Probing the conformational changes of the yeast mitochondrial ADP/ATP carrier

Valerie Lauren Ashton

Medical Research Council Mitochondrial Biology Unit
Homerton College, University of Cambridge

This dissertation is submitted for the degree of Doctor of Philosophy.
August 2012
Declaration

This dissertation is the result of my own work and includes nothing which is the outcome of work done in collaboration except where specifically indicated in the text. None of this work has been submitted for any other qualification.

Valerie Lauren Ashton
August 2012
Acknowledgments

First, I thank the Medical Research Council Mitochondrial Biology Unit (MRC MBU) for providing me with seemingly unlimited access to equipment and supplies for my research. I thank Professor Sir John Walker, the MRC and Poland for the partial stipend. I would especially like to thank the Higher Education Funding Council for England for the Overseas Research Students Awards Scheme Studentship, Cambridge Overseas Trusts for the Overseas Research Studentship and the Lundgren Fund for a Hardship Award.

I thank my graduate tutor Dr Penny Barton for her impartial advice and continuing support. I also thank my external collaborators Dr Chris Tate, Dr Fraser Macmillan and Dr Jess van Wonderen, and my internal collaborators Dr Ian Fearnely and Dr Kamburapola Jayawardena for their experimental expertise and assistance. I am very grateful to all Kunji lab members past and present. Dr Christof Bös, Dr Alex Hellawell and Dr John Mifsud provided essential training. Liz Cerson always had time to listen and be supportive through any 'life crisis'. In addition I enjoyed mentoring two summer students, Lisa Görs and Janina Tiedemann, who also helped collect some crucial data. Last but certainly not least, I would like to thank Dr Edmund Kunji for his endless supervision, advice and support. The supervisor is one of the most important determinants of a successful PhD, and having an excellent supervisor helped make my time in the MBU worthwhile.

Outside of lab, I would like to thank the Hillwalking Club for helping me to relax and for facilitating the formation of many lasting friendships. I would especially like to thank my mom, Diane, and dad, Roland, who always support me in whatever I do (even when I run off to other countries!). My husband, Tom, provided love and support and cooked us superb dinners whilst I was busy in the lab. This dissertation is dedicated to the memory of my best friend, Ashley Serola, who always provided a listening ear. Without her, I would not be the person I am today.
Summary

The mitochondrial ADP/ATP carrier in the inner mitochondrial membrane imports ADP and exports ATP by switching between two conformational states. In the cytoplasmic state, which can be locked by carboxy-atriactyloside, the substrate binding site is accessible to the cytoplasm, whereas in the matrix state, which can be locked by bongkrekic acid, the substrate binding site is open to the mitochondrial matrix. Access to the substrate binding site is regulated by salt bridge networks on either side of the central cavity, called the matrix and cytoplasmic salt bridge network. It has been proposed that during transport the salt bridge networks disrupt and form in an alternating way, opening and closing the binding site to opposite sides of the membrane, but experimental evidence has not been obtained for this mechanism.

Single cysteine mutations were introduced at the cytoplasmic side of the yeast mitochondrial ADP/ATP carrier, and the mutant carriers were expressed in the cytoplasmic membrane of *Lactococcus lactis*. They were capable of ADP transport and they could be inhibited by carboxy-atriactyloside and bongkrekic acid. The complete inhibition by carboxy-atriactyloside demonstrated that the carriers were oriented with the cytoplasmic side to the outside of the cells. To probe the accessibility of the single cysteines, the mutant carriers were locked in either the cytoplasmic or matrix state with the two inhibitors and labelled with the membrane-impermeable sulphydryl reagent eosin-5-maleimide. Specific cysteines that were accessible in the cytoplasmic state had become inaccessible in the matrix state. Subsequent experiments showed that ADP and ATP, but not AMP, led to the occlusion of single cysteines, demonstrating that the cytoplasmic side of the ADP/ATP carrier closes as part of the transport cycle. In addition, cross-linking studies combined with mass spectrometry and electron paramagnetic resonance spectroscopy were tried to probe the closure of the cytoplasmic salt bridge network.
Abbreviations and definitions

Abbreviations and definitions of genes and proteins used in this dissertation are listed below. The canonical one letter abbreviations for deoxyribonucleic acid bases are used. Likewise, the canonical one and three letter abbreviations for amino acids are utilised. ‘X’ denotes any amino acid.

