Closed-loop multi-target optimization for discovery of new emulsion polymerization recipes

Claudia Houben, Nicolai Peremezhney, Alexandr Zubov, Juraj Kosek and Alexei A. Lapkin

a Department of Chemical Engineering and Biotechnology, University of Cambridge, Pembroke Street, New Museums Site, Cambridge CB2 3RA, United Kingdom
b Department of Chemical Engineering, University of Chemistry and Technology, Technicka 5, 166 28 Prague, Czech Republic

Electronic Supplementary Information

1. MOAL algorithm
1.1 Definition of the input variables

Reaction conditions:
- reaction temperature
- feeding time 1
- feeding time 2
- post-processing time (time of the reaction to continue after feeding time has finished)
- P (ratio of initiator solution fed in the reactor during feeding time 1 and 2)

Starting material:
- amount of water
- amount of initiator solution (7% concentrated)
- amount of seed (30% solid content)

Feeding:
- amount of surfactant solution (15% concentrated)
- amount of CTA
- amount of styrene
- amount of butyl-acrylate
- amount of water for initiator solution which get fed into the reactor
- amount of initiator which needs to get solubilized in the water

1 Corresponding author. Email: aal35@cam.ac.uk; Fax: +44 1223 334796.
The highly dimensional decision space of fourteen variables was chosen to allow the discovery of new recipes for the target of high conversion and particle size of 100 nm. The fourteen variables were relaxed as much as possible to allow the discovery of new recipes with the MOAL algorithm. However, only physical constraints were made to obtain feasible recipes, as for the amount of surfactant and initiator the water solubility was taken into account or another example for the reaction temperature the activation temperature of the initiator and the boiling point of water were taken into account.

1.2 Definition of constraints for variables

The following are the reaction settings (input variables for the model considered):

- M^1_i, M^2_i, I_i, E_i, and W_i are the initial amounts of monomers, initiator, emulsifier and water respectively. T is the reaction temperature, CTA is the amount of chain transfer agent and P_0 is the amount of polymer in seed.
- M^1_F, M^2_F, E_F, I_F are the fed amounts of monomers, emulsifier and initiator respectively. WE_F and WI_F are emulsifier and initiator solutions in feed. WI_F is split into two parts pWI_F and $(1-p)WI_F$ (where $p \in (0, 1)$) and is added in two stages.
- F^1_t, F^2_t are feeding times for adding pWI_F and $(1-p)WI_F$ respectively and P_t is the post feeding time. The total reaction duration is the sum of F^1_t, F^2_t and P_t.

The ranges of the variables and constraints are:

1. $M^1_i = M^2_i = 1 \cdot 10^{-10}$ g and $E_i = E_F = 1 \times 10^{-3}$ g. These are kept constant for all recipes.
2. W_i, WE_F, $WI_F \in (0, 1500]$ g and $225 \leq WI + WE_F + WI_F \leq 1500$.
3. $I_i \in (0, 0.2WI)$ and $I_F \in (0, 0.2WI_F)$.
4. F^1_t, F^2_t, $P_t \in (0, 180\text{min})$ and $30 \leq F^1_t + F^2_t \leq 180$.
5. $T \in [65, 95]$ in degrees Celsius, $CTA \in (0, 20]$ g and $P_0 \in [5, 30]$ g.
6. M^1_F, $M^2_F \in (0, 1500]$ g and $150 \leq M^1_F + M^2_F \leq 1500$.
7. The final constraint is that the overall volume of the ingredients must not exceed the capacity of the reactor (3L).
2. *In silico* optimisation using a physical model of emulsion copolymerisation

In silico optimisation using a physical model of emulsion copolymerisation revealed 18 feasible recipes within 84 experiments.
Table S1: Given recipes from the MOAL algorithm to gain the target of full conversion and 100 nm particle sizes during the simulations.

