Breast cancer risk variants at 6q25 display different phenotype associations and regulate ESRI, RMND1 and CCDC170

1. Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK.
2. Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK.
3. Cancer Division, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia.
5. Academic Biochemistry, Royal Marsden Hospital, London, UK.
6. Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA.
7. Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA.
9. Centre for Epidemiology and Biostatistics, School of Population and Global Health, The University of Melbourne, Melbourne, VIC, Australia.
10. Department of Pathology, The University of Melbourne, Melbourne, Australia.
11. Division of Health Sciences, Warwick Medical school, Warwick University, Coventry, UK.
12. Institute of Population Health, University of Manchester, Manchester, UK.
13. Department of Gynecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany.
14. David Geffen School of Medicine, Department of Medicine, Division of Hematology and Oncology, University of California, Los Angeles, CA, USA.
15. Department of Non-Communicable Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, UK.
16. Research Oncology, Division of Cancer Studies, King’s College London, Guy’s Hospital, London, UK.
17. Wellcome Trust Centre for Human Genetics, University of Oxford, UK.
18. Oxford Biomedical Research Centre, University of Oxford, UK.
19. Division of Molecular Genetic Epidemiology, German Cancer Research Center, Heidelberg, Germany.
20. Molecular Epidemiology Group, German Cancer Research Center, Heidelberg, Germany.
21. National Center for Tumor Diseases, University of Heidelberg, Heidelberg, Germany.
22. Department of Obstetrics and Gynecology, University of Heidelberg, Heidelberg, Germany.
25. Copenhagen General Population Study, Herlev Hospital, Copenhagen University Hospital, Herlev, Denmark.
26. Department of Clinical Biochemistry, Herlev Hospital, Copenhagen University Hospital, Herlev, Denmark.
27. Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
28. Department of Breast Surgery, Herlev Hospital, Copenhagen University Hospital, Herlev, Denmark.
30. Servicio de Cirugía General y Especialidades, Hospital Monte Naranco, Oviedo, Spain.
31. Department of Epidemiology, University of California Irvine, Irvine, CA, USA.
32. Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
33. Division of Clinical Epidemiology and Aging Research, German Cancer Research Center, Heidelberg, Germany.
34. German Cancer Consortium, German Cancer Research Center, Heidelberg, Germany.
35. Department of Gynaecology and Obstetrics, Technical University of Munich, Munich, German.
36. Division of Molecular Gyneco-Oncology, Department of Gynaecology and Obstetrics, University Hospital of Cologne, Cologne, Germany.
37. Centre of Familial Breast and Ovarian Cancer, University Hospital of Cologne, Cologne, Germany.
38. Center for Integrated Oncology, University Hospital, Cologne, Germany.
39. Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany.
40. University of Tübingen, Tübingen, Germany.
41. Institute of Human Genetics, Pontificia Universidad Javeriana, Bogota, Colombia.
42. Department of Clinical Genetics, Helsinki University Central Hospital, Helsinki, Finland.
43. Department of Oncology, Helsinki University Central Hospital, University of Helsinki, Helsinki, Finland.
44. Division of Epidemiology and Prevention, Aichi Cancer Center Research Institute, Aichi, Japan.
45. Division of Molecular Medicine, Aichi Cancer Center Research Institute, Nagoya, Japan.
46. Radiation Oncology Research Unit, Hannover Medical School, Hannover, Germany.
47. Gynaecology Research Unit, Hannover Medical School, Hannover, Germany.
49. Department of Oncology-Pathology, Karolinska University Hospital, Stockholm, Sweden.
50. Cancer Center, Kuopio University Hospital, Kuopio, Finland.
51. Institute of Clinical Medicine, Pathology and Forensic Medicine, University of Eastern Finland, Kuopio, Finland.
52. Imaging Center, Department of Clinical Pathology, Kuopio University Hospital, Kuopio, Finland.
53. Vesalius Research Center, Leuven, Belgium.
54. Laboratory for Translational Genetics, Department of Oncology, University of Leuven, Leuven, Belgium.
55. Multidisciplinary Breast Center, Department of General Medical Oncology, University Hospitals Leuven, Leuven, Belgium.
56. Division of Cancer Epidemiology, German Cancer Research Center, Heidelberg, Germany.
57. University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
58. IFOM, Fondazione Istituto FIRC di Oncologia Molecolare, Milan, Italy.
59. Unit of Molecular Basis of Genetic Risk and Genetic Testing, Department of Preventive and Predictive Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy.
60. Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA.
61. Cancer Epidemiology Centre, Cancer Council Victoria, Melbourne, VIC, Australia.
62. Department of Medicine, McGill University, Montreal, QC, Canada.
63. Division of Clinical Epidemiology, Royal Victoria Hospital, McGill University, Montreal, QC, Canada.
64. Cancer Research Initiatives Foundation, Sime Darby Medical Centre, Subang Jaya, Malaysia.
65. Breast Cancer Research Unit, University Malaya Cancer Research Institute, University Malaya Medical Centre, Kuala Lumpur, Malaysia.
66. Department of Genetics, Institute for Cancer Research, Oslo University Hospital,
Radiumhospitalet, Oslo, Norway.
67. Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
68. Department of Clinical Molecular Biology, Oslo University Hospital, University of Oslo, Oslo, Norway.
69. Division of Epidemiology, Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA.
70. Laboratory of Cancer Genetics and Tumor Biology, Department of Clinical Chemistry and Biocenter Oulu, University of Oulu, NordLab Oulu/Oulu University Hospital, Oulu, Finland.
71. Laboratory of Cancer Genetics and Tumor Biology, Northern Finland Laboratory Centre NordLab, Oulu, Finland.
72. Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, ON, Canada.
73. Department of Molecular Genetics, University of Toronto, ON, Canada.
74. Prosserman Centre for Health Research, Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, Canada.
75. Division of Epidemiology, Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada.
76. Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands.
77. Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands.
78. Department of Medical Oncology, Erasmus University Medical Center, Rotterdam, The Netherlands.
79. Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA.
80. Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden.
81. Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands.
82. Department of Epidemiology, Shanghai Cancer Institute, Shanghai, China.
83. Sheffield Cancer Research, Department of Oncology, University of Sheffield, Sheffield, UK.
84. Academic Unit of Pathology, Department of Neuroscience, University of Sheffield, Sheffield, UK.
85. International Epidemiology Institute, Rockville, MD, USA.
86. Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, Korea.
87. Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea.
88. Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea.
89. Department of Haematology-Oncology, National University Health System, Singapore.
90. Cancer Science Institute of Singapore, National University of Singapore, Singapore.
91. Saw Swee Hock School of Public Health, National University of Singapore, Singapore.
92. Department of Surgery, National University Health System, Singapore.
93. Molecular Genetics of Breast Cancer, German Cancer Research Center, Heidelberg, Germany.
94. Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland.
95. International Agency for Research on Cancer, Lyon, France.
96. National Cancer Institute, Bangkok, Thailand.
97. Roswell Park Cancer Institute, Buffalo, NY, USA.
98. Department of Molecular Virology, Immunology and Medical Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA.
99. School of Public Health, China Medical University, Taichung, Taiwan.
100. Taiwan Biobank, Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.
102. Division of Genetics and Epidemiology, Institute of Cancer Research, London, UK.
104. Centre for Epidemiology and Biostatistics, University of Melbourne, Melbourne, VIC, Australia.
105. Department of Epidemiology, Cancer Prevention Institute of California, Fremont, CA, USA.
106. Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA.
107. Department of Clinical Genetics, Fox Chase Cancer Center, Philadelphia, PA, USA.
108. Department of Dermatology, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, USA.
109. Department of Medicine, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, USA.
