TITLE: Estimating vocal repertoire size is like collecting coupons: a theoretical framework with heterogeneity in signal abundance.

Arik Kershenbauma,b, Todd M. Freebergc, David E. Gammond

aNational Institute for Mathematical and Biological Synthesis, Knoxville, TN, USA
bDepartment of Zoology, University of Cambridge, Cambridge, England
cDepartment of Psychology, University of Tennessee, Knoxville, TN, USA
dDepartment of Biology, Elon University, Elon, NC, USA

CORRESPONDING AUTHOR:

Arik Kershenbaum

arik.kershenbaum@gmail.com

WORD COUNT: 5130
ABSTRACT

Vocal repertoire size is an important behavioural measure in songbirds and mammals with complex vocal communication systems, and has traditionally been used as an indicator of individual fitness, cognitive ability, and social structure. Estimates of asymptotic repertoire size have typically been made using curve fitting techniques. However, the exponential model usually applied in these techniques has never been provided with a theoretical justification based on probability theory, and the model has led to inaccurate estimates. We derived the precise expression for the expected number of distinct signal types observed for a fixed sampling effort: a variation of what is known in the statistical literature as the “Coupon Collector’s problem”. We used empirical data from three species (northern mockingbird, Carolina chickadee, and rock hyrax) to assess the performance of the Coupon Collector model compared to commonly used techniques, such as exponential fitting and repertoire enumeration, and also tested the different models against simulated artificial data sets with the statistical properties of the empirical data. We found that when signal probabilities are dissimilar, the Coupon Collector model provides far more accurate estimates of repertoire size than traditional techniques. Enumeration and exponential curve fitting greatly underestimated repertoire size, despite appearing to have reached saturation. Application of the Coupon Collector model can generate more accurate estimates of repertoire size than the commonly used exponential model of repertoire discovery, and could go a long way towards re-establishing repertoire size as a useful indicator in animal communication research.

KEYWORDS: Animal signals, Birdsong, Communication, Repertoire size, Vocalisations
1. INTRODUCTION

Assessing the repertoire size of animal vocalisations has long been recognised as important to understanding the development, function, and evolution of animal communication (Bradbury & Vehrencamp 2011). Repertoire size is often considered to be an indicator of communicative complexity (Freeberg et al. 2012), and communicative complexity has numerous implications for the understanding of animal signalling and social evolution. It has been proposed that communicative complexity may drive the evolution of social complexity, and vice versa (McComb & Semple 2005; Pollard & Blumstein 2012). Communicative complexity may be an indicator of individual fitness (Hiebert et al. 1989; Darolová et al. 2012), may influence mate choice and the evolution of mating systems (Searcy 1992; Nowicki et al. 2000), and may play a role in complex sender-receiver competitive games (Owren et al. 2010). Repertoire size is also an important metric for assessing the tradeoff between function and variant diversity in communication (Bradbury & Vehrencamp 2011), and the neurological constraints limiting the use of highly complex signalling, such as syntax (Lipkind et al. 2013). Although most previous research related to repertoire size has concentrated on the repertoire of birdsong, the work we describe here can be generalised to consider other non-song modalities such as visual signals (Peters & Ord 2003), chemical signals (delBarco-Trillo et al. 2012), and even to entire behavioural repertoires (Sempo & Detrain 2004). As such, hereafter we use the term “signals”, rather than “songs”, except where specifically referring to mating/territorial songs.

Despite the importance of repertoire size in animal species, repertoire size estimation for any given species or individual is a non-trivial problem in practical situations. For species with
large repertoires, large sampling effort is required to enumerate all distinct vocalisations. Some species of songbird, furthermore, produce much of the diversity of their song repertoire quickly (immediate variety), whereas other species produce the diversity of their song repertoire over much longer time frames (eventual variety; Catchpole & Slater 2003). Even if true repertoire size is small, enough data need to be collected to ensure that all possible types have been recorded (Hesler et al. 2012). In most cases, comprehensive sampling is impractical, and so estimation techniques must be used. Most work on estimating repertoire size has been carried out with songbirds, since song repertoires play such a crucial role in the social and reproductive life of many species (Catchpole & Slater 2003). Songbird repertoire sizes range from a single stereotyped song such as in the white-crowned sparrow Zonotrichia leucophrys (Soha & Marler 2001), through tens of distinct vocalisations, e.g. in the European blackbird Turdus merula, up to species such as the northern mockingbird Mimus polyglottos and brown thrasher Toxostoma rufum, which can make use of hundreds or even thousands of different songs (Kroodsma 1977; Gammon & Altizer 2011). Some songbird species, furthermore, possess diverse repertoires of calls, indicating that repertoire estimation is important to non-song vocal behaviour as well (e.g., call repertoires in crows and jays, chickadees and titmice, and parrots). Moreover, songbirds are not the only taxon where repertoire estimation is important. Some mammal species have extensive vocal repertoires, such as the rock hyrax Procavia capensis (Kershenbaum et al. 2012), free-tailed bats Tadarida brasiliensis (Bohn et al. 2009), marmots Marmota flaviventris (Blumstein 2007), and pilot whales Globicephala macrorhynchus (Sayigh et al. 2012), and little is known about their social and evolutionary significance.

