Investing and Stopping

Moritz D"umbgen and L. C. G. Rogers
Statistical Laboratory, University of Cambridge

October 8, 2014

Abstract

In this paper we solve the hedge fund manager’s optimization problem in a model that allows for investors to enter and leave the fund over time depending on its performance. The manager’s payoff at the end of the year will then depend not just on the terminal value of the fund level, but also on the lowest and the highest value reached over that time. We establish equivalence to an optimal stopping problem for Brownian motion; by approximating this problem with the corresponding optimal stopping problem for random walk we are led to a simple and efficient numerical scheme to find the solution, which we then illustrate with some examples.

1 Introduction.

The fee structure of a hedge fund typically consists of two components, a fixed management fee\(^1\), charged on all assets under management, and a performance fee\(^2\), charged on any gain achieved on the funds invested. The exact contractual agreement has to specify between what dates the gain must have been recorded, what happens to the management fee for funds deposited for part only of a period of reckoning, and many other details, such as any restrictions on investors’ freedom to withdraw funds with or without notice periods. We shall simplify the problem here, by assuming that the performance fees are charged at the end of each year on all funds held at the end of the year\(^3\), and the gain is calculated as the increase in value of the funds from the time they were deposited in the fund, or from the beginning of the year, whichever is later. Thus the baseline for calculating the performance fee resets at the

\(^1\)This will usually be a relatively low percentage, 2% being common.

\(^2\)This is usually charged at quite a high rate, 20% being common.

\(^3\)It may be that some funds are withdrawn before the end of the year, and could in principle be liable to pay performance fees, but we shall ignore this, on the grounds that investors would be unlikely to withdraw funds while they were ahead.
beginning of each year. We shall suppose that the management fee is charged only on the funds still under management at the end of the year; this is a simplification, but as the management fee is typically of smaller magnitude, it is relatively innocent.

In principle, the total fees charged at the end of the year by the hedge fund to its clients would depend on the entire history of investments and withdrawals through the year, as well as on the actual performance path of the hedge fund. We shall propose a simplified mechanism for this, which involves some story about how the quantity of assets under management varies as the level of the hedge fund fluctuates, and is explained in detail in Section 2. This story captures the key features that the AUM rise as the level of the fund rises, and fall as the level falls; that newly-invested funds enter at the current level; and that funds withdrawn will have entered the fund at a level above the current level. The story we tell is not perfect, but has the crucial simplifying property that the fees paid will depend on the level of the fund at the start of the year, at the end of the year, and on the highest and lowest levels attained. This saves us from the need to carry along as a state variable the entire profile of the levels at which the current AUM entered the fund, which then would be impossibly clumsy to work with (compare with the study of Dybvig & Koo [3] on wash sales).

In a seminal contribution to this subject, Goetzmann, Ingersoll and Ross [4] provided closed-form solutions to a model which differs from ours fundamentally in that the performance fee is considered to be paid out continuously over time (with a high-water mark provision). This has the undesirable side-effect that at the end of the year, the manager’s reward is a function only of the high-water mark. Guasoni and Obloj [5] followed a similar approach with a continuously paid performance fee, but modelled the manager as a utility optimiser himself, also resulting in (asymptotic) closed-form solutions.

Accepting this simplified model, we find ourselves with an optimal control problem for the hedge fund manager, in which the objective is a function of the initial, final, highest and lowest values taken by the controlled process in the year. We shall suppose that the riskless rate is zero, and that the hedge fund manager is in fact just investing in assets which fluctuate but have no drift. This ignores a fund manager’s presumed ability to pick winners, time the market, anticipate roll dates, or any other marketing boast; this may be unjust at the level of a single talented manager, but not too far from the situation for the industry as a whole. An alternative justification is that while the assets invested in might have a positive drift, the manager will take expectations under an equivalent measure which removes the drift, as a risk control measure.

