Carbon nitride–TiO₂ hybrid modified with hydrogenase for visible light driven hydrogen production†

Christine A. Caputo,a Lidong Wang,b Radim Beranekb and Erwin Reisner*a

A system consisting of a [NiFeSe]–hydrogenase (H₂ase) grafted on the surface of a TiO₂ nanoparticle modified with polyheptazine carbon nitride polymer, melan (CN₈) is reported. This semi-biological assembly shows a turnover number (TON) of more than 5.8 × 10⁵ mol H₂ (mol H₂ase)⁻¹ after 72 h in a sacrificial electron donor solution at pH 6 during solar AM 1.5 G irradiation. An external quantum efficiency up to 4.8% for photon-to-hydrogen conversion was achieved under irradiation with monochromatic light. The CN₈–TiO₂–H₂ase construct was also active under UV-free solar light irradiation (λ > 420 nm), where it showed a substantially higher activity than TiO₂–H₂ase and CN₈–H₂ase due, in part, to the formation of a CN₈–TiO₂ charge transfer complex and highly productive electron transfer to the H₂ase. The CN₈–TiO₂–H₂ase system sets a new benchmark for photocatalytic H₂ production with a H₂ase immobilised on a noble- and toxic-metal free light absorber in terms of visible light utilisation and stability.

Introduction

The use of efficient electrocatalysts in artificial photocatalytic schemes has been an area of recent interest for the conversion of protons to hydrogen using sunlight. Specifically, the use of redox enzymes in photocatalytic schemes highlights the importance of investigating the compatibility of biological systems with light harvesting materials and testing the stability of the resultant bio-hybrid assemblies.¹ Hydrogenases (H₂ases) are the most efficient noble-metal free electrocatalysts for H₂ production and achieve a turnover frequency (TOF) of more than 1000 s⁻¹ with a small overpotential.² H₂ases also show impressive H₂ production rates and yields in sacrificial photocatalytic schemes in pH neutral aqueous solution.³ In these systems, a photoexcited light absorber provides electrons to the protein via an internal wire, the iron–sulfur electron relay, to the active site where proton reduction occurs. Examples are the immobilization of a H₂ase on Ru-sensitised TiO₂,² on Cd-based quantum dots⁴ as well as homogeneous systems using the H₂ase with a covalently linked photosystem ¹ or in combination with an organic dye,⁵ and multi-component systems with a dye and a soluble redox mediator.⁶

Polymeric carbon nitride (polyheptazine or melan, herein CN₈) is a promising visible-light absorber for the photocatalytic generation of H₂.⁷ We have recently reported the use of CN₈ as a light harvesting material in combination with a H₂ase and a H₂ase-inspired synthetic Ni catalyst for solar H₂ generation.⁸ The CN₈–H₂ase system showed sustained catalysis with a turnover number (TON) of more than 50 000 after 70 h solar light irradiation. However, this hybrid system suffered from a weak interaction between the H₂ase and the CN₈ surface, and consequently, poor electron transfer from CN₈ to the H₂ase. Furthermore, CN₈–H₂ase only showed efficient H₂ production up to wavelengths of approximately 420 nm and therefore only limited visible light harvesting capabilities.

Here, we selected a hybrid material consisting of TiO₂ (Hombikat UV 100, anatase, BET surface area: 300 m² g⁻¹, crystallite size < 10 nm) surface-modified with CN₈ polymer as a light absorbing hybrid material for the photocatalytic system with a H₂ase for three main reasons (Fig. 1; see ESI and Fig. S1† for synthesis and characterisation). Firstly, CN₈–TiO₂ can be readily prepared on a gram scale by heating TiO₂ nanoparticles in the presence of urea, an inexpensive and sustainable material.⁹ Secondly, CN₈–TiO₂ provides us with substantially improved solar light harvesting performance compared to individual CN₈ and TiO₂. Band gap excitation of TiO₂ (pathway 1; Fig. 1) efficiently utilises the UV spectrum (band gap of 3.2 eV for anatase TiO₂ with CB₃TiO₂ at approximately −0.6 V vs. NHE at pH 6).¹⁰ A significant portion of the visible spectrum is utilised with CN₈–TiO₂ as it can, upon photo-excitation of CN₈, perform photoinduced electron transfer from the LUMO CN₈ to CB₃TiO₂ (pathway 2).
which would result in improved charge transfer and ultimately increased catalytic turnover for H₂ production.

