Dissociable rate dependent effects of oral methylphenidate on impulsivity and

D_{2} receptor availability in the striatum

Daniele Caprioli$¹$, Bianca Jupp$²,³$, Young T. Hong$⁴$, Stephen J. Sawiak$²,⁴$, Valentina Ferrari$⁴$, Laura Wharton$²,³$, David J Williamson$⁴$, Carolyn McNabb$⁵$, David Berry$⁶$, Franklin I. Aigbirhio$²,⁴$, Trevor W. Robbins$²,³$, Tim D. Fryer$²,⁴$, Jeffrey W. Dalley$²,³,⁷$

Behavioral Neuroscience Research Branch, Intramural Research Program, NIDA, NIH, DHHS, Baltimore, MD, USA$¹$

Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK$²$

Department of Psychology, University of Cambridge, Downing St, Cambridge CB2 3EB, UK$³$

Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK$⁴$

School of Pharmacy, University of Auckland, New Zealand$⁵$

Epilepsy Society, Chalfont St Peter SL9 0RJ, UK$⁶$

Department of Psychiatry, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 2QQ, UK$⁷$

Abbreviated title: Rate dependent effects of methylphenidate

Word count:

Abstract: 232

Introduction: 491

Discussion: 1500

Figures: 4

Tables: 2

Corresponding author: Dr Jeffrey W. Dalley, Department of Psychology, University of Cambridge, Downing St, Cambridge CB2 3EB, UK. Tel. +44 (0)1223 765 291 Fax. +44 (0)1223 333 564. Email: jwd20@cam.ac.uk.

Acknowledgements

This work was funded by the Medical Research Council (G0701500) and by a joint award from the Medical Research Council (G1000183) and Wellcome Trust (093875/Z/10/Z) in support of the Behavioural and Clinical Neuroscience Institute at the University of Cambridge. The authors also acknowledge funding from the Medical Research Council in support of the ICCAM addiction cluster in the UK (G1000018). BJ is supported by grants from the AXA Research Fund and the Australian National Health and Medical Research Council (1016313).

Conflict of Interest

The authors report no conflicts of interest.
Abstract

We have previously shown that impulsivity in rats is linked to decreased dopamine D_{2/3} receptor availability in the ventral striatum. In the present study we investigated, using longitudinal positron emission tomography (PET), the effects of orally-administered methylphenidate (MPH), a first line treatment in attention deficit hyperactivity disorder, on D_{2/3} receptor availability in the dorsal and ventral striatum and related these changes to impulsivity. Rats were screened for impulsive behavior on a 5-choice serial reaction time task. After a baseline PET scan with the D_{2/3} ligand [^{18}F]fallypride, rats received 6 mg/kg MPH, orally, twice each day for 28 days. Rats were then re-assessed for impulsivity and underwent a second [^{18}F]fallypride PET scan. Prior to MPH treatment we found that D_{2/3} receptor availability was significantly decreased in the left but not right ventral striatum of high-impulsive (HI) rats compared with low-impulsive (LI) rats. MPH treatment increased impulsivity in LI rats, and modulated impulsivity and D_{2/3} receptor availability in the dorsal and ventral striatum of HI rats through inverse relationships with baseline levels of impulsivity and D_{2/3} receptor availability, respectively. However, we found no relationship between the effects of MPH on impulsivity and D_{2/3} receptor availability in any of the striatal sub-regions investigated. These findings indicate that trait-like impulsivity is associated with decreased D_{2/3} receptor availability in the left ventral striatum, and that stimulant drugs modulate impulsivity and striatal D_{2/3} receptor availability through independent mechanisms.
Introduction

Converging evidence from neuroimaging, clinical psychopharmacology and animal models implicates dysregulated dopaminergic and norepinephrinergic neurotransmission in the pathophysiology of attention deficit hyperactivity disorder (ADHD), the prototypical impulse-control disorder (Biederman, 2005; Arnsten, 2006; Dalley et al., 2011). Methylphenidate (MPH), which acts by increasing extra-synaptic dopamine (DA) and norepinephrine (NE) levels by blocking their reuptake (Zetterstrom et al., 1988), has been the first-line pharmaceutical therapy for ADHD (Wilens, 2008). Although its pharmacological action has been well characterized, the precise neurobiological mechanisms underlying the therapeutic effects of MPH remain unclear. Recent findings suggest that only specific neurocognitive processes in domains such as impulse control and attention are affected by MPH, and that these interact with the drug in a baseline performance-dependent manner (Dews and Wenger, 1977; Sahakian and Robbins, 1977; Robbins and Sahakian, 1979; Turner et al., 2003; Clatworthy et al., 2009; DeVito et al., 2009). Such effects are hypothesized to follow an inverted U-shaped function, which depend on optimising catecholamine levels in the brain (Clatworthy et al., 2009; van der Schaaf et al., 2013).