The level of the fund will therefore evolve in our model as a martingale, which for simplicity we suppose is continuous; the manager can adjust the volatility of the level process by choosing a smaller or larger position in the risky assets, but he cannot affect the drift. Nevertheless, he has an incentive to embrace some risk, as he has a call option interest in the level of the fund, as well as the performance fee
incentive. Since any continuous martingale is a time change of Brownian motion, we begin our analysis by converting the manager’s problem into an optimal stopping problem for a Brownian motion. This is not quite as obvious a step as might at first sight appear, as we explain in Section 2.1. The next step is to convert the optimal stopping problem for Brownian motion into an optimal stopping problem for a symmetric simple random walk (SSRW), whose value will be close to the value of the original problem; the difference is analyzed and estimated in Section 2.2. While it would be possible to write down some formulation of the solution to the original continuous problem, it would not be particularly digestible, and there would then be the issue of existence and uniqueness of solutions. Since we do not expect ever to be able to exhibit any closed-form solution, we are forced to numerical methods to gain understanding; and these are naturally discrete in nature. Our estimates allow us to be quite precise about the error committed by the approximation. Finally, this problem can be solved quite efficiently numerically, as we demonstrate in Section 2.3.

We then return in Section 3 to the hedge fund manager’s problem, where we state our modelling assumptions on how cash flows into and out of the fund as the level of the fund varies, converting the manager’s objective into one of the type studied in Section 2. We then present numerical solutions of this problem. Section 4 concludes.

2 From investing to stopping.

In this Section, we firstly show that the investment problem can be recast as a stopping problem for Brownian motion; then we show that this stopping problem can be approximated by the corresponding stopping problem for SSRW; and finally we explain the algorithm for solving this SSRW stopping problem.

2.1 The investing/stopping equivalence.

We suppose that the level of the fund is w_0 at time 0, and evolves as

$$dw_t = \theta_t dW_t$$

for some previsible process θ for which the stochastic integral is defined, where W is a standard Brownian motion. We define

$$w_t = \inf \{w_s : s \leq t\}, \quad \bar{w}_t = \sup \{w_s : s \leq t\},$$

and we suppose that the objective of the manager of the fund is

$$\sup_{\theta} EF(w_1, w_1, \bar{w}_1)$$
for an \(F : (−∞, w_0] × \mathbb{R} × [w_0, ∞) \rightarrow \mathbb{R} \) for which the above expectation is always well-defined (continuous and bounded from above or below, say). The well-known Dubins-Schwarz result says (informally) that any continuous local martingale is a time-change of a Brownian motion\(^4\). More precisely, if we extend the definition (1) of \(w \) beyond time 1 by setting \(\theta_t = 1 \) for all \(t ≥ 1 \), and set

\[
A_t = \int_0^t \theta_s^2 \, ds, \quad \tau_t = \inf \{ s : A_s > t \}, \quad (4)
\]

then \(B_t = w(\tau_t) \) defines a Brownian motion relative to the filtration \(\mathcal{G}_t = \mathcal{F}_{\tau_t} \), and each \(A_t \) is a \(\mathcal{G} \)-stopping time. It follows directly that

\[
w_t = B(A_t), \quad \underline{w}_t = \inf_{0 ≤ s ≤ A_t} B_s \equiv \underline{B}(A_t), \quad \bar{w}_t = \sup_{0 ≤ s ≤ A_t} B_s \equiv \bar{B}(A_t), \quad (5)
\]

As a consequence, were it not for the fact that \(A_1 \) is not in general a stopping time for \(B \), the following result would be trivial.

Lemma 1 For a continuous \(F \), bounded from above or below, the equality

\[
\sup_{\theta} EF(\underline{w}_1, w_1, \bar{w}_1) = \sup_{T ∈ T} EF(\underline{B}_T, B_T, \bar{B}_T) \quad (6)
\]

is valid, where \(T \) denotes the set of stopping times of the Brownian motion \(B \).