110. State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania.
111. Latvian Biomedical Research and Study Centre, Riga, Latvia.
112. Department of Medical Oncology, Beth Israel Deaconess Medical Center, Boston, MA, USA.
113. Department of Genetics, University of Pretoria, Pretoria, South Africa.
114. Department of Population Sciences, Beckman Research Institute of City of Hope, Duarte, CA, USA.
115. Department of Oncology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark.
116. Center for Genomic Medicine, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark.
117. Human Genetics Group, Spanish National Cancer Centre (CNIO), Madrid, Spain.
118. Biomedical Network on Rare Diseases (CIBERER), Madrid, Spain.
119. Human Genotyping (CEGEN) Unit, Human Cancer Genetics Program, Spanish National Cancer Research Centre (CNIO), Madrid, Spain.
120. Clinical Cancer Genetics, for the City of Hope Clinical Cancer Genetics Community Research Network, Duarte, CA, USA.
121. Hunterdon Regional Cancer Center, care of City of Hope Clinical Cancer Genetics Community Research Network, Duarte, CA, USA.
122. Division of Cancer Prevention and Genetics, Istituto Europeo di Oncologia, Milan, Italy.
123. Unit of Medical Genetics, Department of Preventive and Predictive Medicine, Fondazione Istituto Di Ricovero e Cura a Carattere Scientifico, Istituto Nazionale Tumori, Milan, Italy.
124. Unit of Medical Genetics, Department of Biomedical, Experimental and Clinical Sciences, University of Florence, Florence, Italy.
125. Department of Molecular Medicine, University La Sapienza, Rome, Italy.
126. Molecular Diagnostics Laboratory, INRASITES (Institute of Nuclear and Radiological Sciences and Technology), National Centre for Scientific Research "Demokritos", Aghia Paraskevi Attikis, Athens, Greece.
127. Cancer Risk and Prevention Clinic, Dana Farber Cancer Institute, Boston, MA, USA.
128. Department of Basic Sciences, Shaukat Khanum Memorial Cancer Hospital and Research Centre, Lahore, Pakistan.
129. A full list of members appears in the supplementary notes.
130. Clinical Genetics, Guy’s and St. Thomas’ NHS Foundation Trust, London, UK.
131. Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, USA.
132. Department of Gynaecology and Obstetrics, University Hospital of Schleswig-Holstein, Campus Kiel, Christian-Albrechts University Kiel, Germany.
133. University Düsseldorf, Dusseldorf, Germany.
134. Centre of Familial Breast and Ovarian Cancer, Department of Gynaecology and Obstetrics and Centre for Integrated Oncology, Center for Molecular Medicine Cologne, University Hospital of Cologne, Cologne, Germany.
135. Institute of Human Genetics, Münster, Germany.
136. INSERM U1052, CNRS UMR5286, Université Lyon, Centre de Recherche en Cancérologie de Lyon, Lyon, France.
137. Institut Curie, Department of Tumour Biology, Paris, France.
138. Université Paris Descartes, Sorbonne Paris Cité, France.
139. Unité Mixte de Génétique Constitutionnelle des Cancers Fréquents, Hospices Civils de Lyon – Centre Léon Bérard, Lyon, France.
140. Lombardi Comprehensive Cancer Center, Georgetown University, Washington DC, USA.
141. Center for Medical Genetics, Ghent University, Ghent, Belgium.
142. Molecular Oncology Laboratory, Hospital Clinico San Carlos, IDISSC (El Instituto de Investigación Sanitaria del Hospital Clínico San Carlos), Madrid, Spain.
143. Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Central Hospital, Helsinki, HUS, Finland.
144. Department of Human Genetics, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands.
145. Department of Medical Oncology, Family Cancer Clinic, Erasmus University Medical Center, Rotterdam, The Netherlands.
146. Department of Epidemiology, Netherlands Cancer Institute, Amsterdam, The Netherlands.
147. The Hong Kong Hereditary Breast Cancer Family Registry, Cancer Genetics Center, Hong Kong Sanatorium and Hospital, Hong Kong.
148. Department of Surgery, The University of Hong Kong, Hong Kong.
149. Department of Molecular Genetics, National Institute of Oncology, Budapest, Hungary.
150. Oncogenetics Laboratory, Vall d’Hebron Institute of Oncology (VHIO), Vall d’Hebron University Hospital, Barcelona, Spain.
151. Genetic Counseling Unit, Hereditary Cancer Program, IDIBGI (Institut d’Investigació Biomèdica de Girona), Catalan Institute of Oncology, Girona, Spain.
152. Breast Cancer and Systems Biology Unit, IDIBELL (Bellvitge Biomedical Research Institute), Catalan Institute of Oncology, Barcelona, Spain.
153. Department of Pathology, Landspitali University Hospital and Biomedical Centre (BMC), Faculty of Medicine, University of Iceland, Reykjavik, Iceland.
154. Medical Genetic Division, Centre Hospitalier Universitaire de Quebec and Laval University, Quebec City, QC, Canada.
155. Centre Hospitalier Universitaire de Québec Research Center, Laval University, Quebec City, Canada.
156. Immunology and Molecular Oncology Unit, Istituto Oncologico Veneto IOV - IRCCS (Istituto Di Ricovero e Cura a Carattere Scientifico), Padua, Italy.
157. Department of Genetics, Portuguese Oncology Institute, Porto, Portugal.
158. Biomedical Sciences Institute (ICBAS), Porto University, Porto, Portugal.
159. Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA.
160. Program in Cancer Genetics, McGill University, Montreal, Quebec, Canada.
161. Masaryk Memorial Cancer Institute and Medical Faculty MU Brno, Czech Republic.
162. Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY, USA.
163. Department of Obstetrics and Gynecology, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria.
164. Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, FL, USA.
165. Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA.
166. Department of Community Medicine and Epidemiology, Carmel Medical Center and B. Rappaport Faculty of Medicine, Haifa, Israel.
167. Clalit National Israeli Cancer Control Center, Haifa, Israel.
168. N.N. Petrov Institute of Oncology, St.Petersburg, Russia.
169. Center for Medical Genetics, NorthShore University Health System, Evanston, IL, USA.
170. Division of Cancer Medicine, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
171. NRG Oncology, Statistics and Data Management Center, Roswell Park Cancer Institute, Buffalo, NY, USA.
172. Laboratory Medicine Program, University Health Network, Toronto, ON, Canada.
173. Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.
174. Department of Clinical Genetics, Vejle Hospital, Vejle, Denmark.
175. Department of Clinical Genetics, Odense University Hospital, Odense C, Denmark.
176. Section of Genetic Oncology, Department of Laboratory Medicine, University and University Hospital of Pisa, Pisa, Italy.
177. University Malaya Cancer Research Institute, Faculty of Medicine, University Malaya Medical Centre, University Malaya, Kuala Lumpur, Malaysia.
178. Susanne Levy Gertner Oncogenetics Unit, Sheba Medical Center, Tel-Hashomer, Israel.
179. Department of Oncology, Lund University, Lund, Sweden.
180. Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden.
181. Department of Clinical Genetics, Lund University Hospital, Lund, Sweden.
182. Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden.
183. Center for Clinical Cancer Genetics and Global Health, University of Chicago Medical Center, Chicago, IL, USA.
184. UCLA Schools of Medicine and Public Health, Division of Cancer Prevention and Control Research, Jonsson Comprehensive Cancer Center, Los Angeles, CA, USA.
185. Department of Medicine and Genetics, University of California, SF, USA.
186. Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
187. University of Texas MD Anderson Cancer Center, Houston, TX, USA.
188. Familial Cancer Centre, Peter MacCallum Cancer Centre, Melbourne, Australia.
189. Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia.
190. Women's Cancer Program at the Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
191. University of Hawaii Cancer Center, Honolulu, HI, USA.
192. Department of Obstetrics, Gynaecology and Pediatrics, Dalhousie University, Halifax, NS, Canada.
193. Centre for Genetic Origins of Health and Disease, University of Western Australia, Perth, WA, Australia.
194. Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
195. Department of Epidemiology, Harvard School of Public Health, Boston, MA, USA.
196. Program in Genetic Epidemiology and Statistical Genetics, Harvard School of Public Health, Boston, MA, USA.
197. Clinical Gerontology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK.
198. These authors contributed equally to this work.
199. These authors co-directed this work.
A.M.D. Centre for Cancer Genetic Epidemiology and Department of Oncology, University of Cambridge, Strangeways Research Laboratory, Worts Causeway, Cambridge CB1 8RN, UK. Phone +44 (0)1223 740683, Email - amd24@medschl.cam.ac.uk