<table>
<thead>
<tr>
<th>Exp. No.</th>
<th>T (°C)</th>
<th>water(^2) (g)</th>
<th>initiator(^3) (g)</th>
<th>feeding time 1 (min)</th>
<th>feeding time 2 (min)</th>
<th>post-processing time (min)</th>
<th>seed(^4) (g)</th>
<th>CTA(^5) (g)</th>
<th>SDBS solution(^6) (g)</th>
<th>water for initiator feed (g)</th>
<th>p(^7)</th>
<th>amount of initiator in feed (g)</th>
<th>styrene (g)</th>
<th>butyl acrylate (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>89.44</td>
<td>175.2272</td>
<td>64.0193</td>
<td>12.18</td>
<td>31.38</td>
<td>98.44</td>
<td>28.94</td>
<td>19.30</td>
<td>189.8698</td>
<td>984.95</td>
<td>0.96</td>
<td>95.6137</td>
<td>171.63</td>
<td>437.80</td>
</tr>
<tr>
<td>2</td>
<td>92.47</td>
<td>1185.0349</td>
<td>310.8302</td>
<td>30.02</td>
<td>4.98</td>
<td>122.17</td>
<td>23.94</td>
<td>14.86</td>
<td>19.6229</td>
<td>19.93</td>
<td>0.17</td>
<td>2.8144</td>
<td>53.44</td>
<td>103.00</td>
</tr>
<tr>
<td>3</td>
<td>67.91</td>
<td>885.8431</td>
<td>112.3602</td>
<td>5.94</td>
<td>73.09</td>
<td>68.68</td>
<td>24.14</td>
<td>15.90</td>
<td>72.7057</td>
<td>154.94</td>
<td>0.45</td>
<td>20.0282</td>
<td>835.92</td>
<td>75.00</td>
</tr>
<tr>
<td>4</td>
<td>85.39</td>
<td>172.4091</td>
<td>8.2065</td>
<td>100.54</td>
<td>1.44</td>
<td>105.35</td>
<td>10.60</td>
<td>15.03</td>
<td>226.4839</td>
<td>334.62</td>
<td>0.70</td>
<td>59.6225</td>
<td>790.75</td>
<td>90.70</td>
</tr>
<tr>
<td>5</td>
<td>69.48</td>
<td>465.1882</td>
<td>47.3156</td>
<td>37.05</td>
<td>106.95</td>
<td>63.00</td>
<td>9.91</td>
<td>5.02</td>
<td>54.2950</td>
<td>16.02</td>
<td>0.35</td>
<td>2.6613</td>
<td>516.80</td>
<td>388.26</td>
</tr>
<tr>
<td>6</td>
<td>73.58</td>
<td>897.2619</td>
<td>136.5438</td>
<td>8.74</td>
<td>5.74</td>
<td>95.54</td>
<td>24.48</td>
<td>18.68</td>
<td>38.0844</td>
<td>145.10</td>
<td>0.47</td>
<td>0.3454</td>
<td>98.14</td>
<td>454.54</td>
</tr>
<tr>
<td>7</td>
<td>74.34</td>
<td>148.8983</td>
<td>35.8536</td>
<td>45.42</td>
<td>16.56</td>
<td>134.67</td>
<td>16.26</td>
<td>1.68</td>
<td>171.7285</td>
<td>528.14</td>
<td>0.15</td>
<td>87.2294</td>
<td>873.37</td>
<td>0.26</td>
</tr>
<tr>
<td>8</td>
<td>78.28</td>
<td>347.2282</td>
<td>0.6437</td>
<td>119.52</td>
<td>23.21</td>
<td>15.20</td>
<td>14.99</td>
<td>5.20</td>
<td>11.0042</td>
<td>1.19</td>
<td>0.91</td>
<td>0.0431</td>
<td>73.66</td>
<td>135.18</td>
</tr>
<tr>
<td>9</td>
<td>91.08</td>
<td>530.1331</td>
<td>30.7381</td>
<td>98.26</td>
<td>20.95</td>
<td>92.38</td>
<td>15.05</td>
<td>1.52</td>
<td>104.1213</td>
<td>40.68</td>
<td>0.18</td>
<td>1.9522</td>
<td>35.42</td>
<td>726.52</td>
</tr>
<tr>
<td>10</td>
<td>93.34</td>
<td>416.2814</td>
<td>56.2345</td>
<td>60.93</td>
<td>11.57</td>
<td>140.45</td>
<td>14.74</td>
<td>4.83</td>
<td>175.5282</td>
<td>24.99</td>
<td>0.13</td>
<td>4.7076</td>
<td>828.75</td>
<td>36.59</td>
</tr>
<tr>
<td>11</td>
<td>72.04</td>
<td>554.5336</td>
<td>3.4167</td>
<td>6.16</td>
<td>19.66</td>
<td>131.71</td>
<td>21.19</td>
<td>9.02</td>
<td>66.0478</td>
<td>16.21</td>
<td>0.74</td>
<td>0.6125</td>
<td>197.67</td>
<td>324.07</td>
</tr>
<tr>
<td>12</td>
<td>83.77</td>
<td>98.9564</td>
<td>36.7875</td>
<td>71.25</td>
<td>32.74</td>
<td>80.42</td>
<td>12.66</td>
<td>10.17</td>
<td>572.4899</td>
<td>448.34</td>
<td>0.79</td>
<td>57.7748</td>
<td>536.55</td>
<td>66.37</td>
</tr>
<tr>
<td>13</td>
<td>75.52</td>
<td>1245.7895</td>
<td>274.1516</td>
<td>72.42</td>
<td>10.58</td>
<td>54.22</td>
<td>16.77</td>
<td>4.61</td>
<td>148.9677</td>
<td>5.35</td>
<td>0.23</td>
<td>0.1827</td>
<td>193.44</td>
<td>77.94</td>
</tr>
<tr>
<td>14</td>
<td>92.70</td>
<td>142.9581</td>
<td>51.7440</td>
<td>77.66</td>
<td>11.03</td>
<td>46.45</td>
<td>15.22</td>
<td>11.90</td>
<td>165.3393</td>
<td>280.45</td>
<td>0.71</td>
<td>12.4379</td>
<td>91.53</td>
<td>127.64</td>
</tr>
<tr>
<td>15</td>
<td>77.73</td>
<td>74.6142</td>
<td>7.8340</td>
<td>4.39</td>
<td>135.39</td>
<td>131.46</td>
<td>17.22</td>
<td>11.57</td>
<td>189.3298</td>
<td>279.24</td>
<td>0.96</td>
<td>30.5385</td>
<td>197.67</td>
<td>320.65</td>
</tr>
<tr>
<td>16</td>
<td>94.60</td>
<td>419.7988</td>
<td>66.8845</td>
<td>34.63</td>
<td>9.24</td>
<td>145.63</td>
<td>9.50</td>
<td>16.47</td>
<td>12.1369</td>
<td>9.83</td>
<td>0.54</td>
<td>1.9035</td>
<td>97.83</td>
<td>60.71</td>
</tr>
<tr>
<td>17</td>
<td>81.00</td>
<td>753.5780</td>
<td>274.9433</td>
<td>2.30</td>
<td>7.51</td>
<td>173.61</td>
<td>14.26</td>
<td>11.64</td>
<td>120.3905</td>
<td>30.53</td>
<td>0.53</td>
<td>3.6921</td>
<td>747.55</td>
<td>58.79</td>
</tr>
</tbody>
</table>

\(^2\) Amount of water used in the reactor as starting material
\(^3\) Amount of initiator used in the reactor as starting material
\(^4\) Amount of seed used in the reactor as starting material
\(^5\) Amount of CTA solution used in the reactor as starting material
\(^6\) Amount of SDBS solution used in the reactor as starting material
\(^7\) Proportion of initiator in feed
Exp. No.	T (°C)	water^8 (g)	initiator^9 (g)	feeding time 1 (min)	feeding time 2 (min)	post-processing time (min)	seed^10 (g)	CTA^11 (g)	SDBS solution^12 (g)	water for initiator feed (g)	P^13	amount of initiator in feed (g)	styrene (g)	butyl acrylate (g)
---------	--------	------------	----------------	--------------------	--------------------	-------------------------	------------	----------	---------------------	-----------------------------		-----------------------------	------------	-------------------
18	83.87	655.0419	40.0829	147.45	10.56	111.44	12.37	1.69	66.2844	56.82	0.76	10.5528	244.29	50.60
19	92.86	274.1051	80.3030	29.23	24.99	34.70	12.17	6.05	372.4776	240.80	0.93	41.5467	513.92	24.82
20	73.76	142.7280	47.2565	104.35	49.27	169.91	7.94	13.16	121.2492	8.03	0.90	0.3706	82.45	366.35
21	84.81	476.9154	187.5606	91.78	10.22	156.19	24.58	2.94	48.9056	85.51	0.52	19.2582	280.87	76.59
22	66.63	816.0207	225.3879	76.78	1.55	171.41	6.64	4.22	162.5487	38.81	0.78	3.4212	299.03	45.50
23	66.72	818.1133	226.1891	77.45	2.26	171.69	6.84	4.14	162.3188	43.07	0.78	2.5460	301.00	42.37
24	94.35	1305.2877	267.1772	59.25	40.69	151.53	8.05	5.02	12.2650	13.48	0.69	3.0595	197.34	208.11
25	76.29	257.2994	62.5430	101.75	29.97	164.92	13.91	0.52	31.1544	461.69	0.96	68.1298	372.37	21.01
26	82.49	388.9864	50.8130	13.85	62.12	165.37	13.56	6.45	242.8972	131.39	0.63	24.3324	263.23	119.17
27	92.79	678.2930	104.4728	20.42	9.27	117.23	6.65	2.97	284.1747	49.87	0.38	3.1411	370.16	8.42
28	88.11	106.6388	29.5456	30.56	29.21	120.89	16.94	12.33	31.1767	15.54	0.83	3.7097	158.43	227.35
29	90.88	442.8715	177.8230	133.62	20.48	149.92	5.98	11.83	958.1551	3.42	0.11	0.0920	324.33	72.58
30	92.89	207.2628	14.3615	35.24	6.78	79.65	7.15	12.21	4.1564	291.10	0.80	14.7623	435.79	23.82
31	73.21	570.1065	180.0786	42.00	0.72	174.46	8.02	2.85	45.8876	6.64	0.68	0.1352	116.03	223.58
32	94.89	837.1270	244.6972	111.24	2.37	171.08	20.99	7.62	30.5690	28.51	0.02	0.9960	425.02	11.71
33	79.28	177.4819	9.7503	32.22	17.38	105.14	15.21	0.02	1023.9904	126.70	0.99	22.2270	223.89	74.50
34	88.62	213.0711	8.2343	148.95	0.60	164.63	20.31	9.29	36.5067	542.40	0.77	90.3888	330.92	90.43
35	79.71	437.7618	49.1669	3.21	21.72	149.99	13.54	6.80	44.5403	359.46	0.87	0.7212	312.63	0.83
36	93.11	217.8358	41.6004	37.55	0.42	147.20	13.59	3.38	66.3183	142.81	0.46	25.5331	296.71	78.18
37	94.28	854.0755	330.0775	0.70	0.65	175.71	13.76	8.95	36.3154	13.35	0.47	1.4960	326.82	106.84