2. PREVIOUS WORK
Estimating the repertoire size of individuals or a group of individuals has been accomplished using different methods. In one of the earliest methods (henceforth WM), Wildenthal (1965) proposed measuring the total number of distinct signals observed as sample size increases, and fitting these data to an exponential function of the form

\[E = N(1 - e^{-M/N}) \]

(1)

where \(N \) is the true repertoire size, \(M \) is the number of observations (samples) made, and \(E \) is the number of distinct signals observed. Wildenthal originally proposed this relationship based on the observation that, “when the data were plotted… the curves obtained approximate exponential curves” (Wildenthal 1965). Davidson & Wilkinson (2002) subsequently proposed a correction to the Wildenthal model which appeared to give a better fit to the empirical data. In the Davidson & Wilkinson (2002) model (henceforth, DW), the rate of increase of distinct signal types observed is lower than expected by the WM, by a factor \(A \), where \(A > 1 \):

\[E = N(1 - e^{-M/AN}) \]

(2)

The DW is purely empirical, as no known probabilistic process would be expected to produce a relationship as indicated in Equation 2. However, even the derivation of the WM remains unexplained, and to date no examination has been made of why the number of observed signals should follow this exponential relationship, or what the theoretical justification for such a model might be.

A different approach, examined by Garamszegi et al. (2005) applied the capture-recapture principle to the observation of signal types. Using the capture-recapture approach, the researcher models the observation of signals in the same way as observation of marked individuals in
population sampling; an established technique used for the estimation of population size. This technique also gives repertoire size estimates that are empirically accurate under certain conditions, and is based on the theoretical similarity between sampling signals, and the sampling of marked individuals.

Botero et al. (2008) compared these estimation techniques using artificial repertoires with known repertoire sizes, and concluded that in many cases, simple enumeration of the number of distinct signals observed (henceforth, EN) is the easiest and most accurate estimator of true repertoire size. Since then, other researchers have proposed additional techniques that appear empirically valid, such as rarefaction (Peshek & Blumstein 2011), but no bottom-up analysis of the process of signal sampling has been performed to derive the precise relationship between sampling effort and repertoire estimate. In practice, many researchers simply use the enumeration of distinct observed signals, on the assumption that sufficient signals have been sampled to represent the entire repertoire accurately (e.g. Searcy 1992; Nowicki et al. 2000; Pfaff et al. 2007; Hesler et al. 2011).

We show that this problem of sampling signals from a repertoire is a variant of the “Coupon Collector’s problem” (Erdös & Rényi 1961; Jocković & Mladenović 2011), and we use probability theory to derive the precise expression for the expected number of distinct observed signals, given a particular sampling effort. We show that this result closely approximates Wildenthal’s and Davidson-Wilkinson’s exponential models only when each signal occurs with a similar probability. When individual signals do not occur homogenously, exponential fitting is likely to underestimate total repertoire size. Although no closed-form expression exists for the repertoire size estimate, non-linear least-squares fitting provides an accurate estimate, if sufficient data are available to estimate the signal probabilities. Finally, we compare our method
to other common methods for assessing repertoire size, using examples of animal vocalisations: mockingbird song, chickadee calls, and hyrax songs. Matlab scripts implementing this method are available for download at [URL TO BE DETERMINED BEFORE PUBLICATION].

3. MATHEMATICAL THEORY OF THE MODEL

Sampling signals from a repertoire can be represented as a variant of the Coupon Collector’s problem, solved by Erdös & Rényi (1961) and cited in Jocković & Mladenović (2011). Suppose we collect coupons (sometimes the problem is posed as collecting baseball cards, or similar) of which there are N different types. We randomly select coupons with replacement, i.e. the coupons are not depleted. The original problem asks for the expected number of selections necessary to have collected at least one of each coupon type. We pose a related question: after selecting M coupons, how many distinct different types of coupons are we expected to have uncovered? This is equivalent to sampling M signals from a repertoire of true size N.