D.F.E. Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Strangeways Research Laboratory, Worts Causeway, Cambridge CB1 8RN, UK. Phone +44 (0)1223 748629, Email – dfe20@medschl.cam.ac.uk

S.L.E. QIMR Berghofer Medical Research Institute, Department of Genetics and Computational Biology, 300 Herston Road, Herston, Queensland 4006, Australia. Phone +61 (07)3845 3029, Email – Stacey.Edwards@qimrberghofer.edu.au
We analysed 3872 common genetic variants across the *ESRI* locus (encoding estrogen receptor–alpha) in 118,816 subjects from three international consortia. We found evidence for at least five independent causal variants, each associated with different phenotype sets, including positive and negative estrogen receptor (ER⁺/ER⁻) and human ERBB2 (HER2⁺/HER2⁻) tumor subtypes, mammographic density and tumor grade. The best candidate causal variants for ER⁺ tumors lie in four separate enhancer elements and their risk alleles reduce expression of *ESRI*, *RMND1* and *CCDC170*, while the risk alleles of the strongest candidates for the remaining independent causal variant disrupt a silencer element and putatively increase *ESRI* and *RMND1* expression.

Single nucleotide polymorphisms (SNPs) at 6q25.1 have been reported to be associated with breast cancer susceptibility in genome-wide association studies in women of Chinese¹ and European ancestry². Subsequent analyses have demonstrated that SNPs in the same region are associated with breast cancer risk for *BRCA1* mutation carriers³ and mammographic density⁴, a strong breast cancer risk factor. To date, however, attempts to identify the candidate causal variant(s) underlying the associations have been inconclusive³⁵⁶. Here, we report the fine-scale mapping and comprehensive analysis of the genotype-phenotype associations in this region, using dense genotyping and imputed data from the custom-designed iCOGS (Collaborative Oncology Gene-environment Study) array, in 118,816 subjects from three consortia: the Breast Cancer Association Consortium (BCAC), the Consortium of Investigators of Modifiers of *BRCA1/2* (CIMBA) and the Markers of Density Consortium (MODE). We additionally demonstrate, through functional analyses, the likely modes of action of the strongest candidate causal variants.

RESULTS

Genetic epidemiological studies

902 SNPs across a 1 Mb region containing *ESRI* were successfully genotyped in 50 case-control studies from populations of European (89,050 participants) and Asian ancestry (12,893 participants) within BCAC, together with 15,252 *BRCA1* mutation carriers within CIMBA. Mammographic density measures were available for 6,979 women from the BCAC studies and an additional 1,621 women from the MODE consortium, who had also been genotyped using the iCOGS array. Subsequently, genotypes of additional variants with minor allele frequency > 2% were imputed in all European ancestry participants, using data from the 1000 Genomes Project as a reference. In total, data from 3,872 genotyped or imputed (imputation info score > 0.3) SNPs were analysed. Results for all SNPs associated with overall breast cancer risk (*P* < 10⁻⁴) are presented in Supplementary Table 1. Manhattan plots of the associations of these 3,872 SNPs with the main phenotypes are shown in Fig. 1.

Conditional analyses

All genotyped and imputed SNPs displaying evidence for association with overall breast cancer risk in women of European ancestry (*P* < 10⁻⁴) were initially included in forward stepwise logistic regression models for ER⁻ and ER⁺ breast tumor risk. The most parsimonious models (see Online Methods) included four SNPs for ER- and four for ER+ breast cancer, with three being common to both models. In each model, all selected SNPs fell into a subset of five bins of correlated SNPs (*r² > 0.8*). Stepwise regression models were independently fitted to breast cancer risk in the CIMBA *BRCA1* mutation carriers and to mammographic density (measured as mammographic density area (DA) - see online Methods for full details). For the *BRCA1* mutation carriers and for mammographic DA, the SNPs in the best-fitting models also fell within a subset of the originally defined five bins. For further analyses, we selected the directly genotyped SNP that was most significantly associated with the predominant phenotype for that bin. Regression analyses were repeated using just these five SNPs, with each representing an independent signal⁷. Results are presented in Table 1. Additionally, in the BCAC studies we were able to examine SNP
associations with risks of HER2⁺, HER2⁻ and progesterone receptor (PR⁻ and PR⁺) tumor subtypes and with tumor grade at diagnosis.

There were weak but detectable correlations between the representative SNPs of signals 1, 2, 3 and 4 (Table 1 and Supplementary Table 2). We therefore modelled the associations with each SNP conditional on the other four; these conditional risk estimates and significance levels are also presented in Table 1. At conditional significance levels of $P < 10^{-3}$ four of the lead SNPs (1, 2, 4 and 5) were independently associated with risk of developing ER⁻ breast cancer (Table 1). Another, partially overlapping, set of four (1, 2, 3 and 5) was associated with ER⁺ tumor risk (Table 2 and Supplementary Table 3), while another sub-set (1, 2, 3 and 4) was associated with breast cancer risk in BRCA1 mutation carriers (Table 1). The per-allele ORs were higher for ER⁻ than ER⁺ disease for three lead SNPs (signals 1, 2 and 5), while signal 3 representative SNPs displayed smaller effects of similar magnitude on ER⁻ and ER⁺ tumor risks. Mammographic DA was associated with signal 2 and less strongly with signal 1 representative SNPs (Table 1). We additionally carried out a meta-analysis of the SNP associations with breast cancer risk for CIMBA BRCA1 mutation-carriers and for BCAC ER⁺ tumor risk. We anticipated this analysis would increase statistical power to detect ER⁻ risk signals and, indeed, it did strengthen the evidence for association of SNP representing signals 1-4 but not for signal 5, which showed no association with breast cancer risk in BRCA1 mutation carriers (Table 1).