Recently, we reported a similar baseline dependent effect of cocaine in a preclinical animal model of impulsivity (Caprioli et al., 2013). We reported that impaired response inhibition in a rodent model of impulsivity is associated with a deficiency in DA D_{2/3} receptor availability in the left ventral striatum, and that prior response-contingent exposure to cocaine both restored D_{2/3} receptor availability in this region and improved impulse control. This evidence directly supports the baseline dependency hypothesis at the neurobiological level in the striatum and this may be relevant to recent findings observed by Volkow and colleagues. Indeed, a set of well-powered case-control positron emission tomography (PET) studies in adult medication-naïve ADHD patients, found ADHD to be associated with reduced D_{2/3} receptor availability in the nucleus accumbens and caudate (Volkow et al., 2007b; Volkow et al., 2007a; Volkow et al., 2009), and that treatment response was associated with increased DA transmission in the ventral striatum (Volkow et al., 2012). Thus, the clinical efficacy of stimulant drugs such as MPH in ADHD may depend, in part, on restoring D_{2/3} receptor signalling in the ventral striatum of impulsive individuals.

In the present study we therefore investigated the effects of repeated oral administration of MPH on D_{2/3} receptor availability in the ventral striatum of high-impulsive rats on the 5-choice serial reaction time task (5-CSRTT). Impulsivity in this task is measured by the number of anticipatory responses to
an imminent visual signal and is analogous to false alarms on the analogous continuous performance
test in humans (Robbins, 2002). We used PET and the selective high-affinity \(\text{D}_{2/3} \) receptor antagonist
\([^{18}F]fallypride\) (Mukherjee et al., 1995) to investigate \(\text{D}_{2/3} \) receptor availability in the ventral and dorsal
striatum, both prior to, and following chronic exposure of rats to MPH. In parallel, we investigated the
relationship between behavioral impulsivity in selected low (LI)- vs high (HI)-impulsive rats and MPH-
evoked changes in \(\text{D}_{2/3} \) receptor availability in the ventral and dorsal striatum.

Material and Methods

Subjects

Ninety-six adult male Lister-hooded rats (Charles River, Margate, UK), weighing 250-275 g and 2-3
months of age at the beginning of behavioral training, were used. These were housed in groups of four
in enclosed ventilation chambers during the initial training and selection of HI and LI rats. Upon
completion of the screening and for the remaining period of the study rats were singly housed (n=8 HI;
n=7 LI), similar to our previous study (Caprioli et al., 2013). Rats were singly housed because
MPH has been shown to disrupt social behavior in adolescent and young adult rats (Beatty et
al., 1982; Arakawa, 1994; Vanderschuren et al., 2008). The holding room was humidity- and
temperature-controlled (22°C), and rats were maintained under a reversed 12-h light/dark cycle (white
lights off/red lights on at 07:00 h). Food was restricted to maintain body weights at 85-90% of free-
feeding weights. Water was available ad libitum. The present experiment conformed to the UK Animals
is shown in Figure 1.

Five-choice serial reaction time task

The 5-CSRTT apparatus has been described in detail elsewhere (Bari et al., 2008). The training
procedure used in the present study was identical to that previously described (Caprioli et al., 2013). In
brief, rats were trained on the 5-CSRTT over approximately 60 daily sessions (6 sessions per week) to
detect the location of a brief visual stimulus (0.7 s) presented on a random basis in one of the five
recesses. Each session consisted of 100 discrete trials and lasted approximately 30 min. Training was
considered complete when rats’ responded to the target stimuli of duration 0.7 s with an accuracy of
75% and omissions on fewer than 20% of trials. Trials were initiated by subjects entering the
magazine. After a fixed inter-trial interval (ITI) of 5 s, a visual stimulus was presented in a single
aperture. Rats were rewarded with a single pellet if they correctly located the position of the target
stimulus (a ‘correct’ response). A failure to respond within a limited hold period of 5 s was deemed an
‘omission’ and was signalled by a 5 s time-out period and a loss of food reward on that trial. Similar
feedback was given on trials where rats responded in an adjacent aperture (an ‘incorrect’ response) or
prior to the onset of the light stimulus (a ‘premature’ response). Behavioral performance was assessed
by choice accuracy (% correct responses/ (correct + incorrect trials); premature responding: (%
premature responses/ (correct + incorrect + omission trials); omissions (% omission trials/ (correct +
incorrect + omission trials); latency to collect food (time from nose-poke response to entering the
magazine, ms); correct response latency (time to make a response in the correct aperture after the
onset of the light stimulus). Once rats had acquired the 5-CSRTT they were ranked for impulsivity
during a 3-week screening period. Each week consisted of five consecutive days of testing with
days 1, 2, 4 and 5 comprising sessions each of 100 discrete trials and an ITI of 5 s (short ITI).
During day 3, the ITI was increased to 7s to increase the frequency of premature responses
(long ITI). HI animals were defined as those exhibiting a level of premature responding greater
than 50 on all three L-ITI sessions. LI rats were selected from the remaining rats and responded
prematurely on fewer than 30% of trials during the L-ITI sessions.