Our problem may be posed formally as follows: Let $S = \{1, 2, ..., N\}$ be the set of distinct signals in an N-element repertoire. Each possible sample of size M from this repertoire corresponds to one of the N^M sequences of the form $(i_1, i_2, ..., i_M)$, where $i_1, ..., i_M$ are arbitrary elements of S. Our sample space $\Omega(M, N)$ consists of the set of all such sequences. Equip $\Omega(M, N)$ with a probability measure P defined as follows: Let $p(1), ..., p(N)$ designate the relative frequencies of the signals $1, ..., N$, where $p(1) + \cdots + p(N) = 1$. Then set $P(i_1, ..., i_M) = p(i_1) \cdots p(i_M)$, extending P to arbitrary subsets of $\Omega(M, N)$ by additivity. Note that
in defining \(P \) in this way, we are postulating that the signal occurring at each position in the sample is independent of the signals occurring in earlier positions. Now consider the random variable \(X : \Omega(M, N) \rightarrow \{1, 2, \ldots, N\} \), where \(X(i_1, i_2, \ldots, i_M) \) is the number of distinct signals in the sequence \((i_1, i_2, \ldots, i_M)\). Our goal is to evaluate \(E(X) = \sum_{j=1}^{N} j \cdot P(X = j) \), the expected (or mean) value of \(X \). The evaluation of the probabilities \(P(X = j) : = P(\{(i_1, i_2, \ldots, i_M) : j \text{ distinct signals occur in the sequence } (i_1, i_2, \ldots, i_M)\}) \) is, however, a daunting task. Fortunately, we may write \(X \) as the sum \(X_1 + \cdots + X_N \) of indicator random variables, where, for each \(j = 1, \ldots, N, X_j(i_1, \ldots, i_M) = 1 \) if the number \(j \) appears in \((i_1, \ldots, i_M)\) at least once, and \(0 \) if \(j \) never appears in the sequence. For each \(j \), \(E(X_j) = P(X_j = 1) = 1 - P(X_j = 0) = 1 - (1 - p(j))^M \). By the linearity of the expectation operator \(E \) (which holds, notwithstanding the fact that the random variables \(X_j \) are not independent) it then follows that

\[
E(X) = \sum_{j=1}^{N} E(X_j) = \sum_{j=1}^{N} 1 - (1 - p(j))^M. \tag{3}
\]

In the specific case where \(p(1) = \cdots = p(N) = 1/N \) (all signals equally likely), \(P \) is the uniform distribution on \(\Omega(M, N) \), and (3) reduces to

\[
E(X) = N \left[1 - \left(1 - \frac{1}{N}\right)^M \right] = \frac{N^M - (N-1)^M}{N^{M-1}}. \tag{4}
\]

Although Equation 4 is similar in shape to Equation 1, this similarity is not preserved in the more general case (Equation 3) where the probabilities (relative frequencies) of each signal are not homogenous. Botero et al. (2008) examined a specific case of non-homogenous probability of
signals, using the WM, and concluded that in this case, enumeration, or simply counting the number of distinct signal types observed, provides as good an estimate of repertoire size as curve-fitting methods. We can extend this analysis to show that the error in curve-fitting techniques depends not on the extent of “non-homogeneity” in the probability distribution, but on the number of “rare” signals. Botero et al defined half of the signals as “common” (probability P_c), and half “rare” (probability P_r), where $P_c = 5P_r$. It follows therefore that $P_r = 1/(3N)$, and $P_c = 5/(3N)$. We can substitute these probabilities into Equation 3, which allows us to compute the expected number of distinct signal types observed (as determined by the Coupon Collector’s model):

$$E(X) = \frac{N}{2} \left[2 - \left(1 - \frac{1}{3N}\right)^M - \left(1 - \frac{5}{3N}\right)^M \right]$$ (5)

We can extend this treatment to the case where a proportion α of the signals are “common”, and (1-\alpha) “rare”, and where $P_r = \beta P$; 0<\alpha<1, and \beta>1. In this case Equation 3 becomes:

$$E(X) = N\alpha \left[1 - (1 - \beta P)^M \right] + N(1 - \alpha) \left[1 - (1 - P_r)^M \right]$$ (6)

Since all the signal probabilities sum to 1, $N\alpha\beta P_r + N(1 - \alpha)P_r = 1$, and so solving for P_r, we have:

$$P_r = \frac{1}{N(\alpha\beta - \alpha + 1)}$$

$$P_c = \frac{\beta}{N(\alpha\beta - \alpha + 1)}$$ (7)
Substituting this into Equation 6, we can derive a general expression for the expected number of distinct observed signals.