Tumor subtype and grade analyses

We next explored the associations of each signal with specific tumor subtype combinations and with tumor grade (Fig. 1f, Table 2 and Supplementary Tables 3, 4 and 5). The representative SNPs at two signals (3 and 5) were strongly associated with high-grade disease, after adjusting for ER-status ($p<10^{-3}$; Table 2 (bottom line) and Supplementary Table 5). Among ER⁺ tumors, three signals (1, 2 and 4) were associated with triple negative (ER/PR/HER2⁺) and high-grade tumors, and the rarer (ER/PR/HER2⁻) subtype, with similar ORs (Table 2; Supplementary Tables 3 and 5). However, signal 5 was more strongly associated with ER/PR/HER2⁻ disease (OR = 1.24; 95% CI 1.12-1.37; $P = 2.4x10^{-5}$; Table 2), than with triple negative subtype (OR = 1.08; 95% CI 1.01-1.15; $P = 0.016$; Table 2, case-only $P = 0.021$, Supplementary Table 5), consistent with the lack of association for breast cancer in BRCA1 mutation carriers, in which tumors are predominantly triple negative.

Haplotype analysis

We next explored the combined effects of the same five signal–representative genotyped SNPs (Supplementary Table 6). Haplotype-specific effects were consistent with additive effects of the individual signal-representative SNPs. In particular, haplotype 22221 (all minor alleles except for signal 5; frequency 0.005) was associated with the largest increased risks of both ER⁺ (OR = 1.38; 95% CI 1.11-1.71; $P = 3.3x10^{-3}$) and ER⁻ (OR = 2.34; 95% CI 1.76-3.10; $P = 3.5x10^{-9}$) tumors; this group includes the triple negative tumor subtype (detected via the meta-analysis of BCAC ER⁻ and CIMBA BRCA1 mutation carriers; $P = 8x10^{-10}$). Haplotype 22111 (frequency 0.02) was associated with the highest risk of HER2⁻ tumors (OR = 1.5; 95% CI 1.21-1.87; $P = 3x10^{-4}$) and with mammographic DA (β-coefficient = 0.45; 95% CI 0.20-0.69; $P = 3x10^{-4}$).

Associations in Asian ancestry studies

We examined the associations of the five signal-representative SNPs in the nine Asian ancestry studies within BCAC (Supplementary Table 7). All five displayed allelic associations in the same direction as those in Europeans, with overlapping confidence intervals, consistent with the hypothesis that the same candidate causal variants determine risk in both populations.

Determining the candidate SNPs within each signal

To identify the potential causal variants to be taken forward for functional analysis, we determined
the most significant SNP association within each signal and then calculated the likelihood ratio of every other SNP relative to that SNP. We assumed that SNPs with a likelihood of $< 1:100^9$ compared with the most significant SNP for each signal could be excluded from consideration as potentially causative variants. Based on the assumption that, within a given signal, the same variant(s) would be driving all observed phenotype associations, we derived the list of most likely causal SNPs for each. We used the results from one of two analyses to define the list of potentially-causal SNPs for each signal: the “BCAC ER/CIMBA BRCA1 meta-analysis” for signals 1, 2 and 4, which were most strongly associated in this analysis, and “overall breast cancer risk in BCAC” for signals 3 and 5. These lists of the unexcluded variants are presented in Table 3 and are highlighted in Supplementary Table 1.

In signal 1, the most strongly associated variant was rs2046210 (the original Asian GWAS hit1,10) with nine other variants (likelihood ratios $< 100:1$, $r^2 \geq 0.89$ with rs2046210; spanning positions 151,935,539-151,954,127) remaining as strong causal candidates. In signal 2, the best causal candidate was SNP rs12173570, with two other candidates remaining (likelihood ratios $< 100:1$, $r^2 \geq 0.75$ with rs12173570; spanning positions 151,955,914-151,958,815). The European GWAS SNP, rs37573182, is most strongly correlated with rs12173570 ($r^2 > 0.45$). In signal 3, the best causal candidate was rs851984, with three other candidates remaining (likelihood ratios $< 100:1$, $r^2 = 0.99$; spanning two ESR1 introns - positions 152,020,390-152,024,985). In signal 4, the top candidate was rs9918437 and two other candidates span another segment of an ESR1 intron - positions 152,055,978-152,072,718 (approximately 30 kb telomeric of signal 3, likelihood ratios $< 100:1$, $r^2 > 0.81$ with rs9918437). In signal 5, the strongest candidate causal SNP was rs2747652 (also the signal 5 representative SNP in Table 1) and there were five other candidates (likelihood ratios $< 100:1$; $r^2 > 0.97$; positions 152,432,902-152,440,522) - in the intergenic region between ESR1 and SYNE1. Across the five signals, we were able to exclude all but 26 of the original 3872 variants from being potentially causal.

Local gene expression analyses
We used four techniques to assess associations between candidate causal variants (or available proxy SNPs) in the five signals and local gene expression: (i) ER protein expression, measured by immunohistochemistry in normal breast tissue samples from 150 postmenopausal donors, identified a significant correlation of the risk-alleles of signal 1 SNPs and reduced ER levels (Fig. 2a and Supplementary Figs. 1 and 2). (ii) Comparison of ESR1 expression in breast tumor and adjacent normal breast tissue from the METABRIC study by signal-representative SNP allele (Fig. 2b and Supplementary Table 8). In patients with ER$^+$ tumors, risk-allele-carriers had lower median ESR1 expression, in normal tumor-adjacent tissue, than homozygotes for the protective allele at signals 1, 4 and 5, though none of the differences were statistically significant. By contrast, in patients with ER$^+$ tumors, risk- allele-carriers had higher median ESR1 expression in normal tumor-adjacent tissue than homozygotes for the protective allele at signals 1, 3 and 5. (iii) Allele specific expression (ASE) analysis, using RNAseq data from breast tumor samples and SNP array genotype data from The Cancer Genome Atlas (TCGA)11, revealed allelic imbalances in ESR1 expression among heterozygotes for proxy SNPs in signals 1, 2 and 3 (Fig. 2c and Supplementary Table 9). Similar imbalances in CCDC170 expression were detected among heterozygotes for signal 2 SNP rs9397437 and in RMND1 expression with signal 3 SNP rs851983 (Supplementary Table 9). Such allelic imbalances indicate that risk alleles at these signals are associated with expression differences in local genes but they do not indicate the directions of association. (iv) Expression quantitative trait locus (eQTL) analysis using the GTEx database identified a significant association for SNPs in signal 3 with CCDC170 expression in normal breast tissues (Supplementary Table 10). We also performed cis- eQTL analyses on the 12 flanking genes in 135 normal breast tissue samples from the METABRIC study, however no additional associations were detected (Supplementary Table 11).
Bioinformatic and chromatin analyses