Results and Discussion

Photocatalytic systems were assembled by dispersing CN₇–TiO₂ particles in an aqueous electron donor solution (0.1 M; 2.98 mL) in a photoreactor vessel (headspace volume: 4.74 mL; see ESI† for experimental details). The vessel was sonicated under air (15 min) before sealing and purging with an inert gas (2% CH₄ in N₂). The H₂ase (16.5 µL, 3 µM) was then added and the photoreactor purged again to ensure anaerobic conditions. The stirred suspension was irradiated at 25 °C with a solar light simulator (air mass 1.5 global filter, I = 100 mW cm⁻²) and the headspace H₂ was quantified at regular time intervals by gas chromatography against the internal CH₄ standard. The conditions were optimised for maximum turnover frequency (TOF₇₁) by varying the electron donor and pH of the solution (Table S1; Fig. S2 and S3†). Optimised conditions consisted of ethylenediamine tetraacetic acid (EDTA; 0.1 M) as the electron donor at pH 6. A ratio of semiconductor (5 mg unless otherwise noted) to H₂ase (50 pmol) was used for ease of comparison to previously reported photosystems with Dmb [NiFeSe]−H₂ase.³,⁶,⁹

Solar (UV-visible) irradiation (λ > 300 nm) of CN₇–TiO₂–H₂ase under standard conditions generated an initial TOF₇₁ of (2.8 ± 0.3) × 10⁻¹ h⁻¹ or 8 s⁻¹ with the production of 5.85 ± 0.59 µmol H₂ after 4 h and 28 ± 3 µmol H₂ with an overall TON₇₁ > (5.8 ± 0.6) × 10⁵ after 72 h (Fig. 2 and S4†). Negligible amounts of H₂ were detected in the absence of H₂ase, CN₇–TiO₂ or EDTA. UV band gap excitation of TiO₂ did not result in the accumulation of O₂, which suggests that holes generated upon UV band gap excitation of TiO₂ are either efficiently quenched by EDTA directly or scavenged after being trapped by CN₇.

To qualitatively determine the contributions from the three excitation pathways in Fig. 1B, irradiation was also performed with different long-pass filters. The CN₇–TiO₂–H₂ase system was studied under visible light irradiation at λ > 420 nm to study the contribution of CN₇ to light absorption (pathways 2 & 3) without...
the contribution of intrinsic absorption by TiO2 (pathway 1). A photoactivity with an initial TOF$_{H_{2}\text{ase}}$ of 6353 ± 633 h$^{-1}$ was observed, which results in the generation of 1.31 ± 0.13 μmol H$_2$ after 4 h. After 72 h, 13 ± 1 μmol of H$_2$ were generated with a TOF$_{H_{2}\text{ase}}$ of more than (2.6 ± 0.3) × 103 (Fig. 2).

Subsequently, irradiation was carried out at λ > 455 nm to investigate the contribution of the direct charge-transfer from the HOMO$_{CN}$ to CB$_{TiO2}$ to the photoactivity. A TOF$_{H_{2}\text{ase}}$ of 1096 ± 175 h$^{-1}$ with the evolution of 0.26 ± 0.06 μmol H$_2$ after 4 h and 2.9 ± 1.6 μmol H$_2$ after 72 h was observed, which corresponds to 17% of the visible light activity. This suggests that all three pathways in Fig. 1B contribute to the UV-vis photoactivity, whereas pathways 2 and 3 are responsible for the visible-light response of CN$_x$–TiO$_2$–H$_2$ase. Previous investigations of CN$_x$–TiO$_2$ hybrids have shown that their activity is limited by the strong electronic coupling between CN$_x$ and TiO$_2$ leading not only to intense visible light absorption but also to fast back electron transfer [primary recombination].

In order to study the role of TiO$_2$ as heterogeneous electron relay in CN$_x$–TiO$_2$–H$_2$ase in more detail, a sample of CN$_x$–ZrO$_2$ (15 mg) was also tested with the H$_2$ase. The negative CB$_{ZrO2}$ at approximately -1.35 V vs. NHE at pH 6, prevents electron injection from LUMO$_{CN}$, (approximately -1.25 V vs. NHE at pH 6). This band level mismatch allowed us to demonstrate that spatial proximity of surface-bound H$_2$ase to CN$_x$ alone cannot promote productive electron transfer as no H$_2$ was observed with CN$_x$–ZrO$_2$–H$_2$ase (λ > 300 nm; Fig. S4†). Charge transfer from the LUMO$_{CN}$ into CB$_{ZrO2}$ (pathway 2) is not possible, nor is the direct electron transfer from HOMO$_{CN}$ to CB$_{ZrO2}$ (pathway 3), which are crucial to the formation of H$_2$ with the hybrid material.

For comparison, H$_2$ production was also tested with CN$_x$ (5 mg) and H$_2$ase (50 pmol) in the absence of metal oxide under standard conditions. A TOF$_{H_{2}\text{ase}}$ of 14852 ± 1485 was obtained after 4 h with an initial TOF of 6288 ± 649 h$^{-1}$ when irradiated with UV-visible light (λ > 300 nm, Table S1†). Under visible light irradiation (λ > 420 nm), a TOF$_{H_{2}\text{ase}}$ of 2375 ± 267 was observed after 4 h and no H$_2$ was produced at λ > 455 nm, demonstrating the substantially enhanced activity with CN$_x$–TiO$_2$–H$_2$ase compared to CN$_x$–H$_2$ase at all wavelengths (Fig. S4†).

