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Studying protein folding and protein design in globular proteins presents significant 

challenges because of the two related features, topological complexity and 

cooperativity. In contrast, tandem-repeat proteins have regular and modular 

structures composed of linearly arrayed motifs. This means that the biophysics of 

even giant repeat proteins is highly amenable to dissection and to rational design. 

Here we discuss what has been learnt about the folding mechanisms of tandem-

repeat proteins. The defining features that have emerged are: (i) accessibility of 

multiple distinct routes between denatured and native states, both at equilibrium 

and under kinetic conditions; (ii) different routes are favoured for folding versus 

unfolding; (iii) unfolding energy barriers are broad, reflecting stepwise unraveling 

of an array repeat by repeat; (iv) highly cooperative unfolding at equilibrium and 

the potential for exceptionally high thermodynamic stabilities by introducing 

consensus residues; (v) under force, helical-repeat structures are very weak with 

non-cooperative unfolding leading to elasticity and buffering effects. This level of 

understanding should enable us to create repeat proteins with made-to-measure 

folding mechanisms, in which one can dial into the sequence the order of repeat 

folding, number of pathways taken, step size (cooperativity) and fine-structure of 

the kinetic energy barriers. 

  



 2

Over the last 15 years the study of naturally occurring and consensus-designed repeat 

proteins has provided us with detailed insights into the folding mechanism of this 

distinctive structural class. These studies, predominantly of ankyrin repeats (ANK) 

and tetratricopeptide repeats (TPR), have revealed (i) how their folding mechanisms 

are mainly directed by the hierarchy of stabilities across a repeat array, (ii) how the 

intrinsic instability of individual repeats and the highly stabilising inter-repeat 

energies can enable very cooperatively folded structures despite the absence of long-

range contacts, and (iii) how the modular and symmetrical nature of tandem repeat 

structures leads to folding landscapes in which many partially folded states have 

similar energies and which are very sensitive to local details meaning that even small 

perturbations can reroute the folding transitions. Below we describe the main 

findings and conclusions reached to date. 

 

Repeat proteins have polarized folding mechanisms 

Using a protein engineering approach known as “phi-value analysis” the transition states 

for folding of many globular and a number of repeat proteins have been mapped [1]. For 

globular proteins, despite the variety of different native structures, a common folding 

mechanism has emerged, termed the “nucleation-condensation” mechanism. According 

to this mechanism folding occurs via a transition state of diffuse structure i.e., all of the 

protein is involved to some extent. The fact that the whole poplypeptide chain contributes 

to the transition state structure means that the protein is less likely to undergo partial 

unfolding, which can lead to misfolding and disease. In contrast to globular proteins, phi-

value analysis of repeat proteins indicates that they have polarized folding mechanisms in 

which a subset of repeats is highly structured in the transition state and other repeats are 

unstructured [2–6]. It has been shown that the order in which the repeats fold tends to be 

governed by thermodynamic stability, i.e. the subset of repeats that folds early is the one 

that is thermodynamically the most stable. Interestingly, certain low stability repeats that 

fold late or are natively disordered have been shown to be functionally important: the 

low stability repeats undergo folding transitions upon binding. Examples include 

ankyrin-repeat protein IkBa [7], TPR protein LrcH [8] and HEAT-repeat protein 

PR65/A [9]. 
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The shape of the rate-limiting energy barrier reflects the repeat architecture 

An essential component of the phi-value approach, and a powerful complement to it, is 

‘chevron plot’ analysis. A chevron plot describes the perturbation in a protein’s 

folding/unfolding kinetics (observed rate constants) when varying concentrations of 

chemical denaturant are added. Importantly, by measuring the denaturant dependence of 

the rate constants, one can obtain information on the both the position along the reaction 

coordinate of the rate-limiting energy barriers and the shape of these barriers (narrow or 

broad). A number of interesting features have emerged from the comparison of chevron 

plots from wild type and mutant variants. One feature that is commonly observed is 

downward curvature in the unfolding arm of the chevron plot. Downward curvature can 

be explained in terms of sequential transition states that, in the case of repeat proteins, 

reflect the sequential unravelling of the repeat array, repeat by repeat. Downward 

curvature tends to be more pronounced the greater the number of repeats in the protein 