Analysis of *cis* enhancer-gene interactions using PreSTIGE\(^{12}\) showed evidence of multiple regulatory elements coinciding with signals 1, 2 and 3 in ER\(^+\) MCF7 breast cancer cells (Fig. 3a and Supplementary Fig. 3). A “super enhancer”, associated with high levels of H3K27ac histone modification, was also identified in MCF7 cells and encompasses the top risk-associated SNPs in these three signals (Fig. 3a and Supplementary Figs. 3)\(^{13}\). This super enhancer was most readily detectable in MCF7 cells and was not observed in other breast cancer cell lines, normal mammary epithelial cells or other tissues analyzed (Supplementary Fig. 4). Chromatin conformation capture (3C) experiments revealed that elements within signals 1 and 2 physically interacted with the promoters of the *ESR1A, ESR1B, RMND1/C6orf211* and *CCDC170* in MCF7 and T47D cells (Fig. 3b and Supplementary Fig. 5a,b). Furthermore, we detected significant interactions between signals 3, 4 and 5 and *ESR1* and/or *RMND1/C6orf211* promoters (Figs. 3c,d and Supplementary Figs. 5c,d). The majority of these interactions were restricted to MCF7 and T47D (ER\(^+\) breast cancer cell lines) but the *RMND1/C6orf211* interactions were also detected in either Bre-80 or MCF10A (ER\(^-\) ‘normal’ breast cell lines; Figs. 3b-d and Supplementary Figs. 5b-d). The most significant 3C-identified interactions for each signal are summarized in Supplementary Table 12.

Prioritizing candidate SNPs for functional assays

We used a combination of *in silico* and *in vitro* analyses to prioritise candidate-causal SNPs for functional follow-up, utilising previous observations that common cancer susceptibility alleles are enriched in *cis*-regulatory elements and alter transcriptional activity\(^{14-16}\). First, (Table 3) revealed that 19/26 top candidates overlapped DNaseI sites and were associated with enhancer-specific histone marks such as H3K4me2 and H3K27ac in MCF7 and HMEC breast cells, indicative of putative regulatory elements (PREs, Supplementary Fig. 6). We used electromobility shift assays (EMSA) to show that 11/19 SNPs altered the binding affinity of transcription factors (TFs) *in vitro* (Supplementary Fig. 7). Of these, seven fell within promoter-specific long-range interactions identified by 3C (Fig. 3 and Supplementary Fig. 5). The seven SNPs prioritized for further detailed analyses included 2/10 remaining candidates in signal 1 (rs7763637 and rs6557160), 1/3 in signal 2 (rs17081533), 2/4 in signal 3 (rs851982 and rs851983), 1/3 in signal 4 (rs1361024) and 1/6 in signal 5 (rs910416; Supplementary Table 12).

Luciferase reporter assays

The regulatory capabilities of the PREs overlapping each signal and the effect of prioritized seven candidate SNPs were examined in luciferase reporter assays in ER\(^+\) MCF7 and BT474 and ER\(^-\) Bre80 breast cell lines. PRE constructs containing the reference alleles of prioritized SNPs in signals 1, 2, 4 and 5 significantly increased their associated target gene promoter activities when cloned in either direction, indicating they act as orientation-independent transcriptional enhancers. In contrast, a PRE containing the reference alleles of the signal 3 candidates ablated target gene promoter activities but only when cloned in the forward direction, suggesting it acts as an orientation-dependent silencer (Fig. 4 and Supplementary Figs. 8-10). Notably, inclusion of the minor (risk) alleles of individual candidates SNPs in signals 1, 2 and 5 (rs6557160, rs17081533 and rs910416) significantly reduced *ESR1* and *RMND1* promoter activities, but had no effect on *C6orf211* or *CCDC170* promoters. However, inclusion of the signal 1 haplotype significantly decreased *ESR1, RMND1* and *CCDC170* promoter activities (Fig. 4 and Supplementary Figs. 8 and 9). Inclusion of the individual minor (risk) alleles of signal 4 SNP rs1361024 or signal 3 SNP rs851983 in their respective constructs had no additional effects. In contrast, inclusion of the signal 3 minor (risk) allele of rs851982 or the haplotype construct increased *ESR1* promoter activity in ER\(^+\) MCF7 and BT474 cells, and *RMND1* promoter activity in the three cell lines (Fig. 4 and Supplementary Figs. 8, 9 and Supplementary Table 12).
Transcription factor (TF) binding analyses

We used both bioinformatic analyses and functional studies to examine DNA-protein interactions for the seven prioritised SNPs within each signal. In silico prediction tools including intra-genomic replicates (IGR)17, HaploReg18 and Alibaba219 predicted all seven SNPs to alter TF binding (Supplementary Fig. 11 and Supplementary Table 13). Competition with known TF binding sites suggested the identity of bound proteins for four of the prioritized SNPs including GATA3 binding to the minor (risk) allele of signal 3 SNP rs851982 and CTCF binding to the minor allele of a second signal 3 candidate, rs851983, as well as the common (protective) allele of signal 4 candidate rs1361024 and c-MYC binding to the common allele of signal 5 candidate rs910416 (Supplementary Fig. 12 and Supplementary Table 12). Additional well-established breast cell TFs, such as ER itself and FOXA1 were also assessed but did not display competitive binding to any prioritised SNP sites (Supplementary Fig. 13). Chromatin immunoprecipitation (ChIP) confirmed enrichment of GATA3 binding to DNA overlapping signal 3 candidate rs851982, but no difference between alleles and CTCF binding to the region overlapping signal 4 candidate rs1361024 in BT474 cells (Fig. 5a and Supplementary Fig. 14). CTCF also bound to the region encompassing signal 3 candidate rs851983 (Fig. 5a and Supplementary Fig. 14 and Supplementary Table 12). CTCF mediates long-range chromatin looping, therefore to assess the potential impact of signal 4 candidate rs1361024 and signal 3 candidate rs851983 on chromatin interactions, allele-specific 3C was performed in heterozygous cell lines. Sequence profiles indicated that the protective g-allele of signal 4 candidate rs1361024 increases looping between this enhancer and the ESR1 and RMND1 promoters (Fig. 5b and Supplementary Fig. 15a). We found no evidence for allele-specific looping between the silencer overlapping signal 3 and local gene promoters (Supplementary Fig. 15b).

DISCUSSION

The fine-scale mapping, bioinformatic and functional analysis presented here provide evidence for the existence of at least five, different genetic variants, each with a direct effect on breast cancer risk in Europeans; findings also supported by the limited available data in Asian populations. These are distributed upstream, within introns, and downstream of ESR1, each in a region, which we have demonstrated via reporter assays, is regulatory for ESR1. Some may additionally regulate other local genes, RMND1, C6orf211 and CCDC170, previously reported to be co-regulated with ESR120. Of note, the four sites more strongly associated with risks of ER– than ER+ tumors (signals 1, 2, 4 and 5) all overlap enhancer regions and our evidence indicates that the minor (risk) alleles of candidate causal variants, within each of these enhancers, act to reduce expression of ESR1, RMND1 and CCDC170. In contrast signal 3, which is associated with smaller but equal risks of developing both ER– and ER+ tumors, overlaps a gene silencer and the risk alleles of the candidate causal variants here increase ESR1 and RMND1 expression. Furthermore, we have demonstrated altered binding of looping factor, CTCF, to candidate causal SNPs in signals 3 and 4 with evidence that the risk allele of signal 4 candidate rs1361024 abrogates binding and reduces chromatin looping between this enhancer element and the promoters of ESR1 and RMND1. We also provided evidence that signal 5 candidate, rs910416, may display allele-specific binding of c-MYC.

Notably, the previously unrecognized signal 5 candidates, downstream of ESR1, significantly increase the risk of developing the ER+/PR+/HER2– tumors (a specific-subtype shown to be more responsive to the drug trastuzumab) in contrast to the triple negative (ER–/PR–/HER2–) tumor subtype, which has already been reported to be associated with other signals at 6q25 as well as with 19p1321 and 5p15 (TERT)22. We also found evidence that the candidate causal variants at signals 3 and 5 predispose to aggressive, high-grade breast cancer, independently of ER status.

Mammographic density adjusted for age and BMI, which describes the variation in epithelial and stromal tissue on a mammogram, is one of the strongest known risk factors for breast cancer23,
and has been shown to have a shared genetic basis with breast cancer, mediated through a large number of common variants. Associations between ESRI SNPs and mammographic density have previously been reported, but in this detailed analysis, only signal 2 was clearly associated with mammographic DA (\(P = 1.7 \times 10^{-5}\)), although signal 1 also showed some evidence of an effect in the conditional analysis (\(P = 0.017\)). Although adjusting the breast cancer analysis of signal 2 for mammographic DA produced some attenuation of the associated effect, the lead SNP remained significantly associated with breast cancer risk (unconditional OR = 1.30 (1.13-1.49) \(P = 0.00024\); OR conditional on DA = 1.24 (1.08-1.43) \(P = 0.0025\), suggesting either that the mechanism by which the signal 2 candidate causal variant affects breast cancer risk is not mediated through mammographic density, or alternatively that DA, as measured here, is unable to capture the association with breast composition that is most relevant to risk. This phenomenon, whereby the association with risk appears to be partially independent of mammographic density, has also been observed for the 10q21.2 breast cancer locus.

SNPs in the ESRI region have previously been reported to be associated with bone mineral density. These include SNPs within signal 1 (rs6930633, \(r^2 = 0.73\) with rs3757322) and signal 3 (rs2982575, \(r^2 = 0.57\) with rs851984), although the SNP with the most significant reported association with bone density measures, rs4870044, was not associated with breast cancer risk (\(P > 10^{-4}\)) in our analysis, nor correlated with any signal-representative SNPs (\(r^2 < 0.06\)). Similarly, SNP rs6933669, recently reported as associated with age-at-menarche, is uncorrelated with these five signals (\(r^2 < 0.02\) and was not associated with breast cancer (\(P=0.1\)). Thus, although there is a known relationship between age-at-menarche and breast cancer risk, they do not appear to share candidate causal variants in this region.

Our findings help address the question of the role of ER-alpha in establishing breast cancer. Notably, the candidate causal SNPs identified here all increase risks of both ER\(^+\) and ER\(^-\) tumor-subtypes by varying degrees. ER-alpha is a ligand-activated TF that mediates the effect of estrogen through altering gene expression and the link between estrogen, ER-alpha and ER\(^+\) breast cancer are well documented, with adjuvant endocrine therapy considered standard treatment for ER\(^+\), early-stage breast cancer. Other studies have also reported 6q25 associations with ER\(^-\) subtypes but the mechanisms by which ER\(^+\) tumors develop are still debated. There is speculation that ER\(^-\) tumors may arise from ER\(^+\) precursors by potentially reversible mechanisms and our findings may lend support to this hypothesis. However, several recent studies have indicated that most tumors in BRCA1 mutation-carriers arise from ER\(^-\) luminal progenitor cells, thus estrogen may be working indirectly through paracrine regulation in the mammary epithelium, possibly stimulating the Notch or EGFR signalling pathways of adjacent ER\(^+\) cells. Our analyses unexpectedly revealed that whilst signals 1-4 increased risks of all ER\(^+\) tumor subtypes, the signal 5 candidate causal variant increased risks of ER\(^-\) HER2\(^+\) breast cancer subtypes but not of triple-negative tumor development or of tumors in BRCA1 mutation carriers (Table 1). This further complicates present understanding and underlines the need for further studies to address this issue.

Collectively, our evidence supports a hypothesis that ESRI is the major target gene of the enhancer and silencer elements in which we have identified candidate causal variants. In addition to ESRI, we provide evidence that the regions overlapping signals 1, 2, 3 and 4 cooperatively regulate RMND1, raising the possibility that candidate causal SNPs act by altering both ESRI and RMND1 expression. RMND1 (Required for Meiotic Nuclear Division 1; C6orf96) has not been well characterized but is reported to localize to mitochondria and be involved in mitochondrial translation. We additionally identified enhancer activity and chromatin interactions with two other genes, C6orf211 and CCDC170, but the actions of the candidate causal SNPs on these genes remain unclear. C6orf211 encodes Arm1, a protein carboxyl methyltransferase that targets PCNA and differentially regulates cancer cell survival in response to DNA damage. Nothing is
known about the function of CCDC170 (Coiled-Coil Domain-Containing protein 170) but recurrent ESR1-CCDC170 rearrangements have been characterized in an aggressive subset of ER+ breast cancers. A recent study also showed higher CCDC170 expression correlated with ER negativity, highly proliferative features and worse clinical outcomes. There are some data to suggest that these genes may cooperatively contribute to the increased proliferative capacity of ER+ tumors and it is tempting to speculate that these may be additional target genes for the candidate causal variants at a subset of the five signals identified here, and perhaps responsible for their differential phenotype associations. A greater understanding of these genes may also provide novel targets for breast cancer prevention or therapies.

URLs.

Accession codes. The relevant SNP genotype data underpinning these analyses can be accessed by applying to the BCAC and CIMBA consortia (see URLs).

ACKNOWLEDGMENTS
We thank all the individuals who took part in these studies and all the researchers, clinicians, technicians and administrative staff who have enabled this work to be carried out. This study would not have been possible without the contributions of the following: Andrew Berchuck (OCAC), Rosalind A. Eeles, Ali Amin Al Olama, Zsofia Kote-Jarai, Sara Benlloch (PRACTICAL), Craig Luccarini and the staff of the Centre for Genetic Epidemiology Laboratory, the staff of the CNIO genotyping unit, Daniel C. Tessier, Francois Bacot, Daniel Vincent, Sylvie LaBoissière and Frederic Robidoux and the staff of the McGill University and Génome Québec Innovation Centre, Sune F. Nielsen, Borge G. Nordestgaard, and the staff of the Copenhagen DNA laboratory, and Julie M. Cunningham, Sharon A. Windebank, Christopher A. Hilker, Jeffrey Meyer and the staff of Mayo Clinic Genotyping Core Facility. Normal human tissues from the Susan G. Komen for the Cure® Tissue Bank at the IU Simon Cancer Center, Indianapolis were used in this study. We thank contributors, including Indiana University who collected samples used in this study, as well as donors and their families, whose help and participation made this work possible. Also NIHR Support to the Royal Marsden Biomedical Research Centre. Funding for the iCOGS infrastructure came from: the European Community's Seventh Framework Programme under grant agreement n° 223175 (HEALTH-F2-2009-223175) (COGS), Cancer Research UK (C1287/A10118, C1287/A10710, C12292/A11174, C1281/A12014, C5047/A8384, C5047/A15007, C5047/A10692, C8197/A16565), the National Institutes of Health (CA128978) and Post-Cancer GWAS initiative (1U19 CA148537, 1U19 CA148065 and 1U19 CA148112 - the GAME-ON initiative), the Department of Defence (W81XWH-10-1-0341), the Canadian Institutes of Health Research (CIHR) for the CIHR Team in Familial Risks of Breast Cancer, Komen Foundation for the Cure, the Breast Cancer Research Foundation, and the Ovarian Cancer Research Fund.