^8 Amount of water used in the reactor as starting material
^9 Amount of initiator used in the reactor as starting material
^10 15% solid content, particle size 70 nm
^11 Chain transfer agent
^12 15% surfactant solution
^13 Ratio of initiator solution fed in the reactor during feeding time 1 and 2
<table>
<thead>
<tr>
<th>Exp. No.</th>
<th>T (°C)</th>
<th>water14 (g)</th>
<th>initiator15 (g)</th>
<th>feeding time 1 (min)</th>
<th>feeding time 2 (min)</th>
<th>post-processing time (min)</th>
<th>seed16 (g)</th>
<th>CTA17 (g)</th>
<th>SDBS solution18 (g)</th>
<th>water for initiator feed (g)</th>
<th>P19</th>
<th>amount of initiator in feed (g)</th>
<th>styrene (g)</th>
<th>butyl acrylate (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>38</td>
<td>85.20</td>
<td>174.7768</td>
<td>14.3027</td>
<td>2.59</td>
<td>30.58</td>
<td>100.05</td>
<td>18.90</td>
<td>1.18</td>
<td>333.9396</td>
<td>123.05</td>
<td>0.67</td>
<td>20.7425</td>
<td>397.49</td>
<td>8.37</td>
</tr>
<tr>
<td>39</td>
<td>90.81</td>
<td>450.3442</td>
<td>174.8398</td>
<td>134.19</td>
<td>18.72</td>
<td>150.30</td>
<td>6.18</td>
<td>11.83</td>
<td>965.7990</td>
<td>1.89</td>
<td>0.11</td>
<td>0.0920</td>
<td>322.72</td>
<td>7.52</td>
</tr>
<tr>
<td>40</td>
<td>94.74</td>
<td>826.4459</td>
<td>244.3046</td>
<td>111.52</td>
<td>2.96</td>
<td>172.73</td>
<td>21.16</td>
<td>7.59</td>
<td>31.7338</td>
<td>31.78</td>
<td>0.01</td>
<td>0.9960</td>
<td>427.13</td>
<td>21.46</td>
</tr>
<tr>
<td>41</td>
<td>89.06</td>
<td>693.3275</td>
<td>76.5548</td>
<td>74.20</td>
<td>8.70</td>
<td>117.26</td>
<td>9.34</td>
<td>2.35</td>
<td>187.0076</td>
<td>53.22</td>
<td>0.55</td>
<td>5.8331</td>
<td>321.46</td>
<td>22.42</td>
</tr>
<tr>
<td>42</td>
<td>93.16</td>
<td>237.8954</td>
<td>30.2966</td>
<td>37.72</td>
<td>8.00</td>
<td>97.68</td>
<td>7.56</td>
<td>13.12</td>
<td>28.5434</td>
<td>219.80</td>
<td>0.74</td>
<td>11.8335</td>
<td>351.73</td>
<td>14.66</td>
</tr>
<tr>
<td>43</td>
<td>90.69</td>
<td>430.9316</td>
<td>173.1961</td>
<td>132.55</td>
<td>15.11</td>
<td>152.88</td>
<td>5.71</td>
<td>11.59</td>
<td>974.0777</td>
<td>17.07</td>
<td>0.10</td>
<td>0.2891</td>
<td>328.05</td>
<td>81.40</td>
</tr>
<tr>
<td>44</td>
<td>85.45</td>
<td>222.2561</td>
<td>20.5037</td>
<td>135.64</td>
<td>9.98</td>
<td>165.07</td>
<td>18.90</td>
<td>7.23</td>
<td>39.9115</td>
<td>537.13</td>
<td>0.81</td>
<td>82.8460</td>
<td>333.12</td>
<td>66.60</td>
</tr>
<tr>
<td>45</td>
<td>90.61</td>
<td>187.5799</td>
<td>31.9343</td>
<td>25.94</td>
<td>13.72</td>
<td>130.74</td>
<td>15.49</td>
<td>2.63</td>
<td>154.4909</td>
<td>120.55</td>
<td>0.54</td>
<td>22.9320</td>
<td>362.80</td>
<td>35.65</td>
</tr>
<tr>
<td>46</td>
<td>94.56</td>
<td>1191.2621</td>
<td>280.1312</td>
<td>43.40</td>
<td>28.89</td>
<td>156.85</td>
<td>9.35</td>
<td>6.12</td>
<td>16.0850</td>
<td>2.35</td>
<td>0.64</td>
<td>5.7987</td>
<td>234.03</td>
<td>192.77</td>
</tr>
<tr>
<td>47</td>
<td>90.27</td>
<td>442.1393</td>
<td>177.6721</td>
<td>133.69</td>
<td>22.16</td>
<td>150.77</td>
<td>5.94</td>
<td>11.48</td>
<td>972.0900</td>
<td>22.58</td>
<td>0.11</td>
<td>0.7007</td>
<td>297.59</td>
<td>54.48</td>
</tr>
<tr>
<td>48</td>
<td>91.25</td>
<td>468.7852</td>
<td>172.5955</td>
<td>134.34</td>
<td>18.77</td>
<td>153.14</td>
<td>6.27</td>
<td>11.92</td>
<td>955.3610</td>
<td>24.63</td>
<td>0.12</td>
<td>0.4082</td>
<td>334.09</td>
<td>74.05</td>
</tr>
<tr>
<td>49</td>
<td>94.18</td>
<td>309.2587</td>
<td>31.4047</td>
<td>33.61</td>
<td>9.95</td>
<td>111.53</td>
<td>8.38</td>
<td>14.06</td>
<td>6.7672</td>
<td>167.22</td>
<td>0.66</td>
<td>5.5580</td>
<td>292.93</td>
<td>60.24</td>
</tr>
<tr>
<td>50</td>
<td>90.85</td>
<td>460.1536</td>
<td>181.5803</td>
<td>134.67</td>
<td>16.83</td>
<td>146.39</td>
<td>5.97</td>
<td>11.97</td>
<td>965.0930</td>
<td>37.34</td>
<td>0.11</td>
<td>4.7451</td>
<td>303.95</td>
<td>53.93</td>
</tr>
<tr>
<td>51</td>
<td>82.83</td>
<td>118.9617</td>
<td>31.2128</td>
<td>55.90</td>
<td>36.88</td>
<td>142.93</td>
<td>13.46</td>
<td>12.81</td>
<td>68.6244</td>
<td>6.79</td>
<td>0.84</td>
<td>3.4610</td>
<td>143.62</td>
<td>279.11</td>
</tr>
<tr>
<td>52</td>
<td>90.66</td>
<td>635.6163</td>
<td>91.8040</td>
<td>46.52</td>
<td>9.58</td>
<td>113.06</td>
<td>7.71</td>
<td>2.60</td>
<td>236.2932</td>
<td>56.37</td>
<td>0.47</td>
<td>4.2662</td>
<td>362.63</td>
<td>15.63</td>
</tr>
<tr>
<td>53</td>
<td>86.57</td>
<td>652.6904</td>
<td>52.4649</td>
<td>118.37</td>
<td>14.67</td>
<td>110.91</td>
<td>10.77</td>
<td>2.16</td>
<td>125.2874</td>
<td>76.94</td>
<td>0.67</td>
<td>0.2237</td>
<td>262.94</td>
<td>84.18</td>
</tr>
<tr>
<td>54</td>
<td>89.77</td>
<td>665.6025</td>
<td>219.3979</td>
<td>102.26</td>
<td>7.45</td>
<td>165.24</td>
<td>22.67</td>
<td>5.42</td>
<td>31.2581</td>
<td>70.09</td>
<td>0.26</td>
<td>7.9809</td>
<td>351.97</td>
<td>42.84</td>
</tr>
<tr>
<td>55</td>
<td>81.11</td>
<td>433.0410</td>
<td>51.7649</td>
<td>6.97</td>
<td>41.44</td>
<td>157.52</td>
<td>13.45</td>
<td>6.50</td>
<td>137.4849</td>
<td>253.08</td>
<td>0.76</td>
<td>12.6945</td>
<td>289.95</td>
<td>42.79</td>
</tr>
<tr>
<td>56</td>
<td>79.50</td>
<td>249.8846</td>
<td>45.8414</td>
<td>115.19</td>
<td>22.40</td>
<td>162.38</td>
<td>15.47</td>
<td>2.72</td>
<td>43.2920</td>
<td>488.85</td>
<td>0.92</td>
<td>77.8887</td>
<td>328.46</td>
<td>49.80</td>
</tr>
<tr>
<td>57</td>
<td>90.61</td>
<td>501.0354</td>
<td>180.7299</td>
<td>134.65</td>
<td>22.33</td>
<td>151.23</td>
<td>5.80</td>
<td>11.99</td>
<td>943.3967</td>
<td>13.04</td>
<td>0.09</td>
<td>1.7629</td>
<td>322.28</td>
<td>55.11</td>
</tr>
</tbody>
</table>