Remarks. Suppose that \(M \) is a continuous martingale which runs like a Brownian motion until some independent exponential random time \(T \), then stands still for one unit of time, and then resumes Brownian motion. The quadratic variation process \([M]\) grows at rate 1 except in the interval \([T, T + 1]\), where it remains constant. It is quite easy to show that \([M]_T \) is a \(\mathcal{G} \)-stopping time, but it is impossible to discover what \([M]_T = T \) was just by looking at the time-changed Brownian path \(B_t = M(\tau_t) \). Thus we expect the left-hand side of (6) to be at least as big as the right-hand side, but it is not initially obvious that the two sides are the same.

Proof of Lemma 1. See Appendix A.

2.2 Approximation by random walk.

Thanks to Lemma 1, we are now left to solve an optimal stopping problem for a Brownian motion whose stopping reward is a function of its current value, minimum and maximum,

\[
V = \sup_{T ∈ T} EF(\underline{B}_T, B_T, \bar{B}_T). \quad (7)
\]

\(^4\)See [7] Theorem IV.34.11 for a very general version of the Dubins-Schwarz result.
Although suppressed in the notation, we think of V as a function of the starting values $X_0 \equiv (B_0, B_0, \bar{B}_0)$. It should come as no surprise that we can approximate V uniformly by a stopping problem for a SSRW w^h on the grid $B_0 + h\mathbb{Z}$,

$$V^h = \sup_{T \in \tilde{T}} EF(w^h_T, w^h_T, \bar{w}^h_T),$$

(8)

where \tilde{T} represents all (discrete) w^h-stopping times.

Lemma 2 Let F be uniformly continuous: there is some continuous function ψ tending to zero at zero such that for all $x, x'$$$
|F(x) - F(x')| \leq \psi(\|x - x'\|).
$$

If the optimization problem is well posed, then

$$|V^h(X_0) - V(X_0)| \leq \psi(h\sqrt{3}).$$

(9)

Proof of Lemma 2. See Appendix B.

2.3 Solving the random walk stopping problem.

Given that we have now replaced the original investment problem with an optimal stopping problem for a SSRW, we are in a position to solve it by numerical means. This confines us to examples which are finite, and for this reason we assume that the random walk will be stopped once it leaves some interval (w^*, w^*) containing w_0.

Now suppose that $w^* = w_0 - mh, w^* = w_0 + nh$ for some positive integers m, n, and introduce the notation

$$F_{jk}(i) = F(w_0 - jh, w_0 + ih, w_0 + kh), \quad V_{jk}(i) = V^h(w_0 - jh, w_0 + ih, w_0 + kh)$$

for $-m \leq -j \leq i \leq k \leq n$. We have that $V_{jk} \geq F_{jk}$ always, and that if $j = m$ or $k = n$ equality holds, since the random walk must have stopped by the time it reaches those points. We can now solve recursively for the value function V rather as we would solve a dynamic programming problem. We shall have that for $-j < i < k$

$$V_{jk}(i) = \max\{F_{jk}(i), \frac{1}{2}(V_{jk}(i + 1) + V_{jk}(i - 1))\}$$

(10)

and at the ends of the interval we have

$$V_{jk}(-j) = \max\{F_{jk}(-j), \frac{1}{2}(V_{jk}(-j + 1) + V_{j+1,k}(-j - 1))\}$$

(11)

$$V_{jk}(k) = \max\{F_{jk}(k), \frac{1}{2}(V_{j,k+1}(k + 1) + V_{jk}(k - 1))\}.$$

