Reverse Engineered MPC for Tracking with Systems That Become Uncertain

Edward N. Hartley (edward.hartley@eng.cam.ac.uk)
Jan M. Maciejowski (jmm@eng.cam.ac.uk)

European Control Conference 2014, Strasbourg, France
Wednesday 25th June 2014, 10:20–10:40

Cambridge University Engineering Department
Aircraft Robustness of Inner-Loop Control Law to Loss of Airspeed Information

- Controls “short-period” mode.
- Tracks “load-factor” reference commanded by the pilot or outer-loop autopilot.

 Load factor closely related to normal acceleration.

- Commonly a gain-scheduled proportional-integral control law with feedback of pitch rate and load factor ("C*")

 not controlling airspeed, but scheduled by airspeed.

- Constraints? Currently ad-hoc, but LTV-MPC applicable.

What if we no longer have the scheduling information?

- e.g. due to a detected sensor failure
Background and Motivation

The Motivating Scenario

Short-Period Mode

- Pitch rate (q)
- Angle-of-attack (α)
- Load factor (n_z)

Phugoid Mode

- Airspeed (V_{air})
- Pitch angle (θ)
- Altitude (h)

Inner loop control law

Pilot command ($n_{\text{z,ref}}$)

Scheduling parameters

ECC 2014, Strasbourg, France, Wednesday 25th June 2014, 10:20–10:40
Background and Motivation

The Motivating Scenario

Short-Period Mode
- Pitch rate (q)
- Angle-of-attack (α)

Phugoid Mode
- Airspeed (V_{air})
- Pitch angle (θ)
- Altitude (h)

Inner loop control law

Pilot command ($n_{z,ref}$)

Scheduling parameters

Load factor (n_z)

Pitch rate (q)

Elevator (u)

FAULT
Parameter-Varying State-Space Model

\[x(k + 1) = A(\theta)x(k) + B(\theta)u(k) + d(\theta) \]
\[y_r(k) = C_r x(k) \]
\[y_m(k) = C x(k) \]

- \(\theta \) represents the scheduling information
- When \(\theta \) is measurable: linear time-varying system
- When \(\theta \) is not measurable: uncertain system
Want to design a controller with the following properties:

- Handles multivariable systems
- Respects asymmetric input and output constraints
- Has adequate small-signal closed-loop performance
- Modest computational requirements
- Tracks non-zero setpoints
- Robustness to parametric uncertainty
- Interchangeable with a nominal high performance design
Parametric Uncertainty

- Too large to approximate as additive?
- Looking at “robust” rather than “adaptive” methods

Uncertain Equilibrium Pair

- Not regulating to the origin
- Cannot do change of variables to turn into regulation to the origin!

Computational requirements

- 250 ms sampling time
- Don’t want to solve LMIs online!
- Don’t want exponentially growing trees of predictions

Targets for $n_z = +1$
Proposed method
“Reverse Engineering”

Assumption

- A suitable (unconstrained) linear robust controller of an appropriate form already exists; or
- It is relatively easy to design such a controller.

Method

- Transform the baseline into an observer-based controller
- Partition into feedback and feedforward
- Enforce constraints using online optimisation

ECC 2014, Strasbourg, France, Wednesday 25th June 2014, 10:20–10:40
The Baseline Control Law

\[
\begin{bmatrix}
\frac{x_k(k+1)}{u(k)}
\end{bmatrix} =
\begin{bmatrix}
I & -C_r & I \\
\frac{K_2}{K_1} & K_1 & 0
\end{bmatrix}
\begin{bmatrix}
x_k(k)

x(k)

r(k)
\end{bmatrix}
\]

Since this is an integral control law...

If \(r(k) \) and \(\theta \) are constant, then \(\lim_{k \to \infty} y_r(k) \to r(k) \).
Reverse Engineering

Step 1: Nominal model and disturbance augmentation

Nominal model

\[
\begin{bmatrix}
\hat{A} & \hat{B} \\
\hat{C} & 0
\end{bmatrix}
\]

- \(\hat{A} \approx A(\theta)\)
- \(\hat{B} \approx B(\theta)\)
- \(\hat{C} = I\)

Baseline Regulator

\[
\begin{bmatrix}
A_K & B_K \\
C_K & D_K
\end{bmatrix}
\]

- \(A_K = I\)
- \(B_K = -C_r\)
- \(C_K = K_2\)
- \(D_K = K_1\)