14 Amount of water used in the reactor as starting material
15 Amount of initiator used in the reactor as starting material
16 15% solid content, particle size 70 nm
17 Chain transfer agent
18 15% surfactant solution
19 Ratio of initiator solution fed in the reactor during feeding time 1 and 2
<table>
<thead>
<tr>
<th>Exp. No.</th>
<th>T (°C)</th>
<th>water<sup>20</sup> (g)</th>
<th>initiator<sup>21</sup> (g)</th>
<th>feeding time 1 (min)</th>
<th>feeding time 2 (min)</th>
<th>post-processing time (min)</th>
<th>seed<sup>22</sup> (g)</th>
<th>CTA<sup>23</sup> (g)</th>
<th>SDBS solution<sup>24</sup> (g)</th>
<th>water for initiator feed (g)</th>
<th>P<sup>25</sup></th>
<th>amount of initiator in feed (g)</th>
<th>styrene (g)</th>
<th>butyl acrylate (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>59</td>
<td>94.42</td>
<td>1452.9348</td>
<td>243.1767</td>
<td>81.38</td>
<td>54.98</td>
<td>143.50</td>
<td>6.05</td>
<td>4.06</td>
<td>12.7069</td>
<td>6.17</td>
<td>0.79</td>
<td>5.3161</td>
<td>152.91</td>
<td>246.24</td>
</tr>
<tr>
<td>60</td>
<td>83.42</td>
<td>370.3859</td>
<td>49.0708</td>
<td>15.47</td>
<td>78.73</td>
<td>172.37</td>
<td>13.50</td>
<td>6.55</td>
<td>302.5737</td>
<td>28.61</td>
<td>0.55</td>
<td>31.2722</td>
<td>271.71</td>
<td>167.69</td>
</tr>
<tr>
<td>61</td>
<td>93.16</td>
<td>416.4112</td>
<td>58.8484</td>
<td>32.84</td>
<td>8.51</td>
<td>100.77</td>
<td>7.07</td>
<td>8.34</td>
<td>119.0493</td>
<td>164.98</td>
<td>0.58</td>
<td>6.6379</td>
<td>376.40</td>
<td>12.55</td>
</tr>
<tr>
<td>62</td>
<td>94.53</td>
<td>858.3950</td>
<td>282.7818</td>
<td>59.95</td>
<td>2.52</td>
<td>173.91</td>
<td>17.86</td>
<td>8.46</td>
<td>35.3106</td>
<td>39.34</td>
<td>0.22</td>
<td>2.1792</td>
<td>368.58</td>
<td>47.64</td>
</tr>
<tr>
<td>63</td>
<td>65.32</td>
<td>881.1546</td>
<td>232.9378</td>
<td>82.79</td>
<td>2.14</td>
<td>170.79</td>
<td>6.20</td>
<td>4.30</td>
<td>188.4662</td>
<td>49.29</td>
<td>0.81</td>
<td>2.4904</td>
<td>348.02</td>
<td>12.15</td>
</tr>
<tr>
<td>64</td>
<td>91.13</td>
<td>456.2079</td>
<td>178.3100</td>
<td>138.49</td>
<td>18.46</td>
<td>149.88</td>
<td>5.80</td>
<td>11.18</td>
<td>935.1139</td>
<td>29.58</td>
<td>0.08</td>
<td>6.3430</td>
<td>335.44</td>
<td>32.40</td>
</tr>
<tr>
<td>65</td>
<td>90.62</td>
<td>482.1062</td>
<td>178.4476</td>
<td>135.26</td>
<td>20.31</td>
<td>145.31</td>
<td>5.81</td>
<td>11.93</td>
<td>951.1348</td>
<td>51.62</td>
<td>0.10</td>
<td>6.5174</td>
<td>322.78</td>
<td>57.91</td>
</tr>
<tr>
<td>66</td>
<td>89.85</td>
<td>447.3698</td>
<td>181.4941</td>
<td>138.58</td>
<td>16.33</td>
<td>144.96</td>
<td>5.87</td>
<td>11.87</td>
<td>962.9662</td>
<td>43.68</td>
<td>0.08</td>
<td>2.1428</td>
<td>333.22</td>
<td>56.80</td>
</tr>
<tr>
<td>67</td>
<td>90.38</td>
<td>451.6224</td>
<td>178.0494</td>
<td>134.31</td>
<td>17.37</td>
<td>150.67</td>
<td>6.00</td>
<td>12.58</td>
<td>960.6667</td>
<td>26.22</td>
<td>0.10</td>
<td>6.4494</td>
<td>331.02</td>
<td>36.24</td>
</tr>
<tr>
<td>68</td>
<td>92.08</td>
<td>332.1611</td>
<td>67.0774</td>
<td>46.51</td>
<td>6.68</td>
<td>129.10</td>
<td>12.90</td>
<td>9.37</td>
<td>38.7123</td>
<td>135.58</td>
<td>0.58</td>
<td>11.8720</td>
<td>288.05</td>
<td>69.98</td>
</tr>
<tr>
<td>69</td>
<td>94.39</td>
<td>226.6916</td>
<td>18.7218</td>
<td>25.42</td>
<td>4.80</td>
<td>126.51</td>
<td>9.48</td>
<td>8.23</td>
<td>35.7054</td>
<td>156.47</td>
<td>0.54</td>
<td>18.1945</td>
<td>309.99</td>
<td>90.72</td>
</tr>
<tr>
<td>70</td>
<td>90.94</td>
<td>448.4880</td>
<td>178.0838</td>
<td>133.18</td>
<td>16.54</td>
<td>148.15</td>
<td>5.19</td>
<td>12.06</td>
<td>956.5289</td>
<td>2.41</td>
<td>0.11</td>
<td>1.0993</td>
<td>307.97</td>
<td>40.53</td>
</tr>
<tr>
<td>71</td>
<td>90.30</td>
<td>712.5391</td>
<td>289.3471</td>
<td>22.48</td>
<td>6.16</td>
<td>169.56</td>
<td>16.83</td>
<td>6.70</td>
<td>11.6623</td>
<td>52.89</td>
<td>0.53</td>
<td>7.8271</td>
<td>313.15</td>
<td>109.08</td>
</tr>
<tr>
<td>72</td>
<td>92.42</td>
<td>331.3071</td>
<td>45.1083</td>
<td>28.78</td>
<td>8.75</td>
<td>91.17</td>
<td>7.03</td>
<td>9.85</td>
<td>83.1369</td>
<td>237.62</td>
<td>0.67</td>
<td>10.9768</td>
<td>386.90</td>
<td>9.92</td>
</tr>
<tr>
<td>73</td>
<td>68.73</td>
<td>744.6765</td>
<td>209.3359</td>
<td>66.83</td>
<td>0.91</td>
<td>174.43</td>
<td>6.91</td>
<td>3.53</td>
<td>149.6054</td>
<td>49.85</td>
<td>0.76</td>
<td>4.2339</td>
<td>249.45</td>
<td>121.03</td>
</tr>
<tr>
<td>74</td>
<td>91.19</td>
<td>475.6729</td>
<td>175.0724</td>
<td>136.70</td>
<td>21.21</td>
<td>150.31</td>
<td>5.67</td>
<td>12.16</td>
<td>939.4443</td>
<td>37.91</td>
<td>0.09</td>
<td>1.8902</td>
<td>318.54</td>
<td>78.13</td>
</tr>
<tr>
<td>75</td>
<td>85.93</td>
<td>274.6160</td>
<td>52.5205</td>
<td>61.02</td>
<td>24.34</td>
<td>156.29</td>
<td>9.57</td>
<td>14.88</td>
<td>68.5551</td>
<td>14.34</td>
<td>0.70</td>
<td>4.1577</td>
<td>111.97</td>
<td>216.87</td>
</tr>
<tr>
<td>76</td>
<td>90.94</td>
<td>433.0572</td>
<td>174.4790</td>
<td>128.70</td>
<td>16.76</td>
<td>151.08</td>
<td>6.19</td>
<td>11.89</td>
<td>965.8527</td>
<td>17.60</td>
<td>0.09</td>
<td>1.5152</td>
<td>305.85</td>
<td>39.44</td>
</tr>
<tr>
<td>77</td>
<td>92.84</td>
<td>523.2731</td>
<td>82.8404</td>
<td>28.74</td>
<td>9.16</td>
<td>114.31</td>
<td>6.90</td>
<td>6.79</td>
<td>204.9247</td>
<td>85.53</td>
<td>0.50</td>
<td>4.4831</td>
<td>352.10</td>
<td>3.68</td>
</tr>
<tr>
<td>78</td>
<td>93.32</td>
<td>353.7939</td>
<td>48.7460</td>
<td>34.43</td>
<td>7.67</td>
<td>101.20</td>
<td>7.05</td>
<td>9.77</td>
<td>111.1732</td>
<td>166.28</td>
<td>0.64</td>
<td>10.3229</td>
<td>387.02</td>
<td>8.81</td>
</tr>
</tbody>
</table>