Experiments were also performed with TiO$_2$–H$_2$ase. While the system showed comparable activity under UV-visible irradiation due to efficient band gap excitation of TiO$_2$ (pathway 1), it showed significantly reduced activity under visible only irradiation at λ > 420 nm and displayed negligible H$_2$ yields at λ > 455 nm compared to CN$_x$–TiO$_2$–H$_2$ase (Fig. S4†). Thus, UV-band gap excitation of TiO$_2$ dominates the absorption of the CN$_x$–TiO$_2$–H$_2$ase hybrid material under UV-light irradiation, which becomes less significant under visible irradiation.

The effect of light intensity on the photocatalytic activity (λ > 300 nm) was studied by employing neutral density filters. A photoactivity of approximately 90% remained when employing a 50% absorbance filter (50 mW cm$^{-2}$) and 44% of activity remained with an 80% filter (20 mW cm$^{-2}$; Fig. S5†). The initial non-linear decrease in activity implies that the system is not limited by light at 1 Sun intensity as has been observed previously with synthetic H$_2$ evolution catalyst-modified Ru dyesensitised TiO$_2$ systems.

The CN$_x$–TiO$_2$–H$_2$ase system sets a new benchmark for visible light driven and prolonged H$_2$ production with a heterogenised H$_2$ase without the need for expensive or toxic materials. A part of this improvement can be attributed to the direct optical electron transfer (pathway 3) within CN$_x$–TiO$_2$, which draws the absorption of solar light significantly into the visible spectrum.

The enzyme loading onto CN$_x$–TiO$_2$ was calculated based on the BET surface area of 111 m2 g$^{-1}$, a crystallite surface area of ~314 nm2 per particle and an estimation that approximately one-quarter of the surface area of TiO$_2$ is accessible for the enzyme to adsorb. This equates to ~0.1 H$_2$ase per particle of CN$_x$–TiO$_2$. The approximate 1 : 10 enzyme : particle ratio allows the H$_2$ase to function at the maximum rate (i.e., TOF) as the maximum electron flux of conduction band electrons is directed towards a single enzyme. To qualitatively determine the amounts of surface-bound and solubilised H$_2$ase in the optimised system, H$_2$ase (50 pmol) was loaded onto CN$_x$–TiO$_2$ (5 mg) in aqueous EDTA solution by stirring under N$_2$ for 15 min. The suspension was centrifuged and the supernatant decanted (see ESI† for experimental details). The CN$_x$–TiO$_2$–H$_2$ase pellet was re-dispersed in fresh EDTA solution (3 mL, 0.1 M, pH 6) and the photocatalytic vessel purged with 2% CH$_4$ in N$_2$. The suspension was then irradiated (λ > 420 nm) and H$_2$ production monitored (Fig. 3). The H$_2$ production activity was nearly identical to a sample that was not centrifuged, both in the presence and absence of methyl viologen (MV$^2^+$, see below), indicating that attachment of H$_2$ase to CN$_x$–TiO$_2$ is essentially quantitative. The substantially improved adsorption of the enzyme on the TiO$_2$ surface compared to the inert CN$_x$ polymer therefore also contributes to the increased activity of CN$_x$–TiO$_2$–H$_2$ase compared to CN$_x$–H$_2$ase. Previously an 88% decrease in photoactivity was observed with the poorly interacting CN$_x$–
H₂ase after centrifugation and re-dispersion in fresh electron donor buffer.²

The external quantum efficiency (EQE) of the CN₅-TiO₂–
H₂ase system was measured by applying narrow band pass filters (λ = 360 ± 10 nm; I = 2.49 mW cm⁻² and 400 ± 10 nm; I = 4.34 mW cm⁻²; see ESI† for experimental details). UV-irradiation gave an EQE of approximately 4.8% and under visible irradiation an EQE of 0.51% was obtained. These values are more than a 10-fold improvement over the UV and visible EQE for the CN₅–H₂ase system,⁶ which can be attributed to the improved light absorption (Fig. S6†) and increased electron transfer rate due to adsorption of the H₂ase onto the particle surface.