\footnote{It is inconceivable that we may be able to find closed-form solutions, except in some very contrived examples.}
The situation is illustrated in Figure A, where we plot the grid of \((w, \bar{w})\) pairs, and imagine that we are looking down on a cube, each point of the form \((w_0 - jh, w_0 + kh)\) being the projection down into the plane of points of the form \((w_0 - jh, w_0 + ih, w_0 + kh), -j \leq i \leq k\). At every point of the upper right boundary of the rectangle, where either \(j = m\) or \(k = n\), the value function is equal to \(F\) and is therefore known. Now we work out the values \(V_{m-1,n-1}(i)\), by solving the optimal stopping problem (10) with the boundary conditions (11) and (12). The two boundary conditions require knowledge of \(V\) at \((m-1, n)\) and at \((m, n-1)\); but these values are the known, since we know \(V = F\) on the solid upper right boundary of the rectangle. Now we calculate the value of \(V_{m-2,n-1}\). This time, we need to know \(V\) at \((m - 2, n)\), where it agrees with \(F\); and at \((m - 1, n - 1)\), which we calculated at the first step. Continuing in this fashion, we are able to calculate the values of \(V\) at all points of the form \((\ell, n - 1)\), represented by big dots in Figure A. In like fashion, we can then work out the values of \(V\) at all points \((m - 1, \ell)\) marked with diamonds, which gives us the values of \(V\) not only at the upper right boundary, but at the the next layer in, depicted by the dots and diamonds in the diagram. But now we have reduced the size of the rectangle by one in each direction, so we can repeat the method just explained to find all the values of \(V\) on the dot-dash lines. Proceeding similarly gives us the solution \(V\).

Remarks. At each node \((j, k)\) of the rectangle in Figure A we have to solve an
optimal stopping problem for random walk in \(\{i : -j - 1 \leq i \leq k + 1\}\), where the random walk is absorbed at the endpoints \(-j - 1\) and \(k + 1\), with values \(V_{j+1,k}(-j-1)\) and \(V_{j,k+1}(k+1)\) respectively, and with stopping values \(F_{jk}(i)\) at interior points. The value has a geometric interpretation as the least concave majorant of the function defined by the stopping values, and can be calculated rapidly and accurately by policy improvement.

It may happen that for a given \((j,k)\) the optimal stopping solution is not to stop in the interior\(^6\), but otherwise there will be a smallest value \(w_0 + qh = \eta_l(j,k)\) and a largest value \(w_0 + lh = \eta_u(j,k)\) at which \(V_{jk}(i) = F_{jk}(i)\). At times \(\tau\) when the random walk reaches a new maximum \(w_\tau = \bar{w}_\tau = w_0 + kh\), it will thereafter continue until either it hits \(w_\tau + h\), or it hits \(\eta_u(j,k)\), where \(w_\tau = w_0 - jh\). If it hits the lower barrier \(\eta_l(j,k)\) before it hits \(w_0 + (k + 1)h\), then it will stop there for good, unless \(\eta_u(j,k) = w_0 - (j + 1)h\), in which case a new minimum has been achieved, and the random walk can continue to move.

3 The Hedge Fund Manager’s Investing Problem.

We return to the problem introduced in Section 2 of the hedge fund manager, who can control the level \(w_t\) of the fund through the position \(\theta_t\) in the risky asset. As the level of the fund goes up and down, the assets under management vary. We propose a very simple story for this which allows us to represent the manager’s problem in the form (3), which can then be solved by the techniques just presented.

The basic idea is that there is some \(C^1\) non-negative function \(\varphi\) such that at any time \(\tau\) when the level process \(w\) is at its running maximum, \(w_\tau = \bar{w}_\tau\), the profile of the basis levels of the assets in the fund should be given by

\[
\varphi(x)dx, \quad 0 \leq x \leq \bar{w}.
\]

(13)

So in particular, the total assets under management at \(\tau\) would be \(\Phi(\bar{w}) \equiv \int_0^{\bar{w}} \varphi(x) dx\).

If we demanded that \(\varphi\) was increasing, this would represent a situation where the more successful the fund, the more people would bring their money to it.