²⁰ Amount of water used in the reactor as starting material
²¹ Amount of initiator used in the reactor as starting material
²² 15% solid content, particle size 70 nm
²³ Chain transfer agent
²⁴ 15% surfactant solution
²⁵ Ratio of initiator solution fed in the reactor during feeding time 1 and 2
<table>
<thead>
<tr>
<th>Exp. No.</th>
<th>T (°C)</th>
<th>water(^{26}) (g)</th>
<th>initiator(^{27}) (g)</th>
<th>feeding time 1 (min)</th>
<th>feeding time 2 (min)</th>
<th>post-processing time (min)</th>
<th>seed(^{28}) (g)</th>
<th>CTA(^{29}) solution(^{30}) (g)</th>
<th>water for initiator feed (g)</th>
<th>amount of initiator in feed (g)</th>
<th>styrene (g)</th>
<th>butyl acrylate (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>79</td>
<td>82.73</td>
<td>256.5203</td>
<td>34.9808</td>
<td>126.40</td>
<td>15.66</td>
<td>162.97</td>
<td>17.24</td>
<td>4.89</td>
<td>70.3426</td>
<td>499.55</td>
<td>0.86</td>
<td>81.6503</td>
</tr>
<tr>
<td>80</td>
<td>90.08</td>
<td>681.8076</td>
<td>82.0161</td>
<td>57.30</td>
<td>7.46</td>
<td>114.89</td>
<td>8.72</td>
<td>2.45</td>
<td>217.7809</td>
<td>45.97</td>
<td>0.51</td>
<td>3.7445</td>
</tr>
<tr>
<td>81</td>
<td>85.68</td>
<td>1099.8902</td>
<td>215.0590</td>
<td>66.13</td>
<td>31.86</td>
<td>155.42</td>
<td>7.41</td>
<td>3.65</td>
<td>46.8603</td>
<td>6.61</td>
<td>0.74</td>
<td>5.3913</td>
</tr>
<tr>
<td>82</td>
<td>94.00</td>
<td>281.5141</td>
<td>11.7123</td>
<td>22.35</td>
<td>3.97</td>
<td>104.19</td>
<td>5.42</td>
<td>9.18</td>
<td>30.4506</td>
<td>199.86</td>
<td>0.57</td>
<td>2.5861</td>
</tr>
<tr>
<td>83</td>
<td>84.21</td>
<td>324.2543</td>
<td>36.9627</td>
<td>14.02</td>
<td>19.05</td>
<td>144.99</td>
<td>14.53</td>
<td>5.04</td>
<td>113.2485</td>
<td>263.60</td>
<td>0.74</td>
<td>11.2069</td>
</tr>
<tr>
<td>84</td>
<td>88.83</td>
<td>652.8495</td>
<td>69.5469</td>
<td>79.81</td>
<td>12.82</td>
<td>110.83</td>
<td>8.93</td>
<td>2.54</td>
<td>166.8276</td>
<td>62.98</td>
<td>0.54</td>
<td>5.2433</td>
</tr>
</tbody>
</table>

\(^{26}\) Amount of water used in the reactor as starting material
\(^{27}\) Amount of initiator used in the reactor as starting material
\(^{28}\) 15% solid content, particle size 70 nm
\(^{29}\) Chain transfer agent
\(^{30}\) 15% surfactant solution
\(^{31}\) Ratio of initiator solution fed in the reactor during feeding time 1 and 2
Figure S1. Results of the simulation of the emulsion polymerization model with the MOAL algorithm: the figures show a) monomer-liquid ratio to the particle size; b) the correlation of the amount of initiator feed to particle size; c) the behaviour of conversion and amount of monomer.