We previously showed that a significantly increased photoactivity was observed under standard conditions using CN₅–H₂ase upon addition of an excess of the redox mediator MV^2⁺, producing up to 77 μmol H₂ after 69 h of UV-visible irradiation.³ A long-term experiment with H₂ase (50 pmol), CN₅–TiO₂ (5 mg) and added MV^2⁺ (5 μmol) in aqueous EDTA (0.1 M) at pH 6 was performed with both λ > 300 nm light and with visible light only (λ > 420 nm). Under UV-visible irradiation after 72 h, the CN₅–
TiO₂–MV–H₂ase system produced 193 μmol H₂ with a TON of > 3.8 × 10⁸ and an initial TOF of 35 s⁻¹ (Fig. S7†). Under visible-light only, 66 μmol H₂ was produced with a TON of 1.3 × 10⁸ and an initial TOF of 9 s⁻¹ (Fig. S8†). The ratio of the amount of hydrogen produced in the presence and absence of MV^2⁺ can be used to estimate the relative efficiency of the charge transfer from material to H₂ase. Under full spectrum irradiation (λ > 300 nm) with CN₅–H₂ase the ratio was found to be 22, whereas for both TiO₂–H₂ase and CN₅–TiO₂–H₂ase systems the ratio was 5. This strongly supports the fact that there is a significant improvement in the charge transfer from a TiO₂-based material to H₂ase. In addition, this ratio remains constant when the wavelength of light used is restricted to the visible region (λ > 420 nm).

The H₂ production rates in the presence of MV^2⁺ are significantly higher than those obtained in the absence of MV^2⁺. The blue colour of the vials containing MV^2⁺ is indicative of the formation of reduced MV⁺ in solution (Fig. S9†). By comparison, addition of MV^2⁺ to the previously reported Ru dye-sensitised TiO₂–H₂ase system caused a slight decrease in activity, which was attributed to the decreased availability of electrons for the H₂ase and the absorption of incident photons by MV⁺.³⁶ Here, solubilised MV⁺ does not limit light absorption by CN₅–TiO₂ significantly and is able to efficiently donate electrons to surface-bound H₂ase, resulting in increased H₂ production. This result implies that interfacial electron transfer from CN₅–
TiO₂ to H₂ase is still not fully optimised in this system, where the orientation of the H₂ase is not fully ‘directed’. Ideally, the distance from the CN₅–TiO₂ surface to the [Fe₅S₉] electron transport chain should be minimised and an improved orientation of the enzyme would allow trapping of CB₃TiO₂ electrons more efficiently for maximised turnover.²⁹

Favourable electron transfer kinetics at the CN₅–TiO₂–H₂ase interface can be assumed based on previous reports. Electron transfer in the order of 10⁷ s⁻¹ was reported from CdS nanorods to an [FeFe]–H₂ase isolated from Clostridium acetobutylicum.⁴ In addition, a long lived photo-excited state lifetime of τ₁/₂ ~ 0.8 s was previously reported for TiO₂ conduction band electrons in a photocatalytic system with Ru dye-sensitised TiO₂ and electron transfer to co-immobilised molecular cobaloxime catalysts occurred with τ₁/₂ ~ 5 to 50 μs.²⁸

Based on these reports, we can assume that a reasonably long-lived TiO₂ conduction band electron is generated and that H₂ase is capable of readily collecting these electrons.

Conclusions

In summary, solar light driven H₂ production with a semi-biological system consisting of TiO₂ modified with polymeric CN₅ and immobilised H₂ase has been demonstrated. We have shown that by improving the surface interaction of the enzyme with the light harvesting CN₅ material, specifically by adsorption of the enzyme onto the TiO₂ surface, H₂ generation is drastically improved. Another important factor is the improved visible light absorption by direct CN₅ excitation (pathway 2) and CN₅–TiO₂ charge transfer (pathway 3), which enables high photoactivity. The CN₅–TiO₂–H₂ase assembly achieved a TOF of 8 s⁻¹ and a TON of > 5.8 × 10⁵ after 72 h in the absence of an external soluble redox mediator, thereby setting a new benchmark for photochemical architectures based on abundant and non-toxic materials and a heterogenised H₂ase. The additional use of the redox mediator MV^2⁺ allowed for the photo-generation of H₂ with a TOF of 35 s⁻¹ and a TON of > 3.8 × 10⁸. This work advances the use of hybrid photocatalytic schemes by integrating highly active electrocatalysts with advanced light absorbing materials such as CN₅–TiO₂, which is shown to be compatible with H₂ases in aqueous solution.

Acknowledgements

We acknowledge support by the Christian Doppler Research Association (Austrian Federal Ministry of Science, Research and Economy and National Foundation for Research, Technology and Development), the OMV Group and a Marie Curie fellowship to C.C. (GAN 624997624997). R.B. and L.W. acknowledge financial support by the MIWFT-NRW within the project “Anorganische Nanomaterialien für Anwendungen in der Photokatalyse”. We thank Dr J. C. Fontecilla-Camps and Dr C. Cavazza (CNRS Grenoble, France) for providing us with Dmb[NiFeSe] hydrogenase, Ms Marielle Bauzan (CNRS Marseilles, France) for growing the bacteria, and Dr Michal Bledowski for assistance with CN₅–TiO₂ synthesis.

Notes and references