AUTHOR CONTRIBUTIONS

COMPETING FINANCIAL INTERESTS
The authors declare no competing financial interests.

REFERENCES

32. Molyneux, G. *et al.* *BRCA1* basal-like breast cancers originate from luminal epithelial
progenitors and not from basal stem cells. Cell Stem Cell 7, 403-17 (2010).

FIGURE LEGENDS
Figure 1. Association results for all SNPs with six phenotypes. Phenotypes analyzed include: (a) ER$^+$ breast cancer risk from the BCAC, (b) ER$^+$ breast cancer risk from the BCAC, (c) triple negative breast cancer risk; derived from the CIMBA BRCA1/ ER$^-$ meta-analysis, (d) HER2$^+$ breast cancer risk from the BCAC, (e) mammographic dense area from the MODE and (f) tumor grade after adjustment for ER status from the BCAC. P-values for each SNP (from unconditional logistic regression) are shown plotted as the negative log of the P-value against relative position across the locus. A schematic of the gene structures is shown above a and d. The physical positions of signals 1-5 are shown as colored, numbered stripes.

Figure 2. ER expression and allelic imbalance correlates with signal 1 SNPs. (a) Negative association between the signal 1 SNP rs2046210 and ER protein expression. Black dots represent ER expression from individual samples measured by immunohistochemistry/H-score. P-values were calculated using a Spearman rank correlation test. (b) Boxplot of ESR1 gene expression (log2 transformed) in breast tumor and adjacent normal samples. Boxes extend from the 25th to the 75th percentile, horizontal bars represent the median, whiskers indicate the full range of ESR1 expression, and outliers are represented as circles. (c) Allelic imbalance of ESR1 by breast cancer risk genotypic status. Plots are classified according to the genotypes for the risk SNP loci (heterozygotes vs homozygotes). Black dots represent the average of major allele fractions of the marker SNPs across ESR1 for a TCGA breast cancer individual. Red lines and whiskers correspond to mean and ±1 standard deviation. For rs7740686/signal 1 and rs9397437/signal 2, Levene's Test (equality of variances) and, for rs851985/signal 3, two-tailed t-Test (equality of means) was used to calculate P-values.

Figure 3. Chromatin interactions across the 6q25.1 risk region. (a) Signals 1-5 are numbered and shown as colored stripes. RMND1, C6orf211, CCDC170, and ESR1 gene structures are depicted with exons (vertical boxes) joined by introns (lines). Gene-enhancer predictions from PreSTIGE12, ChIP-seq binding profiles for H3K27ac13 and ENCODE RNAPII ChIA-PET interactions in MCF7s are shown. 3C anchor points (3C baits) and sequences interrogated (3C regions) are depicted as black boxes and grey shading. 3C interaction profiles in ER$^+$ MCF7 and ER$^+$ Bre-80 breast cell lines for signals 1 and 2 (b), signals 3 and 4 (c), or signal 5 (d). 3C libraries were generated with EcoRI, with the anchor points set at the ESR1, RMND1/C6orf211 or CCDC170 promoter regions. Graphs represent three biological replicates. Error bars represent SD.

Figure 4. Risk alleles reduce ESR1 and RMND1 promoter activity. Luciferase reporter assays following transient transfection of ER$^+$ MCF7 breast cancer cell lines. Putative regulatory elements (PREs) containing the major SNP alleles were cloned downstream of target gene promoter-driven luciferase constructs (prom) for the creation of reference (Ref- PRE) constructs. Minor SNP alleles were engineered into the constructs and are designated by the rs ID of the
corresponding SNP. Haplotype denotes a construct that contains the minor alleles of both candidate SNPs within either signals 1 or 3. Error bars denote 95% confidence intervals from three independent experiments. P-values were determined by 2-way ANOVA followed by Dunnett’s multiple comparisons test (**P < 0.01, ***P < 0.001).

Figure 5. GATA3 and CTCF binding in vivo. (a) ChIP-qPCR assays using GATA3 or CTCF antibody in ER+ BT474 breast cancer cell lines. A region within the second intron of ESRI served as a negative (Neg) control. Graphs represent two biological replicates. Error bars represent SD. (b) 3C followed by sequencing for the signal 4-PRE containing rs1361024 in heterozygous ER+ MCF7 breast cancer cells shows allele-specific chromatin looping. Chromatograms represent one of three independent 3C libraries generated and sequenced.
Table 1. The associations of each signal-representative SNP with tumor risk and mammographic density in the three contributing consortia.

<table>
<thead>
<tr>
<th>SIGNAL Representative SNP</th>
<th>Position</th>
<th>Alleles</th>
<th>Frequency</th>
<th>BCAC ER-ve</th>
<th>BCAC ER+ve</th>
<th>CIMBA BRCA1 mutations</th>
<th>CIMBA BRCA1</th>
<th>Mammographic dense area*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>OR (95%CIs) P-trend</td>
<td>cOR (95%CIs) P-cond</td>
<td>OR (95%CIs) P-trend</td>
<td>cOR (95%CIs) P-cond</td>
<td>HR (95%CIs) P-value</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>cHR (95%CIs) P-cond</td>
<td>cβ (95%CIs) P-trend</td>
<td>cOR (95%CIs) P-cond</td>
<td>cβ (95%CIs) P-trend</td>
<td>95% CIs</td>
</tr>
<tr>
<td>1 rs3757322</td>
<td>151942194</td>
<td>GT</td>
<td>0.33</td>
<td>1.17 (1.12-1.21) 1.00E-14</td>
<td>1.14 (1.10-1.19) 1.51E-09</td>
<td>1.07 (1.04-1.09) 1.10E-07</td>
<td>1.06 (1.04-1.09) 1.02E-05</td>
<td>1.15 (1.10-1.20) 3.78E-10</td>
</tr>
<tr>
<td>2 rs9397437</td>
<td>151952332</td>
<td>AG</td>
<td>0.07</td>
<td>1.28 (1.19-1.37) 5.29E-12</td>
<td>1.18 (1.11-1.26) 1.20E-05</td>
<td>1.15 (1.10-1.20) 1.26E-09</td>
<td>1.12 (1.07-1.17) 3.56E-06</td>
<td>1.24 (1.15-1.33) 3.98E-08</td>
</tr>
<tr>
<td>3 rs851984</td>
<td>152023191</td>
<td>AG</td>
<td>0.41</td>
<td>1.04 (1.01-1.08) 0.024</td>
<td>n/a</td>
<td>1.06 (1.03-1.08) 1.97E-06</td>
<td>1.07 (1.05-1.10) 1.09E-08</td>
<td>1.05 (1.01-1.10) 0.015</td>
</tr>
<tr>
<td>4 rs9918437</td>
<td>152072718</td>
<td>TG</td>
<td>0.07</td>
<td>1.18 (1.11-1.27) 6.20E-07</td>
<td>1.13 (1.06-1.20) 4.48E-04</td>
<td>1.08 (1.04-1.13) 1.04E-04</td>
<td>n/a</td>
<td>1.17 (1.08-1.26) 1.30E-04</td>
</tr>
<tr>
<td>5 rs2747652</td>
<td>152437016</td>
<td>CT</td>
<td>0.54</td>
<td>1.12 (1.08-1.16) 1.83E-09</td>
<td>1.12 (1.08-1.16) 2.32E-09</td>
<td>1.05 (1.03-1.08) 9.49E-06</td>
<td>1.05 (1.03-1.08) 6.60E-06</td>
<td>1.00 (0.96-1.04) 0.95</td>
</tr>
</tbody>
</table>