Figure S2. Results of the simulation of the emulsion polymerization model with the MOAL algorithm: shows the behaviour of the amount of surfactant on particle size and the amount of seed particles on the particle size.
Table S2. Results of conversion and particle size of *in silico* optimisation using a physical model of emulsion copolymerisation.

<table>
<thead>
<tr>
<th>Exp. No.</th>
<th>Particle diameter</th>
<th>Conversion</th>
<th>Exp. No.</th>
<th>Particle diameter</th>
<th>Conversion</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>119.80</td>
<td>0.90</td>
<td>44</td>
<td>102.82</td>
<td>0.99</td>
</tr>
<tr>
<td>2</td>
<td>77.93</td>
<td>0.95</td>
<td>45</td>
<td>102.25</td>
<td>0.99</td>
</tr>
<tr>
<td>3</td>
<td>139.63</td>
<td>0.46</td>
<td>46</td>
<td>104.74</td>
<td>0.99</td>
</tr>
<tr>
<td>4</td>
<td>133.28</td>
<td>1.00</td>
<td>47</td>
<td>98.73</td>
<td>0.99</td>
</tr>
<tr>
<td>5</td>
<td>134.73</td>
<td>0.90</td>
<td>48</td>
<td>103.60</td>
<td>0.99</td>
</tr>
<tr>
<td>6</td>
<td>118.99</td>
<td>0.50</td>
<td>49</td>
<td>99.16</td>
<td>0.99</td>
</tr>
<tr>
<td>7</td>
<td>132.25</td>
<td>0.99</td>
<td>50</td>
<td>99.30</td>
<td>0.99</td>
</tr>
<tr>
<td>8</td>
<td>83.72</td>
<td>0.90</td>
<td>51</td>
<td>105.06</td>
<td>0.99</td>
</tr>
<tr>
<td>9</td>
<td>128.73</td>
<td>0.79</td>
<td>52</td>
<td>100.30</td>
<td>0.99</td>
</tr>
<tr>
<td>10</td>
<td>132.09</td>
<td>0.99</td>
<td>53</td>
<td>97.57</td>
<td>0.99</td>
</tr>
<tr>
<td>11</td>
<td>112.98</td>
<td>0.89</td>
<td>54</td>
<td>102.38</td>
<td>0.98</td>
</tr>
<tr>
<td>12</td>
<td>117.57</td>
<td>0.99</td>
<td>55</td>
<td>96.67</td>
<td>0.99</td>
</tr>
<tr>
<td>13</td>
<td>90.85</td>
<td>0.92</td>
<td>56</td>
<td>100.48</td>
<td>0.99</td>
</tr>
<tr>
<td>14</td>
<td>85.48</td>
<td>0.97</td>
<td>57</td>
<td>101.00</td>
<td>0.99</td>
</tr>
<tr>
<td>15</td>
<td>112.19</td>
<td>0.98</td>
<td>58</td>
<td>102.44</td>
<td>0.99</td>
</tr>
<tr>
<td>16</td>
<td>77.75</td>
<td>0.98</td>
<td>59</td>
<td>102.33</td>
<td>0.99</td>
</tr>
<tr>
<td>17</td>
<td>129.33</td>
<td>0.99</td>
<td>60</td>
<td>105.84</td>
<td>0.99</td>
</tr>
<tr>
<td>18</td>
<td>92.48</td>
<td>0.99</td>
<td>61</td>
<td>101.72</td>
<td>0.99</td>
</tr>
<tr>
<td>19</td>
<td>113.22</td>
<td>0.97</td>
<td>62</td>
<td>104.29</td>
<td>0.99</td>
</tr>
<tr>
<td>20</td>
<td>107.06</td>
<td>0.98</td>
<td>63</td>
<td>98.69</td>
<td>0.99</td>
</tr>
<tr>
<td>21</td>
<td>98.98</td>
<td>0.98</td>
<td>64</td>
<td>100.10</td>
<td>0.99</td>
</tr>
<tr>
<td>22</td>
<td>97.28</td>
<td>0.99</td>
<td>65</td>
<td>101.28</td>
<td>0.99</td>
</tr>
<tr>
<td>23</td>
<td>97.18</td>
<td>0.99</td>
<td>66</td>
<td>102.07</td>
<td>0.99</td>
</tr>
<tr>
<td>24</td>
<td>102.94</td>
<td>0.99</td>
<td>67</td>
<td>100.17</td>
<td>0.99</td>
</tr>
<tr>
<td>25</td>
<td>101.51</td>
<td>0.99</td>
<td>68</td>
<td>99.30</td>
<td>0.99</td>
</tr>
<tr>
<td>26</td>
<td>101.15</td>
<td>0.99</td>
<td>69</td>
<td>102.79</td>
<td>0.99</td>
</tr>
<tr>
<td>27</td>
<td>100.33</td>
<td>0.99</td>
<td>70</td>
<td>98.44</td>
<td>1.00</td>
</tr>
<tr>
<td>28</td>
<td>102.11</td>
<td>0.99</td>
<td>71</td>
<td>104.60</td>
<td>0.99</td>
</tr>
<tr>
<td>29</td>
<td>102.65</td>
<td>0.99</td>
<td>72</td>
<td>102.50</td>
<td>0.99</td>
</tr>
<tr>
<td>30</td>
<td>107.69</td>
<td>0.99</td>
<td>73</td>
<td>99.63</td>
<td>0.99</td>
</tr>
<tr>
<td>31</td>
<td>96.91</td>
<td>0.98</td>
<td>74</td>
<td>102.66</td>
<td>1.00</td>
</tr>
<tr>
<td>32</td>
<td>105.93</td>
<td>0.98</td>
<td>75</td>
<td>97.08</td>
<td>0.99</td>
</tr>
<tr>
<td>33</td>
<td>92.78</td>
<td>0.98</td>
<td>76</td>
<td>98.16</td>
<td>0.99</td>
</tr>
<tr>
<td>34</td>
<td>104.81</td>
<td>0.98</td>
<td>77</td>
<td>98.66</td>
<td>0.99</td>
</tr>
<tr>
<td>35</td>
<td>94.88</td>
<td>0.99</td>
<td>78</td>
<td>102.41</td>
<td>0.99</td>
</tr>
<tr>
<td>36</td>
<td>100.29</td>
<td>0.99</td>
<td>79</td>
<td>102.00</td>
<td>0.99</td>
</tr>
<tr>
<td>37</td>
<td>105.66</td>
<td>0.99</td>
<td>80</td>
<td>101.12</td>
<td>0.99</td>
</tr>
<tr>
<td>38</td>
<td>102.82</td>
<td>0.99</td>
<td>81</td>
<td>99.86</td>
<td>0.99</td>
</tr>
<tr>
<td>39</td>
<td>102.79</td>
<td>0.99</td>
<td>82</td>
<td>101.02</td>
<td>1.00</td>
</tr>
<tr>
<td>40</td>
<td>106.85</td>
<td>0.99</td>
<td>83</td>
<td>95.80</td>
<td>0.99</td>
</tr>
</tbody>
</table>
Table S3. Results of the validation of the \textit{in silico} recipes.

