Sedentary Behaviour: A methods of measurement in epidemiology paper.

Andrew J Atkin (PhD)\textsuperscript{1}, Trish Gorely (PhD)\textsuperscript{2}, Stacy A Clemes (PhD)\textsuperscript{2}, Thomas Yates (PhD)\textsuperscript{3, 4}, Charlotte Edwardson (PhD)\textsuperscript{2, 4, 5}, Soren Brage (PhD)\textsuperscript{6} Jo Salmon (PhD)\textsuperscript{7}, Simon J Marshall (PhD)\textsuperscript{8}, Stuart J H Biddle (PhD)\textsuperscript{2, 4}

\begin{itemize}
  \item \textsuperscript{1} British Heart Foundation National Centre for Physical Activity and Health, Loughborough University, Loughborough, UK.
  \item \textsuperscript{2} School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK.
  \item \textsuperscript{3} Department of Cardiovascular Sciences, University of Leicester, Leicester, UK.
  \item \textsuperscript{4} NIHR Leicester-Loughborough Diet, Lifestyle and Physical Activity Biomedical Research Unit, University Hospitals of Leicester, Loughborough University and University of Leicester, UK
  \item \textsuperscript{5} Diabetes Research Department, University of Leicester, Leicester, UK.
  \item \textsuperscript{6} Medical Research Council, Epidemiology Unit, Cambridge, UK.
  \item \textsuperscript{7} Centre for Physical Activity and Nutrition Research, Deakin University, Burwood, Australia.
  \item \textsuperscript{8} School of Exercise and Nutritional Sciences, San Diego State University, California, USA.
\end{itemize}

Andrew J Atkin is now at the UKCRC Centre for Diet and Activity Research, Institute of Public Health, Cambridge, UK.
*Corresponding author: UKCRC Centre for Diet and Activity Research, Box 296, Institute of Public Health, Forvie Site, Robinson Way, Cambridge, CB2 0SR, UK. Email: aa595@medschl.cam.ac.uk. Phone: +44(0)12237 746881.

Running head: Measuring sedentary behaviour in epidemiology

Main text: 4979 words

Abstract: 237 words
Abstract
Background
Research examining sedentary behaviour as a potentially independent risk factor for chronic disease morbidity and mortality has expanded rapidly in recent years.

Methods
We present a narrative overview of the sedentary behaviour measurement literature. Subjective and objective methods of measuring sedentary behaviour suitable for use in population-based research with children and adults are examined. The validity and reliability of each method is considered, gaps in the literature specific to each method identified and potential future directions discussed.

Results
To date, subjective approaches to sedentary behaviour measurement, for example questionnaires, have focussed predominantly upon TV viewing or other screen-based behaviours. Typically, such measures demonstrate moderate reliability but slight to moderate validity. Accelerometry is increasingly being used for sedentary behaviour assessments; this approach overcomes some of the limitations of subjective methods but detection of specific postures and postural changes by this method is somewhat limited. Instruments developed specifically for the assessment of body posture have demonstrated good reliability and validity in the limited research conducted to date. Miniaturisation of monitoring devices, interoperability between measurement and communication technologies and advanced analytical approaches are potential avenues for future developments in this field.
Conclusions

High quality measurement is essential in all elements of sedentary behaviour epidemiology, from determining associations with health outcomes to the development and evaluation of behaviour change interventions. Sedentary behaviour measurement remains relatively under-developed, though new instruments, both objective and subjective, show considerable promise and warrant further testing.

Key words: Sedentary Behaviour, Epidemiology, Validity, Reliability
Introduction

Sedentary behaviour, typically defined as activities requiring very low levels of energy expenditure that occur whilst sitting or lying down, has been the subject of increasing epidemiological research in recent years \cite{ref1, ref2}. Emerging evidence indicates that various markers of sedentary behaviour, including TV viewing and total sitting time, are deleteriously associated with chronic disease morbidity and mortality, often independently of physical activity \cite{ref3, ref4, ref5, ref6}. If causality is established, the population attributable risk associated with the negative consequences of sedentary behaviour is potentially very large because these behaviours are highly prevalent \cite{ref8}. A number of countries have produced public health guidelines that include recommendations on limiting participation in sedentary behaviour \cite{ref9, ref10}. It is, therefore, timely and necessary to outline the key measurement approaches used for the assessment of sedentary behaviour in the context of population health research.