Disturbance Augmented Model

\[
\bar{x} = \begin{bmatrix} \bar{x} \\ \bar{w} \end{bmatrix}, \quad \bar{A} = \begin{bmatrix} \hat{A} & I \\ 0 & I \end{bmatrix}, \quad \bar{B} = \begin{bmatrix} \hat{B} \\ 0 \end{bmatrix}, \quad \bar{C} = [\hat{C} \ 0]
\]
Baseline regulator re-written in (reduced-order) observer form

\[\tilde{z}(k+1) = F\tilde{z}(k) + G\bar{y}(k) + T\bar{B}\bar{u}(k) \quad \text{Observer Dynamics} \]

\[\hat{x}(k) = H_2\tilde{z}(k) + H_1\bar{y}(k) \quad \text{State/Disturbance Estimate} \]

\[\bar{u}(k) = K_c\hat{x}(k) + D_Q(\bar{y}(k) - \bar{C}\hat{x}(k)) \quad \text{Control Input} \]

Where...

\[F = A_K - T\bar{B}C_K \]

\[K_c = C_KT + D_K\bar{C} \]

\[D_Q \text{ satisfies: } C_K = (K_c - D_Q\bar{C})H_2 \]

\[T\bar{A} - (A_K - T\bar{B}C_K)T - (B_K - T\bar{B}D_K)\bar{C} = 0 \]

\[\begin{bmatrix} H_1 & H_2 \end{bmatrix} \begin{bmatrix} \bar{C} \\ T \end{bmatrix} = I \]

\[G = B_K - T\bar{B}D_K \]

\[D_K = (K_c - D_Q\bar{C})H_1 \]

NON-UNIQUE

NON-UNIQUE

ECC 2014, Strasbourg, France, Wednesday 25th June 2014, 10:20–10:40
Reverse Engineering

Step 3: Handling the reference input

Tracking regulator

\[
\overline{z}(k + 1) = F\overline{z}(k) + G\overline{y}(k) + TB\overline{u}(k) \quad \text{Observer Dynamics}
\]

\[
\overline{z}_2(k + 1) = F\overline{z}_2(k) + r(k) \quad \text{Prefilter Dynamics}
\]

\[
\overline{u}(k) = K_c(H_2\overline{z}(k) + H_1\overline{y}(k) + H_2\overline{z}_2(k)) \\
+ D_Q(\overline{y} - \overline{C}(H_1\overline{y}(k) + H_2\overline{z}(k) - H_2\overline{z}_2(k)))
\]
Comments so far...

- Uncertainty \implies no separation principle
- State disturbance captures uncertain affine term and parameter uncertainty
- Reproducing the controller, not the closed-loop system: nominal model does not have to be accurate
- Non-symmetric Riccati equation non-unique (well known)
 - Realisation does not affect unconstrained input/output behaviour
 - Does affect internal signals
- Degrees of freedom in non-unique H_1 and H_2 will be used later.
Reverse Engineering

Step 4: Extracting the target calculator

Now want to transform one step further...

\[
\text{Reference } r \xrightarrow{\text{Prefilter}} \text{Target calculator} \xrightarrow{(x_s, u_s)} \text{Gain } K \xrightarrow{u} \text{Uncertain Plant} \xrightarrow{y} \\
\text{State/Disturbance Observer} \xrightarrow{\hat{x}} \hat{d} \xrightarrow{\hat{x}} \text{Reference } r
\]
Taking the observer-form a step further

\[
\hat{x} = \begin{bmatrix} \hat{x}(k) \\ \hat{w}(k) \end{bmatrix}, \quad K_c = \begin{bmatrix} K_{cx} & K_{cd} \end{bmatrix}.
\]

We want to re-write the observer-based control law as:

\[
\bar{u}(k) = K_{cx}(\hat{x}(k) - x_s(k)) + u_s(k)
\]

subject to: \((\hat{A} - I)x_s(k) + \hat{B}u_s(k) = -\hat{w}(k) \)

\[
C_rx_s(k) = r_p = C_rx_{\text{ref}}.
\]

where \(x_{\text{ref}} = f(\hat{x}(k), y(k), \bar{z}_2(k)) \)

(Prove by equating terms: see the paper for details!)
Steady state consistency

- Turns out that even though integrating control law is reproduced, the internal variables are not guaranteed to be consistent, i.e.

\[\lim_{k \to \infty} C_r x_s(k) \neq \lim_{k \to \infty} C_r x(k). \]

- Conditions found on non-unique \(H_1 \) and \(H_2 \) to enforce this: must choose the “correct” pseudoinverse of \(\begin{bmatrix} C \\ T \end{bmatrix} \).

- Tedious algebra: see paper for details.
Reverse Engineering
Step 6: Adding the constraints

- Online MPC used to compute additive perturbation to:
 1. the reference input to the target calculator;
 2. the input applied to the plant.

