed at simplifying ad-

ministration rather than reducing energy consumption. In the Bluetooth-based systems

proposed here no additional infrastructure is required, but battery power is always a key

issue for mobile devices. Providing any new functionality such as tracking ability is useless

if users disable it to save power. This section therefore quantifies the energy costs of us-

ing Bluetooth in this way and so demonstrates the capabilities of the profiling framework

described in Section 4.5.
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Figure 5.14: Replacement battery and battery holder for Magic handset.

A key design decision for Bluetooth was that it must have low power consumption; this is

also a reason for its choice to underpin location services. The actual power drawn will be

dependent on many factors, including the Bluetooth chip in use, the antenna setup and

the Bluetooth stack. However, the general trends are revealing and results are shown for

several modern smart phones.

5.7.2 Measuring mobile phone consumption

There has been little work on in-depth energy monitoring on mobile phones. Platform

manufacturers have offered some tools and guidance, but users have traditionally only

cared to know the total energy remaining. As a result, most systems, such as Nokia’s

Energy Profiler,11 tend to have low resolution with slow response times.

It is very difficult to model accurately the energy cost of the components of a gener-

alised handset. Instead, the technique described in Section 4.5 for decomposing power

measurements allows accurate sampling of power draw specific.

The power consumption of mobile devices can be measured by replacing the battery

with a printed plastic replacement12 and inserting a high-precision 0.02 Ω measurement

resistor in series between a battery terminal and its connector on the device (Figure 5.14).

Replacement batteries and battery holders were produced to fit the G1,13 Magic,14 Hero15

and Nexus One16 handsets (Figure 5.14). In all of the tests that follow the G1 and Magic

handsets (running Android version 1.1) produced indistinguishable results. The results

for the Hero handset are for Android 1.5 and the Nexus are for Android 2.1.

11http://www.forum.nokia.com/Library/Tools_and_downloads/Other/
12The replacements were produced using a Reprap 3D printer (http://reprap.org/)
13http://www.t-mobileg1.com/
14http://www.htc.com/www/product/magic/overview.html
15http://www.htc.com/www/product/hero/overview.html
16http://www.google.com/phone

http://www.forum.nokia.com/Library/Tools_and_downloads/Other/
http://reprap.org/
http://www.t-mobileg1.com/
http://www.htc.com/www/product/magic/overview.html
http://www.htc.com/www/product/hero/overview.html
http://www.google.com/phone
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Figure 5.15: Calibration with known resistance

A National Instruments PCI-MIO-16E-4 sampling board measured the voltage across the

phone battery and also the voltage drop across the measurement resistor (which is first

amplified with an instrumentation amplifier) at 250 kHz. Inserting the measurement

resistor increases the circuit resistance, and therefore its power consumption. This is not

a problem for these purposes as the increase is typically less than 1% of the total power.

The measurement points are shown in Figure 5.14; simple rearrangement and application

of Ohm’s law yields P ∝ V1.V2.

The presence of high-frequency components within electronics does not cause exception-

ally rapid changes in the power consumption. This is most likely to be due to buffering

within the device caused by capacitance in the circuit or voltage regulation. Inspection

of a number of device traces using a high-speed (1 GHz) storage oscilloscope confirmed

that the sampling rate of 250 kHz was sufficient to capture all features of the trace.

The expected power consumption of a resistor is trivially calculated and so a selection

of high-precision resistors can be used to calibrate the device. Figure 5.15 shows on the

y axis the measured power draw and on the x axis the power calculated using Ohm’s

Law. The necessary scale factor was then computed using a linear regression through the

resulting data points, with an RMS of residuals of 0.0001 (4dp).

Figure 5.16 shows an example trace when switching on a G1 mobile phone. The annota-

tions of each boot phase and average power measurements were made manually.

5.7.3 Connection monitoring costs

The hardware described above was used for a preliminary investigation into the power

draw associated with monitoring a connection using either RSSI or echo response times
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Figure 5.16: Instantaneous power consumption when switching on and off a G1 mobile

phone [176]

on the G1 and Nokia N80 handsets. These would be the costs associated with a BcT

tracking system.

The results are reported in Table 5.4, with each test given a unique ID for reference

here. Tests 1–3 provide baseline power draws; tests 4–6 provide power draws for con-

tinuous connection states; tests 7–15 provide power draws for discontinuous state (e.g.

the connection was created, an RSSI taken and the connection shut down until the next

update time). For all of these tests, the handset screen was powered off, no SIM card

was in place, no other connections were active and no applications (apart from any oper-

ating system requirements) were running on the devices. Bluetooth parameters were left

at their defaults. The power draws were computed by averaging over appropriate time

periods (mostly 10 minutes). Note the very high cost of WiFi compared to Bluetooth,

highlighting one reason it is less suitable for the sort of continuous tracking required for

energy metering.

The results are broadly as expected. A handset that is page scanning need only take

action every Tpg scan seconds, and then only for 11.25 ms, so only a small associated

cost is observed. Saturating a permanent connection with echo requests (test 5) is very

energy-intensive, whilst continually measuring its RSSI lies between the two extremes

(and equates to the energy cost of maintaining an L2CAP connection).

When considering less frequent monitoring, instead of holding a connection open it may

be more energy efficient to connect, take the reading, and then disconnect. Tests 7–15

concerned connection monitoring with such a model and, within error bounds, there is

little to choose between using an echo packet or reading an RSSI. The main cost lies in
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Test ID Handset State G1 (mW) N80 (mW)

1 Idle 12.81 19.44

2 WiFi connected but idle 170.66 438.08

3 Bluetooth on, discoverable, unconnected 15.45 22.17

4 Bluetooth on, continually being scanned by host 16.07 31.80

5 Continuous Bluetooth echo at maximum rate 321.07 234.43

6 Continuous Bluetooth RSSI measurement 74.97 89.20

7 Bluetooth echo every 30s (with reconnect) 23.76 26.17

8 Bluetooth echo every 20s (with reconnect) 25.19 28.17

9 Bluetooth echo every 15s (with reconnect) 28.02 –

10 Bluetooth echo every 10s (with reconnect) 30.53 42.27

11 Bluetooth echo every 5s (with reconnect) 40.13 50.61

12 Bluetooth RSSI every 30s (with reconnect) 29.93 28.05

13 Bluetooth RSSI every every 20s (with reconnect) 35.86 29.93

14 Bluetooth RSSI every every 10s (with reconnect) 47.59 36.04

15 Bluetooth RSSI every every 5s (with reconnect) 75.72 51.88

Table 5.4: Experimentally measured power draws

creating and destroying a connection, which is relevant to both metrics. These data show

that if the update period exceeds 5 s, it is more efficient to break the connection and

reform it when it is next needed than maintain the connection. For period less than 5 s

it is unlikely to be possible to disconnect since the underlying ACL does not close with

the L2CAP connection.

To understand better the costs of listening states the energy profile of the device should

be related to the listening parameters varied in Section 5.3.1. A set of experiments was

therefore carried out using a Nexus One running Android 2.2 and rooted to provide the

ability to change BlueZ parameters. The data collection was performed with the phone

inside a shielded box to prevent external radio influences and where possible the phone

was idle (i.e. in standby) since it is in this mode that phones are expected to spend the

majority of their time, and there are then fewer events in the power trace for which to

account.

Figure 5.18 shows the variation in power consumed with the Tw pg scan parameter for the

Nexus One whilst Tpg scan =18. Closer inspection revealed that the smartphone exhibited

at least three relevant power states as illustrated in Figure 5.17: a power PL associated

with the listening state; a power Pm drawn for a constant period of time (Tm slots) prior

to starting the listening window; and a power Pidle associated with the standby power of
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Figure 5.17: Typical power traces for different Bluetooth settings, sampled at 250 kHz.

(a) Tw pg scan =18, Tpg scan =128. (b) Tw pg scan =18, Tpg scan =32. Note the absence of

the idle power state in (b).

the smartphone. This was modelled as:

P1 =
Tw pg scanPL + TmPm + (Tpg scan − Tw pg scan − Tm)Pidle

Tpg scan

(5.3)

where PL =0.0936 W; Pm =0.03674 W; Pidle =0.0149 W; Tm =12.112. However, for high

duty cycles, the phone never returned to the idle state and the output is better modelled

by:

P2 =
Tw pg scanPL + (Tpg scan − Tw pg scan)Pm

Tpg scan

(5.4)

Figure 5.18 overlays these models on the measured data. The equivalent experiments were

repeated for inquiry scanning (whilst page scanning was turned off) and the analogous

models were found to apply with the same values for the constants. This was expected

since listening for a page packet is no different from listening for an inquiry packet.
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Figure 5.18: Variation in Bluetooth power consumed during inquiry listening

Note, however, that the phone appeared to treat inquiry scanning and page scanning as

completely separate processes, causing a mix of the models when both were enabled.

In general, a duty cycle greater than approximately 65% precipitated a switch from P1

to P2. In the context of tracking, these data show that a linear relationship between the

duty cycle and the power consumption is a reasonable assumption. As a final note, the

power consumed whilst in standby and scanning for inquiries with Tw pg scan =18 and

Tpg scan =32 was measured at 0.0695 W—three times greater than the normal standby

consumption of the Nexus One.

5.7.4 Cost of paging or inquiring

For a device in the paging or inquiry substate the Bluetooth radio will be constantly

sending data and so one would expect a roughly constant power draw. Figure 5.19 shows

the distribution of average power drawn whilst paging a device that was not present. Each

power value was an average of the measured powers over 8,192 slot (5.12 s) timeouts.

Power draws of around 0.08 W were observed—to put this in context, the idle power

consumption of the phone was approximately 0.02 W.

5.8 Discussion

Connection-based tracking is a viable alternative to scan-based tracking, although neither

is ideal. The advantages of connection-based tracking as:
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Figure 5.19: Distribution of average power drawn over 5.12 s for (a) inquiring (b) paging.

Faster update rate. Connections can generally be established faster than a scan can

be completed. Connections can be monitored at a very fast rate.

Variable update rate. The rate can be adapted to suit the context of the mobile device

and preserve battery life. If, for example, the user is believed to be sedentary, the

query rate can be reduced.

No scanning. The lack of need for constant inquiries is a significant enhancement to

Bluetooth usage, security and privacy.

Privacy. Users retain their right to opt out of being tracked by switching off Bluetooth

on their handset.

There are, however, a number of drawbacks:

Devices must be known. Connection establishment requires that at least one party

knows of the existence of the other in order that it can issue a connection request;

however, this convenience drawback is also a privacy advantage.

Security policies are not universal. Not all Bluetooth security policies permit

L2CAP connections without authorisation. Similarly, not all Bluetooth chips permit

querying the connection metrics such as RSSI. However, such queries are performed

on the beacon’s Bluetooth chip, which can be selected accordingly.

Connection limits. Care must be taken to ensure the Bluetooth limit on the number of

concurrent connections (usually 7) is not reached; this limit can reduce the update

rate in a BcT system with many nearby targets since, once it is reached, a base

cannot attempt to connect to one target until it disconnects from another.
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Table 5.5: Comparison of scan-based and connection-based tracking

TsB BsT TcB BcT

Works on unmodified handsets Mosta Some Most Almost allb

Requires custom handset software Yes Oftenc Yes No

Requires discoverable handset No Yes No No

Requires separate data channel Yes No No No

Location update frequency Low–Med Low–Med Low–High Low–High

Scalability Simple Simple Medd Complexe

Deployability Med High High High

User privacy High Low Med Med–High

Handset power drain High Low High Low
a High update rates only achievable if target API exposes HCI events reporting.
b Multiple connection types well supported on mobile devices.
c Many devices do not allow discoverability to remain permanently on. Higher update rates depend

on ability to set target inquiry parameters—rare in embedded devices.
d May struggle with lots of targets in a small area. Address spoofing increases scalability. Multiple

connection types so well supported.
e Scales poorly with no of targets

Figure 5.5 compares connection and inquiry based tracking side by side. Ultimately,

Bluetooth was designed as a short-range wireless communications protocol and as such it

is unreasonable to expect it to provide ideal location tracking. Nonetheless, both scan-

based and connection-based tracking are at least feasible, and both can be implemented

without modifying handset software or hardware, which is an important consideration.

Note that:

• Scan-based tracking can provide higher update rates than usually quoted in the

literature. The use of HCI events and manipulation of the inquiry parameters can

provide many RSSI measurements per inquiry, and each inquiry need only last a

few seconds rather than the full 10.24 s.

• Bluetooth address spoofing is a viable option for connection-based tracking, and

significantly enhances scalability. Paging parameters can be optimised to speed up

paging times. The remote name request is a more robust technique for establishing

an short-lifetime ACL.

• Although Bluetooth was designed for low power consumption, the choice of page

and inquiry parameters is important; while sensible settings would allow continuous

tracking throughout the delay with minimal effect on battery life, in the worst case,

standby power consumption can be three times greater than normal.
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Looking forward, connection-based tracking will improve in the short-term as handsets

advance. Already handsets incorporate accelerometers (which could be used to infer

movement or the lack of it, or to dynamically update the monitoring rate). Similarly,

advanced development platforms for mobile devices are emerging and these will hopefully

provide low-level access to handset subsystems such as Bluetooth. This in turn will

permit handsets to be more active in the location process since APIs and behaviours will

standardise and applications will be easier to deploy.

5.9 Summary

Although a personal energy meter will rely on a heterogeneous network of location sys-

tems, few existing systems are suitable for widespread use due to the extensive bespoke

infrastructure that must be installed and surveyed. This chapter has identified and eval-

uated an alternative in the form of Bluetooth tracking and presented a series of novel

techniques, provided a detailed analysis of their strengths and weaknesses and demon-

strated working tracking systems. The properties of Bluetooth that enable tracking have

been studied both theoretically and experimentally, showing that there is potential for the

approach. Although it is not the ideal tracking system, its use of existing infrastructure

means it has very little in the way of deployment costs, making it a viable option for

providing the context needed for a personal energy meter.
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Overview

This chapter examines a model personal energy meter to allow the techniques proposed

in this dissertation to be scaled up to planetary proportions. It introduces a federalised,

syndicated architecture, allowing allows independent systems to contribute energy ‘feeds’

to an aggregator that constructs a picture of an individual’s energy use. It also presents

a prototype implementation as a mobile phone application that visualises the data from

sensor systems described in previous chapters.

6.1 Architecture

To piece together the complete picture of each person’s energy usage requires informa-

tion from a range of separate sensor systems which meter individual parts of his overall

consumption. These systems may be widely distributed both geographically and in terms

of their technical architecture; a mechanism is required to combine their outputs without

the need for a centralised middleware layer and the ensuing questions about who should

bear the responsibility and costs for its maintenance.

David Piggott implemented the Android application described in Section 6.2.

171
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Inspiration can be taken from models that have proved successful in other fields. In par-

ticular, RSS and other syndication formats have proved popular on the web for publishing

frequently updated works such as blog entries or news headlines in a standardised format.

A similar concept can be used to publish and subscribe to energy information; the easier

it is to participate in the system the more likely it is to be widely adopted.

‘Energy feeds’ are analogous to the news feeds now pervasive on the web used to federate

stories between sites. Instead of news, each feed contains periodic updates on the total

energy used by a particular facility; users can subscribe to the feeds for facilities that are

relevant to their lives. This is possible with only minor extensions to the Atom Syndication

Format [151], meaning existing libraries and tools can be used and so easing adoption and

deployment. Feeds contain details of the facilities they represent, including categories to

aid aggregation. Each update includes a cumulative total energy consumption, meaning

aggregators can check them as frequently or infrequently as is appropriate without fear

of missing essential readings.

This decentralised approach presents a minimal barrier to entry: all that is required to

participate in the personal energy meter network is to create a straightforward, text-based

feed hosted somewhere on the Internet. Unlike web-services-based systems, this could be

as simple as a static file; it could equally be the interface to a much more complex

dynamic system, but in either case no central registration or approval is necessary. This

simplicity compared to RESTful services [52] means feeds are easier to implement on

resource-constrained embedded systems and can be cached elsewhere to combat problems

with bandwidth or processing power. Furthermore, they allow historical data to be added

when it is obtained; this is necessary for many of the systems described in this dissertation

which rely on data not available in real time.

It also confers privacy advantages over centralised systems like Google PowerMeter or

Microsoft Hohm discussed in Section 2.3.1.1: no significant infrastructure is required and

no central party holds all the information about an individual. A user’s complete energy

profile could reveal a lot of information about him: where he went, what he did, who he

associates with and what his habits are [82]. Instead, with a feed-based architecture, each

sensor system knows only a small part of the larger picture; each refers to a person by a

separate pseudonym.

6.2 Aggregation

Just as with RSS and Atom feeds of news on the web, there are several possibilities for

the aggregation of energy feeds, including dedicated websites, ‘widgets’ embedded in other

sites and client-side applications. There is also a ‘hybrid’ option such as that adopted by

Google Reader1, which provides a web-based interface to browse feeds but also offers an

1http://google.com/reader

http://google.com/reader
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(a) cumulative totals and breakdown (b) facilities are categorised

Figure 6.1: The Energy Meter application for Android-based mobile phones

API to support a range of third-party desktop and offline clients. Different interfaces will

suit different people, and a feed-based architecture allows each individual to select the

aggregator that he prefers. Existing readers will be compatible, but it has been shown

in numerous studies that the representation of feedback has a significant impact on its

efficacy (Section 2.1). Each aggregator may therefore choose a different visualisation or

feedback strategy.

To demonstrate the concept, an example energy aggregator was implemented as an appli-

cation for Android-based mobile phones which presents both an energy stack and graphs

showing cumulative consumption by facility over time. Clear charts make it obvious which

facilities are the largest contributors to an individual’s energy footprint (Figure 6.1).

The mobile phone is the world’s most popular computing platform and it provides an

excellent platform on which to develop a personal energy meter: the inbuilt sensors can

provide much of the contextual information needed to personalise the results to an individ-

ual (Chapter 5) and by its very nature it is always carried and so can provide a well-timed

‘nudge’ about energy consumption at appropriate moments. This has been shown to be

one of the most effective feedback strategies (Section 2.1). Furthermore, although in-

put from many sensors and systems will be needed to arrive at each person’s estimate,

calculating the overall consumption on that person’s mobile phone has important privacy-
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preserving properties, doing away with the requirement for any external system to be able

to associate together too much personal information.

6.3 Situated subscription

In a world full of energy feeds, identifying the relevant ones could become a challenge.

Searching central directories, or exchanging long addresses, is tedious, unfriendly and

time-consuming. An added advantage of the mobile platform is that it provides a fast

and effective mechanism for subscription: the example aggregator can subscribe to a

feed just by scanning its URL encoded as a 2D barcode and physically attached to the

object to whose energy consumption it refers (Figure 6.2(a)). One can therefore sign up

for feeds when one is close to them. New generations of phones will include near-field

communication support, allowing another possibility for situated subscription. Each feed

can include data for several different facilities which are offered to the user (Figure 6.3(a)),

meaning a single code near the entrance to a building can refer a visitor to all the relevant

energy information (Figure 6.2(b)). Additionally, facilities can be suggested based on

location from a database of geotagged feeds. In these ways a user can build up ‘on-the-fly’

a list of subscriptions relevant to the main consumers of energy in his life (Figure 6.3(b)).

6.4 Feeds and case study

This section describes a case study involving three people who work in the William Gates

Building to demonstrate what a personal energy meter might produce. Its information

came from manual input as well as various sensor systems.

Figure 6.4 shows the result of this process for one person for a single week. On the left

hand side are the raw sensor data inputs; the middle column shows the share of energy

consumption of each type allocated to the individual, while the right-hand graph shows

the output of this personal energy meter for the week and an energy stack comparable to

Figure 3.1. The average daily consumption came to 135 kWh.

A number of feeds were built based on data from websites or devices described in Chap-

ter 2, both to demonstrate how simple the process can be and to ensure that new users of

a personal energy meter would be able to derive some benefit from its feedback without

the need to deploy any additional sensors. This is in keeping with the principle of incre-

mental sensing described in Chapter 1: where humans can themselves be used as sensors

this can prove an effective starting point.

Feeds were also developed to estimate office energy consumption based on the techniques

described in Chapters 3, 4 and 5.
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(a) the coffee machine’s consumption (b) building energy consumption

Figure 6.2: QR codes allow users to subscribe to feeds

6.4.1 Home energy consumption

ReadYourMeter2 is a free website that allows users to record and graph their utility

meter readings and so aims to help them understand their energy consumption, compare

their data with others and see how much energy organisations use. Although over time

many buildings will transition to smart meters that can report usage automatically, for

now manually-entered readings remain vital to avoid excluding a large proportion of the

population. The site was extended to include an energy feed for each user. Each feed

contains a separate facility for each meter attached to the account.

Participants in the study recorded their home electricity, gas and water meter readings

each day using ReadYourMeter.

6.4.2 Transport

Energy consumption through transport accounts for around 35% of MacKay’s estimate

for the typical individual. Estimates can be made from location traces and knowledge of

the mode of transport.

2http://readyourmeter.org/

http://readyourmeter.org/
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(a) each feed contains many facilities (b) feed subscriptions

Figure 6.3: Subscribing to feeds using Energy Meter

Participants in the study recorded GPS traces using Android-based mobile phones; these

were verified using travel diaries and journey logs from the Sentient Van (Section 2.4.2).

The mode of transport was identified manually by each participant and energy consump-

tion for each journey estimated very simply using average figures suggested by MacKay;

clearly, more sophisticated models could be used taking into account variables such as

speed. An average UK car is assumed to do 33 miles per gallon, which corresponds to an

energy consumption of 80 kWh per 100 km; MacKay also calculated that the (invariably

full) Cambridge to London train has an equivalent energy consumption of 1.6 kWh per

100 passenger km. A simple static estimate of occupancy was used to estimate the energy

consumption of trains and buses, but the principles learned from studying the energy con-

sumption of large buildings (Section 3.5) could be applied to investigate more accurate

apportionment of the energy costs of public transport. In the same way that dividing the

energy costs of a building amongst its occupants means one person working for a paper

deadline is allocated all the power used for heating and servers, it is unreasonable just

to divide the energy cost of a bus evenly amongst all those on it: a late-night bus might

only have a few passengers but if it did not exist many more people might have driven

into work rather than worry they might not get home if a meeting ran late.

Even cycling has an energy cost, estimated by MacKay as around 1 kWh per 100 km —
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Figure 6.4: Inputs, processing and final result of personal energy metering

the energy expenditure of the person himself. This value is used for the traces in this

study. There are a number of parallels between our own energy expenditure and our use

of external energy: in general, we use energy-consuming machines to reduce the amount

of work we have to do ourselves and augment our capabilities, and so it makes sense to

consider the two concepts on the same scale. Furthermore, the same sensors can often be

used to derive both sorts of information.

It is informative to look at how badly the overall estimate is degraded if such fine-grained

sensor data is not available. For example, there may only be a journey log rather than a

full location trace, or people might manually enter odometer or fuel readings at sporadic

intervals in the same way they do electricity meter readings. GPS traces of journeys

by bicycle were examined and the measured distance compared with an estimate from

the Cycle Streets journey planner.3 The discrepancy ranged from almost nothing to

3http://www.cyclestreets.net/

http://www.cyclestreets.net/
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approximately 10%. This compares favourably with the uncertainty involved in converting

distance travelled to energy costs in the first place. The error was higher for the train

journeys since distances by rail are not generally published; if bus and train companies

share this information as part of their timetables it would be possible to make more

accurate estimates.

6.4.2.1 Dopplr

Dopplr’s API provides dates, destinations and modes of transport for trips users have

entered into the site (see Section 2.4.2).4 The Dopplr feed for a user contains a facility

for each mode of transport, updated whenever a trip is taken; the energy cost of the

journey is estimated by calculating the great circle distance and multiplying it by a factor

depending on the vehicle [136]. This will be inaccurate for short journeys, but a much

better approximation for long-haul flights; this seems reasonable since most people tend to

use social sites like Dopplr only for longer, more significant trips. Clearly, more intelligent

mechanisms could be applied to estimate both distance and energy cost more accurately

(such as route finding algorithms; see Section 3.2), but this simple estimate is sufficient

to demonstrate potential.

None of the participants in this study travelled by air in the week in question, so this

category does not appear in the results presented.

6.4.3 Office energy consumption

Feeds were also built for the energy consumption of the William Gates Building based on

the techniques presented in this dissertation.

The electricity meter of the office building, in common with those of many large buildings,

logs half-hourly measurements of the total energy consumed (Section 3.5). Based on the

results of the apportionment study described in Section 3.5, a personal load policy was

used for the allocation of the workplace’s electricity consumption. This policy meets

the apportionment principles by assigning personally attributable energy load for to each

occupant in the building and then dividing the remainder evenly amongst all occupiers

(currently present in the building or otherwise).

The policy was implemented with the initial estimate that all users of the building have

the same personal load. This starting point gives the opportunity to refine incrementally

the personal load estimate as resources permit. For example, a network monitor and

inventory of computer systems could be applied to assign the actual energy cost of a

workstation (perhaps left on overnight) to its user.

4http://www.dopplr.com/

http://www.dopplr.com/
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Implementing this policy requires both knowledge of the current occupants and their

personal load estimate. In the William Gates Building where this study was focussed,

logs from the access control system were therefore used to estimate the number of people

inside at any given time, in the manner described in 3.5.3.1, since most of these people

were not participating in the study. In keeping with the principle of making sensing

optional to improve accuracy, rather than mandatory, feeds were created for the example

working patterns described in Section 3.5.1 using a standard estimate of personal load.

Personalised feeds are also available which make use of location data, such as that provided

by the system described in Section 5.1.1, and more accurate estimates of personal load

based on OpenRoomMap ownership information (see Section 2.5.2). Finally, a similar

set of feeds was created using the data from the model described in Section 4.2 rather

than direct measurements; this has the twin advantages of not requiring any sensing and

providing an approximate breakdown by function.

The gas consumption of the building is for heating and hot water from which all occupants

benefit. In particular the thermal inertia of the building means that heating even benefits

occupants who arrive after it is switched off. A simple static apportionment policy was

therefore applied to the building’s gas consumption to allocate a fixed proportion to all

potential occupants of the building. This has the advantage that only a single feed is

required; participants can subscribe from a printed tag on a noticeboard.

6.4.4 Remaining fixed estimates

WattzOn5 allows users to estimate their total energy footprint by answering a series

of questionnaires with the stated goal of educating users about energy efficiency and

conservation. It also features a embodied energy database6 containing details of the

footprints of a significant number of consumer goods. Users can select the items they

own to have their costs added to their profiles. All this data is also exposed through

an API, making it straightforward to write a feed providing estimates of consumption

for housing, food, commuting, flying, government and ‘stuff’. The government, food and

stuff estimates were used in the case study to account for items not within the scope of

the dynamic monitoring.

6.4.5 Additional feeds

6.4.5.1 Plogg

At the opposite end of the spectrum from meter readings in terms of both granularity and

timing, the architecture is also appropriate for monitoring the consumption of individual

5http://www.wattzon.com/
6http://www.wattzon.com/stuff

http://www.wattzon.com/
http://www.wattzon.com/stuff
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appliances. A feed was created to interface with the smart plugs produced by Plogg

(see Section 2.3.1.3) and provide readings once a minute. Future devices might have this

functionality built in, or might report their readings back to a separate web service which

provides a feed in similar manner to Google PowerMeter.7

6.5 Summary

This chapter has presented a lightweight architecture for federating consumption data

from multiple disparate sources and demonstrated a proof-of-concept in the form of an

aggregator for mobile phones and several feeds based on the technologies developed in

previous chapters.

7http://www.google.com/powermeter/

http://www.google.com/powermeter/
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Overview

This chapter revisits the research questions posed in Section 1.4, outlining possible avenues

for future research and summarising the main contributions of this dissertation.

7.1 Research contributions

This dissertation has made the following contributions:

1. A description of the novel concept, benefits and principles of a personal energy meter

(Chapter 1) and a literature review drawing together disparate threads of existing

work to show the basis for a personal energy meter (Chapter 2).

2. A presentation of the case for and concepts of apportionment, including a taxonomy

of resources and the data requirements to handle them; an evaluation of a range

of strategies in a case study and elaboration of the overriding principles that are

generally applicable (Section 3.5).

3. A lightweight, scalable approach to using only crowd-sourced inventories and device

profiles to estimate building energy consumption (Section 4.2).

181



182 7.2. RESEARCH QUESTIONS REVISITED

4. A mechanism for profiling devices to determine the energy costs of specific activities,

particularly applicable to shared programmable devices (Section 4.5).

5. A description and evaluation of the new concept of inquiry-free Bluetooth tracking

that has the potential to offer indoor location information useful for personal energy

metering with significantly less infrastructure and calibration than other systems

(Chapter 5).

6. A suitable architecture for a personal energy meter on a global scale and a demon-

stration using a mobile phone application to aggregate energy feeds based on the

case studies and technologies developed earlier (Chapter 6).

7.2 Research questions revisited

To what extent can technology be used to apportion personal energy costs?

Chapter 3 showed that consumption data and context can be combined to allocate the

energy costs of shared resources to individuals.

Can energy consumption be inferred without continuous metering? Chapter 4

demonstrated how a building’s energy usage can be modelled sufficiently accurately using

only limited sensing, crowd-sourced inventories and device profiles.

Can context be monitored with minimal additional infrastructure? Chapter 5

presented novel Bluetooth-based indoor location systems that can provide the room-level

context information using existing PCs and without extensive calibration.

What should be the software architecture of a personal energy meter? Chap-

ter 6 suggested energy feeds to federate consumption data from disparate sensor systems

and showed a model system in which a mobile phone aggregates information from all the

systems discussed in this dissertation.

7.3 Further work

There are many potential ways to improve the building energy model described in Sec-

tion 4.2. Useful examples might be to modulate building lighting with reference to natural

light levels using more detailed weather data and information from OpenRoomMap about

the positions of windows in offices. OpenRoomMap data could also provide more assis-

tance in estimating building parameters by providing estimates of building surface area

and the relative ratios of walls, windows and roofing. It would also be useful to evaluate
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the model’s performance in other buildings. The simple physics engine was designed to

show how little data is necessary to produce valuable results; it could be replaced with

a more sophisticated model as used in other packages provided little additional input is

required.

The tracking system described in Section 5.1.1 has very little in the way of deployment

costs, allowing the construction of large testbeds. It would be useful to evaluate different

tracking algorithms by deploying such a testbed and encouraging its use.

Considering the model personal energy meter as a whole, it would of course be beneficial

to deploy the system more widely and obtain feedback from a wider group of users. It

would be particularly valuable to encourage third parties to deploy energy feeds or create

and evaluate their own aggregators with different visualisations or feedback mechanisms.

There are significant HCI questions in how best to present data to be persuasive and how

to help users share their results with others; for example, it would be valuable to calculate

and display estimates of error for each data source in the aggregator.

7.4 Summary

A personal energy meter that provides live information on consumption apportioned to

individuals represents a very significant step forwards from the current common situation

of a static, approximate and time-consuming audit of a building or organisation. It is

dependent on developments in a number of computing technologies—in particular, sensors

and sensor networks to provide data both on usage and on interactions and a common

world model to allow information to be collected wherever the user might be. It promises

to provide important insights and incentives to help us each control our own footprint.

Apportionment is important and the correct choice of policy merits careful consideration.

Different policies have significant effects on the total energy allocated to individuals.

Nevertheless, all apportionment policies should exhibit completeness, accountability and

social efficiency. Personal load provides the best opportunity to personalise results and

improve accuracy incrementally and offers valuable incentives for users to reduce their

consumption. The two crucial ingredients for apportionment are metering and context.

Low fidelity sensing, or in many cases just prior knowledge and public data sources, could

still result in overall estimates with acceptable error; the ability to tolerate incremental

sensor deployment is necessary to encourage widespread adoption. Estimates of build-

ing energy consumption can be formed from device profiles and inventories. Minimising

the effort involved in initial data collection is important and the inventory data can be

crowd-sourced from building users. Fine-grained profiles of programmable devices can be

obtained using the framework presented which embeds synchronisation information in the

measurement trace itself, making the entire process automated and repeatable.
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Location is the best form of context, but few indoor location systems are suitable for

widespread deployment outside research environments due to the extensive bespoke in-

frastructure that must be installed and surveyed. This is costly in terms of both money

and time, and impractical in most buildings. Bluetooth-based systems are an attractive

alternative as they have low power requirements and almost everyone already carries a

mobile phone and has a computer on his desk; the use of low-level Bluetooth connections

to track mobile devices within a field of fixed base stations has been shown to be a viable

technique for the construction of a low-cost, low-infrastructure location system that can

be deployed globally.

Data from disparate sensor systems must be brought together to build a complete picture

of an individual’s energy consumption. This can be achieved using a framework based on

the Atom Syndication Format and aggregator applications; this has privacy and simplicity

advantages over centralised systems. The mobile phone is an ideal platform for a model

aggregator since its inbuilt sensors can provide much of the contextual information needed

and billions of people carry one all the time.

The sensing techniques and algorithms presented here have been demonstrated with power

but also be applied to apportion ecological footprints or carbon externalities; they form

the basis of a truly general personal energy meter.
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A.1 Mobile phone consumption

A study of the power consumed by sending data over a wireless network from a mobile

phone provides a demonstration and evaluation of the measurement platform described

in Section 4.5 and shows the level of detailed understanding of consumption that it makes

possible. Since mobile phones are generally optimised for power consumption already,

techniques applicable to them are likely also to apply elsewhere.

Pervasive computing is a vision of communicating devices and so understanding energy

costs of this communication is also of great importance to application developers. The in-

teraction between different layers in the hardware and software stack creates considerable

differences in energy consumption, which provides significant motivation for measurement

Some of the contributions presented in this appendix have also appeared in separate publications [175,

176].
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frameworks such as this. The mobile phone is a particularly appealing platform for per-

vasive computing applications, but as with all battery-powered devices, controlling and

managing power consumption is an issue. These applications have a number of notable

characteristics with respect to power consumption. Firstly, many context-sensitive appli-

cations will run continuously in the background collecting sensor information or waiting

for a trigger condition and so even a small power requirement has the potential to impact

the device more heavily than other power hungry but short-lived programs. Secondly,

many applications rely on the participation of a large group of users to be useful. Per-

haps one of the most compelling cases is the concept of participatory sensing where a

large number of volunteers can use their smart phones to gather sensor data in the back-

ground [24]. This can subsequently be used for all sorts of purposes, such as to build up

a picture of environmental factors [147] or generate collaborative maps [38]. For these

applications to succeed the cost of participation must be small compared with the direct

benefit gained [141] and so the power impact of running the application must be min-

imised. Finally, these applications often operate in varying conditions but with flexibility

about how a particular task is performed—for example, sensor readings can be reported

immediately or stored up for later transmission. Applications should choose the best

approach from the various options available and dynamically integrate with the overall

usage of the device.

A.2 Network traffic monitoring

It is useful to observe the network traffic alongside the power trace of the mobile device

in order to analyse the costs of different methods of sending and receiving data. The PC

recording the power trace was connected to a wireless access point and configured to run

a DHCP server to emulate a typical network the phone might join. The Power Server

application then called libpcap1 to record all packets seen on that interface.

The framework combines the synchronisation information embedded in the power trace

with the timing log from the phone and the network traffic information in order to gen-

erated annotated graphs of power consumption. An example of this output is shown in

Figure A.1 and discussed in the remainder of this appendix.

A.3 Connecting to the network

Figure A.1 shows part of a measured energy trace when connecting to a WiFi network.

The top trace shows the cost of obtaining an IP address using DHCP, annotated using

the method described with each IP packet sent and received. The bottom trace shows

1http://www.tcpdump.org/

http://www.tcpdump.org/
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Figure A.1: Energy trace of connecting a G1 handset to a WiFi network [176]
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Figure A.2: Energy consumed by a G1 handset connecting to the wireless network [176]
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Figure A.3: Energy against time-taken to connect to a wireless network [176]

the same operation but using static addressing. Without the packet labels this trace

would be relatively hard to interpret, but the aligned annotations show clearly the costs

of each aspect of the connection process. Note that the repeated DNS requests come

from the operating system itself and are for a Google server; Android attempts to make

contact at regular intervals, and these communications also show up in other test runs,

distorting the results. The ability to identify and account for these occurrences is another

advantage of the annotation system. The actions taken by the phone when connecting to

the network are prescribed by the various Internet RFCs. For example, the ARP probe

packets are designed to discover if there is another host on the network already using the

phone’s desired IP address [168]. The number of probe packets and the delay between

them account for a significant fraction of the connection time (and energy).

A considerable energy saving is available from the use of static addressing. The histogram

in Figure A.2 shows a summary of the energy consumed in 200 trials of each of these two

techniques. The most common cost for a dynamic connection is around 6 J whereas a static

connection commonly consumes only 1.5 J. It is also notable that the energy consumed by
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dynamic addressing seems to be partitioned into a number of separate distributions. This

is in fact due to discontinuities in the time taken for a connection to complete as shown

in Figure A.3. The cause of this phenomenon is not yet clear. One possible explanation is

that of a timeout in a polling loop in the operating system or the power control hardware

in the wireless chip. The clusters seen in Figure A.3 are at approximately 1 s separation—

one could imagine this as an appealing number to a developer who needs to select a value

for a timeout or sleep period.

One means to improve the energy efficiency of connection whilst maintaining the flexibility

of dynamic addressing is to eliminate the ARP probe stage from the process. This is

permitted by the RFC in specific situations [168]. In fact this optimisation has been

applied in later versions of the Android operating system. Figure A.4 shows the connection

traces for a Google Nexus handset connecting to a wireless network.

This saving is clearly evident in the histogram of connection cost for the Nexus handset

(Figure A.5). Note also that the use of static addressing on this handset continues to

present an energy saving albeit highly reduced.

A.4 Energy saving in context

Owners of G1 handsets might consider switching to static addressing. The typical saving

in this case would be around 5 J. This is approximately equivalent to:

5 seconds of talk time The average power consumption when on a call seems to be

around 1 W in an office in Cambridge (though this may vary with distance to cell

towers).

500 seconds (8 minutes) of standby time The average power consumption with the

phone in standby is around 0.01 W (Figure 5.16).

200 seconds (3.5 minutes) of idle WiFi connection An idle WiFi connection adds

around 0.024 W to the phone’s consumption (Section A.5).

Alternatively, a device which makes a connection every 10 minutes (for example polling

for new email) makes around 144 connections a day. Assuming a nightly charging strategy

with a typical battery of 1,400 mAh at 3.7 V the saving corresponds to around 4% of the

total battery life of the handset.

A.5 Idle power

Figure A.6 shows excerpts of the energy trace of a handset when connected to only the 3G,

2G or WiFi networks. The trace shows only the consumption of the wireless networking
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Figure A.6: Additional power consumption incurred when connected to 3G, 2G and WiFi

networks [176]

hardware because the baseline power consumption of the phone (CPU, backlight etc.)

have been subtracted from the trace. In this case WiFi actually has the lowest idle power

cost, followed by 3G and then 2G. Although the spikes are more frequent (every 100 ms,

corresponding to receiving base station beacons), the base power is lower than maintaining

a connection to the cellular network.

It is not yet possible to draw concrete conclusions from these measurements since there are

several potential factors which have not been investigated. The locations of the various

base stations will have an effect on the power consumed by the radio and the building

itself will have different attenuation properties at the different radio frequencies involved.

However, these measurements do demonstrate that one cannot always assume that one

particular networking technology will have the lowest power consumption. For example,

2G networking is provided as an option in the phone’s interface to reduce power consump-
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Figure A.7: Variation in G1 energy cost per unit data with total message size [176]

tion but in this particular case it is the highest power option. The power measurement

framework provides sufficiently detailed information to allow assumptions such as this to

be questioned and investigated.

A.6 Data transmission

One might intuitively expect that the energy cost of sending a byte of data reduces, or

at worst remains constant, as the total amount of data sent increases. However, this is

not the case. Figure A.7 shows the number of joules required to transmit each kilobyte

of data for increasing total message size using the G1 handset. The baseline calculation

functionality in the framework was used to remove the residual costs of running the phone

and so these numbers are the actual amount of additional energy required to send the

data. The graph shows the result of 10 test repetitions run at each 1 KB interval.

Part of the reason for the noise in this data is that other processes on the phone are

also using the network. In this test case they are attempting DNS look ups of particular

Google servers. The evidence of this activity was visible in the packet trace collected by

the Power Server.

There is a clear jump in the cost per byte for 7 KB of data compared with 8 KB. Figure A.8

shows these two instances in more detail. When sending 8 KB or more of data (Figure

A.8(right)) there is a considerable period of high energy consumption after the last packet

has been sent which is not present when sending a 7 KB message (Figure A.8(left)).

It is not clear why this is occurring and there is no explanation in any of the relevant

networking standards. Use of a separate wireless card and the Wireshark2 packet sniffer

demonstrated that there is no activity on the wireless network for this period. However,

2http://www.wireshark.org/

http://www.wireshark.org/
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Figure A.8: Extracts from the G1 energy traces of sending 7 KB (left) and 8 KB (right)

of data over WiFi [176]
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Figure A.9: Variation in N1 energy cost per unit data with total message size [176]

regardless of whether this is due to crossing some power management threshold or simply

a bug in the wireless firmware, it has a significant impact on the energy requirements of

sending a message. A pervasive sensing application on one of these devices would minimise

power by batching a data update into chunks of around 7 KB but incur a significantly

larger cost by batching to 8 KB. These results are also almost identical when using the

HTC Magic handset and the HTC Hero handsets.

The network proximity of the test server process to the phone means that the results

are for a TCP connection with very low Round Trip Time (RTT). This fact combined

with the high packet processing speed of the test server means that the phone rarely

manages to send a second packet before the acknowledgement of the first packet arrives.

This assertion was validated by running a set of automated tests with varying connection

latency. High latency connections (of the order of 100 ms RTT) show conventional TCP

slow start behaviour.



194 A.7. SEND BUFFER SIZE

-0.5

0

0.5

1

1.5

2

2.5

3

1 10 100 1000

E
ne

rg
y 

co
ns

um
ed

 p
er

 k
il

ob
yt

e 
(J

)

log(Buffer size (bytes))

1 kilobyte message

32 kilobyte message
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Figure A.9 shows the variation in energy cost for the Nexus handset. The trend shown

in this graph conforms much more to expectations in which longer messages are more

efficient than shorter ones. When compared with the G1 results (Figure A.7) it is clear

that the best case cost for both handsets is around 0.005 J per kilobyte of data, whereas

the worst case for the G1 is approximately 0.13 J/KB and the worst case for the N1 is

approximately 0.04 J/KB. These extremes occur in different places on the graph for the

two handsets. In fact a message size of 8 KB is close to the best efficiency on the N1 and

the worst on the G1.

A.7 Send buffer size

As a final example the impact of the size of the send buffer used by the application

developer is assessed. Android applications are written in the Java programming language

and network data is sent by getting the OutputStream object associated with a Socket

instance. Data is then sent over the network by calling the write method on the socket

and passing an array of bytes to send.

Nagle’s algorithm is used in TCP to aggregate small data chunks into a single larger

packet [148]. However, this occurs only when there is unacknowledged data in transit.

Given the small RTT of the test setup this is rarely the case and so the byte array is

sent immediately to the client socket without waiting for further data. The size of this

array therefore causes significant changes in energy costs. Figure A.10 shows how the

energy cost per kilobyte varies with changes in the size of the byte array passed from the

application for a message of 1 KB and a message of 32 KB. Note that the buffer size (on

the horizontal axis) is shown on a log scale. For both of these messages the choice of

buffer size can cause a tenfold difference in the energy cost!

One would expect the energy cost per KB for the 32 KB message to be lower, since the
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fixed costs are amortised over more data. However, the 1 KB line collapses from its flat

trend to the same level as the 32 KB line beyond a certain buffer size. This is because

of the 7 KB/8 KB barrier described in the previous section: the change in cost is due to

the number of frames sent over the Ethernet regardless of how much data is in them, and

with a large enough send buffer there are sufficiently few frames that the 1 KB message

does not cross this barrier.

A send buffer of 1,448 bytes maximally fills the payload of a TCP packet when sent over

Ethernet. The best (and most consistent) performance results are when using a send

buffer of this size. If the buffer is smaller than this then transmission efficiency is lower

because packets are sent only partially filled. If the buffer is larger than this then the

operating system must fragment data over multiple packets—this operation also incurs

an overhead and reduces transmit performance.
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Figure B.1: Schematic circuit diagram for light sensor node described in Section 4.1.1
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Figure B.2: Schematic circuit diagram of measurement hardware described in Section 4.4
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