- **aac2**: *S. cerevisiae* ADP/ATP carrier isoform 2 gene
- **Δ2-19 cys-less aac2**: gene encoding for *S. cerevisiae* ADP/ATP carrier protein isoform 2 with amino acids 2-19 removed and cysteine residues substituted with alanines
- **AAC**: ADP/ATP carrier protein (no isoform or species specified)
- **AAC1**: Metazoan ADP/ATP carrier protein isoform 1
- **AAC2**: Metazoan ADP/ATP carrier protein isoform 2
- **AAC3**: Metazoan ADP/ATP carrier protein isoform 3
- **AAC4**: Metazoan ADP/ATP carrier protein isoform 4
- **Aac1p**: *S. cerevisiae* ADP/ATP carrier protein isoform 1
- **Aac2p**: *S. cerevisiae* ADP/ATP carrier protein isoform 2
- **Aac3p**: *S. cerevisiae* ADP/ATP carrier protein isoform 3
- **Aac4p**: *S. cerevisiae* ADP/ATP carrier protein isoform 4
- **Δ2-19 Aac2p**: *S. cerevisiae* ADP/ATP carrier protein isoform 2 with amino acids 2-19 removed
- **Δ2-19 cys-less Aac2p**: *S. cerevisiae* ADP/ATP carrier protein isoform 2 with amino acids 2-19 removed and cysteine residues substituted with alanines
- **hANT**: human adenine nucleotide translocase protein
Δp protonmotive force
ΔpH transmembrane proton concentration difference
ΔΨ transmembrane electrical potential difference
Ω ohm
Å Angstrom(s) (1 Å = 0.1 nm)
Alexa alexa fluor 488
ATR atractyloside
APS ammonium peroxodisulphate
AU absorbance unit
BCA assay bicinchoninic acid assay
BKA bongkrekic acid
bp base pair
c-state cytoplasmic state (substrate binding site is open to the
cytoplasmic side)
CATR carboxy-atractyloside
cw continuous wave
DTT dithiothreitol
e− electron
EM electron microscopy
$E_{m,7}$ midpoint potential at pH 7.0
EMA eosin-5-maleimide
EPR electron paramagnetic resonance
ETF-QO electron-transferring flavoprotein:ubiquinone oxidoreductase
FMA fluorescein-5-maleimide
G gauss
GHz gigahertz
kDa kiloDalton
kHz kilohertz
K_i dissociation constant for inhibitor binding
LY lucifer yellow iodoacetamide
M-2-M 1,2-ethanediy1 bismethanethiosulphonate
m-state matrix state (substrate binding site is open to the matrix side)
MAL-6 (1-Oxyl-2,2,6,6-tetramethyl-4-piperidinyl) maleimide
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>MALDI</td>
<td>matrix-assisted laser desorption/ionization</td>
</tr>
<tr>
<td>mtDNA</td>
<td>mitochondrial deoxyribonucleic acid</td>
</tr>
<tr>
<td>mm</td>
<td>millimetre</td>
</tr>
<tr>
<td>MS</td>
<td>mass spectrometry</td>
</tr>
<tr>
<td>mT</td>
<td>millitesla</td>
</tr>
<tr>
<td>MTSL</td>
<td>(1-Oxy-2,2,5,5-tetramethyl-Δ3-pyrroline-3-methyl) methanethiosulphonate</td>
</tr>
<tr>
<td>mW</td>
<td>microwave</td>
</tr>
<tr>
<td>m/z</td>
<td>mass-to-charge ratio</td>
</tr>
<tr>
<td>n</td>
<td>sample size</td>
</tr>
<tr>
<td>NEM</td>
<td>N-ethyl maleimide</td>
</tr>
<tr>
<td>nm</td>
<td>nanometre</td>
</tr>
<tr>
<td>OD</td>
<td>optical density</td>
</tr>
<tr>
<td>OSCP</td>
<td>oligomycin sensitivity conferring protein</td>
</tr>
<tr>
<td>P</td>
<td>P-value</td>
</tr>
<tr>
<td>PAGE</td>
<td>polyacrylamide gel electrophoresis</td>
</tr>
<tr>
<td>PBS</td>
<td>phosphate-buffered saline</td>
</tr>
<tr>
<td>PC</td>
<td>phosphatidylcholine</td>
</tr>
<tr>
<td>PCR</td>
<td>polymerase chain reaction</td>
</tr>
<tr>
<td>PELDOR</td>
<td>pulsed double electron resonance</td>
</tr>
<tr>
<td>PMT</td>
<td>photonmultiplier tube</td>
</tr>
<tr>
<td>Psi</td>
<td>pounds per square inch</td>
</tr>
<tr>
<td>PVDF</td>
<td>polyvinylidene fluoride</td>
</tr>
<tr>
<td>Q</td>
<td>ubiquinone</td>
</tr>
<tr>
<td>QH₂</td>
<td>ubiquinol</td>
</tr>
<tr>
<td>r²</td>
<td>coefficient of determination</td>
</tr>
<tr>
<td>RNA</td>
<td>ribonucleic acid</td>
</tr>
<tr>
<td>sarkosyl</td>
<td>N-Lauroylsarcosine sodium salt</td>
</tr>
<tr>
<td>SDS</td>
<td>sodium dodecyl sulphate</td>
</tr>
<tr>
<td>SEM</td>
<td>standard error of the mean</td>
</tr>
<tr>
<td>TBS</td>
<td>tris-buffered saline</td>
</tr>
<tr>
<td>TCA cycle</td>
<td>tricarboxylic acid cycle</td>
</tr>
<tr>
<td>Acronym</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>TEMED</td>
<td>N, N, N', N'-tetramethylethylene-diamine</td>
</tr>
<tr>
<td>TIM</td>
<td>translocase of the inner membrane</td>
</tr>
<tr>
<td>TOF</td>
<td>time of flight</td>
</tr>
<tr>
<td>TOM</td>
<td>translocase of the outer membrane</td>
</tr>
<tr>
<td>VDAC</td>
<td>voltage-dependent anion channel</td>
</tr>
</tbody>
</table>
Table of contents