- Very similar structure to method of Pannocchia (2004).
- Key difference: target calculator and gain are designed from an existing linear baseline control law.
Reverse Engineering
Step 6: Adding the constraints

Prediction model for augmented plant

\[
\begin{bmatrix}
 x(k+1) \\
 z(k+1)
\end{bmatrix} = A(\theta) \begin{bmatrix}
 x(k) \\
 z(k)
\end{bmatrix} + B(\theta) \begin{bmatrix}
 r_p(k) \\
 v(k)
\end{bmatrix} + \begin{bmatrix}
 d(\theta) \\
 0
\end{bmatrix}
\]

- \(v(k)\) is an additive input perturbation that the MPC manipulates
- \(r_p(k)\) is a manipulated reference signal

Nominal constraints

- State constraints \(\mathbb{X}\)
- Input constraints \(\mathbb{U}\)
Control Invariant Set

\[C \triangleq \{(x(k), \bar{z}(k)) : \exists r_p \text{ satisfying constraints with } v(k) = 0, \]
\[\text{such that } (x(k + 1), \bar{z}(k + 1)) \in C, \quad \forall \theta \in \Theta \}. \]

Constrained MPC

When the variable \(\theta \) is unknown, at each time step the online MPC formulation can compute \(v(k) \) and \(r_p(k) \) as:

\[
\min_{r_p(k), v(k)} v(k)^T R_v v(k) + (r_p(k) - r^*_p(k))^T S (r_p(k) - r^*_p(k))
\]

subject to \(u(k) \in \mathbb{U}, x(k) \in \mathbb{X}, \) and

\[
A(\theta) \begin{bmatrix} x(k) \\ \bar{z}(k) \end{bmatrix} + B(\theta) \begin{bmatrix} r_p(k) \\ v(k) \end{bmatrix} + \begin{bmatrix} d(\theta) \\ 0 \end{bmatrix} \in C, \quad \forall \theta \in \Theta.
\]
Nominal MPC

- When θ is known, a standard “linear-time-varying” MPC approach can be used to achieve better performance, failing over to the robust form when a fault occurs.
- Still use the reverse-engineered observer and target calculator
- Enforce the control invariant set constraint at every time step (or at least the first time step)
Plant Models

- Short-period longitudinal aircraft approximation extracted from publicly available B747 model
- Inputs in incremental form to allow rate constraints

\[
\begin{bmatrix}
q(k+1) \\
n_z(k+1) \\
u(k+1)
\end{bmatrix}
= A(\theta_i)
\begin{bmatrix}
q(k) \\
n_z(k) \\
u(k)
\end{bmatrix}
+ B(\theta_i) \Delta u(k) + d(\theta_i)
\]

Flight Points

<table>
<thead>
<tr>
<th>Speed\Alt</th>
<th>5000 m</th>
<th>7500 m</th>
</tr>
</thead>
<tbody>
<tr>
<td>160 m/s</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>180 m/s</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>260 m/s</td>
<td>2</td>
<td>4</td>
</tr>
</tbody>
</table>

Constraints

- \(-37T_s \leq \Delta u \leq 37T_s\) [deg/s]
- \(-17 \leq u \leq 23\) [deg]
- \(-2 \leq n_z \leq 1.5\) [g]
- \(-2 \leq r_p \leq 1.5\) [g]
Baseline Control Law

- Designed by augmenting plant with integral of n_z tracking error and applying unconstrained version of RMPC of Kothare 1996: LMI-based feedback MPC to get a control gain
- Basically min-max LQR with multiple models, with an integrator
- Guaranteed to stabilise unconstrained plant for chosen realisations.

Reverse Engineering

- Nominal model for observer design: flight point 1.
- Dynamics separation: integrating modes in dynamics of $\bar{A} + \bar{B}K_c$
Demonstration
Target Calculator Consistency

Mismatched model: arbitrary H_1, H_2 (inconsistent)

Mismatched model: proposed H_1, H_2 (consistent)

ECC 2014, Strasbourg, France, Wednesday 25th June 2014, 10:20–10:40
Demonstration
Small step response

Baseline

Original baseline controller

MPC

Robust MPC-based realisation

ECC 2014, Strasbourg, France, Wednesday 25th June 2014, 10:20–10:40
Demonstration
Robust enforcement of output constraints

ECC 2014, Strasbourg, France, Wednesday 25th June 2014, 10:20–10:40
Demonstration
Nominal to Robust Switchover

ECC 2014, Strasbourg, France, Wednesday 25th June 2014, 10:20–10:40
Conclusions

- An alternative way to design a constrained controller for tracking non-zero setpoints that is robust to parametric uncertainty
- Based on “reverse engineering” an existing robust control law into an observer-target-calculator-gain form
- Constraint handling facilitated by control invariant set
- Applied to flight control example

Future application challenges

- More detailed flight control example
- Complicating factors: sensor/filter dynamics, actuator dynamics
- Scheduling between altitudes