<table>
<thead>
<tr>
<th>Experiment</th>
<th>Conversion (%)</th>
<th>Particle size (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Val. Exp.1</td>
<td>99.5</td>
<td>135</td>
</tr>
<tr>
<td>Val. Exp.2</td>
<td>12.2</td>
<td>-</td>
</tr>
<tr>
<td>Val. Exp.3</td>
<td>99.9</td>
<td>309</td>
</tr>
<tr>
<td>Val. Exp.4</td>
<td>42.2</td>
<td>214</td>
</tr>
<tr>
<td>Val. Exp.5</td>
<td>50.9</td>
<td>-</td>
</tr>
<tr>
<td>Val. Exp.6</td>
<td>65.3</td>
<td>49900</td>
</tr>
<tr>
<td>Val. Exp.7</td>
<td>91.1</td>
<td>178</td>
</tr>
<tr>
<td>Val. Exp.8</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Val. Exp.9</td>
<td>86.8</td>
<td>-</td>
</tr>
<tr>
<td>Val. Exp.10</td>
<td>63.0</td>
<td>-</td>
</tr>
<tr>
<td>Val. Exp.11</td>
<td>84.0</td>
<td>1910</td>
</tr>
<tr>
<td>Val. Exp.12</td>
<td>48.7</td>
<td>4504</td>
</tr>
</tbody>
</table>

3. Experimental closed-loop optimization

3.2 Reaction setup

Figure S3. Automated semi-batch system incorporated feedback for discovery new recipes for emulsion polymerization reactions.
3.3 Emulsion polymerization recipe:

General composition of the system for copolymerization of styrene and butyl acrylate.[1]

Butyl acrylate: 77 g
Styrene: 7 g
K₂S₂O₈: 0.6 g
NaHCO₃: 0.03g
Aerosol MA80: 3.6 g
Aerosol 22N: 0.7
H₂O: variable to feed rate
Table S4. Given recipes from the MOAL algorithm to gain the target of full conversion and 100 nm particle size experimentally.

<table>
<thead>
<tr>
<th>Exp. no.</th>
<th>T (°C)</th>
<th>water(^{32}) (g)</th>
<th>initiator(^{33}) (g)</th>
<th>feeding time 1 (min)</th>
<th>feeding time 2 (min)</th>
<th>post-processing time (min)</th>
<th>seed(^{34}) (g)</th>
<th>CTA(^{35}) (g)</th>
<th>SDBS(^{36}) (g)</th>
<th>water for initiator feed (g)</th>
<th>p(^{37})</th>
<th>amount of initiator in feed (g)</th>
<th>styrene (^{38}) (g)</th>
<th>butyl acrylate (^{38}) (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>81.41</td>
<td>1395.06</td>
<td>43.9758</td>
<td>168.07</td>
<td>3.65</td>
<td>144.05</td>
<td>8.55</td>
<td>8.44</td>
<td>46.4872</td>
<td>3.39</td>
<td>0.96</td>
<td>0.4444</td>
<td>168.11</td>
<td>27.90</td>
</tr>
<tr>
<td>2</td>
<td>85.36</td>
<td>885.16</td>
<td>69.4367</td>
<td>21.97</td>
<td>75.09</td>
<td>5.73</td>
<td>11.92</td>
<td>9.2</td>
<td>29.7184</td>
<td>227.47</td>
<td>0.69</td>
<td>14.4263</td>
<td>49.35</td>
<td>707.62</td>
</tr>
<tr>
<td>3</td>
<td>76.45</td>
<td>955.06</td>
<td>35.6950</td>
<td>46.10</td>
<td>37.07</td>
<td>127.69</td>
<td>23.87</td>
<td>5.52</td>
<td>167.1877</td>
<td>51.61</td>
<td>0.16</td>
<td>1.2283</td>
<td>789.67</td>
<td>11.27</td>
</tr>
<tr>
<td>4</td>
<td>82.56</td>
<td>383.42</td>
<td>19.5616</td>
<td>74.03</td>
<td>28.39</td>
<td>172.67</td>
<td>18.68</td>
<td>2.77</td>
<td>18.9519</td>
<td>27.81</td>
<td>0.84</td>
<td>1.4143</td>
<td>304.23</td>
<td>878.20</td>
</tr>
<tr>
<td>5</td>
<td>75.50</td>
<td>119.43</td>
<td>14.7149</td>
<td>35.52</td>
<td>54.40</td>
<td>105.35</td>
<td>18.74</td>
<td>18.34</td>
<td>101.8241</td>
<td>192.64</td>
<td>0.75</td>
<td>14.6575</td>
<td>69.52</td>
<td>126.17</td>
</tr>
<tr>
<td>6</td>
<td>85.54</td>
<td>147.33</td>
<td>20.9479</td>
<td>96.05</td>
<td>22.63</td>
<td>178.89</td>
<td>1.71</td>
<td>0.96</td>
<td>59.0770</td>
<td>11.32</td>
<td>0.20</td>
<td>1.0594</td>
<td>157.98</td>
<td>0.67</td>
</tr>
<tr>
<td>7</td>
<td>73.23</td>
<td>227.02</td>
<td>29.5471</td>
<td>127.13</td>
<td>6.35</td>
<td>103.04</td>
<td>2.59</td>
<td>2.24</td>
<td>0.3336</td>
<td>2.43</td>
<td>0.36</td>
<td>0.0254</td>
<td>133.33</td>
<td>2.52</td>
</tr>
<tr>
<td>8</td>
<td>65.03</td>
<td>97.74</td>
<td>2.6074</td>
<td>1.39</td>
<td>14.41</td>
<td>170.24</td>
<td>7.52</td>
<td>0.18</td>
<td>46.0400</td>
<td>41.76</td>
<td>0.24</td>
<td>7.5326</td>
<td>203.89</td>
<td>0.26</td>
</tr>
<tr>
<td>9</td>
<td>94.29</td>
<td>78.43</td>
<td>2.1167</td>
<td>1.97</td>
<td>27.22</td>
<td>131.05</td>
<td>4.52</td>
<td>0.39</td>
<td>109.7996</td>
<td>5.23</td>
<td>0.12</td>
<td>1.2643</td>
<td>177.47</td>
<td>22.05</td>
</tr>
<tr>
<td>10</td>
<td>66.99</td>
<td>132.74</td>
<td>9.2963</td>
<td>12.81</td>
<td>55.51</td>
<td>95.04</td>
<td>4.26</td>
<td>0.50</td>
<td>14.5027</td>
<td>0.54</td>
<td>0.09</td>
<td>0.0696</td>
<td>236.21</td>
<td>1.94</td>
</tr>
<tr>
<td>11</td>
<td>66.98</td>
<td>179.66</td>
<td>24.4615</td>
<td>2.62</td>
<td>22.06</td>
<td>167.81</td>
<td>8.11</td>
<td>2.16</td>
<td>103.8970</td>
<td>19.82</td>
<td>0.03</td>
<td>2.4006</td>
<td>47.77</td>
<td>14.12</td>
</tr>
<tr>
<td>12</td>
<td>71.91</td>
<td>175.92</td>
<td>21.1791</td>
<td>29.79</td>
<td>0.08</td>
<td>173.61</td>
<td>3.58</td>
<td>3.97</td>
<td>0.5594</td>
<td>0.03</td>
<td>0.08</td>
<td>0.2161</td>
<td>142.14</td>
<td>52.62</td>
</tr>
<tr>
<td>13</td>
<td>72.84</td>
<td>204.25</td>
<td>18.2128</td>
<td>14.08</td>
<td>53.70</td>
<td>143.67</td>
<td>3.58</td>
<td>0.72</td>
<td>3.1579</td>
<td>0.35</td>
<td>0.16</td>
<td>0.1457</td>
<td>145.54</td>
<td>24.20</td>
</tr>
<tr>
<td>14</td>
<td>65.92</td>
<td>197.34</td>
<td>22.4066</td>
<td>118.79</td>
<td>3.86</td>
<td>176.34</td>
<td>13.21</td>
<td>0.20</td>
<td>58.4129</td>
<td>13.12</td>
<td>0.03</td>
<td>0.5869</td>
<td>84.56</td>
<td>10.75</td>
</tr>
<tr>
<td>15</td>
<td>65.76</td>
<td>198.95</td>
<td>21.8410</td>
<td>118.55</td>
<td>4.33</td>
<td>174.86</td>
<td>13.04</td>
<td>0.15</td>
<td>54.9401</td>
<td>12.60</td>
<td>0.03</td>
<td>0.2885</td>
<td>85.59</td>
<td>12.89</td>
</tr>
<tr>
<td>16</td>
<td>67.05</td>
<td>144.09</td>
<td>8.0615</td>
<td>69.33</td>
<td>45.50</td>
<td>146.14</td>
<td>6.33</td>
<td>0.69</td>
<td>146.0732</td>
<td>3.50</td>
<td>0.32</td>
<td>0.2929</td>
<td>26.85</td>
<td>64.41</td>
</tr>
<tr>
<td>17</td>
<td>71.99</td>
<td>258.65</td>
<td>1.6127</td>
<td>10.84</td>
<td>44.69</td>
<td>177.91</td>
<td>11.63</td>
<td>0.50</td>
<td>52.1584</td>
<td>3.76</td>
<td>0.49</td>
<td>1.1670</td>
<td>59.78</td>
<td>11.91</td>
</tr>
<tr>
<td>18</td>
<td>72.23</td>
<td>252.94</td>
<td>1.7877</td>
<td>9.63</td>
<td>46.32</td>
<td>177.39</td>
<td>11.39</td>
<td>0.46</td>
<td>54.8137</td>
<td>2.36</td>
<td>0.49</td>
<td>0.4100</td>
<td>61.74</td>
<td>14.50</td>
</tr>
<tr>
<td>19</td>
<td>66.68</td>
<td>131.15</td>
<td>2.4491</td>
<td>56.05</td>
<td>0.74</td>
<td>145.25</td>
<td>4.51</td>
<td>1.22</td>
<td>73.0387</td>
<td>16.87</td>
<td>0.17</td>
<td>2.2665</td>
<td>170.10</td>
<td>0.66</td>
</tr>
<tr>
<td>20</td>
<td>66.41</td>
<td>131.53</td>
<td>2.0953</td>
<td>56.80</td>
<td>0.74</td>
<td>146.62</td>
<td>4.54</td>
<td>1.24</td>
<td>72.4129</td>
<td>14.64</td>
<td>0.18</td>
<td>2.0335</td>
<td>172.87</td>
<td>0.67</td>
</tr>
</tbody>
</table>