Within a behavioural epidemiological framework, \cite{ref2, ref11, ref12} development of accurate methods of measuring sedentary behaviour is the second of five stages of research, which collectively describe the spectrum of descriptive, analytic, intervention, and translational research related to the study of sedentary behaviour and population health. High quality exposure assessment is essential in order to identify causal associations with health outcomes, to quantify precisely the magnitude of the association and to describe dose-response relationships \cite{ref13, ref14, ref15, ref16}. Moreover, accurate measurement is required to document patterns of, and changes in, sedentary behaviour between and within individuals over time.
The aim of this paper is to provide an overview of the various methods of measuring sedentary behaviour appropriate for use in population-based studies in children and adults. Issues that are considered include the validity and reliability of each measurement approach, relative strengths and limitations, processing and interpretation of the obtained data and gaps in the literature. Latterly, we discuss new and emergent approaches to sedentary behaviour measurement. We followed guidelines proposed by Landis and Koch in assessing the strength of evidence for reliability and validity. The various forms of validity referred to in this article are defined and discussed in detail elsewhere. This paper adds to the existing literature on this topic by exploring a wide range of measurement methods (subjective and objective) with consideration of their use in both children and adults. It is not our intention to provide an exhaustive review of the literature, but rather to highlight key conceptual and empirical issues pertaining to each measurement method in the context of contemporary evidence. The methods of assessing sedentary behaviour can be summarised as:

2. Objective measures – accelerometers, posture monitors, heart rate monitoring and combined sensing, multi-unit monitors.

Key characteristics of the subjective and objective methods of measurement discussed in this paper are summarised in Table 1.
Subjective methods
This section refers to instruments that attempt to measure the domains of sedentary behaviour (mode, context, duration and breaks) through self-report. Questionnaires are the most commonly reported method of capturing sedentary behaviour, the majority of which are self-administered, although in-person and telephone interview formats have also been employed \(^2,^{20}\). Other self-report methods, such as diaries, although used less frequently in epidemiological studies to date, are also considered.

Self-report questionnaires
To date, the majority of studies employing self-report measures have centred on capturing daily TV viewing time as a proxy marker of overall sedentary behaviour \(^2,^{20},^{21}\). Many of the questionnaires used to capture TV viewing time have not reported reliability and validity data. In those that provided psychometric data in adults, reliability coefficients were generally fair to high (test-retest \(r = 0.32\) to \(0.93\)) but concurrent validity was highly variable \((r = -0.19\) to \(0.80\)) \(^{20}\). One study that examined absolute validity reported that TV viewing time was significantly lower when measured by self-report compared with an objective measure \(^{22}\). Two recent reviews of the literature indicate that the reliability and validity of children’s self-reported TV viewing is highly variable \(^{21},^{23}\) (test re-test \(r = 0.13\) to \(0.98\), majority \(r < 0.50\); validity \(r = -0.19\) to \(0.88\), majority \(r < 0.50\) \(^{21}\)). In addition, the measurement of TV viewing time as an indicator of total sedentary time is problematic as this behaviour does not appear to be representative of overall sedentary behaviour \(^{24},^{25}\). Studies
drawing inferences about the impact of overall sedentary behaviour from assessments of TV viewing should be interpreted with caution.

Other self-report questionnaires have focused on more global measures of sedentary behaviour, such as total daily sitting time but, similarly, the measurement properties of many such instruments have not been adequately demonstrated. The International Physical Activity Questionnaire (IPAQ) was designed to provide an internationally standardised method of measuring physical activity and sitting behaviour in surveillance studies. The sedentary item in IPAQ has generally been shown to have moderate reliability (Spearman $\rho > 0.7$ for test re-test data) but moderate to poor convergent validity (Spearman $\rho < 0.5$) when compared to objectively measured sedentary behaviour by accelerometry.

Recent work has attempted to develop more refined measurement tools that assess multiple sedentary behaviours (e.g., TV viewing, reading, socialising) and/or domain-specific behaviours (e.g., sitting at work or at home, motorised travel). These show promise, but further development and validation work is required. One recent study reported that when compared to accelerometer assessed sedentary behaviour, a single item question significantly underestimated sitting time whilst a domain specific questionnaire, with multiple items, more accurately assessed average sitting time. However, the single item questionnaire had preferential limits of agreement, demonstrating smaller measurement error (both random and systematic), possibly due to there being fewer responses required. This may
suggest that more detailed questionnaires will be needed for sedentary behaviour prevalence and surveillance studies, whereas single item questionnaires may be more appropriate for health-related epidemiological research, where ease of use and the ability to rank behaviours of interest are the dominant requirements.