The Botero model is unrealistic in considering only two signal probabilities, and as a result overestimates the performance of exponential curve fitting models. Before moving on to consider more realistic signal probability distributions, we can perform a further simple extension, by assuming that signal probabilities decline according to a simple exponential probability distribution, with a single parameter μ (where $\mu > 0$) that determines how much variation there is between the probabilities of different signal types.

$$p(i) = \frac{1}{K\mu} e^{-i/\mu}$$ \hspace{1cm} (8)

where K is a normalising factor, given a finite number N of signal types

$$K = \frac{1-e^{-N/\mu}}{\mu(1-e^{-1/\mu})}$$ \hspace{1cm} (9)

4. METHODS

We examine by simulation the performance of four techniques for estimating vocal repertoire size. The WM has been extensively described above. Secondly, we test the model proposed by Davidson & Wilkinson (2002), DW, which uses an additional parameter A (Equation 2), and so does not lend itself to analytical scrutiny along the lines of the preceding section. Thirdly, we attempt to estimate repertoire size using the model of signal occurrence as determined by the Coupon Collector’s model (henceforth, CC). Finally, we compare these
techniques to simple enumeration (EN) of distinct observed signals, as an estimate of true repertoire size.

We applied all four repertoire estimation techniques against real data taken from three species in the field. First, the northern mockingbird possesses a highly diverse repertoire of songs based largely on mimicry of other species, and is an important subject for repertoire size estimation. We used data gathered on nine male mockingbirds from 2010-2011 in Elon, North Carolina; for details on the methods, see Gammon (2014). The songs were analysed and assigned a classification according to the heterospecific mimicked species and song type, breaking song sequences where the bird interspersed native mockingbird song. Our data set comprised 1184 sequences (i.e. $M\leq1184$), consisting of 100 different mimicries (signals) of 41 different species. Sequences varied in length between one and 16 signals (mean 2.4). Our aim here was to determine the repertoire size (N) in terms of the number of different heterospecific signals the birds can mimic. We estimated the repertoire size for the study population as a whole, rather than for each of the nine birds individually, due to the small sample size at the individual level.

Our second data set is a collection of calls of Carolina chickadees, recorded from 40 flocks in eastern Tennessee (Freeberg 2008) and 20 flocks in central Indiana (Freeberg 2012). Calls were recorded from late fall through early spring months when chickadee flocks naturally occur. Calls from a single flock were typically obtained in 45-90 minutes of recording in a 1-2 day period. The observer used a naturalistic observation approach, attempting to get close enough to the wild birds to obtain high quality recordings, without otherwise disrupting the birds’ normal behaviour. The chickadee data set consists of 8124 different calls, consisting of 7 different note types, and varying in length between one and 45 notes (mean 6.1) per call. In total, there are 1284 distinct sequences in this corpus. Our aim here was to estimate the repertoire size of all the
birds together (rather than of individual chickadees) in terms of call combinations, as in the song analysis above for mockingbirds. However, since call sequence length is essentially unbounded, and so the potential repertoire size unlimited, we restricted ourselves to examining all observed sequences of 5 successive notes in the corpus. We treated each of these “5-grams” as a distinct signal type (preliminary investigation indicated that choosing 4- or 6-grams did not significantly alter the results). This provides a potential signal-space of $7^5=16807$ distinct signal types, although in the 18593 5-grams obtained in the data set, there were only 352 distinct signal types.

Our third data set used songs of a terrestrial mammal, the rock hyrax *Procavia capensis*, recorded in northern Israel (Kershenbaum et al. 2012). Opportunistic recordings were made from males at 18 colonies, and analysed to identify syllable types using the same classification technique used in Kershenbaum et al. (2012). This data set consists of 969 sequences, consisting of 5 different syllables, varying in length between one and 81 syllables (mean 45). As with the chickadee corpus, we examined all 2028 5-grams in these data, in which there were 849 distinct signals, out of $5^5=3125$ possible 5-grams.

Empirical observations suggest that the frequencies of different signal types in real bird and mammal samples are not well described by a simple probability distribution, such as Equation 8, but follow a heavy-tailed distribution, with a few common signals, and a large number of rare ones. Although we do not have a mechanism explaining the distribution of signal probabilities, we attempted fitting the probability distribution of signal types (or 5-gram types) to two classes of similar heavy-tailed distribution functions: the double exponential function

$$\log[p(i)] = a e^{-bi} + c e^{-di}$$

(10)

and the logarithmic power function:
where \(a, b, c,\) and \(d\) are unknown parameters, determined by fitting Equation 10 or 11 to observed data. The function with the best fit to the signal type distribution was chosen to model the probabilities for that species.

In our first test, we used each of the four methods to estimate the repertoire size of the three species, and compared the prediction of each model to the curve showing the number of distinct signal types observed vs. increased sampling effort. We randomly shuffled the sequence of signals, to produce 10 random ordering of the signals from each of the four species, and calculated the estimated asymptotic repertoire size using each of the four methods. For illustrative purposes, we additionally varied the notional "sample size", \(M\), by taking the first \(M\) signals from each of the 10 random orderings, and estimating repertoire size \(E(X)\) using each of the methods.

In our second test, we performed simulations to generate artificial signal sequences with the statistical properties of the empirical data, for each of the three signal probability distributions shown above, and then tested the ability of the different repertoire estimation techniques to determine the true repertoire size. We simulated a repertoire size for each of the three distributions, arbitrarily chosen as being at least twice as large as the number of signals observed empirically for that species: mockingbird \(N=200\), chickadee \(N=736\), hyrax \(N=1944\). We generated random sequences of signals, drawn from a repertoire of \(N\) distinct signal types, where the probability of the \(i^{th}\) signal is determined by Equations 12, 13, and 14 respectively. We examined the performance of each algorithm as the sampling effort \(M\) is increased. This tests how each algorithm performs when the number of available observations is limited. To do this,
we generated a single string S of length $M=2N$, and then sampled substrings $Q=S_{1\ldots m}$ for $m=1\ldots M$. Each substring Q represents a particular sampling effort, for instance, recording birdsong in the field. For each substring Q we re-estimated the signal probability distribution, using only the signals in Q. This provided an important sensitivity test of the CC algorithm to poor estimates of the signal probability distribution, arising from small sample sizes. Finally, the experimenter will rarely know \textit{a priori} which probability model is most appropriate for the signal distribution of the study species. Once sampling of signals has begun, however, it becomes possible to estimate the distribution of signals. We can do this by applying both probability models given in Equations 10 and 11 to each signal substring, selecting the model with the best goodness of fit. Furthermore, once string Q has been sampled, we can improve our estimate of $E(X)$ by shuffling $Q\rightarrow Q'$, and then again measuring $F(r)$, the number of distinct signal types in Q'. We repeated this process 10 times, to determine $Q'_{1\ldots r}$ for $r=1\ldots m$, which provided us with an averaged $F(r)$ over 10 random shufflings of Q, for each r.

For the WM and DW, we performed a non-linear least-squares fit of $F(r)$ to r, using the Matlab function \textit{fit}. This gave an estimate of N for the WM, and of N and A for the DW, for each value of m. For the EN method, $F(r)$ measures the number of distinct observed signal types directly.

For the CC model, we first estimated the parameters of Equations 12, 13 or 14, for each substring Q of each length $m=1\ldots M$, using the Matlab function \textit{fit}, given the distribution of signals in Q, and the probability density model in Equation 8. We then performed a non-linear least-squares fit to the CC model (Equation 3), to find N.
Finally, for the purpose of comparison, we repeated the analysis of simulated empirical signals using the mark-recapture technique as implemented using Schnabel's estimator (Sutherland 2006), where each signal type observed was considered a new sampling event.

5. RESULTS

In the example given by Botero et al. (2008) using non-homogeneous signal probabilities, the predictions of the WM (Equation 1) and of the CC model (Equation 5) deviate prominently from each other. Figure 1 shows the expected number of distinct signals observed, if the WM and CC models were driving the presentation of the repertoire, i.e. how quickly each model predicts new signals to appear. The figure indicates that if signals were observed according to an exponential model such as the WM, the expected number of distinct signals observed would rise much faster than predicted by the CC model. However, as we have shown in the section Mathematical Theory of the Model, signal selection is more precisely modelled as coupon collection, rather than WM exponential growth. Thus signals will accumulate more slowly than expected by WM dynamics, fewer distinct signal types will be observed in practice than expected by the WM model for any particular sampling effort, and applying the WM will tend to underestimate total repertoire size.

When the two-probability model is extended to a variable number of "common" and "rare" signals (Equation 6), the divergence of the WM and CC models becomes more prominent. Figure 2 shows examples of these results for varying α and β. It is clear that the predictions of the WM only agree with the expected number of distinct observed signal types when two conditions are met: when the signal probability distribution is homogenous, and when the number of rare
signals is small (α is large). Thus, a large number of rare signals will typically result in the WM underestimating the true signal repertoire size (many signals will be unobserved for any given observation effort).

Examples of this distribution for different values of μ, and the predictions of the Wildenthal model, are given in Figure 3. For low μ (many rare signals), in comparison with the Coupon Collector model, the Wildenthal model expects many more distinct signals to occur in the first M samples, and therefore greatly underestimates the total repertoire size by the conclusion of sampling effort.

The results of fitting signal probabilities to the two probability density models (double exponential, Equation 10; and logarithmic power, Equation 11) are shown in Figure 4 for each of the three species. In the case of the mockingbird, the signal probabilities best fit the double exponential model, with the following parameters (Figure 4a):

$$\log[p(i)] = 3.827e^{-0.363i} - 3.940e^{0.007i}$$ \hspace{1cm} (12)

For the chickadee data, the logarithmic power model provided the best fit to the 5-gram signal probabilities, with the following parameters (Figure 4b):

$$\log[p(i)] = -9.143i^{0.118} + 7.922$$ \hspace{1cm} (13)

The hyrax 5-gram probabilities also fit the logarithmic power distribution, with the following parameters (Figure 4c):

$$\log[p(i)] = 13.18i^{-0.07128} - 15.95$$ \hspace{1cm} (14)
Consequently, these relationships were used when determining the probabilities $p(i)$ for use in the Coupon Collector’s model Equation 3.

Figure 5 shows the result of using each of the four techniques to estimate the repertoire size of the vocal signals from the three species examined. With the mockingbird and chickadee data, both the WM and DW techniques saturate at a repertoire size below the maximum number of distinct signal types observed (EN), and this by definition must be an underestimate of the true repertoire size. However, most noticeably in the mockingbird and chickadee data sets (Figure 5a,b), the exponential techniques fail to capture the shape of the repertoire vs. samples curve. The CC model, on the other hand, closely matches the empirical data at every point. In the case of the chickadee data (Figure 5b), the WM underestimates the true repertoire size even more markedly, and the DW also saturates below the enumeration result, whereas the CC model again matches the observed data well. The hyrax data set has a much larger number of distinct observed signal types, and the number of observations is insufficient to characterise the curve accurately. However, the WM still clearly underestimates the total repertoire size, while both the DW and CC methods provide higher estimates.

When simulating signal sequences using the statistical properties of the real signal type distributions, the Coupon Collector model provides the only accurate method of those tested for estimating repertoire size, at reasonable sampling efforts (Figure 6); and even when the CC estimates are highly variable (Figure 6b) they are consistently more accurate than the WM, DW, or EN techniques. The exponential models, as well as the enumeration technique, greatly underestimate the repertoire size for all data sets. Notably, for the mockingbird and chickadee data sets, the enumeration estimate is many times lower than the true repertoire size, even though the enumeration “appears” to have saturated at the end of the sampling period. The mark-
recapture (Schnabel) method likewise performed poorly in comparison to CC, and provided no benefit over any of the other approaches.

6. DISCUSSION

We derived a precise, powerful and accurate statistical model for predicting the number of distinct signal types observed from a repertoire, given a particular sampling effort. This model is based upon different assumptions than those made by researchers in the past that observed signal types should follow an “exponential” model. The predictions of our “Coupon Collector” model do not differ substantially from those of the exponential models when the probabilities of the different signal types are similar. However, in realistic scenarios, animals vocalise with numerous syllables of markedly different prior probabilities, and it is often the case that certain signal types are rarely observed. In such a case, using an exponential model to predict the total signal repertoire will underestimate repertoire size. We showed that when the number of rare signals is large, the predictions of the exponential model can be highly inaccurate (Figure 3). Use of the Coupon Collector model requires an estimate of the prior probability distribution of the different signal types, which is easily estimated from the data. Once this estimate is calculated, furthermore, the Coupon Collector model is the only one of the techniques tested that provides an accurate indication of the true repertoire size (Figure 6). Examination of the observed repertoire size vs. sampling effort curves (Figure 5) shows how inappropriate the exponential models and the enumeration method are for the real data sets analysed here.

Repertoire size has often been cited as an indicator of ecological and neurological importance in animal vocalisation studies. Repertoire size has been particularly well studied in
oscine birds, and has been found to correlate with age (Hesler et al. 2012), population viability (Laiolo et al. 2008), physical condition (Kipper et al. 2006), territory maintenance (Hiebert et al. 1989), and brain structure (Pfaff et al. 2007). In mammalian studies, repertoire size is difficult to assess, but a relationship between repertoire size and social complexity has been demonstrated in some taxa (McComb & Semple 2005; Pollard & Blumstein 2012). Despite this, the utility of repertoire size estimates is unclear, precisely because of the apparent inability of existing methods to derive such an estimate from realistically sized data sets. One of the challenges to estimating repertoire size is that exhaustive sampling of all signals is unrealistic, and the sampling effort to capture even a large majority of all signals may be costly and time-consuming. Clearly, estimation techniques that can approximate repertoire size based on a relatively small sample are appealing. Although many studies (e.g. Pfaff et al. 2007; Laiolo et al. 2008; Hesler et al. 2011; Boogert et al. 2011) have used simple estimates of repertoire size – particularly signal type enumeration – it has been pointed out that many species continue to produce “novel” signals after “exhaustive” collection has been completed (e.g. Balsby & Hansen 2010; Hesler et al. 2011). Our results show that using the total number of observed signals can be greatly misleading, even when the curve of observed repertoire vs. collection effort appears to have “flattened out”. Our model provides a more rigorous approach to estimating vocal repertoire size, and should go a long way towards addressing the criticisms of previous studies.

Although the overwhelming majority of research into repertoire size has been in the context of vocal communication, our method can be applied generally to other repertoire types, most usefully if the true repertoire size is sufficiently large to make simple enumeration impractical. However, most visual signalling modalities consist of a very small number of signal types, e.g. the five display types of the Jacky Dragon *Amphibolurus muricatus* (Peters & Ord...
2003), or the eight display types of the mallard *Anas platyrhynchos* (Lorenz 1971, cited in Bradbury & Vehrencamp 2011), and so may benefit less from our methodology. Conversely, large behavioural repertoires (~50 behavioural patterns) have been examined in *Pheidole* ants, and assessment of repertoire size in this system has been recognised as being problematic (Sempo & Detrain 2004). Use of the Coupon Collector model should allow more accurate assessments to be made.

Although the Coupon Collector model is a precise theoretical formulation of the process of observing signals from a repertoire, it is necessarily more complex than simple exponential models. To provide an accurate model, it is necessary to specify the prior probability of each signal in the repertoire, something clearly impossible when not all signals have been observed. Our approach is to find a parametric approximation to the prior probability distribution for signal types, and to extrapolate this to unknown signals that are rarer than those already observed. In this case, the computational complexity of the Coupon Collector analysis is dependent on the number of parameters in the probability distribution model. In the data presented here, we have accurately modelled the signal probability distributions with just three or four parameters; making non-linear least-square fitting realistic for the size of the data sets used. We have also used just two separate statistical models: the double exponential (Equation 10) and the logarithmic power (Equation 11). Either of these is easy to apply to empirical data gathered in the field. The Wildenthal (1965) model is far simpler, using no indication of signal probability heterogeneity, but suffers in performance from this unrealistic assumption. The Davidson & Wilkinson (2002) model attempts to compensate for this by introducing an arbitrary rate parameter A, to capture the “slowing down” of signal discovery inherent when many rare signals exist. However, although it could be argued that both the Davidson-Wilkinson model and the
mark-recapture model have an advantage of computational simplicity over the Coupon Collector model, the predictions of the Davidson-Wilkinson and the mark-recapture models can be so inaccurate that they have little advantage over the Wildenthal model. In addition, the rate parameter A in the Davidson-Wilkinson model has no clear biological or statistical basis, whereas the parameters of the Coupon Collector model directly reflect the rarity of signals in the animal’s repertoire.

In understanding the evolution of communicative complexity, we are typically interested in the repertoire sizes of populations or species (e.g., Pollard & Blumstein 2012). From developmental and ecological standpoints, however, we are frequently interested in repertoire sizes of individuals, rather than of groups. In this study we have made a number of assumptions and simplifications, particularly by analysing the repertoire of all the signals of a species together, rather than analysing individuals separately. Although the distribution of the frequencies of different signal types may be different between individuals and populations, we feel that this approach better assesses the accuracy of the Coupon Collector model, by providing a larger data set, rather than attempting to draw direct conclusions on individual behaviour from this analysis. In any case, although the repertoire sizes of individuals and populations may differ, we do not believe that the methodologies for estimating these repertoires should be different in these two cases. It is clear from Figure 6 that the Coupon Collector model should provide a superior estimate of true repertoire size, and at smaller sample sizes.

The analysis that leads to Equation 3 as the precise estimate of expected observed repertoire size importantly assumes that signal incidences are independent. This assumption is necessarily incorrect in those species where note or call sequences are constrained by rules of note or call ordering, such as the mockingbird (Gammon & Altizer 2011), hyrax (Kershenbaum
et al. 2012) or chickadee (Freeberg & Lucas 2012). However, incorporating inter-syllable statistical dependence has never been addressed by any of the analytical techniques used to assess repertoire size. We also note that, regardless of technique, the presence of ordering rules will have the effect of reducing the estimated repertoire size, and the Coupon Collector model performed the best at preserving a high estimated repertoire size.

Other authors have attempted to model the repertoire size observation pattern using other approaches, such as mark-recapture (Garamszegi et al. 2005), or rarefaction (Peshek & Blumstein 2011). We provide only a brief comparison of the Coupon Collector model with one of these approaches, partly because they are far less commonly used in the literature than the exponential models, but also because we believe that there is inherent merit in adopting the model supported by theory, rather than more arbitrary models that may provide a certain level of empirical correspondence with data. However, we do not dismiss the use of rarefaction or other techniques where the particular requirements may make use of the Coupon Collector model impractical; particularly where insufficient data exist to estimate the signal prior probability distribution.