Chronic methylphenidate treatment
Methylphenidate hydrochloride (Sigma, Cambridge, UK) was dissolved in Ribena (GlaxoSmithKline,
UK) and administered orally (6 mg/ml/kg) twice a day (10:00 and 17:00). The oral route of
administration was used to model the normal manner in which this drug is administered clinically
(Kuczenski and Segal, 2002; Swanson and Volkow, 2009). Two days prior to the first oral dosing of
MPH, rats were trained to consume the Ribena solution from a 1 ml syringe. Chronic MPH exposure
was maintained for 7 days a week for 4 consecutive weeks (see Figure 1). During this period, rats
were assessed for performance on the 5-CSRTT at 08:00 when rats were in the drug-free state (i.e.,
15 hours after the last MPH administration). During the last 7 days of MPH treatment, rats were
challenged with three L-ITI sessions, each spaced 3 days apart.

Analysis of methylphenidate and ritalinic acid
Four non-impulsive rats were used to quantify plasma levels of MPH and its metabolite ritalinic acid.
Rats were orally administered Ribena spiked with 6 mg/kg MPH, as described above, and after 10 min
were anesthetized with 5% isoflurane. General anaesthesia was maintained via the delivery of 1.5%
isoflurane in medical air. Blood samples were taken from a tail vein (0.5 ml) at 5, 15, 30, 60, 90 and 120 minutes following MPH administration. Blood was allowed to clot at room temperature (24°C) before being centrifuged at 2000 rpm for 10 min. Plasma was aspirated from the centrifuged sample and stored at -80°C prior to the determination of MPH and ritalinic acid using HPLC-MS/MS. Calibration standards (range 0.01-5 mg/L) were prepared with MPH and ritalinic spiked in blank rat plasma. Quality control samples were similarly prepared at 0.05, 1.00 and 1.50 mg/L. Calibration standards and triplicate controls were carried through with each batch of analysis. Samples were prepared by adding 50 µL of test specimen, calibrators or controls to 2 mL of 100 mM phosphate buffer (pH 6.0) and spiking with the internal standard (10 µL of 20% acetonitrile in 0.1% aqueous formic acid containing 100 pg d³-MPH). The solutions were then placed in an ultrasonic bath for 10 minutes before extracting the drugs by adding to a pre-conditioned Strata Screen-C GF 200mg/6 mL SPE column. Ritalinic acid was eluted first with hexane/ethyl acetate (50:50) followed by MPH using dichloromethane/isopropanol/ammonia (78:20:2). The eluates were evaporated to dryness at 30°C and reconstituted in 100 µL of methanol/water prior to injection into an HPLC-MS/MS for analysis. HPLC separation was achieved using a FORTIS 3µm C18 150 x 3 mm column with detection using API 3200 MS/MS with a Turbolon spray interface. The HPLC consisted of a Shimadzu system with mobile phase A consisting of water containing 0.01% ammonia and mobile phase B consisting of methanol containing 0.01% ammonia with 10 mL of isopropanol added per litre. The gradient run was 20%-100% mobile phase B over 10 minutes. Positive MRM was used to monitor the chromatography column eluent [MPH (MRM 234-84), ritalinic acid (MRM 220-84) and d3-MPH (MRM 237-84)]. The LLOD was 0.008 mg/L (S/N ratio 10) and the LLOQ was 0.01 mg/L. The overall precision (between batch quality control specimens run on 4 separate days) was 2-11% within the calibration range employed.

Positron emission tomography

HI and LI rats were scanned using [¹⁸F]fallypride PET on two occasions; prior to the first oral MPH dose and 2 days after the last MPH dose, which occurred within 48 h of the last L-ITI session on the 5-CSRTT (see Figure 1). The scanning procedure has been described in detail elsewhere (Caprioli et al., 2013). In brief, prior to the injection of tracer, singles-mode transmission data were acquired using a rotating ⁶⁸Ge/⁶⁸Ga point source (~20 MBq) to provide measured attenuation correction. For all scans, [¹⁸F]fallypride was injected intravenously over 30 s, followed by a 15 s heparin-saline flush. The injected [¹⁸F]fallypride activity (5.3–66.9 MBq) was adjusted so that the total mass of labelled and
unlabelled fallypride injected was 0.5 nmol/kg. Dynamic data were acquired in list-mode for 180 min and subsequently binned into sinograms for the following time frames: $6 \times 10 \text{ s}$, $3 \times 20 \text{ s}$, $6 \times 30 \text{ s}$, $10 \times 60 \text{ s}$, $10 \times 120 \text{ s}$, $29 \times 300 \text{ s}$. Corrections were applied for randoms, dead time, normalization, attenuation and decay. Fourier re-binning (Defrise et al., 1997) was used to compress the 4D sinograms to 3D prior to reconstruction with 2D filtered back projection with a Hann window cut-off at the Nyquist frequency. The image voxel size was $0.95 \times 0.95 \times 0.80 \text{ mm}$, with an array size of $128 \times 128 \times 95$. The reconstructed images were converted to kBq/ml using global and slice factors determined from imaging a uniform phantom filled with a $[^{18}\text{F}]$fluoride solution.