The qualitative attributes (e.g., recall period, question / response format) and mode of administration (e.g., interviewer- / self-administered) of existing self-report instruments is extremely varied. Comparison of test-retest results in adults does not clearly demonstrate that one recall period or administration format is superior to another. There is some evidence that concurrent validity may be better in adults when participants recall a typical day compared to a 7-day or 12-month recall period. However, these observations derive from studies in different populations and using different referent measures. In addition, adults and children appear better able to recall sedentary behaviour for weekdays than weekends, perhaps due to greater variability in behaviour patterns at weekends.

The strengths of self-report questionnaires include that they are cost-effective, readily accessible to the majority of the population and have a relatively low participant burden. Self-report tools can also be used to identify the type of behaviour and the context in which it occurs, information which may be used to inform intervention design.
A key limitation of self-report measures is that they consistently demonstrate poor validity. A major impediment to establishing validity is the lack of an accepted ‘gold standard’ referent measure of sedentary behaviour. The use of one form of self-report to validate another is inappropriate due to the problem of correlated error. Objective methods that assess changes in posture, and thus yield a measure of sitting, offer promise in future validation studies. A further limitation of self-report tools is that they are vulnerable to influence by cultural norms and perceived social desirability. Achieving linguistic and conceptual equivalence in the translation of self-report tools is also challenging, limiting the comparability of data collected in different populations. Unique to the field of sedentary behaviour research, assessment of the type of behaviour being undertaken is complicated by the phenomenon of concurrent behaviours (i.e., an individual may be engaged in TV viewing and mobile phone use at the same time). Therefore, data collection using global measures of self-reported sedentary behaviour rather than specific behaviour types may have greater utility in epidemiological research.

**Proxy-report questionnaires**

Self-report may not be appropriate for use in children as their limited cognitive capacity may hinder accurate recall. In such circumstances, parent-proxy reports may be used to gather information on children’s sedentary behaviour. Informed by evidence from observational research, age limits of 10 and 14 years, below which the use of self-report measures of sedentary behaviour are believed to be inappropriate, have been proposed, though there is likely to be considerable between child variability. In a recent review,
reliability coefficients (intra-class correlation or Pearson’s $r$) for parental reports of children’s sedentary behaviour ranged from 0.60 to 0.80$^{23}$. Criterion and concurrent validity coefficients (Spearman or Pearson’s $r$) were highly variable, ranging from 0.08 to 0.84$^{23}$. At present, few studies have examined the psychometric properties of children’s proxy-reported sedentary behaviour. Further work is also required to establish reporting protocols when using these methods$^{2}$.

**Diaries**

Sedentary behaviour is multi-faceted and, as such, sometimes requires more detailed assessment than can be obtained by markers of overall sitting time. Moreover, certain types of behaviour, particularly those that are sporadic or intermittent in nature, may be difficult to recall accurately over a time frame of greater than a few hours. To overcome some of the problems with behavioural recall, diaries and ecological momentary assessment (EMA) methods have been developed$^{36}$.

Diaries are usually time-dependent records of behaviours, observations, thoughts or feelings. When a recall method is used, rather than one where data are reported at the time of occurrence, data are likely to suffer from the same limitations as conventional self-report questionnaires. Nevertheless, limited data for children’s TV viewing, when reported by a parent, or assisted by their parents, suggest moderate to high reliability and validity when tested against direct observation and objective measures$^{21}$. EMA methods, discussed in detail by Shiffman et al$^{36}$, have the following characteristics (a)
data are collected in ecologically valid ('real-world') settings; (b) assessment is made of current, or very recent, behaviours; (c) time periods ('moments') are selected based on the research question of interest (e.g. specific behaviours or set time-periods); (d) multiple assessments are made over time. In a study by Biddle and colleagues, pilot data suggested that the 15-minute momentary time samples method provided accurate estimates of duration of the main behaviours compared to estimates derived from a minute-by-minute diary.

A clear advantage of EMA is in assessing specific behaviours as they occur, or very close to when they occur, as well as measuring the temporal, location and social context. Limitations of EMA include the potential for reactivity, mainly through the intense 'self-monitoring' that it entails, and compliance may be challenging given the high degree of participant burden. The significant researcher burden and economic costs associated with data entry and processing also limits the applicability of EMA-based methods in large-scale studies.

**Objective methods**

To address some of the limitations associated with self- or proxy-reported sedentary behaviour, objective methods of measurement are increasingly being used. This section summarises the literature on the use of such devices in the epidemiological context.
**Accelerometers**

Accelerometers are small, lightweight devices that are usually worn on an elastic belt positioned on the hip or lower back. Accelerometers measure the frequency and amplitude of acceleration of the body segment to which they are attached and often integrate this information in the form of movement ‘counts’ ⁴¹. Accelerometers can be used to estimate the total volume of sedentary behaviour through the accumulation of low movement counts at specified cut points. They can also be used to detect short, incidental breaks in sedentary time, defined by periods where movement counts exceed the specified threshold, which may not be feasibly recorded by self-report measures ⁴². In addition, because the collected information is stamped with real-time, specific segments of the day or week can be extracted, such as after-school or time at work. There are many accelerometers on the market suitable for use in epidemiological research, though the ActiGraph (ActiGraph LLC, Pensacola, FL) has been the most widely used to date. Key issues in the use of accelerometry for the assessment of sedentary behaviour relate to device initialisation, post-processing, signal feature extraction, and inference of specific outcome variables ⁴³. There is a lack of consensus as to the most appropriate accelerometer data processing protocol, limiting comparability between studies and hindering evidence synthesis. Nonetheless, accelerometers are now being used to assess sedentary time in large-scale surveillance studies ⁸, ⁴⁴.

Previously, it was necessary to specify the sampling frequency (epoch) during device initialisation but in newer accelerometer models (e.g., ActiGraph
GT3X+), which record raw acceleration data, the epoch is overlaid during post-processing. A significant effect of epoch length on accelerometer-determined sedentary time has been reported, but findings are inconsistent and the most appropriate sampling frequency for determining sedentary time has yet to be established \(^{45,46}\). In general, however, it is beneficial for researchers to collect data in as short an epoch as possible, as this provides information on exposure at the highest possible resolution. Moreover, data collected under shorter epochs can be summed into longer epochs, facilitating the process of directly comparing findings across studies. Importantly, data collected using longer epochs cannot be partitioned into shorter time frames. In the absence of a consensus regarding optimal epoch length, data collection using the shortest possible epoch, whilst potentially leading to the need for additional data processing, provides an opportunity for data to be re-integrated and compared between studies that would not otherwise be possible.

The monitoring period for accelerometer-based assessments of sedentary time has typically been seven days \(^8,47-51\), with participants included in subsequent analyses if they provided sufficient data for at least three to five days (see discussion below). However, Matthews et al. recommend that at least seven days of monitoring may be required to obtain reliable estimates of habitual time spent ‘inactive’ in adults, suggesting that current studies may have under-sampled the behaviour of interest \(^52\). In older adults, it has been suggested that five days is sufficient to accurately predict average daily sedentary time by accelerometry \(^53\). A recent study in children aged 6-8 years
found that 3 days of monitoring provided 73% reliability for estimates of percent time spent sedentary using the ActiGraph GT1M. Further work is required to examine between-day variability in sedentary behaviour patterns (e.g., weekday versus weekend) and possible seasonal variation, both of which will have implications for the monitoring period required.

In studies with children, the number of hours of monitoring required for inclusion of a day in analysis has been variable, ranging from six to 10 hours per day. However, a shorter day may be reasonable depending on the age of the child (young children having fewer waking hours than adolescents or adults). In adults, a minimum of 10 hours of wear time has usually been required. Identification of non-wear time is typically conducted by selecting a period of consecutive zero counts above which it is deemed that the device must have been removed. These segments of zero counts are then removed from further analysis. In studies concerned with estimating sedentary time, non-wear criteria have varied from 10 to 60 minutes of consecutive zero counts. Using strings of zero counts to indicate non-wear time, however, is problematic because continuous zero readings may occur for a number of reasons. Importantly, continuous zero counts may be recorded when a participant is sitting or lying (whilst wearing the device), potentially resulting in the erroneous removal of sedentary time data due to misclassification as non-wear time. Improved methods of identifying non-wear time are needed. One possible solution is to combine motion sensing with physiological assessments (such as heart rate).
wherein the absence of physiological data may be used to signify non-wear time.

A number of accelerometer cut-points have been proposed for defining sedentary time in children and adolescents, varying from 10 up to 1592 counts per minute (CPM)\(^{61-69}\). Differences in the choice of calibration activities, criterion measures, statistical analyses and participant characteristics likely account for the diversity of cut-points proposed to date. In general, it appears that studies using direct observation as the criterion measure have settled upon higher cut-points than studies using energy expenditure based methods, but these have been limited to laboratory-based simulations of free-living behaviour\(^{68}\). Neither of these approaches are optimal criterion measures. Direct observation is not a wholly objective method as it requires careful attention to intra- and inter-rater reliability. Energy expenditure based methods, whilst objective, are insufficiently sensitive to postural allocation and limited for distinguishing sitting from quiet standing.

Using the ActiGraph (uni-axial models), a count threshold of <100 CPM is commonly applied to denote sedentary time in adults\(^{8,47,48}\). This cut-point has also been proposed for the classification of sedentary behaviour using the Actical activity monitor (Mini-Mitter, Bend, Oregon)\(^{70}\). However, despite the widespread use of this cut-point, this value was not empirically derived and studies reporting the validity of this cut-point in adults are limited\(^ {8,71}\). Recently, Kozey-Keadle et al.\(^ {71}\) assessed the criterion validity of a number of
ActiGraph (GT3X) cut-points (50, 100, 150, 200 and 250 CPM) for defining sedentary time against direct observation in a small sample of adults \((n=20)\). Findings indicated that the ActiGraph 100 CPM cut-point underestimated sedentary time by 4.9%. The cut-point with the lowest bias was 150 CPM, which overestimated sedentary time by 1.8%. A recent study by Oliver et al.\textsuperscript{72} investigated sedentary behaviour cut-points for the Actical accelerometer (hip-mounted), using the activPAL (thigh-mounted; PAL Technologies Ltd, Glasgow, UK) device as the criterion measure. It was concluded that a threshold of 0 counts per 15 second epoch provided the most accurate estimates of sedentary time. However, recognising the potential difficulties a zero count cut-point would raise in terms of distinguishing non-wear time, the authors recommend a threshold of 0-5 counts per 15 second epoch during periods when the device can be deemed to have been worn.

A key limitation of traditional (count-based) accelerometers as a measure of sedentary behaviour is that they assess intensity of movement and thus are less able to distinguish between postures such as sitting and lying or standing still. Consequently, periods of standing still may be misclassified as sedentary time and vice versa\textsuperscript{30,73}. Newer models of the ActiGraph accelerometer (GT3X and GT3X+) include an inclinometer function, which classifies participants' posture into four categories (device removed, standing, lying and sitting). Preliminary evidence, however, indicates that the validity of this function is limited and may be influenced by point of attachment\textsuperscript{74}. 
Posture monitors

The activPAL (PAL Technologies Ltd, Glasgow, UK) is a small, lightweight electronic device worn under clothing. It is attached directly to the skin on the midline of the anterior aspect of the thigh. The activPAL determines posture on the basis of thigh acceleration including the gravitational component and uses proprietary algorithms (Intelligent Activity Classification) to classify time as sitting / lying, standing, or stepping. Information on cadence, number of steps taken, sit-to-stand and stand-to-sit transitions and estimates of energy expenditure are also provided.

The activPAL has been shown to be a reliable and valid measure of step counts in adults \(^{75-80}\). However, relatively few studies have explored the criterion validity of the activPAL for measuring sitting time \(^{32,71,73}\). In one validation study, a mean percentage difference of 0.19% (limits of agreement −0.68% to 1.06%) between the activPAL monitor and direct observation for total time spent sitting was reported \(^{32}\). More recently, Kozey-Keadle and colleagues \(^{71}\) examined the validity of the activPAL in assessing sedentary behaviour and detecting reductions in sitting time. The activPAL output was highly correlated with direct observation (R\(^2\)=0.94) and accurately identified investigator manipulated reductions in sitting time. Although limited in number, these studies provide promising preliminary evidence that the activPAL may be a valid tool for the assessment of sedentary behaviour in adults.
Research examining the reliability and criterion validity of the activPAL for measuring sitting time in young people is currently quite limited, though studies are beginning to emerge. Davies et al., for example, present validity data from 30 pre-school children who were videoed for 1 hour undertaking usual activities in nursery school whilst wearing an activPAL. The activPAL demonstrated 87% sensitivity, 97% specificity and 96% positive predictive value for time spent sitting / lying, suggesting that this device may also be a valid measure of sitting time in children.

Although limited at present, the evidence suggests that the activPAL is a useful measure of sedentary behaviour (specifically sitting time) that could be utilised in a variety of contexts. Future research should aim to establish its validity, reliability and responsiveness for measuring sedentary behaviour in different populations and in different settings. Similar to other accelerometer-based methods, the activPAL does not provide information on the type of behaviour being undertaken or the social or environmental context in which it occurs.

Heart rate monitoring and combined heart rate and movement sensing

The assessment of human heart rate (HR) as a method for studying behaviour has a long history. Most epidemiological effort, however, has concentrated on estimating total energy expenditure (EE) or time spent at moderate to vigorous intensity level (i.e. EE >3 metabolic equivalents (METs)), typically using the flex-HR method. The individually established flex-HR point (a discriminatory threshold between rest and exercise)
determines when data from free-living is translated as EE at rest or according to an established regression line from an exercise test. In free living conditions, it has been shown that most time is spent below the flex-HR point, even in children\textsuperscript{86}. Time below flex-HR has been used to estimate sedentary behaviour and found to be associated with insulin resistance\textsuperscript{87}. This measure of sedentary behaviour generally has high specificity but low sensitivity.

All strengths and limitations of heart rate monitoring and movement sensing apply equally to combined sensing data when these data streams are analysed separately. Here we refer to the specific utility of combined sensing data for assessing sedentary behaviour when the heart rate and movement data are analysed together. This includes the initial inference on whether or not the monitor is worn, which can be made with greater certainty in the presence of both biomechanical and physiological sensor information.

Several studies have investigated the utility of combined heart rate and movement sensing to accurately assess physiological intensity across a wide range\textsuperscript{88-91}. Defining sedentary behaviour in caloric terms, (e.g., time spent at 1 MET or below), enables sedentary outcome variables to be derived from these methods. Time spent in the lowest branch of the branched model may be used as a pragmatic measure of sedentary behaviour, irrespective of its ability to estimate physical activity intensity\textsuperscript{92}. To date, the utility of combined HR and movement sensing as a measure of sedentary behaviour has not been fully explored. Further work exploring the validity of this approach in diverse populations and settings is warranted.
Multi-unit monitors

The utility of multi-site / multi-sensor devices has been examined widely in the clinical setting (e.g. mobility assessments in older adults\textsuperscript{93}), but their potential in the epidemiological domain is largely unknown. Typically, these devices use multiple accelerometers, inclinometers or physiological sensors attached to various points on the body. Sensor signals are then integrated to enable classification of different postures and types of movement. A number of such devices have been developed and examined for their accuracy in detecting posture and activity (both activity type and energy expenditure) in controlled settings\textsuperscript{33, 94-98}. However, the validity and feasibility of using these devices under free-living conditions has not been extensively tested. Limitations in battery and memory capacity and the computational and analytical complexity associated with processing multi-sensor data also limits their applicability in an epidemiological context at present. These devices may, however, be valuable as criterion measures in the validation of other sedentary behaviour measurement tools. For example, the Intelligent Device for Energy Expenditure and Activity (IDEEA; MiniSun, Fresno, CA) has demonstrated 98% accuracy in classifying 32 different types of activity and postures under laboratory conditions\textsuperscript{33}. Matthews et al.\textsuperscript{8} reported a small unpublished study in which the convergent validity of the ActiGraph (model 7164) 100 CPM cut-point for sedentary behaviour was compared against the IDEEA monitor in 19 free-living adults. The ActiGraph and IDEEA monitors displayed similar values for time spent sedentary (8.63 and 8.53 hours/day respectively), and there was a moderate association between the two devices ($r = 0.59$). Further
development and validation work is required to examine the utility of multi-unit devices in field settings.

**New and emergent methods**

As we further examine the mechanisms linking sedentary behaviour to health, new measures and analytic methods may be needed to capture nuanced features of the behaviour and unpack the hypothesised causal pathways. For example, informed by evidence indicating that breaking up prolonged periods of sitting is associated with better cardio-metabolic health, new self-report measures are being tested that quantify breaks in sitting and not just the total exposure. In terms of future developments, advances in sedentary behaviour assessment, particularly with regard to objective monitoring, will likely mirror those observed in computing and information technology more broadly. Accordingly, three emergent trends can be identified, namely the miniaturisation of new devices, interoperability of existing devices and advanced computational methods. Here, we do not consider the development of specific new tools, but rather explore how these broader trends may influence sedentary behaviour assessment in the future.

**Miniaturisation of new devices**

Moore’s law continues to predict with some accuracy that electronic devices will become smaller, more sophisticated, and cheaper every 12-24 months. Indeed, technology for data capture, processing, and storage often outpaces our ability to describe it in the scientific literature. It is highly likely that disposable omnidirectional accelerometers with inclinometric or gyroscopic
capabilities will soon cost less than printing, sending, collecting, and entering data from a paper survey. There are already commercially available accelerometers with advanced data capture capabilities available for under $100. Further feasibility and validity studies of such devices may be necessary before they can be applied in research settings. Because sedentary behaviour assessment requires accurate detection of posture rather than movement intensity, energy scavenging disposable inclinometers that attach to the skin, much like a plaster / band-aid®, are now conceptually feasible and would have major implications for population-based studies in this field.

**Interoperability of existing devices**

Interoperability refers to the ability of different software and hardware packages to work together effectively, without special effort on the part of the user. Rapid growth of the service oriented architecture (and cloud computing) in computer science has enabled commercially distinct tools to start communicating with one another, yielding a data stream that contains more information than the sum of its constituent parts. For example, combining geolocation data with acceleration signals in mobile phones can provide information about the context of sedentariness (e.g., occupational sitting vs. sitting at home) in addition to reducing systematic error in the exposure itself. Another promising approach is the distribution of external sensors that communicate with a participant’s mobile phone to provide real time assessments of sedentary behaviour. This places the burden of data acquisition, storage, and management (the “cyberinfrastructure”) on the
phone itself, reducing the cost of measurement and participant burden.

Testing of these devices and applications is already underway (e.g., at the Massachusetts Institute of Technology; http://web.mit.edu/wockets/).

**New computational methods**

New statistical and computational methods aimed at better characterising sedentary and physically active behaviours are being developed and tested. Alternatives to threshold-based methods of classifying accelerometer ‘counts’ have started to emerge, such as machine learning models. In these classification systems, a set of signal features from the accelerometer are extracted and then used as inputs for inference schemes which are trained on annotated data. These techniques have been applied most frequently with multi-unit devices, but a small number of studies have used these methods to classify activity type from a single accelerometer. For example, Pober et al. were able to classify four types of activity (walking, walking uphill, vacuuming, computer work) with 80% accuracy using a hidden Markov model based on 1-second data collected with a single waist-worn ActiGraph (model 7164) accelerometer. These preliminary findings indicate the potential of pattern recognition methods to improve classification of sedentary time in epidemiological studies. Although these processes are analytically complex, the utility of pattern recognition in characterising epidemiologic data derives from the application of pre-determined algorithms developed from training data sets that are generalisable to large populations. However, more validation work is needed on large samples under free-living conditions that contain behaviours validated against direct observation. Novel
methodological approaches, for example SenseCam (a data capture tool worn around the neck that automatically records time-stamped, first-person point-of-view images$^\text{106}$), may be valuable in addressing some of the difficulties associated with more traditional approaches to direct observation.

**Conclusion**

Advancement in the epidemiological study of sedentary behaviour requires the development and application of accurate methods of measurement. In this paper, we have described and evaluated the various methods of measuring sedentary behaviour applicable in the epidemiological context, highlighted areas in need of further study and discussed new and emerging themes in this field. Assessment of sedentary behaviour by self-reports is limited by, amongst other things, the ubiquitous nature of these behaviours, which may be unremarkable, intermittent and incidental, and therefore difficult to recall. Traditional survey methods may be surpassed by new technologies that can provide, for all population groups, second-by-second information on posture, movement (or lack of movement) and patterns within and between days. Specific behavioural measures remain essential nonetheless, for monitoring compliance with screen-time recommendations for example, and in providing additional information on the social and environmental context in which behaviour occurs. New and emergent technologies show considerable promise in sedentary behaviour assessment, but challenges with regard to attaining compliance with measurement protocols and the development and application of complex analytical methods remain.
Funding

NIHR Leicester-Loughborough Diet, Lifestyle and Physical Activity Biomedical Research Unit is funded by the National Institute for Health Research.
References

1 Katzmarzyk PT. Physical activity, sedentary behavior, and health: Paradigm paralysis or paradigm shift? *Diabetes* 2010;**59**:2717-25.


Start Active, Stay Active. A report on physical activity for health from the four home countries' Chief Medical Officers. 2011.


White E, Armstrong BK, Saracci R. Exposure measurement error and its effects. *Principles of Exposure Measurement in Epidemiology: Collecting,


18 Landis JR, Koch GG. The measurement of observer agreement for categorical data. *Biometrics* 1977;33:159-74.


Gorely T, Marshall SJ, Biddle SJH, Cameron N. The prevalence of leisure time sedentary behaviour and physical activity in adolescent girls: An


Pate RR, Almeida MJ, Mclver KL, Pfeiffer KA, Dowda M. Validation and calibration of an accelerometer in preschool children. *Obesity* 2006;14:2000-06.


Wareham NJ, Hennings SJ, Prentice AM, Day NE. Feasibility of heart-rate monitoring to estimate total level and pattern of energy expenditure in a


Staudenmayer J, Pober D, Crouter S, Bassett D, Freedson PS. An artificial neural network to estimate physical activity energy expenditure and

<table>
<thead>
<tr>
<th></th>
<th>Subjective</th>
<th></th>
<th>Objective</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Self-report</td>
<td>Proxy-report</td>
<td>Diaries</td>
<td>Accelerometry</td>
<td>Posture monitors</td>
<td>Heart-rate (HR) / Combined sensing</td>
</tr>
<tr>
<td>Cost</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
<td>Moderate</td>
<td>Moderate</td>
<td>High</td>
</tr>
<tr>
<td>Population</td>
<td>Adults</td>
<td>Children / older adults</td>
<td>Adults</td>
<td>All population groups</td>
<td>All population groups</td>
<td>All population groups</td>
</tr>
<tr>
<td>Participant burden</td>
<td>Low</td>
<td>Low</td>
<td>Moderate</td>
<td>Low</td>
<td>Low / moderate</td>
<td>Low / moderate</td>
</tr>
<tr>
<td>Researcher burden</td>
<td>Low</td>
<td>Low</td>
<td>Moderate</td>
<td>Moderate</td>
<td>Moderate</td>
<td>Moderate / high</td>
</tr>
<tr>
<td>Dimensions assessed</td>
<td>Specific behaviours; environmental and social context.</td>
<td>Specific behaviours; environmental and social context.</td>
<td>Specific behaviours; environmental and social context.</td>
<td>Total sedentary time, including bouts and breaks.</td>
<td>Time spent sitting / standing, posture transitions.</td>
<td>Activity intensity, frequency, duration.</td>
</tr>
<tr>
<td>Application</td>
<td>Widely used, feasibility established.</td>
<td>Widely used, feasibility established.</td>
<td>Infrequently used, feasibility established.</td>
<td>Widely used, feasibility established.</td>
<td>Increasingly used, feasibility indicated.</td>
<td>Infrequently used, feasibility indicated.</td>
</tr>
<tr>
<td>Strength(s)</td>
<td>Information on behaviour type and context useful for intervention design.</td>
<td>Provides data on populations not able to complete self-reports.</td>
<td>May be used to assess concurrent behaviours.</td>
<td>Substantial literature on application and analysis.</td>
<td>Able to distinguish sitting / standing.</td>
<td>Combined movement and physiologic data aids identification of monitor wear time.</td>
</tr>
<tr>
<td>Limitation(s)</td>
<td>Subject to recall and reporting bias.</td>
<td>Subject to recall and reporting bias, validation studies lacking.</td>
<td>Subject to recall and reporting bias, validation studies lacking.</td>
<td>No consensus regarding data processing.</td>
<td>Validation studies in free-living conditions lacking.</td>
<td>Formal validation studies lacking.</td>
</tr>
</tbody>
</table>