\(^{32}\) Amount of water used as starting material
\(^{33}\) Amount of initiator used as starting material
\(^{34}\) 15% solid content, particle size 70 nm
\(^{35}\) Chain transfer agent
\(^{36}\) 15% surfactant solution
\(^{37}\) Ratio of initiator solution fed in the reactor during feeding time 1 and 2
Table S5. Performance of the experimental optimization of the recipe with MOAL algorithm. In red the unfeasible experiments are marked.

<table>
<thead>
<tr>
<th>Exp. No</th>
<th>Particle size (nm)</th>
<th>Conversion</th>
<th>Feasibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>169</td>
<td>0.99</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0.00</td>
<td>-1</td>
</tr>
<tr>
<td>3</td>
<td>156.75</td>
<td>0.98</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>537</td>
<td>0.70</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0.00</td>
<td>-1</td>
</tr>
<tr>
<td>6</td>
<td>263.3</td>
<td>0.73</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>303.75</td>
<td>0.53</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>192</td>
<td>0.97</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>0</td>
<td>0.00</td>
<td>-1</td>
</tr>
<tr>
<td>10</td>
<td>175.6</td>
<td>0.27</td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td>70</td>
<td>1.00</td>
<td>1</td>
</tr>
<tr>
<td>12</td>
<td>301.3</td>
<td>0.57</td>
<td>1</td>
</tr>
<tr>
<td>13</td>
<td>268.2</td>
<td>0.62</td>
<td>1</td>
</tr>
<tr>
<td>14</td>
<td>151.25</td>
<td>1.00</td>
<td>1</td>
</tr>
<tr>
<td>15</td>
<td>133.75</td>
<td>1.00</td>
<td>1</td>
</tr>
<tr>
<td>16</td>
<td>65.52</td>
<td>1.00</td>
<td>1</td>
</tr>
<tr>
<td>17</td>
<td>107.7</td>
<td>1.00</td>
<td>1</td>
</tr>
<tr>
<td>18</td>
<td>92.52</td>
<td>1.00</td>
<td>1</td>
</tr>
<tr>
<td>19</td>
<td>115.15</td>
<td>0.98</td>
<td>1</td>
</tr>
<tr>
<td>20</td>
<td>105.75</td>
<td>0.98</td>
<td>1</td>
</tr>
</tbody>
</table>

Figure S4. Results of the experiment of the emulsion polymerization model with the MOAL algorithm: the figures show the correlation of the amount of initiator feed to the amount of seed particles.
Figure S5. Each plot shows the correlation of one of the fourteen variables with conversion. In none of these plots a trend can be seen. Due to the low number of experiments and only three experiments which fulfilled the targets, it is not surprising that no trend can be obtained.
Figure S6. Pair-wise correlation of the fourteen variables regarding particle size. Although the correlation of particle size with monomer, surfactant and initiator is known, this trend cannot be obtained from the low number of experiments.

Reference: