Hypothalamic volume loss is associated with reduced melatonin output in Parkinson’s disease

<table>
<thead>
<tr>
<th>Journal:</th>
<th>Movement Disorders</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuscript ID</td>
<td>MDS-15-0947.R2</td>
</tr>
<tr>
<td>Wiley - Manuscript type:</td>
<td>Brief Report</td>
</tr>
<tr>
<td>Date Submitted by the Author:</td>
<td>n/a</td>
</tr>
<tr>
<td>Complete List of Authors:</td>
<td>Breen, David; Cambridge Centre for Brain Repair, University of Cambridge Nombela Otero, Cristina; UPCT, Automatic Engineering Vuono, Romina; Cambridge Centre for Brain Repair, University of Cambridge Jones, Simon; University of Cambridge, Department of Clinical Neurosciences Fisher, Kate; Cambridge Centre for Brain Repair, University of Cambridge Burn, David; Newcastle University, Institute of Neuroscience Brooks, David; Aarhus University, Institute of Clinical Medicine Reddy, Akhilesh; University of Cambridge, Institute of Metabolic Science Rowe, James; Cambridge University, Barker, Roger; university of cambridge, neuroscience</td>
</tr>
<tr>
<td>Keywords:</td>
<td>melatonin, hypothalamus, suprachiasmatic nucleus, Parkinson's, circadian</td>
</tr>
</tbody>
</table>
Hypothalamic volume loss is associated with
reduced melatonin output in Parkinson’s disease

Authors and affiliations:

David P Breen MRCP PhD1*, Cristina Nombela PhD1*\$, Romina Vuono PhD1,

Simon Jones MSc2, Kate Fisher PhD1&, David J Burn FRCP MD3, David J Brooks MD

DSc4,5, Akhilesh B Reddy PhD MRCP6, James B Rowe MRCP PhD2,7,8, Roger A

Barker MRCP PhD1

*These authors contributed equally to the manuscript

5Present address: School of Medicine, Universidad Politécnica de Cartagena, Murcia, Spain

8Present address: School of Chemistry, University of Edinburgh, Edinburgh, UK

1John van Geest Centre for Brain Repair, University of Cambridge, Cambridge, UK

2Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK

3Institute of Neuroscience, Newcastle University, Newcastle, UK

4Division of Neurology, Imperial College, London, UK

5Institute of Clinical Medicine, Aarhus University, Denmark

6Institute of Metabolic Science, University of Cambridge, Cambridge, UK

7Behavioural and Clinical Neuroscience Institute, University of Cambridge,

Cambridge, UK

8Medical Research Council Cognition and Brain Sciences Unit, Cambridge, UK
Corresponding author: Dr David P Breen, John van Geest Centre for Brain Repair, University of Cambridge, ED Adrian Building, Forvie Site, Robinson Way, Cambridge, CB2 0PY; Tel: 01223 331160; Fax: 01223 331174; Email: dpbreen1@gmail.com

Word count: 1302; References: 10; Figures: 1; Tables: 1

Running title: Hypothalamic volume and melatonin output in PD

Search terms: melatonin, hypothalamus, suprachiasmatic nucleus, Parkinson’s, circadian

Financial Disclosure/Conflict of Interests: None

Funding Sources: The authors would like to acknowledge the study funders: the Big Lottery Fund (C498A738) and Parkinson’s UK (J-0802). The research was supported by a National Institute of Health Research Biomedical Research Award (to Addenbrooke’s Hospital/University of Cambridge), the Wellcome Trust (103838, 100333/Z/12/Z) and a Raymond and Beverly Sackler Studentship (to DPB). We would like to thank staff at the Wellcome Trust Clinical Research Facility in Addenbrooke’s Hospital, Cambridge for performing the melatonin blood sampling.
ABSTRACT

Background: Recent studies have suggested that melatonin – a hormone produced by the pineal gland under circadian control – contributes to PD-related sleep dysfunction. We hypothesised that degenerative changes to the neural structures controlling pineal function (especially the suprachiasmatic nuclei of the anterior hypothalamus) may be responsible for reduced melatonin output in these patients. Our aim was to compare hypothalamic volumes in PD patients with matched controls, and determine whether volume loss correlated with reduced melatonin output in the PD group.

Methods: 12 PD patients and 12 matched controls underwent magnetic resonance imaging to determine hypothalamic volume. In addition, PD patients underwent 24-hour blood sampling in a controlled environment to determine serum melatonin concentrations using enzyme-linked immunosorbent assays.

Results: PD patients had significantly reduced hypothalamic grey matter volume compared to matched controls. Melatonin levels were significantly associated with hypothalamic grey matter volume and disease severity in PD patients.

Conclusion: Melatonin levels are associated with hypothalamic grey matter volume loss and disease severity in PD patients. This provides anatomical and physiological support for an intrinsic sleep and circadian phenotype in PD.
INTRODUCTION

Sleep disturbances are one of the most common non-motor complaints in Parkinson’s disease (PD) and have been attributed to a variety of factors. Understanding the relative contribution of each is crucial in order to identify the most effective treatment strategies for individual patients. Some of these relate to the clinically identified features of the disease such as motor impairment, nocturia, pain or neuropsychiatric symptoms. Dopaminergic and other medications may also exacerbate patients’ sleep problems. However, the sleep dysfunction in PD may be due to neuronal loss in key structures and circuits involved in regulation of the sleep-wake cycle.

Two recent studies have reported that reduced melatonin output in PD patients is associated with altered sleep architecture including reduced slow wave and REM sleep\(^1\) and excessive daytime sleepiness.\(^2\) Altered melatonin patterns have also been observed in Huntington’s disease\(^3\) and Alzheimer’s disease\(^4\), both of which have prominent sleep and circadian abnormalities. Since melatonin is a hormone produced by the pineal gland under circadian control, we propose that degenerative changes to the neural structures controlling pineal function (especially the suprachiasmatic nuclei (SCN) of the hypothalamus) may reduce melatonin output and contribute to certain aspects of sleep dysfunction in PD.

The aim of this study was to compare hypothalamic volumes in PD patients with matched controls, and determine whether volume loss correlated with reduced melatonin output in the PD group.
METHODS

Patients

12 PD patients were selected from a previously studied sleep cohort. All patients who had also undergone magnetic resonance (MR) imaging as part of the parallel ICICLE-PD study (Incidence of Cognitive Impairment in Cohorts with Longitudinal Evaluation – Parkinson’s Disease) were included in the analysis, alongside 12 unrelated matched controls from the MRC-CBU healthy volunteer panel. The ICICLE-PD protocol has been published elsewhere. All participants provided written consent, the study was performed according to the Declaration of Helsinki, and the protocol was approved by the local research ethics committee.

In brief, patients underwent a battery of clinical tests including the Unified Parkinson’s Disease Rating Scale (MDS-UPDRS), Addenbrooke’s Cognitive Examination (ACE-R) and Beck Depression Inventory (BDI). Levodopa equivalent dose (LED) was calculated using the conversion factors proposed by Tomlinson and colleagues. Matching was based on age, gender, years of education and ACE-R.

Imaging acquisition and analysis

MR imaging data were acquired using a Siemens TIM Trio 3T scanner (Siemens Medical Systems, Germany). Participants underwent T1-weighted magnetization prepared rapid gradient echo scanning (MP-RAGE: TR=2250ms, TE=2.98ms, flip
angle=9 degrees, TI=900ms, 256x256 mm² field of view, 192 x 1mm slices). Images were pre-processed according to a pipeline in SPM8 (http://www.fil.ion.ucl.ac.uk/spm) run on Matlab 7 (Mathworks). T1-weighted images were segmented into grey matter and white matter tissue and registered through the DARTEL (Diffeomorphic Anatomical Registration Through Exponentiated Lie Algebra) scheme. The resulting study-specific template was registered to Montreal Neurological Institute space and individual modulated images were smoothed with an 8mm full width at half maximum Gaussian kernel. A hypothalamic region of interest (dilated by 3mm) from the WFU Pick Atlas (http://fmri.wfubmc.edu/software/pickatlas) was used to obtain an individual hypothalamic volume per participant (Figure 1A and 1B). Grey matter volume in the region of interest (measured in voxels) was calculated using the FSL tool “fslstats” within FSL version 4.1.7 (www.fmrib.ox.ac.uk). Thereafter, relative hypothalamic grey matter volume was calculated by dividing by whole brain volume (the sum of the grey and white matter segments).

Serum melatonin measurement

PD patients were admitted to a single room at the Wellcome Trust Clinical Research Facility at Addenbrooke’s Hospital, Cambridge. A peripheral venous cannula was inserted 30 minutes before the start of sampling at 13:00. Over the next 24 hours, participants adhered to their habitual bed times and blood samples were collected every 90 minutes using a three-way valve that was attached to a 0.9% sodium chloride infusion to prevent the cannula from clotting. Sampling was performed through a long line to prevent disruption to the patient’s sleep. Subjects remained sedentary apart from bathroom visits. Meal times were consistent between participants and no daytime naps
were allowed. Temperature was constant at 21 degrees Celsius. Patients were not
strictly shielded from external light, but lighting levels were less than five lux
following lights off. Serum melatonin concentrations were measured using enzyme-
linked immunosorbent assays as previously described. Based on hormone
concentrations at each 90-minute time point, total 24-hour melatonin output was
defined as the area under the curve (calculated using the trapezoid rule).

Statistical analysis
All data were approximately normally distributed based on Shapiro-Wilk testing,
therefore unpaired t-tests were used to compare clinical parameters and volumetric
values between patients and controls. Pearson rank correlation testing was used to
study the relationship between melatonin output and relative hypothalamic grey matter
volume, as well as the relationship between melatonin output and disease severity
(adjusted for LED).

RESULTS

Age, gender, duration of education and ACE-R were not significantly different
between PD patients and controls (Table 1). PD patients had mean disease duration of
3.3 years, mean LED of 366mg, and mean UPDRS part III score of 23.9. None of the
participants were taking hypnotics. The mean duration between melatonin testing and
MR imaging in the PD group was 1.92 months (SD 3.42).
Compared to controls, PD patients had significantly reduced relative hypothalamic grey matter volume (2.56 x 10^{-7} [SD 2.78 x 10^{-7}] versus 2.69 x 10^{-7} [SD 2.07 x 10^{-7}]; p=0.005) (Figure 1C).

Having verified that there were significant differences between patients and controls in terms of hypothalamic volume, we found that melatonin levels were significantly associated with relative hypothalamic grey matter volume in the PD group (r=0.591, p=0.028) (Figure 1D).

Partial correlation between melatonin levels and disease severity, correcting for LED, showed a significant inverse relationship (r=−0.681, p=0.021) (Figure 1). There was no significant relationship between melatonin output and LED (r=0.180, p=0.76).

DISCUSSION

There is increasing evidence from clinical and animal studies that there is circadian dysregulation in a variety of neurodegenerative diseases. We previously reported significant reductions in melatonin concentration in 30 early-stage PD patients. Videnovic and colleagues also found a significantly diminished amplitude of melatonin secretion in serum samples of 20 PD patients on dopaminergic therapy under modified constant routine conditions.
There is evidence from neuropathological8 and imaging9 studies that the hypothalamus is directly affected by PD. The central clock within the hypothalamus, the SCN, is likely to contribute to this volume loss since it has been shown that mice overexpressing alpha-synuclein exhibit a reduced SCN firing rate10. This could weaken their ability to communicate neural and hormonal signals from the central clock to the pineal gland, which secretes melatonin into the blood.

This study thus adds to the existing literature by suggesting that hypothalamic volume loss – which we have now shown in this new PD cohort – may be responsible for reduced melatonin output which has been linked to sleep disturbances in PD.

The major limitation of this study is the relatively small number of patients, which precluded the use of linear regression and adjustment of confounders. Furthermore, patients were not strictly shielded from external light during the melatonin sampling period which may have influenced the results. Although we lacked serum melatonin measurements in the control group, the critical test for our hypothesis was the correlation between hypothalamic volume and melatonin levels in PD patients. It is not yet possible to perform dedicated imaging of the SCN within the hypothalamus using 3Tesla MRI, therefore ultra-high field imaging or clinico-pathological studies will be required to allow more thorough dissection of the relative role of the different hypothalamic nuclei to this deficit.

In summary, we have shown that melatonin levels are associated with hypothalamic grey matter volume loss and disease severity in PD patients. This provides anatomical
and physiological support for an intrinsic sleep and circadian phenotype in PD, and that this is related to the disease itself rather than being an indirect consequence of other symptoms or treatments.

Acknowledgements: We would like to thank Dr Saber Sami for his assistance with imaging acquisition, and Dr Noham Wolpe for his technical support.

Authors’ Roles: DPB conceived the study, interpreted the data and wrote the article. CN performed the imaging analysis, interpreted the data and wrote the article. RV and KF carried out the laboratory melatonin analysis and revised the article. PSJ assisted with the hypothalamic template, imaging analysis and interpretation, and revised the article. DJB is Chief Investigator for the ICICLE-PD study and revised the manuscript. DJBr is a principal investigator for the ICICLE-PD study and revised the manuscript. ABR contributed to the laboratory melatonin analysis and revised the article. JBR contributed to the imaging analysis and revised the article. RAB is principal investigator and revised the article. All authors gave final approval for the article to be published.

Financial Disclosures of All Authors: Dr. Breen has received speaker fees from UCB. Dr. Nombela has received institutional support from the University of Cambridge for the ICICLE-PD project (funded by Parkinson’s UK) and from the Technical University of Cartagena (Murcia, Spain) for the EXO-LEGS project (funded by the Active Assistance Living European programme). Prof. Burn has received institutional research funding support from the National Institute of Health Research,
Wellcome Trust, Parkinson’s UK and Michael J Fox Foundation; funding support from the Newcastle NIHR-BRU Dementia; and speaker fees from Acadia Pharmaceuticals. Prof. Brooks is a consultant for GE Healthcare and has been paid honoraria by them for lecturing; he has served on Advisory Boards for Astex and GenePod; and he has been paid honoraria by Brittania, Zambon, and Astra Zeneca. Dr. Rowe has received an honorarium from Lilly for teaching and research grant support from AZ-Medimmune. Prof. Barker has received royalty payments from Springer for editorial work; royalty payments from Wiley for medical textbooks; and consultancy payments from LCT over their cell therapy programme for Parkinson's disease. Dr. Vuono, Dr. Fisher, Dr. Jones and Dr. Reddy report no disclosures.
REFERENCES

TABLE 1: Clinical characteristics of PD patients and controls

<table>
<thead>
<tr>
<th>Variable</th>
<th>PD</th>
<th>Controls</th>
<th>p-value<sup>a</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of participants</td>
<td>12</td>
<td>12</td>
<td>na</td>
</tr>
<tr>
<td>Gender ratio (male:female)</td>
<td>6:6</td>
<td>6:6</td>
<td>1.0</td>
</tr>
<tr>
<td>Age (years)</td>
<td>66.7 (5.5)</td>
<td>66.3 (5.2)</td>
<td>0.92</td>
</tr>
<tr>
<td>Duration of education (years)</td>
<td>18.3 (2.9)</td>
<td>17.2 (2.8)</td>
<td>0.33</td>
</tr>
<tr>
<td>ACE-R</td>
<td>95.2 (3.1)</td>
<td>96.1 (3.0)</td>
<td>0.48</td>
</tr>
<tr>
<td>Disease duration (years)<sup>a</sup></td>
<td>3.3 (1.1)</td>
<td>na</td>
<td>na</td>
</tr>
<tr>
<td>LEDD (mg)<sup>b</sup></td>
<td>366 (161)</td>
<td>na</td>
<td>na</td>
</tr>
<tr>
<td>MDS-UPDRS part III<sup>c</sup></td>
<td>23.9 (9.0)</td>
<td>na</td>
<td>na</td>
</tr>
<tr>
<td>BDI</td>
<td>7.3 (17.8)</td>
<td>3.3 (3.6)</td>
<td>0.011*</td>
</tr>
</tbody>
</table>

Results expressed as mean (SD) unless stated otherwise

LED=Levodopa Equivalent Daily Dose, ACE-R=Addenbrooke’s Cognitive Examination-Revised, MDS-UPDRS=Unified Parkinson’s Disease Rating Scale, BDI=Beck Depression Inventory

^aDisease duration from date of diagnosis; ^bAll but two PD patients were taking dopaminergic medication; ^cBased on MDS-UPDRS assessments performed within the last six months; ^dUnpaired t-tests performed
FIGURE LEGEND

Panels A and B show the region of interest used to calculate hypothalamic volume for each participant. Panel C is a graphical representation of the significant reduction in relative hypothalamic grey matter volume in PD patients compared to matched controls (with Standard Error of the Mean error bars). Panel D demonstrates the significant correlation between relative hypothalamic grey matter volume and total 24-hour melatonin output (with both axes showing partial residuals). In both graphs, relative hypothalamic grey matter volume was calculated by dividing grey matter volume by whole brain volume (both measured in voxels).
Hypothalamic volume loss is associated with reduced melatonin output in Parkinson’s disease

Authors and affiliations:

David P Breen MRCP PhD1*, Cristina Nombela PhD1$, Romina Vuono PhD1, P
Simon Jones MSc2, Kate Fisher PhD2$, David J Burn FRCP MD3, David J Brooks MD DSc4,5, Akhilesh B Reddy PhD MRCP6, James B Rowe MRCP PhD2,7,8, Roger A Barker MRCP PhD1

*These authors contributed equally to the manuscript

$Present address: School of Medicine, Universidad Politécnica de Cartagena, Murcia, Spain

&Present address: School of Chemistry, University of Edinburgh, Edinburgh, UK

1John van Geest Centre for Brain Repair, University of Cambridge, Cambridge, UK
2Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
3Institute of Neuroscience, Newcastle University, Newcastle, UK
4Division of Neurology, Imperial College, London, UK
5Institute of Clinical Medicine, Aarhus University, Denmark
6Institute of Metabolic Science, University of Cambridge, Cambridge, UK
7Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK
8Medical Research Council Cognition and Brain Sciences Unit, Cambridge, UK
Corresponding author: Dr David P Breen, John van Geest Centre for Brain Repair,
University of Cambridge, ED Adrian Building, Forvie Site, Robinson Way,
Cambridge, CB2 0PY; Tel: 01223 331160; Fax: 01223 331174; Email:
dpbreen1@gmail.com

Word count: 130282; References: 10; Figures: 1; Tables: 1

Running title: Hypothalamic volume and melatonin output in PD

Search terms: melatonin, hypothalamus, suprachiasmatic nucleus, Parkinson’s,
circadian

Financial Disclosure/Conflict of Interests: None

Funding Sources: The authors would like to acknowledge the study funders: the Big
Lottery Fund (C498A738) and Parkinson’s UK (J-0802). The research was supported
by a National Institute of Health Research Biomedical Research Award (to
Addenbrooke’s Hospital/University of Cambridge), the Wellcome Trust (103838,
100333/Z/12/Z) and a Raymond and Beverly Sackler Studentship (to DPB). We would
like to thank staff at the Wellcome Trust Clinical Research Facility in Addenbrooke’s
Hospital, Cambridge for performing the melatonin blood sampling.
ABSTRACT

Background: Recent studies have suggested that melatonin – a hormone produced by the pineal gland under circadian control – contributes to PD-related sleep dysfunction. We hypothesised that degenerative changes to the neural structures controlling pineal function (especially the suprachiasmatic nuclei of the anterior hypothalamus) may be responsible for reduced melatonin output in these patients. Our aim was to compare hypothalamic volumes in PD patients with matched controls, and determine whether volume loss correlated with reduced melatonin output in the PD group.

Methods: 12 PD patients and 12 matched controls underwent magnetic resonance imaging to determine hypothalamic volume. In addition, PD patients underwent 24-hour blood sampling in a controlled environment to determine serum melatonin concentrations using enzyme-linked immunosorbent assays.

Results: PD patients had significantly reduced hypothalamic grey matter volume compared to matched controls. Melatonin levels were significantly associated with hypothalamic grey matter volume and disease severity in PD patients.

Conclusion: Melatonin levels are associated with hypothalamic grey matter volume loss and disease severity in PD patients. This provides anatomical and physiological support for an intrinsic sleep and circadian phenotype in PD.
INTRODUCTION

Sleep disturbances are one of the most common non-motor complaints in Parkinson’s disease (PD) and have been attributed to a variety of factors. Understanding the relative contribution of each is crucial in order to identify the most effective treatment strategies for individual patients. Some of these relate to the clinically identified features of the disease such as motor impairment, nocturia, pain or neuropsychiatric symptoms. Dopaminergic and other medications may also exacerbate patients’ sleep problems. However, the sleep dysfunction in PD may be due to neuronal loss in key structures and circuits involved in regulation of the sleep-wake cycle.

Two recent studies have reported that reduced melatonin output in PD patients is associated with altered sleep architecture including reduced slow wave and REM sleep\(^1\) and excessive daytime sleepiness.\(^2\) Altered melatonin patterns have also been observed in Huntington’s disease\(^3\) and Alzheimer’s disease\(^4\), both of which have prominent sleep and circadian abnormalities. Since melatonin is a hormone produced by the pineal gland under circadian control, we propose that degenerative changes to the neural structures controlling pineal function (especially the suprachiasmatic nuclei (SCN) of the hypothalamus) may reduce melatonin output and contribute to certain aspects of sleep dysfunction in PD.

The aim of this study was to compare hypothalamic volumes in PD patients with matched controls, and determine whether volume loss correlated with reduced melatonin output in the PD group.
METHODS

Patients

12 PD patients were selected from a previously studied sleep cohort. All patients who had also undergone magnetic resonance (MR) imaging as part of the parallel ICICLE-PD study (Incidence of Cognitive Impairment in Cohorts with Longitudinal Evaluation – Parkinson’s Disease) were included in the analysis, alongside 12 unrelated matched controls from the MRC-CBU healthy volunteer panel. The ICICLE-PD protocol has been published elsewhere. All participants provided written consent, the study was performed according to the Declaration of Helsinki, and the protocol was approved by the local research ethics committee.

In brief, patients underwent a battery of clinical tests including the Unified Parkinson’s Disease Rating Scale (MDS-UPDRS), Addenbrooke’s Cognitive Examination (ACE-R) and Beck Depression Inventory (BDI). Levodopa equivalent dose (LED) was calculated using the conversion factors proposed by Tomlinson and colleagues. Matching was based on age, gender, years of education and ACE-R.

Imaging acquisition and analysis

MR imaging data were acquired using a Siemens TIM Trio 3T scanner (Siemens Medical Systems, Germany). Participants underwent T1-weighted magnetization prepared rapid gradient echo scanning (MP-RAGE: TR=2250ms, TE=2.98ms, flip...
angle=9 degrees, TI=900ms, 256x256 mm² field of view, 192 x 1mm slices). Images were pre-processed according to a pipeline in SPM8 (http://www.fil.ion.ucl.ac.uk/spm) run on Matlab 7 (Mathworks). T1-weighted images were segmented into grey matter and white matter tissue and registered through the DARTEL (Diffeomorphic Anatomical Registration Through Exponentiated Lie Algebra) scheme. The resulting study-specific template was registered to Montreal Neurological Institute space and individual modulated images were smoothed with an 8mm full width at half maximum Gaussian kernel. A hypothalamic region of interest (dilated by 3mm) from the WFU Pick Atlas (http://fmri.wfubmc.edu/software/pickatlas) was used to obtain an individual hypothalamic volume per participant (Figure 1A and 1B). Grey matter volume in the region of interest (measured in voxels) was calculated using the FSL tool “fslstats” within FSL version 4.1.7 (www.fmrib.ox.ac.uk). Thereafter, relative hypothalamic grey matter volume was calculated by dividing by whole brain volume (the sum of the grey and white matter segments).

Serum melatonin measurement

PD patients were admitted to a single room at the Wellcome Trust Clinical Research Facility at Addenbrooke’s Hospital, Cambridge. A peripheral venous cannula was inserted 30 minutes before the start of sampling at 13:00. Over the next 24 hours, participants adhered to their habitual bed times and blood samples were collected every 90 minutes using a three-way valve that was attached to a 0.9% sodium chloride infusion to prevent the cannula from clotting. Sampling was performed through a long line to prevent disruption to the patient’s sleep. Subjects remained sedentary apart from bathroom visits. Meal times were consistent between participants and no daytime naps
were allowed. Temperature was constant at 21 degrees Celsius. Patients were not
strictly shielded from external light, but lighting levels were less than five lux
following lights off. Serum melatonin concentrations were measured using enzyme-
linked immunosorbent assays as previously described. Based on hormone
concentrations at each 90-minute time point, total 24-hour melatonin output was
defined as the area under the curve (calculated using the trapezoid rule).

Statistical analysis
All data were approximately normally distributed based on Shapiro-Wilk testing,
therefore unpaired t-tests were used to compare clinical parameters and volumetric
values between patients and controls. Pearson rank correlation testing was used to
study the relationship between melatonin output and relative hypothalamic grey matter
volume, as well as the relationship between melatonin output and disease severity
(adjusted for LED).

RESULTS

Age, gender, duration of education and ACE-R were not significantly different
between PD patients and controls (Table 1). PD patients had mean disease duration of
3.3 years, mean LED of 366mg, and mean UPDRS part III score of 23.9. None of the
participants were taking hypnotics. The mean duration between melatonin testing and
MR imaging in the PD group was 1.92 months (SD 3.42).
Compared to controls, PD patients had significantly reduced relative hypothalamic grey matter volume \((2.56 \times 10^{-7} \text{ [SD 2.78 \times 10^{-7}] versus 2.69 \times 10^{-7} [SD 2.07 \times 10^{-7}]})\); \(p=0.005\) (Figure 1C).

Having verified that there were significant differences between patients and controls in terms of hypothalamic volume, we found that melatonin levels were significantly associated with relative hypothalamic grey matter volume in the PD group \((r=0.591, p=0.028)\) (Figure 1D).

Partial correlation between melatonin levels and disease severity, correcting for LED, showed a significant inverse relationship \((r=-0.681, p=0.021)\) (Figure 1). There was no significant relationship between melatonin output and LED \((r=0.180, p=0.76)\).

DISCUSSION

There is increasing evidence from clinical and animal studies that there is circadian dysregulation in a variety of neurodegenerative diseases.\(^7\) We previously reported significant reductions in melatonin concentration in 30 early-stage PD patients.\(^1\) Videnovic and colleagues also found a significantly diminished amplitude of melatonin secretion in serum samples of 20 PD patients on dopaminergic therapy under modified constant routine conditions.\(^2\)
There is evidence from neuropathological8 and imaging9 studies that the hypothalamus is directly affected by PD. The central clock within the hypothalamus, the SCN, is likely to contribute to this volume loss since it has been shown that mice overexpressing alpha-synuclein exhibit a reduced SCN firing rate10. This could weaken their ability to communicate neural and hormonal signals from the central clock to the pineal gland, which secretes melatonin into the blood.

This study thus adds to the existing literature by suggesting that hypothalamic volume loss – which we have now shown in this new PD cohort – may be responsible for reduced melatonin output which has been linked to sleep disturbances in PD.

The major limitation of this study is the relatively small number of patients, which precluded the use of linear regression and adjustment of confounders. Furthermore, patients were not strictly shielded from external light during the melatonin sampling period which may have influenced the results. Although we lacked serum melatonin measurements in the control group, the critical test for our hypothesis was the correlation between hypothalamic volume and melatonin levels in PD patients. It is not yet possible to perform dedicated imaging of the SCN within the hypothalamus using 3Tesla MRI, therefore ultra-high field imaging or clinico-pathological studies will be required to allow more thorough dissection of the relative role of the different hypothalamic nuclei to this deficit.

In summary, we have shown that melatonin levels are associated with hypothalamic grey matter volume loss and disease severity in PD patients. This provides anatomical
and physiological support for an intrinsic sleep and circadian phenotype in PD, and that this is related to the disease itself rather than being an indirect consequence of other symptoms or treatments.

Acknowledgements: We would like to thank Dr Saber Sami for his assistance with imaging acquisition, and Dr Noham Wolpe for his technical support.

Authors’ Roles: DPB conceived the study, interpreted the data and wrote the article. CN performed the imaging analysis, interpreted the data and wrote the article. RV and KF carried out the laboratory melatonin analysis and revised the article. PSJ assisted with the hypothalamic template, imaging analysis and interpretation, and revised the article. DJB is Chief Investigator for the ICICLE-PD study and revised the manuscript. DJBr is a principal investigator for the ICICLE-PD study and revised the manuscript. ABR contributed to the laboratory melatonin analysis and revised the article. JBR contributed to the imaging analysis and revised the article. RAB is principal investigator and revised the article. All authors gave final approval for the article to be published.

Financial Disclosures of All Authors: Dr. Breen has received speaker fees from UCB. Dr. Nombela has received institutional support from the University of Cambridge for the ICICLE-PD project (funded by Parkinson’s UK) and from the Technical University of Cartagena (Murcia, Spain) for the EXO-LEGS project (funded by the Active Assistance Living European programme). Prof. Burn has received institutional research funding support from the National Institute of Health Research,
Wellcome Trust, Parkinson’s UK and Michael J Fox Foundation; funding support from the Newcastle NIHR-BRU Dementia; and speaker fees from Acadia Pharmaceuticals.

Prof. Brooks is a consultant for GE Healthcare and has been paid honoraria by them for lecturing; he has served on Advisory Boards for Astex and GenePod; and he has been paid honoraria by Brittania, Zambon, and Astra Zeneca. Dr. Rowe has received an honorarium from Lilly for teaching and research grant support from AZ-Medimmune.

Prof. Barker has received royalty payments from Springer for editorial work; royalty payments from Wiley for medical textbooks; and consultancy payments from LCT over their cell therapy programme for Parkinson's disease. Dr. Vuono, Miss Dr. Fisher, Dr. Jones and Dr. Reddy report no disclosures.
REFERENCES

TABLE 1: Clinical characteristics of PD patients and controls

<table>
<thead>
<tr>
<th>Variable</th>
<th>PD</th>
<th>Controls</th>
<th>p-value(^d)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of participants</td>
<td>12</td>
<td>12</td>
<td>na</td>
</tr>
<tr>
<td>Gender ratio (male:female)</td>
<td>6:6</td>
<td>6:6</td>
<td>1.0</td>
</tr>
<tr>
<td>Age (years)</td>
<td>66.7 (5.5)</td>
<td>66.3 (5.2)</td>
<td>0.92</td>
</tr>
<tr>
<td>Duration of education (years)</td>
<td>18.3 (2.9)</td>
<td>17.2 (2.8)</td>
<td>0.33</td>
</tr>
<tr>
<td>ACE-R</td>
<td>95.2 (3.1)</td>
<td>96.1 (3.0)</td>
<td>0.48</td>
</tr>
<tr>
<td>Disease duration (years)(^a)</td>
<td>3.3 (1.1)</td>
<td>na</td>
<td>na</td>
</tr>
<tr>
<td>LEDD (mg)(^b)</td>
<td>366 (161)</td>
<td>na</td>
<td>na</td>
</tr>
<tr>
<td>MDS-UPDRS part III(^c)</td>
<td>23.9 (9.0)</td>
<td>na</td>
<td>na</td>
</tr>
<tr>
<td>BDI</td>
<td>7.3 (17.8)</td>
<td>3.3 (3.6)</td>
<td>0.011*</td>
</tr>
</tbody>
</table>

Results expressed as mean (SD) unless stated otherwise

LED=Levodopa Equivalent Daily Dose, ACE-R=Addenbrooke’s Cognitive Examination-Revised, MDS-UPDRS=Unified Parkinson’s Disease Rating Scale, BDI=Beck Depression Inventory

\(^a\)Disease duration from date of diagnosis; \(^b\)All but two PD patients were taking dopaminergic medication; \(^c\)Based on MDS-UPDRS assessments performed within the last six months; \(^d\)Unpaired t-tests performed
FIGURE LEGEND

Panels A and B show the region of interest used to calculate hypothalamic volume for each participant. Panel C is a graphical representation of the significant reduction in relative hypothalamic grey matter volume in PD patients compared to matched controls (with Standard Error of the Mean error bars). Panel D demonstrates the significant correlation between relative hypothalamic grey matter volume and total 24-hour melatonin output (with both axes showing partial residuals). In both graphs, relative hypothalamic grey matter volume was calculated by dividing grey matter volume by whole brain volume (both measured in voxels).