[9,10]. The gradual shift from narrow to broad energy barriers for small versus large 

repeat proteins, resulting in a shift from relatively linear to highly non-linear unfolding 

arms, is particularly neatly illustrated in the series of consensus-designed TPR proteins, 

comprising between two and ten repeats, analysed by Javadi and Main [11] (Figure 1). 

 

Parallel routes for folding repeat proteins 

One key finding of chevron and phi-value analysis of repeat proteins, predicted by 

Ferreiro, Komives and Wolynes in 2005, is that there is more than one low energy route 

between the folded and unfolded states [12]. This was first shown experimentally in 2007 

for the ankyrin-repeat protein myotrophin [3]. Parallel pathways can be inferred from the 

kinetic data in a number of different, mutually non-exclusive ways. First, mutation can 

shift the flux from one path to another giving rise to upward curvature in the unfolding 

arm of the chevron plot [9,10]. Second, the rate constants observed for a reaction 

along parallel pathways will be faster than for a single pathway [3]. A final key 

signature requires a double mutant analysis (Figure 2A). Mutants are first constructed 

that direct folding down one path or another. Then a second series are made on top of 

these and phi values calculated; the second series of mutants will display different phi 

values [3]. Thus, a repeat protein’s folding pathway is balanced on a fulcrum. The 

heterogeneous distribution of stabilities across their repeat array results in a polarised 

folding mechanism. However, as the distribution of stabilities are sufficiently closely 
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balanced small perturbations can shift the folding flux from exclusively one pathway to 

another or allow flux through parallel pathways [3,12].  

 

 

What folds first does not necessarily unfold last 

One consequence of multiple pathways having similar energies is that what folds first 

does not necessarily unfold last. This apparently paradoxical behaviour can in fact be 

rationalised quite easily. Differences between the routes in terms of the position and 

shape of the rate-limiting energy barriers mean that their sensitivities to denaturant 

are different. Therefore under folding conditions of low denaturant one pathway may 

be favoured whereas under strongly denaturing conditions of high denaturant a 

different pathway is favoured. We have observed this behaviour most strikingly for 

the 7-ankyrin repeat protein gankyrin (R. Hutton, J. Wilkinson, M. Faccin, A. 

Pelizzola, A. Lowe, P. Bruscolini, LSI, submitted) (Figure 2B). In isolation the N-

terminal subdomain is stable and it forms very rapidly from the denatured state under 

refolding conditions. However, it is also easiest to unravel the native state from the N-

terminus. 

 

Mapping the full breadth of the energy landscape of repeat proteins 

The cooperative nature of globular protein architectures makes it difficult to dissect their 

folding pathways. Frequently only one snapshot of the reaction is accessible by 

conventional techniques: namely the rate-determining transition state, and the rest of the 

folding energy landscape is effectively invisible to experimentalists. In contrast, as 

described above and illustrated by gankyrin (Figure 2B), for repeat proteins we can 

access many more states and therefore map out the topography of their energy landscapes 

widely and in much greater detail: First, there can be more than one (un)folding pathway 

that is accessible, and by careful mutational analysis we can selectively populate and then 

map all of them. Second, the broad energy barriers often observed in the unfolding 

kinetics of repeat proteins mean that, again by carefully comparing wild-type and mutant 

rate constant over a broad range of denaturant concentrations, we can access both early 

and late parts of the reaction and thereby resolve how the protein gets to the top of the 

energy barrier and what happens subsequently. Lastly, there is one other tool in our 
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arsenal, and it is unique to repeat proteins. In phi-value analysis one uses a series of 

single-site substitutions to perturb the structure and thus free energy of the native state 

and thereby obtain structural information on intermediate states and transition states; for 

repeat proteins there is an alternative way of perturbing the energetics other than point 

mutations, namely the addition or removal of repeats. In a globular protein, removal of a 

subdomain would tend to unfold the whole structure. However, the modular nature of the 

structures means that they are strikingly tolerant to such gross modifications. The most 

elegant way in which this perturbation has been applied is by comparing the folding and 

unfolding kinetics of a series of consensus-designed repeat proteins of increasing length 

[11,13,14]. Such an approach has given us additional insights into the folding landscapes, 

including defining the size of the folding nucleus and identifying misfolded states. Two 

experimental studies of consensus TPR (CTPRa) and ANK proteins are the most 

complete to date [11,14]. In both studies, refolding rates increase with repeat number 

(although in the CTPRa study, the effect becomes smaller and smaller with increasing 

repeat number) (see Figure 1). For the ANK study, the increase in rate was modeled as 

multiple parallel folding pathways. In the case of the CTPRa data, the refolding arm of 

the chevron plots exhibited increased rollover as the proteins became larger. When these 

data were fitted it suggested that all CTPRa folding begins with the formation of a 

nucleus that has approximately similar burial of surface area in all constructs. When the 

proteins become larger, stable substructures form to produce metastable intermediates. 

Finally, the largest proteins exhibit a decrease in folding rate, caused by the population of 

a misfolded intermediate (Figure 1). 

 

From small to giant repeat proteins 

It is very challenging to map the kinetic folding pathways of large proteins, and 

indeed detailed analyses using approaches like phi-analysis have been limited to small 

globular proteins of less than ~100-150 residues. One constraint is that larger globular 

proteins are usually multi-domain and they often unfold via intermediate states that 

are prone to aggregation, making them difficult to characterise. In contrast, repeat 

protein’s partly folded intermediates do not appear to be as prone to aggregation. This 

property could be important given the vectorial nature of protein biosynthesis on the 

ribosome, as it would allow repeat proteins to fold co-translationally without risk of 

misfolding [15]. 



 6

A second reason for limiting folding studies to small globular proteins is that 

the kinetics for large globular proteins tend to be too complex to dissect easily. In 

contrast, the simple repeating architecture makes it much easier to dissect the folding 

mechanisms of even very large repeat proteins (up to 600 residues). As one would 

expect, these studies have given interesting insights through key features becoming 

more pronounced with increased size [9–11,16,17]. For example, we showed that the 

unfolding of the 590-residue 15-HEAT repeat protein PR65/A occurs via a double-

branched mechanism in which the pathway bifurcates into parallel routes twice in 

the reaction [9] (Figure 3). 

 

Folding mechanisms made-to-measure 

Because of the simplicity and modularity of the structures it should be possible to design 

repeat proteins with made-to-measure folding mechanisms in which we can accurately 

tune the various “flavors” of the reaction. Indeed, it is already possible to predict many of 

the key features of the folding landscape of a repeat protein from the experimentally 

determined equilibrium stabilities of the individual repeats [18]. We have gone a step 

further and have been able to rationalise the folding mechanism of a repeat protein 

from a purely in silico analysis of the native structure [9]; using the 15-HEAT repeat 

protein PR65/A we showed that the stability, and hence folding order, could be 

predicted from the native contact density. Most recently for the 7 ankyrin-repeat 

protein gankyrin, using an in silico approach we were able to recapitulate many of the 

key features of its folding landscape, including relative stabilities of subdomains, the 

order of repeat folding, the presence of alternative pathways, and the shapes of the 

associated kinetic energy barriers (R. Hutton, J. Wilkinson, M. Faccin, A. Pelizzola, A. 

Lowe, P. Bruscolini, LSI, submitted). 

 

Relationship between folding and function  

The solenoid shapes of repeat proteins suggest that some may have functions such as 

molecular springs and elastic adaptors. Indeed analysis by atomic force microscopy 

(AFM) and force molecular dynamics simulations has revealed such elastic behaviour 

[19–21], consistent with the stretching and twisting motions that are implied by the 
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diverse structures observed crystallographically for some repeat proteins such as the 

HEAT-repeat importins [22]. Moreover stepwise folding and unfolding of repeat 

proteins may be important for translocation across membranes [17,23] to pass through 

the narrow pore of the proteasome (EMS, J. Wilkinson, LSI, unpublished results).  

 

Outstanding questions 

Some important questions remain. One is the nature of the first rate-determining step 

in the folding of repeat proteins. Protein-engineering phi analysis and consensus 

approaches may be too coarse-grained to give us enough information about the 

structure of the folding nucleus. Recently, we inserted loops of increasing length 

between consensus TPR motifs in order to further probe the initial rate-determining 

step of folding (AP, ERGM & LSI, unpublished results). We found that the folding 

rate was strikingly little perturbed even when we insert multiple copies of large loops 

of up to 25 residues. This result suggests that the rate-determining step involves the 

formation of individual helices or repeats and that their subsequent coalescence is 

very rapid.  

 Another outstanding question is the extent and nature of repeat-protein 

misfolding, and whether it is similar to that observed for polyproteins comprising 

tandem immunoglobulin domain for which the sequence identity between adjacent 

domains is high [24]. Any misfolding might be expected to be more likely for longer 

repeat proteins and for consensus-designed proteins in which repeats have identical 

sequences. However, misfolding by domain swapping, as observed for the poly-

immunoglobulin domains, would be difficult in the case of repeat proteins because 

helices cannot swap position and remain folded as they have only very short 

connecting loops. Instead, misfolded states could involve the misdocking of non-

adjacent repeats, although as the intervening repeat would be unfolded this would 

have a high entropic penalty. We recently proposed that there may be an element of 

negative design in the evolution of giant repeat proteins such as PR65/A, whereby 

cryptic misfolding signals within the unstable central repeats are protected by the 

adjacent high stability repeats [25].  
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For smaller (<7) naturally occurring repeat proteins and consensus-designed 

ankyrin-repeat proteins there is no evidence of misfolding in the chevron plots. 

Perhaps the route to correct folding of helical repeat proteins is too easy and rapid for 

misfolding to compete. One caveat is that the population of misfolded species may be 

too low to be detectable by any methods other than single-molecule techniques. 

Alternatively, misfolded states may be spectroscopically silent and therefore would go 

undetected in single-jump stopped-flow measurements; for the larger repeat proteins 

D34 and PR65/A, we have indeed detected, by double-jump experiments, additional 

intermediate states that only slowly reach the native structure although we have not 

characterised their structures [9,10]. The study of the CTPR series by Javadi and Main 

did provide evidence of misfolding [11]. Extreme rollover was observed in the folding 

arm as the number of repeats was increased, pointing to the formation of misfolded 

states that need to unfold before correct refolding can occur; moreover, the 

fluorescent dye 1-anilinophthalene-8-sulfonate (ANS), which binds to patches of 

hydrophobic residues, was found to bind to these misfolded states.  

Lastly, the folding mechanisms of all-beta repeat proteins have not been 

characterised in any detail to date. It will be interesting to see to what extent and in 

what ways they differ in their folding properties compared to all-alpha and mixed 

alpha/beta repeat proteins. 

 

Future directions: repeat-protein design and assembly 

It was recognized early in the 2000’s that the unique properties of repeat proteins could 

be readily exploited as non-antibody scaffolds. First, the residues important for binding 

are distinct from those important for stability of the fold. Hence consensus-designed 

proteins, with fixed framework positions and variable binding positions, can be used to 

construct novel binding molecules. Second, repeat proteins are modular and consensus-

designed repeats are self-compatible. Thus there are no constraints of the number of 

modules that one could assemble. Third, proteins constructed from consensus-designed 

repeats express in very high yields and can be extraordinarily stable, both important 

characteristics for nanotechnology applications. Exploiting these properties, one can 

extend the modular design process from individual repeat proteins to the assembly of 

repeat proteins into novel biomaterials with encoded properties and precisely displayed 
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functional sites. To date, examples of this exciting field includes using metals, peptide 

binding, native chemical ligation and disulphide bonding to assemble repeat proteins into 

gels, films and fibres (Figure 5) [26–28]. One interesting design aspect that is peculiar to 

linear repeat proteins is the potential to change the shape of the superhelix (curvature, 

twist, pitch). We have recently shown that this can be achieved in a rational way for the 

TPR motif by using the HMM plots for different TPR sub-families and making helix-

helix packing substitutions that move away from the consensus sequence (AP, G. Fischer, 

M. Hyvönen, ERGM & LSI, unpublished results). The ability to create repeat-protein 

building blocks with altered super-secondary structures would allow us to build materials 

with specific geometrical arrangements of the proteins and to display and organize 

functional groups within the materials in a precise and predefined way. 
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Figure Legends 
 

Figure 1: Folding of consensus-designed TPR series  

(A) Chevron plots for the CTPRa2 to CTPRa10 proteins. CTPRa2 is fitted to a linear 2-

state model of folding. CTPRa3 to CTPRa10 fitted to a sequential 3-state on-pathway 

model. (B & C) Ribbon representation of the crystal structures of (B) CTPR2 [Protein 

Data Bank (PDB) entry: 1NA3] and (C) CTPR8 (PDB entry: 2AVP). Both were prepared 

using PYMOL. (D-F) Schematic of the proposed folding pathways of CTPRa proteins as 

they increase in repeat number. Cylinders are coloured from the N terminus in red and 

correspond to 1 helix. (D) Folding of CTPRa2: 2-state folding over the conditions studied 

with a transition state (T.S.) that is ≈50% solvent exposed as the native state. The 

transition state is drawn, for illustrative purposes, as 3 formed helices arranged as a 

formed repeat and 1 partially formed helix. (E) Folding of CTPRa proteins greater than 3 

repeats: multistate folding through a stable intermediate. Although there is no evidence to 

support a structure for the intermediate state, the proposed structures (i, ii, and iii) are 

shown. If the stabilities of helices/repeats obtained from the Ising model are used, this 

would correspond to the formation of a unit equal to 2.5 repeats. Folding from the 

intermediate requires a rearrangement that has no change in compaction when passing 

through the final transition state on route to the native state. This could consist of the 

docking of preformed modules. (F) Folding of CTPRa proteins of at least 10 repeats: 

folding is hampered by the population of a misfolded intermediate (drawn as wrongly 

docked repeats). The protein has to unfold from this state to continue to fold productively 

to the final native structure [11].  

 

Figure 2 

(A) Rerouting and mapping the parallel folding pathways of myotrophin. The folding of 

myotrophin can be represented by analogy with weighing scales [3]. The two folding 

pathways are shown schematically: For pathway A folding starts from the C-terminus, 

pathway B from the N-terminus). Which pathway is followed depends on the relative 

stability of the two ends of the protein, represented as different sizes of weights on the 

scales that tip the balance accordingly.  Chevron plots are shown for representative 

mutants, measured using stopped-flow fluorescence. The mutants in brackets (black data 

points) were designed to shift the flux exclusively through one or other folding pathway; 

additional mutations, in bold, were then made to probe the transition-state structure for 

that pathway (data points in colour). These data illustrate how the same mutation, A9G 
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for example, displays a different phi value depending on the mutant background in which 

it is made (either A9G or E17V/D20L) because folding is occurring along different 

pathways (A or B, respectively). 

(B) Phi-value analysis gives multiple snapshots of the folding energy landscape of 

gankyrin. Box inset shows the chevron plot obtained for wild-type gankyrin using 

stopped-flow fluorescence. Fast and slow phases are observed, corresponding to 

folding/unfolding of an intermediate and of the native state, respectively (the fast 

unfolding phase was obtained by interrupted refolding experiments). Upward curvature, 

indicative of parallel pathways, is evident in the unfolding arm for the slow phase. In red 

are the unfolding arms of two destabilizing mutants in the N-terminal (left) and C-

terminal (right) repeats that cause flux to be shifted exclusively through one or other 

pathway. Phi-value analysis maps out the structures of the transition states and 

intermediates for the two pathways, A and B, as shown in the schematic. Under native 

conditions pathway A is favored, whereas under strongly denaturing conditions (high 

urea concentrations) pathway B is favored (R. Hutton, J. Wilkinson, M. Faccin, A. 

Pelizzola, A. Lowe, P. Bruscolini, LSI, submitted). 

 

Figure 3: Folding of a giant repeat protein 

Unfolding mechanism of 15 HEAT-repeat protein PR65/A [9]. Box inset shows the 

kinetic unfolding phases observed for wild type by stopped-flow fluorescence. The data 

for wild type and mutants could be fitted to the model shown in the top panel in which 

the native protein unfolds via a series of intermediate states. According to this model, the 

pathway bifurcates into two parallel routes at two points in the reaction; the unfolding of 

repeats 3-10 (k1) is competitive with unfolding of repeats 14-15 (k2), and unfolding of 

repeats 1-2 (k3) is competitive with unfolding of repeats 11-13 (k4). Note the upward 

curvature in the urea dependence of the fastest unfolding phase, as the pathway switches 

from that going via intermediate I to intermediate II when k2 > k1.  Bottom panel shows 

the proposed relationship between PR65/A folding and function. PR65/A is the scaffold 

subunit of the heterotrimeric Ser/Thr protein phosphatase, PP2A, shown schematically 

with catalytic C subunit and regulatory B subunit bound to a multiply phosphorylated 

intrinsically disordered substrate. The folding analysis showed that the central repeats of 

PR65/A are the least stable and that they are partially unfolded at physiological 

temperature; it is proposed that unfolding/refolding of these low-stability central repeats 

of PR65/A modulates the positioning of the PP2A catalytic subunit relative to the 
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substrate, opening and closing the interface to coordinate processive dephosphorylation 

of multiply phosphorylated intrinsically disordered substrates. Such a model was 

originally postulated based on the elastic behaviour of PR65/A [29]. 

 

Figure 4: Designing the self-assembly of repeat proteins 

The top row shows different repeat protein components (A). Grey denotes scaffold 

modules and colour denotes modules with binding capabilities. The different types of 

repeat protein modules (e.g. ankyrin, TPR, etc) are indicated by different shaped pieces. 

Examples of published triggers for association are (A & H) chemical-induced 

polymerization of CTPR modules using native chemical ligation & disulphide bond 

formation[27,28], (B & H) metal induced polymerisation using minimized β-roll motifs on 

addition of La2+ [30], (C & I) thick film formation after large, rigid superhelical 18 CTPR 

module proteins were deposited on a teflon surface with a plasticizer and left to dry 

[rectangles of alternating blue and green of 3 module units denote the extending superhelix 

[31], (D & J) hydrogel formation of the same CTPR18 combining with multivalent cognate 

peptide–PEG cross-linker (pink circles on black lines)[26], (E & K) reversible gelation of a 

chimaera of a leucine zipper (black and red rectangles) with designed minimized β-roll 

motifs. On addition of Ca2+ (yellow circles) the minimized β-roll motifs fold (green 

squares) from unstructured polypeptides and oligomerize [32]. (F, G & L) In addition to 

the published routes to assembly and functionalisation, others can be envisaged such as 

domain swapping [for example, the self assembly of designed β-propeller proteins [33] (F) 

and insertion of domains between repeat modules (G).  By mixing and matching in a 

combinatorial fashion, a further diverse arrays of nanostructures could be fabricated (L). 
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