Title page i
Declaration iii
Acknowledgements iv
Summary v
Abbreviations and definitions vi

Chapter 1 Introduction 1

1.1. The mitochondrion 1
 1.1.1. Structural features 2
 1.1.2. Oxidative phosphorylation 4
1.2. Mitochondrial Carrier Family 10
 1.2.1. Initial discoveries and essential concepts 10
 1.2.2. Mitochondrial carriers as uniporters 13
 1.2.3. Mitochondrial carriers as proton couplers 13
 1.2.4. Mitochondrial carriers as strict exchangers 14
1.3. The ADP/ATP carrier 15
 1.3.1. Initial discoveries and essential concepts 15
 1.3.2. Amino acid sequence 16
 1.3.3. Substrates and inhibitors 16
1.4. Structural features of the ADP/ATP carrier 18
 1.4.1. Inhibited structures 18
 1.4.2. Carboxy-tractylloside binding site 21
1.5. The ADP/ATP carrier functions as a monomer 23
1.6. Substrate binding site of the ADP/ATP carrier 23
 1.6.1. Sequence analysis 23
 1.6.2. Molecular dynamics simulations 25
1.7. Transport mechanism of mitochondrial carriers 26
 1.7.1. Inhibitor studies 26
 1.7.2. Kinetic studies 28
 1.7.3. Mutagenesis studies supporting common substrate binding site 30
 1.7.4. Mutagenesis studies supporting mechanism 32
 1.7.5. Genetic studies 33
 1.7.6. Structural analysis 34
 1.7.7. Sequence analysis 34
 1.7.8. Disease models 39
1.8. Expression of mitochondrial carriers 40
 1.8.1. Expression in Lactococcus lactis versus other systems 40
 1.8.2. Truncation of yeast Aac2p 42
1.9. Techniques for probing conformational changes 43
 1.9.1. Accessibility of cysteine thiols to probes 43
 1.9.2. Thiol-specific cross-linking 48
1.9.3. Site-directed spin labelling for electron paramagnetic resonance spectroscopy 50
1.9.4. Antibody accessibility studies 53
1.9.5. Lysine accessibility studies 54
1.9.6. Hydrogen/deuterium exchange coupled to mass spectrometry 54
1.10. Aims and objectives 55

Chapter 2 Materials and Methods 57

2.1. Chemicals 57
2.2. Growth media and plasmid strains 57
 2.2.1. Growth media for Escherichia coli 57
 2.2.2. Escherichia coli strains and vectors 58
 2.2.3. Growth media for Lactococcus lactis 59
 2.2.4. Lactococcus lactis strains and vectors 60
2.3. DNA methods 60
 2.3.1. Electroporation competent Escherichia coli and Lactococcus lactis cells 60
 2.3.2. Agarose gel electrophoresis 61
 2.3.3. Polymerase chain reaction 62
 2.3.4. Restriction endonuclease digestion 65
 2.3.5. DNA precipitation 65
 2.3.6. Electroporation 65
 2.3.7. Plasmid DNA extraction and cell preservation in glycerol 66
 2.3.8. DNA sequencing 66
2.4. Lactococcus lactis cultures and harvesting 66
2.5. Labelling methods 67
 2.5.1. Labelling of whole Lactococcus lactis cells with eosin-5-maleimide 67
 2.5.2. Labelling of whole Lactococcus lactis cells with 1,2-ethanediyl bismethanethiosulphonate 68
 2.5.3. Labelling of whole Lactococcus lactis cells with eosin-5-maleimide and (1-Oxyl-2,2,6,6-tetramethyl-4-piperidinyl) maleimide 68
2.6. General protein methods 69
 2.6.1. Lysis of whole cells of Lactococcus lactis 69
 2.6.2. Isolation of Lactococcus lactis membranes 69
 2.6.3. Estimation of protein concentration 70
 2.6.4. Gel electrophoresis 70
 2.6.5. Fluorescence imaging and quantification 70
 2.6.6. Western blotting and quantification 71
 2.6.7. Coomassie gel staining 72
2.7. Transport assays 72
 2.7.1. Fused Lactococcus lactis membrane preparation 72
 2.7.2. Fused Lactococcus lactis membrane transport assays 73
 2.7.3. Whole cells of Lactococcus lactis transport assays 73
2.8. Mass spectrometry 74
2.9. Electron paramagnetic resonance spectroscopy 74
Chapter 3 Transport activities of single cysteine mutants of the ADP/ATP carrier

3.1. General introduction 77
3.2. Expression of Δ2-19 cysteine-less Aac2p 78
3.3. Site-directed mutagenesis for the generation of single cysteine mutants of Aac2p 80
3.4. Expression level of single cysteine mutants 87
3.5. Specific initial uptake rates of single cysteine mutants in *Lactococcus lactis*
 3.5.1. Effect of single cysteine mutations on transport 93
 3.5.2. Effect of carboxy-atactyloside and bongkrekic acid 102

Chapter 4 Orientation of single cysteine mutants of the ADP/ATP carrier in *Lactococcus lactis* membranes

4.1. Introduction 109
4.2. Selection of a thiol-specific, membrane-impermeable probe 109
4.3. Selection of mutants 116
4.4. Expression level of single cysteine mutants 119
4.5. Optimisation of labelling 122
4.6. Specific labelling in the presence of bongkrekic acid and carboxy-atactyloside 127
4.7. Specific initial uptake rates in the presence of carboxy-atactyloside 137

Chapter 5 Accessibility of single cysteine mutants of the ADP/ATP carrier in different transport states

5.1. Introduction 139
5.2. Selection of mutants 139
5.3. Expression level of single cysteine mutants 140
5.4. Eosin-5-maleimide labelling of single cysteine mutants in the presence of bongkrekic acid or carboxy-atactyloside 141
 5.4.1. Specific labelling 141
 5.4.2. Difference in labelling 150
5.5. Effect of eosin-5-maleimide on the specific initial uptake rates of single cysteine mutants 154
5.6. Effect of nucleotides on eosin-5-maleimide labelling of single cysteine mutants 157

Chapter 6 Probing the formation of the cytoplasmic salt bridge network

6.1. Introduction 163
6.2. Probing the putative cytoplasmic salt bridge network 163
 6.2.1. Selection of a thiol-specific cross-linking probe 163
 6.2.2. Selection of single and double cysteine mutants 164
6.2.3. Expression and cross-linking of single and double cysteine mutants in the presence or absence of bongkrekic acid and carboxy- atracyloside

6.2.4. Transport activity of cross-linked ADP/ATP carrier
6.2.5. Matrix-assisted laser desorption/ionisation time of flight mass spectrometry of cross-linked ADP/ATP carrier

6.3. Probing the distance between alpha-helices adjacent to the putative cytoplasmic salt bridge by pulsed double electron resonance

6.3.1. Selection of thiol-specific spin labels
6.3.2. Selection of single and double cysteine mutants
6.3.3. Expression of single and double cysteine mutants
6.3.4. Transport activity of single and double cysteine mutants in fused lactococcal membranes
6.3.5. Electron paramagnetic resonance of single and double cysteine mutants
 6.3.5.1. Labelling with MTSL
 6.3.5.2. Labelling with MAL-6
6.3.6. Competition between MAL-6 and eosin-5-maleimide

Chapter 7 General discussion

7.1. Expression and transport activity of mutant Aac2p
7.2. Orientation of single cysteine mutant carriers in the Lactococcus lactis membrane
7.3. Accessibility of single cysteine mutants in different transport states
7.4. The formation of the cytoplasmic salt bridge network

Appendix I Generation of mutants and list of primers
Appendix II Transport and labelling statistics
Appendix III Specific initial uptake rates of single cysteine mutants
Appendix IV Expression level of single cysteine mutants

Bibliography