In summary, we present theoretical and analytical support for the Coupon Collector’s Model to assess signal repertoire size. We have shown that realistic estimates of repertoire size cannot be achieved using an inaccurate statistical model of repertoire discovery. We have explicitly used the terms ‘signal’ and ‘signal repertoire size’ in instances that were not specifically about song or song repertoire size per se. This is because our arguments here relate to estimates of signal repertoire size in any signalling modality in which the system contains more than one variant. There is a place for simplified or empirical models that adequately describe the data despite not being theoretically grounded. However, we have shown that in
cases of animal vocal repertoires where a significant number of rare signals exist, such models do not reflect observations accurately. Our presentation of the Coupon Collector model will hopefully encourage researchers to derive more reliable estimates of repertoire size, and eventually to re-evaluate the utility of this metric in ecological research.

7. ACKNOWLEDGEMENTS

We would like to thank Carl Wagner for the derivation of the expected value expressions, and Jan Rosinski for fruitful discussion. This work was supported by the National Institute for Mathematical and Biological Synthesis, an Institute sponsored by the National Science Foundation, the U.S. Department of Homeland Security, and the U.S. Department of Agriculture through NSF Award #EF-0832858, with additional support from The University of Tennessee, Knoxville. AK is supported by the Herchel Smith Fund as a Research Fellow at the University of Cambridge.
8. REFERENCES

References

Figure 1. Examples of the number of distinct signal types observed, vs. sampling effort (M), as predicted by two different models (solid line: Coupon Collector model; dashed line: Wildenthal model), with total repertoire size $N=100$, and a non-homogenous song prior probability distribution as described in (Botero et al. 2008). If repertoire sampling followed the assumptions of the Wildenthal model, the number of observed distinct signal types would rise much faster than is actually the case.

Figure 2. Expected number of distinct signal types observed with varying number of samples, with total repertoire size $N=100$, and different signal prior probability distributions, following (Botero et al. 2008). (a) The first column shows the prior probability $p(i)$ of the i^{th} signal, for varying number of “rare” signals α, with the relative frequency of rare signals β held constant. The second column shows the expected number of distinct signal types observed for the corresponding probability distribution (solid line), and the Wildenthal model (dashed line). Each row indicates a different value of $\alpha=\{0.2, 0.4, 0.6, 0.8\}$. (b) The estimated repertoire size, for varying number of rare signals α, and relative frequency of rare signals β, as calculated by the two models (upper: Coupon Collector model; lower: Wildenthal model).
Figure 3. Expected number of distinct signal types observed with varying sampling effort, for different signal prior probability distributions according to an exponential probability density function. The first column shows the prior probability of the i^{th} song; each row showing a different mean of the distribution μ. The second column shows the expected number of distinct signal types observed for the corresponding probability distribution (solid line: Coupon Collector model; dashed line: Wildenthal model).

Figure 4. Sorted signal probabilities for (a) the mockingbird data set, (b) chickadee data set, and (c) hyrax data set. Black points represent the relative probabilities on a log scale of all the signals in the observed repertoire, sorted in descending order. The red line shows the fit of the modelled probability function, and the parameters of the fit (a, b, c, and d) are shown next to the fitted line.

Figure 5. Best fits of the different repertoire estimation techniques, for the empirical data sets: (a) mockingbird, (b) chickadee, (c) hyrax. Each model was fit to the entire data set, and the resulting parameters used to predict the expected number of signal types observed for different sampling efforts. The estimated repertoire size is shown for each technique in the legend, and as a dashed line of corresponding colour.

Figure 6. Estimated repertoire size for the different repertoire estimation techniques, for simulated data sets based on the empirical data sets: (a) mockingbird, (b) chickadee, (c) hyrax.
True repertoire size is shown as a broken line. Each curve represents the repertoire size estimate for varying sampling effort, and error bars indicate standard error.
4. Figure 1
Click here to download 4. Figure: figure1.eps
4. Figure 2a
Click here to download 4. Figure: figure2a.eps
Figure 2b
Click here to download 4. Figure: figure2b.eps
4. Figure 3

Click here to download 4. Figure: figure3.eps
Mockingbird:

\[a = -3.940, b = -0.007, c = 3.827, d = 0.363 \]
Chickadee:
a = -9.143, b = 0.118, c = 7.922
Hyrax:
a=13.180, b=-0.071, c=-15.950
4. Figure 5a
Click here to download 4. Figure: figure5a.eps
4. Figure 5b

Click here to download 4. Figure: figure5b.eps
Figure 4c
Click here to download 4. Figure: figure5c.eps

- Enumeration: 849
- Wildenthal: 838
- Davidson: 1184
- Coupon Collector: 1333

Graph showing the number of signal types against the number of samples.
Figure 6a
4. Figure 6c
Click here to download 4. Figure: figure6c-jtbv3markrecapture.eps