What happens as the level of the fund falls back from its running maximum? Investors will take their money out of the fund; as the level rises again, investors will put money in. Now as the level rises again and new money comes into the fund, the basis at which that new money was invested has to be the current level. In order to retain tractability, we shall insist that when money is withdrawn from the fund as the level falls, it is removed only at the current level. This is a restrictive assumption, but we make it nevertheless. So as the level falls, a fraction \((1 - p)\) of the assets

\(^6\)In this case, we define \(\eta_l(j,k) = w_0 + (k + 1)h\) and \(\eta_u(j,k) = w_0 - (j + 1)h\)
invested at the current level are removed from the fund, so that in general the profile of basis values in the fund is

\[\varphi(x)I_{\{x \leq w_i\}} + p\varphi(x)I_{\{w_i < x \leq \bar{w}_i\}}, \] (14)

which is consistent with (13) when \(w_i = \bar{w}_i \). The assumption we make means that if the level of the fund falls a long way, there will be still quite a lot of assets which came in at a higher level, and have not been taken out yet. This could be understood in terms of the reluctance of investors to realize a loss; investors would be willing to come out at zero gain, and they do in our story, but they would never come out if they would thereby realize a loss.

This is not the whole story, because the performance-related part of the manager’s fees will be measured relative to the level \(w_0 \) of the fund at the start of the year. We shall therefore suppose that initially the profile of basis levels is a point mass at \(w_0 \) of magnitude \(\Phi(w_0) \), and that if the level falls to \(w \) then the funds \((1-p)(\Phi(w_0) - \Phi(w)) \) which would be removed if the profile \(\varphi \) extended through \((0, w_0)\) will be removed from the atom at \(w_0 \). Thus when the minimum value of the level is \(w \), the size of the atom at \(w_0 \) will be

\[\Phi(w_0) - (1-p)(\Phi(w_0) - \Phi(w)) = p\Phi(w_0) + (1-p)\Phi(w). \] (15)

Thus overall the profile of the basis levels will be

\[\left[\varphi(x)I_{\{w_i \leq x \leq w_i\}} + p\varphi(x)I_{\{w_i < x \leq \bar{w}_i\}} \right]dx + \{p\Phi(w_0) + (1-p)\Phi(w)\} \delta_{w_0}. \] (16)

Integrating this gives the total assets under management as

\[\text{AUM} = \Phi(w) - \Phi(w_0) + p(\Phi(\bar{w}) - \Phi(w)) + p\Phi(w_0) + (1-p)\Phi(w) \]
\[= (1-p)\Phi(w) + p(\Phi(\bar{w}) - \Phi(w)) + p\Phi(w_0). \] (17)

We shall suppose that there is some constant \(\beta \in (0, 1) \) such that the manager receives

\[\text{MF} = \beta \times \text{AUM} \] (18)
as the management fee. The profile (16) allows us to calculate the performance component of the manager’s reward, which will be

\[\text{PF} = \alpha \left[\int_{w}^{\bar{w}} (w - x) \varphi(x) \, dx + (w - w_0)^+ \{p\Phi(w_0) + (1-p)\Phi(w)\} \right]. \] (19)

3.1 Numerical examples.

We suppose that the manager is risk averse, so he tries to maximize

\[EU(\text{MF} + \text{PF}). \] (20)
In this first example, we take \(U = \log(x) \), \(\varphi = \sqrt{x} \wedge K \), \(\alpha = 20\% \), \(\beta = 2\% \), \(p = 0.3 \), \(w_0 = 1 \), \(\Phi(w_0) = 1 \) and \(K = 3 \). Figures 1 and 2 illustrate the resulting payout function \(F = U(MF + PF) \) as a function of the three variables \((w, w, \bar{w})\). Since it is decreasing in \(w \), increasing in \(\bar{w} \), as well as S-shaped in \(w \) (first convex, then concave), we expect non-trivial results from the stopping problem.

It is worth understanding why this should be. For fixed \((w, \bar{w})\), the optimal stopping problem is on the grid \(\{w-h, w, ..., \bar{w}, \bar{w}+h\} \), where if we stop at \(x \in [w, \bar{w}] \), we get reward \(F(w, x, \bar{w}) \), but if we stop at one of the endpoints, we get (at the upper endpoint for example) \(F(w, \bar{w}+h, \bar{w}+h) \). This value can be (and in places is) significantly bigger than \(F(w, \bar{w}, \bar{w}) \), so we see a picture like Figure B. But if the values at the endpoints are somewhat lower, there can be stopping in the interior.

Figure B illustrates the typical situation for values \((w, \bar{w})\) close enough to \((w_0, w_0)\) that it is beneficial to keep going; the set of such values we call the continuation region. Figure C illustrates the situation once \((w, \bar{w})\) has moved sufficiently far from \((w_0, w_0)\). Figures 3 and 4 plot out the continuation region and the barriers \(\eta_l, \eta_u \) for our first example. Various comments are in order

(i) If for some \((w, \bar{w})\) there is optimal stopping at some interior value, then both \(\eta_l < \bar{w}+h \) and \(\eta_u > w-h \). It is not possible to have \(\eta_l < \bar{w}+h \) and \(\eta_u = w-h \), or \(\eta_u > w-h \) but \(\eta_l = \bar{w}+h \). Note that if \(\eta_l < \bar{w}+h \) and \(\eta_u > w-h \), we always have \(\eta_l \leq \eta_u \).

(ii) In the plots computed, the continuation region is a connected set. In general
for an optimal stopping problem with stopping reward \(g(w, w, \bar{w}) \) this does not need to happen.

(iii) In the plots computed, we have the property that if \((w, \bar{w})\) is not in the continuation region, then neither is \((x, y)\) for any \(x \leq w, \ y \geq \bar{w}\). This means that once \((w, \bar{w})\) leaves the continuation region, no further crossing of \([w, \bar{w}]\) will happen. So if we first leave the continuation region by an increase of \(\bar{w}\), then \(w\) will not go any lower; we would always choose to stop before that happened. This would be the case of a successful fund which has risen in value; the manager will stop only if the falls for enough from the maximum to endanger the gains and we find that actually only a small fall will trigger stopping. If \((w, \bar{w})\) leaves the continuation region by \(w\) falling, we are seeing an unsuccessful fund which has made significant losses. There we see that the stopping barrier is actually quite high; the manager will keep on gambling in the hope of recovering some of the losses and will either gamble to extinction or until enough of the losses have been recovered that he will choose to stop.

Further plots are displayed for \(\phi(x) = x \land K\) and \(\phi(x) = \sqrt[\varphi]{x \land K}\) instead of the square root. In the first case, this means that the fund size increases faster when the fund is successful and decreases slower when the fund is unsuccessful. The results are qualitatively similar (Figures 7 and 8), but the continuation region is larger. Since the manager enjoys the upside more and is less afraid of a downturn, he is willing to wait longer. The opposite happens in the second case, where the fund size will only
increase slowly when the fund is successful and decrease rapidly when the fund is unsuccessful. This causes the fund manager to stop sooner; the continuation region is smaller (Figures 9 and 10).

4 Conclusions.

We have taken the problem of a fund manager whose objective is to maximize the expected utility of his wealth, which is made up of a performance fee and a management fee. Under certain simplifying assumptions, we argue that his objective is a function only of the terminal level of the fund, and the maximum and minimum levels achieved by the fund. A general argument equates the investment problem to a corresponding optimal stopping problem for Brownian motion, which we approximate by discretizing the Brownian motion to a random walk; in this form, the problem can be solved efficiently numerically, and we illustrate the optimal stopping rule with some numerical examples.

While stopping problems for Brownian motion based on the value and the running maximum are much studied (see Azéma & Yor [1] for a seminal contribution), there has been less attention to stopping problems involving the value, the running maximum and the running minimum (though see the recent paper of Cox and Obloj [2] for an important contribution.) The existing literature deals with such questions in the context of finding joint laws for the two (or three) variables \bar{B}_T, B_T (and \bar{B}_T) which are extremal in some sense\footnote{See Rogers [6] where the stochastically largest maximum of a martingale whose terminal distribution is specified is shown to be achieved by the Azéma-Yor construction.}, and the analysis is typically quite detailed. The flavour of the present study is somewhat different however, and we readily turn to numerical methods because the problem is too complicated to be amenable to analysis.

5 Appendix A

Proof of Lemma 1.

First we prove that

$$\sup_\theta EF(w_1, w_1, \bar{w}_1) \geq \sup_{T \in \mathcal{T}} EF(\bar{B}_T, B_T, \bar{B}_T).$$

If $T \in \mathcal{T}$, the process

$$w_t \equiv B\left(\frac{t}{1 - t} \wedge T\right)$$

may be represented as

$$w_t = \int_0^t I_{\{s \leq T\}} dW_s \frac{1}{1 - s},$$

(22)
where \(T' = T/(1 + T) \) and \(W \) is the standard Brownian motion defined by

\[
\int_0^t \frac{dW_s}{1 - s} = B\left(\frac{t}{1 - t} \right).
\]

(23)

Accordingly, \((w_1, w_1, \bar{w}_1) = (B_T, B_T, \bar{B}_T)\), proving the first inequality.

For the converse inequality, we first notice that

\[
\sup_{\theta} EF(w_1, w_1, \bar{w}_1) = \sup_{\theta \in \mathcal{S}} EF(w_1, w_1, \bar{w}_1) = \sup_{\epsilon \in \mathcal{S}_\epsilon} EF(w_1, w_1, \bar{w}_1),
\]

(24)

where \(\mathcal{S} \) is the vector space of simple processes

\[
\theta = \sum_{j=0}^{n} Z_j I_{\{t_j < t \leq t_{j+1}\}}
\]

(25)

for some \(0 = t_0 < t_1 < \ldots < t_{n+1} = 1 \), and \(Z_j \in L^\infty(\mathcal{F}_{t_j}) \) for all \(j \), and \(\mathcal{S}_\epsilon = \{ \theta \in \mathcal{S} : |\theta| \geq \epsilon \} \). So it will be sufficient to show that whenever we have some \(\theta \in \mathcal{S}_\epsilon \) then there is some Brownian motion \(B \) with canonical filtration \((B_t)\) and a \((B_t)\)-stopping time \(T \) such that

\[
EF(w_1, w_1, \bar{w}_1) = EF(B_T, B_T, \bar{B}_T).
\]

(26)

Given \(\theta \in \mathcal{S}_\epsilon \) of the form (25), we form the quadratic variation process

\[
A_t = \int_0^t \theta_s^2 \, ds,
\]

(27)

and define \(B_t = w(\tau_t) \), where \(\tau \) is the continuous strictly-increasing inverse to \(A \). Next define

\[
T_k = A_{t_k} = \sum_{j=0}^{k-1} Z_j^2(t_{j+1} - t_j).
\]

(28)

We claim that for each \(k \), \(\mathcal{B}_s = \mathcal{F}_{\tau_s} \) for all \(0 \leq s \leq T_k \). It is clear that \(\mathcal{B}_{T_k} \subseteq \mathcal{F}_{t_k} \), but we shall prove by induction that equality holds for all \(k \). Evidently equality holds for \(k = 0 \), since both \(\sigma \)-fields are trivial. Suppose true up to some value of \(k \). Then \(\mathcal{B}(T_k) = \mathcal{F}(t_k) \), and so \(Z_k \) is \(\mathcal{B}(T_k) \)-measurable. Now for \(0 \leq s \leq T_{k+1} - T_k \) we have

\[
B_{T_k+s} - B_{T_k} = Z_k \{ w(t_k + sZ_k^{-2}) - w(t_k) \}
\]

(29)

and therefore we can deduce the path \((w(t_k+s))_{0 \leq u \leq t_{k+1} - t_k}\) from the path of \((B_u)_{0 \leq u \leq T_{k+1}}\), since \(Z_k \) is \(\mathcal{B}(T_k) \)-measurable. This extends the conclusion out to \(k + 1 \), and hence for all \(k \), and the equality (26) follows from taking the case \(k = n \), where \(T = T_n \) and \(t_n = 1 \).
6 Appendix B

Proof of Lemma 2. For $h > 0$ we are going to embed a scaled random walk in our Brownian motion. Let therefore $\sigma_0^h = 0$ and

$$\sigma_{n+1}^h = \inf \{ t > \sigma_n^h; |B_t - B_{\sigma_n^h}| = h \}, \quad n \geq 0.$$

Then $w_n^h = B_{\sigma_n^h}$, $n \geq 0$ clearly defines a random walk on $B_0 + h\mathbb{Z}$ satisfying

$$\|(B_t, B_t, \bar{B}_t) - (w_n^h, w_n^h, \bar{w}_n^h)\| \leq h\sqrt{3},$$ \hspace{1cm} (30)

for $\sigma_{n-1}^h \leq t \leq \sigma_n^h$, $n \geq 1$. Any w^h-stopping time τ naturally induces an B-stopping time $\tilde{\tau} = \sigma_{\tau}^h$ with $w_{\tilde{\tau}}^h = B_{\tilde{\tau}}$, giving us

$$V \geq V^h.$$ \hspace{1cm} (31)

Moreover, for any B-stopping time τ,

$$\tau^h = \inf \{ n \geq 0; \sigma_n^h \geq \tau \}$$

defines a w^h-stopping time with

$$|w_{\tau^h}^h - B_\tau| \leq h, \quad |\bar{w}_{\tau^h}^h - \bar{B}_\tau| \leq h, \quad |w_{\tau^h}^h - B_\tau| \leq h.$$

Hence

$$V^h \geq V - \psi(h\sqrt{3}).$$ \hspace{1cm} (32)

Combining (31) and (32) proves the desired result.

References

Figure 1: $F(\bar{w}, w, \bar{w})$ for fixed $\bar{w} = 2$: S-shaped in w and decreasing in \bar{w}.

Figure 2: $F(\bar{w}, w, \bar{w})$ for fixed $w = 0.2$: S-shaped in w and slightly increasing in \bar{w}.
Figure 3: Surface plot of the upper stopping barrier η_l that becomes relevant when we leave the continuation region by decreasing \bar{w}. Here, $\varphi(x) = \sqrt{x \wedge K}$.

Figure 4: Surface plot of the lower stopping barrier η_u that becomes relevant when we leave the continuation region by increasing \bar{w}. Here, $\varphi(x) = \sqrt{x \wedge K}$.
Figure 5: Trajectory of w, its minimum \bar{w} and the upper stopping barrier η_l after leaving the continuation region at $(w, \bar{w}) = (0.7, 1.95)$ by decreasing w.

Figure 6: Trajectory of the excursion process of w and the stopping barrier after leaving the continuation region at $(w, \bar{w}) = (0.7, 1.95)$ by decreasing w.
Figure 7: Surface plot of the upper stopping barrier η when $\varphi(x) = x \wedge K$. The continuation region is considerably larger than in Figure 3.

Figure 8: Surface plot of the lower stopping barrier η_u when $\varphi(x) = x \wedge K$.
Figure 9: Surface plot of the upper stopping barrier η_l when $\varphi(x) = \sqrt[5]{x \wedge K}$. The continuation region is considerably smaller than in Figure 3.

Figure 10: Surface plot of the lower stopping barrier η_u when $\varphi(x) = \sqrt[5]{x \wedge K}$.

19