Thirty-two T2-weighted MR brain scans from previous $[^{18}\text{F}]$fallypride PET studies in Lister-hooded rats were used to create a high resolution MR brain template with SyN (Avants et al., 2008), part of the Advanced Normalization Tools (ANTS) package. A PET template was then created by applying the spatial normalisation parameters from the above template creation process to late $[^{18}\text{F}]$fallypride images (average image 120-180 min after injection) that had been manually co-registered to their corresponding MR scan. Late $[^{18}\text{F}]$fallypride images from the 30 PET scans in this study were affine registered to the PET template using ANTS and each transformation was used to re-slice the corresponding dynamic $[^{18}\text{F}]$fallypride PET image set to template space. Finally, the MR template used in a previous study (Caprioli et al., 2013) (see Figure 2A) was spatially normalised to the new MR template described above, with the resulting transformation applied to the previously defined regions of interest to align them to the new template space.

$D_{2/3}$ receptor availability was quantified using non-displaceable binding potential (BP$_{\text{ND}}$) (Innis et al., 2007), determined from reference tissue-based kinetic analysis with the cerebellum acting as the reference region. The borders of the reference region drawn on the MR template excluded the outermost lamina of the cerebellar cortex in order to avoid partial volume error from uptake in the Purkinje cell layer. Regional and voxel-wise BP$_{\text{ND}}$ were estimated from the distribution volume ratio (DVR; BP$_{\text{ND}}$ = DVR - 1) determined using the reference tissue input Logan plot (Logan et al., 1996) with data fitted from 90 to 180 min post-injection.

Statistical analysis

Behavioral data were subjected to analysis of variance (SPSS, version 17.0, Chicago, USA) using a general linear model. Homogeneity of variance was verified using Levene's test. For repeated-measures analyses, Mauchly's test of sphericity was applied and the degrees of freedom corrected to
more conservative values using the Huynh-Feldt epsilon for any terms involving factors in which the
sphericity assumption was violated. Differences in BP_{ND} between HI and LI rats were evaluated using
repeated measures ANOVA. Significantly meaningful interactions ($p<0.1$) were further analyzed by
simple main effects using the pooled sum of square error term (Cochran and Cox, 1957). A
significance level of $\alpha = 0.05$ was used to interpret main effects and post-hoc tests. Pearson product
moment correlations were used to assess the strength of the association between: (i) the
change in BP_{ND} ($(post-MPH−pre-MPH)/(pre-MPH) \times 100$) and baseline BP_{ND} (pre-MPH scan); (ii)
the change in premature responses ($(post-MPH−pre-MPH)/(pre-MPH) \times 100$) and baseline BP_{ND}
(pre-MPH scan). All figures show group means ± 1SEM.

Results

Segregation of high and low impulsivity groups

The behavioral performance of LI and HI rats on the 5-CSRTT is summarized in Table 1. Percentage
premature responses for HI (n=8) and LI (n=7) rats, averaged across the three L-ITI sessions prior to
the commencement of MPH dosing, were 69.6 ± 7.5% (mean ± SEM) and 21.5 ± 2.2%, respectively.
HI rats were more impulsive than LI rats regardless of the ITI being set to 5 s (‘b1’ to ‘b10’, ‘S-ITI’
$p=0.002$) or 7 s (‘L-ITI’ $p<0.001$). Among the various behavioral variables recorded only attentional
accuracy was significantly impaired in HI rats compared with LI rats during the L-ITI sessions
($p=0.014$). Although omissions appeared to be increased in HI rats compared with LI rats this
contrast was not significant ($p=0.054$).

Interactive effects of methylphenidate on impulsivity in LI and HI rats

Twenty one days after the commencement of daily MPH dosing, rats were re-assessed for impulsivity
and attentional performance on the 5-CSRTT. It can be seen in Figure 1B that MPH produced
divergent effects on impulsivity in the two impulsivity sub-groups with impulsivity appearing to decrease
in HI rats but increase in LI rats (group × MPH interaction: $F(1,13)=7.59$, $p=0.016$). Although post-hoc
t-tests failed to reveal a significant decrease in impulsivity, at a group level, following MPH treatment in
HI rats ($p=0.095$), the increase in impulsivity observed in LI rats was significant ($p=0.044$). Thus,
following exposure to MPH, the initial contrast in impulsivity between LI and HI rats was greatly
diminished. Importantly, it can be seen in Figure 1C that MPH increased impulsivity in LI rats in an inverse relationship to the baseline level of impulsivity, while impulsivity decreased in HI rats, with the
magnitude of the decrease being positively correlated to the baseline level of impulsivity. Thus, the
effect of MPH to increase impulsivity was greatest in LI rats showing the lowest baseline level of
impulsivity (r = -0.80; p=0.03) whereas MPH decreased impulsivity to a greater extent in those HI rats
showing the highest baseline level of impulsivity (r = -0.7; p=0.05). However, MPH did not restore the
attentional inaccuracy of HI rats, which remained significantly impaired relative to LI rats (main effect of
group F(1,13) = 3.62, p=0.049; group x MPH interaction: F(1,13) = 0.37, p=0.55). Moreover there were no
significant effects of MPH on omissions or magazine latencies on the 5-CSRTT (Figure 1D and Table
1).

Modulation of D_{2/3} receptor availability in the ventral striatum by MPH

Consistent with our recent study (Caprioli et al., 2013), the availability of D_{2/3} receptors was significantly
reduced in the left (t_{(13)} = 2.25, p=0.043) but not the right (t_{(13)} = 1.29, p=0.219) ventral striatum of drug-
naive HI rats compared with LI rats (pre-/post-MPH x hemisphere x group interaction: F(1,13)=5.75,
p=0.05; group x hemisphere interaction: F(1,13)=4.047, p=0.066, Figure 2C). Following 28 days of
exposure to MPH, the difference in D_{2/3} receptor availability between LI and HI rats in the left ventral
striatum was no longer evident (t_{(13)} = 0.09, p=0.930). The normalizing effect of MPH on D_{2/3} receptor
availability in the left ventral striatum appeared to be explained by a near-significant reduction in D_{2/3}
BP_{ND} in the LI group (t_{(8)} = 2.292, p=0.062) rather than an increase in D_{2/3} BP_{ND} in this region of HI rats
(t_{(7)} = -0.495, p=0.636). Exposure of LI and HI rats to MPH had no significant effect on D_{2/3} receptor
availability in the right ventral striatum.

Baseline-dependent effects of MPH on striatal D_{2/3} receptors in high impulsive rats

We found no significant group differences in D_{2/3} receptor availability between LI and HI rats in the
dorsal striatum, either at baseline (pre-MPH) or following MPH treatment (data not shown). However,
when we compared the change in [^{18}F]fallypride BP_{ND} before and after drug we found that MPH both
increased and decreased [^{18}F]fallypride BP_{ND} in the ventral and dorsal striatum in HI rats depending on
the baseline availability of D_{2/3} receptors (Figure 3). In the ventral striatum we observed a strong
inverse relationship between the percentage change in [^{18}F]fallypride BP_{ND} and baseline [^{18}F]fallypride
BP_{ND} in both the left (r_{left} = -0.73, p <0.01) and right (r_{right} = -0.58, p <0.01) hemisphere. Baseline-
dependent effects of MPH on D_{2/3} receptor availability were also observed in the anterior and posterior
dorsal striatum of HI rats. For all regions of interest the relationship was strongly inversely related to
baseline D_{2/3} receptor availability (anterior dorsal striatum HI rats: r_{left} = -0.74, <0.01; r_{right}=-0.64, p
<0.01; posterior dorsal striatum HI rats: \(r_{\text{left}} = -0.61, p < 0.01, r_{\text{right}} = -0.72, p < 0.01 \). In contrast, we did not observe baseline dependent effects on \(D_{2/3} \) receptor availability in any of the striatal areas investigated in LI rats.

We next compared the relative changes in \(D_{2/3} \) receptor availability and impulsivity produced by MPH treatment (Figure 4). We found no significant relationship between these parameters in any of the striatal sub-regions examined for either LI rats or HI rats.

Discussion

This study investigated striatal \(D_{2/3} \) receptor availability in highly impulsive rats and the mechanisms underlying the therapeutic effects of chronic oral MPH. We found that repeated oral MPH was sufficient to produce bi-directional effects on impulsivity that depended on the baseline level of impulsivity. Thus, in LI rats, MPH increased impulsivity whereas in HI rats it reduced impulsivity in animals exhibiting the highest baseline level of impulsivity, consistent with an underlying rate dependent mechanism. Our results indicate that the rate dependency model held for LI and HI rats but with clear differences in the underlying regulatory parameters suggestive of a non-unitary process. Since the baseline dependent effects of MPH on impulsivity and \(D_{2/3} \) receptors were dissociable we conclude that \(D_{2/3} \) receptors may not play a major contribution to the effects of MPH on impulsivity. **These data are consistent with findings showing that MPH modulates performance in humans in a baseline-dependent manner both in healthy controls and in subjects diagnosed with ADHD** (del Campo et al., 2013).

We found a strong inverse relationship between baseline \(D_{2/3} \) \(B_{\text{ND}} \) and the change in this parameter after MPH treatment in HI rats. However no such relationship was found for LI rats in any of the striatal sub-regions examined. These findings correspond with our earlier findings in rats self-administering cocaine, which had the similar effect of modulating \(D_{2/3} \) \(B_{\text{ND}} \) in a manner dependent on baseline \(D_{2/3} \) \(B_{\text{ND}} \) (Caprioli et al., 2013). However, in our previous study, cocaine also modulated \(D_{2/3} \) receptors in the dorsal striatum. **The more pervasive effects of cocaine on \(D_{2/3} \) receptors throughout the ventral and dorsal striatum may be due to differences in the route of administration (intravenous vs oral), response-contingent cocaine vs response non-contingent MPH, differing quantities of cocaine and MPH, and higher relative efficacy of cocaine over MPH.**

This may explain why cocaine produced a more substantial reduction in impulsivity in the HI sub-group compared with MPH in the present study (Caprioli et al., 2013).
The mechanism underling the observed rate dependent modulation of impulsivity following MPH treatment is unknown but as discussed above may be distinct for LI and HI rats. Although for LI rats there was no obvious relationship between baseline $D_{2/3} BP_{ND}$ and the change in this parameter following MPH treatment, at a group level, MPH had the trend effect of reducing $D_{2/3} BP_{ND}$ in the left ventral striatum, a deficit associated with increased impulsivity on this task (Dalley et al., 2007) and localized to the nucleus accumbens shell (Besson et al., 2010; Jupp et al., 2013). The reduction in $D_{2/3}$ receptor availability in LI rats may reflect a down-regulation of $D_{2/3}$ receptors but since $[^{18}F]$fallypride competes with DA in binding to $D_{2/3}$ receptors it could also reflect an increase in synaptic DA release, possibly due to sensitization of the mesolimbic DA systems following repeated MPH treatment (Shuster et al., 1982; Gaytan et al., 1997). However, sensitization of the locomotion response does not appear to develop after chronic oral MPH treatment (McNamara et al., 1993; Kuczenski and Segal, 2002). Furthermore, no simple relationship exists between hyperactivity and impulsivity on the 5-CSRTT (Dalley et al., 2007; Molander et al., 2011; Moreno et al., 2013).

In HI rats MPH had the dual effect of decreasing impulsivity and modulating striatal $D_{2/3}$ receptor availability according to the principal of rate dependency (Dews and Wenger, 1977). However, neither parameter significantly co-varied after MPH treatment suggesting that the modifying effects of MPH on impulsivity are separable from effects on $D_{2/3}$ receptor regulation. That the measure of impulsivity is not directly related to changes in $D_{2/3}$ receptor availability is possibly due to other actions of MPH, especially for example on NE. Thus, atomoxetine, which reduces impulsivity in HI rats, blocks re-uptake of NE and has no effect on subcortical DA (Bymaster et al., 2002). Moreover, this drug exerts at least some of its anti-impulsive effects within the shell region of the nucleus accumbens (Economidou et al., 2012). Alternatively, the reduction in impulsivity in MPH-treated HI rats may include actions at the level of the nucleus accumbens core. Thus, previously, we have shown that HI rats exhibit a reduced density of markers associated with dendritic spines in this region and GABA synthesis (Caprioli et al., 2014), abnormalities that were mainly restricted to the left hemisphere similar to the locus of deficient $D_{2/3}$ receptor availability in HI rats (Caprioli et al., 2013). Since in the present study MPH had the greatest beneficial effects in the most impulsive animals these effects may be mediated by a restoration of the structural and functional integrity of GABA-ergic medium spiny neurons in the nucleus accumbens core, as previously hypothesized (Caprioli et al., 2014). The origin of the hemispheric imbalance in $D_{2/3}$ receptors in HI rats is unknown but may arise from genetic and/or environmental factors affecting trophic signalling during development (Concha et al.,
Left/right asymmetries in the midbrain DA systems have been reported in rats (Carlson and Glick, 1989; Afonso et al., 1993; Rodriguez et al., 1994) and healthy humans (Tomer et al., 2008), as well as ADHD (del Campo et al., 2013; Volkow et al., 2007a; Volkow et al., 2009).

An analogous PET study in rats found that treating rats with oral MPH for 8 months, initiated during the peri-adolescent period, increased D$_{2/3}$ availability in the striatum (Thanos et al., 2007). By contrast, striatal D$_{2/3}$ availability decreased 2 months after starting MPH treatment. These findings demonstrate the MPH-induced changes in striatal D$_{2/3}$ receptors depend on treatment length and developmental stage (Rodriguez et al., 2010; Gill et al., 2012). The mechanisms underlying these changes in D$_{2/3}$ receptors are unknown but may involve alterations in synaptic DA and/or the pool of receptors available for binding in the striatum. However, research in non-human primates, demonstrates that chronic treatment with extended-release MPH for 1 year has no effect on the DA transporter or D$_{2/3}$ receptors in the striatum (Gill et al., 2012; Soto et al., 2012). This discrepancy with rodent studies may be species-specific or a consequence of differing doses of MPH and/or length of treatment. In the context of the present study it may also reflect the fact that animals in the Gill study were not pre-selected for impulsivity-related traits. This may be relevant as it has been shown that treating adults with ADHD for 1 year decreases striatal D$_{2/3}$ receptor availability, as assessed using PET (Volkow et al., 2012).

There are several limitations of the present study that merit discussion. Firstly, although we dosed MPH orally and assessed serum MPH levels and its metabolite ritalinic acid, as endorsed by others (Volkow and Insel, 2003; Gill et al., 2012), peak MPH levels were in excess of the typical therapeutic range of MPH of 8 to 10 ng/ml (Swanson and Volkow, 2002) (Table 2). However, consistent with other research (Patrick et al., 1984; Robb et al., 2014), MPH was rapidly cleared with an elimination half-life of 30-50 minutes. Thus, although serum levels of MPH were initially high these soon declined to clinically-relevant values after the administration of MPH and well before the next dose. Nevertheless, with twice daily dosing and consequent fluctuations in serum MPH our results are difficult to extrapolate to studies in humans that use extended-release oral formulations (Robb et al., 2014). A second consideration is that the primary objective of our research was to investigate the long term effects of MPH on impulse control and D$_{2/3}$ receptors in the striatum. The design of our study thus excluded the analysis of acute, low doses of MPH, which increase NE and DA availability selectively in the prefrontal cortex (Berridge et al., 2006) and facilitate cognitive functions relevant to ADHD (Andrzejewski et al., 2014). Thirdly, our conclusions are based on relatively small group sizes.
(n=7-8). Nevertheless, we have now reported in three independent studies reduced striatal D2/3 receptor availability in the ventral striatum of HI rats. In addition, we observed qualitatively similar changes from baseline following administration of MPH and cocaine (Caprioli et al., 2013), using a within-subjects longitudinal design.

In conclusion our results confirm that deficits in impulsive control are associated with reduced D2/3 receptor availability in the left ventral striatum as previously reported (Dalley et al., 2007; Caprioli et al., 2013) and in three independent studies in ADHD patients (Volkow et al., 2007a; Volkow et al., 2009; del Campo et al., 2013). Although further research is needed to test the full dose-response curve of MPH on impulsivity and D2/3 receptor availability, we have now shown how different psychomotor stimulant drugs produce baseline-dependent effects on D2/3 receptor availability in the ventral striatum. In addition, we have demonstrated that the therapeutic effects of MPH on impulsivity are unlikely to arise as a direct consequence of changes in the regulation of D2/3 receptors in the ventral striatum, a conclusion supported by research in adults with ADHD (Volkow et al., 2012). **Nevertheless, by restoring levels of D2/3 receptors in the ventral striatum of HI rats, MPH may diminish the risk of addiction in addiction-prone highly-impulsive rats** (Belin et al., 2008; Economidou et al., 2009).
Figure legends

Figure 1. Effects of methylphenidate on sustained attention and impulsivity in selected low-versus high-impulsive rats. (A) Timeline of the experimental procedure in rats expressing differential levels of impulsive behavior on the 5-choice serial reaction time task (5-CSRTT). The dashed line refers to 5-CSRTT training, which took approximately 3 months. Values shown are weeks. (B) Effects of prior MPH oral administration on impulsivity in LI (white bars) and HI (black bars) rats on the 5-CSRTT. Pre-cocaine values are averaged across three weekly-spaced long ITI sessions. It can be seen in Figure 1B that impulsivity was altered both in HI and LI rats (group × MPH interaction: \(F_{1,13}=7.59, \ p<0.05 \)) during the challenge sessions. The increase in impulsivity post-MPH was significant in LI rats (\(^* p=0.044 \)). (C) Correlation plots showing the relationship between relative changes in impulsivity from baseline produced by MPH. It can be seen in Figure 1C that the effect of MPH to increase impulsivity was greatest in LI rats showing the lowest baseline level of impulsivity (\(r = -0.80; \ p=0.03 \)) whereas MPH decreased impulsivity to a greater extent in those HI rats showing the highest baseline level of impulsivity (\(r = -0.7; \ p=0.05 \)). (D) Differences in accuracy, omissions and magazine latency before and after the oral MPH dosing between HI and LI rats (\(^* p<0.05, \ ^{**} p<0.01, \ ^{***} p<0.001 \) HI vs LI).

Figure 2. MPH-induced effects on \(D_{2/3} \) receptor availability in the left ventral striatum of HI and LI rats. (A) 3D depiction of regions of interest showing the ventral striatum (blue), anterior dorsal striatum (green), and posterior dorsal striatum (red). (B) Horizontal section through \([18F] \)fallypride \(BP_{ND} \) maps for HI and LI rats overlaid on the co-registered MR template (L = left; R = right). The images are 7 mm below the dorsal brain surface and have a \(BP_{ND} \) threshold = 8. (C) \([18F] \)fallypride \(BP_{ND} \) in the left and right ventral striatum of LI (circle symbols, \(n=7 \)) and HI (square symbols, \(n=8 \)) rats before (‘pre-MPH’) and after (‘post-MPH’) oral-administration. It can be seen that \([18F] \)fallypride \(BP_{ND} \) is significantly reduced in the left ventral striatum of HI rats compared with LI rats prior to MPH exposure (\(^* p < 0.05 \)) and that MPH reduces the contrast in \(D_{2/3} \) receptor availability between LI and HI rats in the left ventral striatum.

Figure 3. Relationship between the percentage change in \([18F] \)fallypride \(BP_{ND} \) in the ventral and dorsal striatum before and after the exposure of LI (panel A) and HI (panel B) rats to MPH as a function of baseline (i.e. pre-MPH) \([18F] \)fallypride \(BP_{ND} \). The results show that the effects of MPH on
D$_{2/3}$ receptor availability depend inversely on baseline $[^{18}\text{F}]$fallypride BP$_{ND}$ in the anterior and posterior regions of the dorsal striatum, as well as in the ventral striatum of HI but not LI rats. The horizontal dotted line depicts no net effect of MPH on $[^{18}\text{F}]$fallypride BP$_{ND}$. Pearson product moment correlation coefficients and p-values are given in each panel.

Figure 4. Correlation plots showing the relationship between relative changes in impulsivity and $[^{18}\text{F}]$fallypride BP$_{ND}$ in the ventral and dorsal striatum of LI (panel A) and HI (panel B) rats produced by MPH. The results indicate that the effects of MPH on impulsivity and D$_{2/3}$ receptor availability are independent. The vertical dotted line depicts no net effect of MPH on $[^{18}\text{F}]$fallypride BP$_{ND}$. Pearson product moment correlation coefficients and p-values are given in each panel.
References

evidence for anatomical localisation in ventral striatum and prefrontal cortex. The European journal of neuroscience 37:1519-1528.

Table 1
Summary of the effects of oral MPH administration on the behavioral performance of LI and HI rats on the 5-CSRTT. Shown are (mean ± SEM): % premature responses, % accuracy of responding, % omissions, magazine latencies (ms), and correct response latencies (ms) before (‘Pre’) and after (‘Post’) drug exposure. * p<0.05; ** p<0.01; *** p<0.001 (LI vs HI).

<table>
<thead>
<tr>
<th>Collection time</th>
<th>Mean MPH</th>
<th>SD MPH</th>
<th>Mean RA</th>
<th>SD RA</th>
<th>Mean MPH</th>
<th>SD MPH</th>
<th>Mean RA</th>
<th>SD RA</th>
<th>Mean MPH</th>
<th>SD MPH</th>
<th>Mean RA</th>
<th>SD RA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Short-ITI sessions</td>
<td>LI (n=7)</td>
<td>HI (n=8)</td>
</tr>
<tr>
<td>% premature</td>
<td>2.9±0.5</td>
<td>8.6±1.2**</td>
<td>2.7±0.6</td>
<td>4.4±0.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% accuracy</td>
<td>83.0±1.7</td>
<td>80.4±1.7</td>
<td>83.4±1.0</td>
<td>79.8±2.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% omissions</td>
<td>12.5±2.2</td>
<td>9.0±1.4</td>
<td>7.5±1.1</td>
<td>6.7±1.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>magazine lat. (ms)</td>
<td>1169.4±91.9</td>
<td>1156.4±58.4</td>
<td>1213.8±85.5</td>
<td>1159.5±51.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>correct lat. (ms)</td>
<td>751.6±38.0</td>
<td>626.0±41.8</td>
<td>842.4±50.9</td>
<td>688.1±40.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Long-ITI sessions</td>
<td></td>
</tr>
<tr>
<td>% premature</td>
<td>21.5±2.2</td>
<td>69.6±7.5***</td>
<td>32.1±2.9</td>
<td>53.3±4.6**</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% accuracy</td>
<td>80.9±1.0</td>
<td>73.9±2.1*</td>
<td>80.5±1.7</td>
<td>74.9±1.9*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% omissions</td>
<td>12.7±1.9</td>
<td>18.7±2.6</td>
<td>8.6±1.7</td>
<td>11.3±2.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>magazine lat. (ms)</td>
<td>1103.9±54.0</td>
<td>1281.9±122.7</td>
<td>1186.6±96.7</td>
<td>1140.1±49.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>correct lat. (ms)</td>
<td>671.7±38.6</td>
<td>601.6±32.5</td>
<td>721.8±63.2</td>
<td>603.0±26.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2
Summary of the serum concentration (ng/ml) of oral methylphenidate (MPH) and ritalinic acid (RA) obtained from 4 non-impulsive rats after a single oral dose of MPH (6 mg/kg).