For each signal-representative SNP (the best associated genotyped SNP) Odds Ratios for minor/major allele and conditional Odds Ratios (OR; cOR) and 95% Confidence Intervals (CIs), Hazard Ratios (HRs; cHR), Beta-coefficients (β; cβ) and P-values (P-cond) are from models including the other 4 signal-representative SNPs. Representative cORs and CIs could not be generated from the meta-analysis.

n/a - SNP was not included in conditional analysis since individual effect was not significant at p>10-4

*mammographic dense area, was square-root transformed and adjusted for age, BMI, menopausal status, study and relevant principal components.
Table 2. The association of each signal-representative SNP with the main tumor subtype combinations and tumor-grade.

<table>
<thead>
<tr>
<th>SIGNAL</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Representative SNP</td>
<td>rs3757322</td>
<td>rs9397437</td>
<td>rs851984</td>
<td>rs9918437</td>
<td>rs2747652</td>
</tr>
<tr>
<td>N cases</td>
<td>OR (95% CI)</td>
<td>P</td>
<td>OR (95% CI)</td>
<td>P</td>
<td>OR (95% CI)</td>
</tr>
<tr>
<td>ER Positive</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IHC classification</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ER+/PR+/HER2-</td>
<td>10,834</td>
<td>1.07 (1.03-1.11)</td>
<td>3.93E-04</td>
<td>1.14 (1.07-1.21)</td>
<td>9.54E-05</td>
</tr>
<tr>
<td>ER+/PR+/HER2+</td>
<td>1616</td>
<td>1.10 (1.02-1.19)</td>
<td>1.88E-02</td>
<td>1.25(1.09-1.43)</td>
<td>1.05E-03</td>
</tr>
<tr>
<td>Case-only P</td>
<td>6.60E-01</td>
<td>1.80E-01</td>
<td>3.90E-01</td>
<td>8.40E-01</td>
<td>4.00E-01</td>
</tr>
<tr>
<td>Grade classification</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grade 1</td>
<td>5331</td>
<td>1.05(1.00-1.10)</td>
<td>4.04E-02</td>
<td>1.04(0.96-1.14)</td>
<td>3.17E-01</td>
</tr>
<tr>
<td>Grade 2</td>
<td>11498</td>
<td>1.08(1.04-1.11)</td>
<td>8.77E-06</td>
<td>1.16(1.09-1.23)</td>
<td>1.48E-06</td>
</tr>
<tr>
<td>Grade 3</td>
<td>4702</td>
<td>1.06(1.01-1.11)</td>
<td>1.37E-02</td>
<td>1.17(1.08-1.28)</td>
<td>2.22E-04</td>
</tr>
<tr>
<td>Case-only P</td>
<td>9.20E-01</td>
<td>2.00E-02</td>
<td>2.60E-04</td>
<td>6.00E-02</td>
<td>7.97E-06</td>
</tr>
<tr>
<td>ER negative</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IHC classification</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ER-/PR-/HER2- (TN)</td>
<td>2840</td>
<td>1.20(1.12-1.28)</td>
<td>7.17E-08</td>
<td>1.25(1.11-1.40)</td>
<td>1.50E-04</td>
</tr>
<tr>
<td>ER-/PR-/HER2+</td>
<td>858</td>
<td>1.19(1.07-1.32)</td>
<td>8.80E-04</td>
<td>1.25(1.04-1.5)</td>
<td>1.55E-02</td>
</tr>
<tr>
<td>Case-only P</td>
<td>7.80E-01</td>
<td>4.20E-01</td>
<td>1.40E-01</td>
<td>9.20E-01</td>
<td>2.08E-02</td>
</tr>
<tr>
<td>ER-/PR+/HER2-</td>
<td>268</td>
<td>1.17(0.97-1.40)</td>
<td>9.00E-02</td>
<td>1.14(0.83-1.58)</td>
<td>4.10E-01</td>
</tr>
<tr>
<td>Case-only P vs TN</td>
<td>8.00E-01</td>
<td>7.80E-01</td>
<td>3.00E-02</td>
<td>6.50E-01</td>
<td>8.30E-01</td>
</tr>
<tr>
<td>vs ER-/PR-/HER2+</td>
<td>6.40E-01</td>
<td>6.10E-01</td>
<td>3.00E-02</td>
<td>1.60E-01</td>
<td>3.70E-01</td>
</tr>
<tr>
<td>vs ER+/PR+/HER2+</td>
<td>7.90E-01</td>
<td>7.60E-01</td>
<td>1.20E-01</td>
<td>9.90E-01</td>
<td>3.80E-01</td>
</tr>
<tr>
<td>Grade classification</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grade 1</td>
<td>218</td>
<td>1.23(1.00-1.5)</td>
<td>4.40E-02</td>
<td>1.35(0.96-1.91)</td>
<td>8.60E-02</td>
</tr>
<tr>
<td>Grade 2</td>
<td>1204</td>
<td>1.14(1.05-1.24)</td>
<td>2.88E-03</td>
<td>1.19(1.02-1.39)</td>
<td>2.63E-02</td>
</tr>
<tr>
<td>Grade 3</td>
<td>3463</td>
<td>1.20(1.13-1.26)</td>
<td>6.10E-11</td>
<td>1.30(1.19-1.43)</td>
<td>1.88E-08</td>
</tr>
<tr>
<td>Grade polytomous adjusted for ER, constrained</td>
<td>9.18E-01</td>
<td>6.42E-03</td>
<td>5.43E-04</td>
<td>2.96E-01</td>
<td>1.82E-05</td>
</tr>
</tbody>
</table>

TN-Triple Negative
Table 3. Remaining candidate causal variants within each independent signal after likelihood ratio testing, based on the exclusion phenotype shown at the top of each column.

<table>
<thead>
<tr>
<th>SIGNAL</th>
<th>Representative SNP</th>
<th>Excclusion phenotype</th>
<th>Lead SNP</th>
<th>Lead SNP position</th>
<th>Frequency</th>
<th>P-cond, r^2 with lead SNP</th>
<th>Condtional OR (95%CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>rs3797322</td>
<td>Meta-analysis (BCAC ER- CIMBA)</td>
<td>rs2046210</td>
<td>151948366</td>
<td>0.35</td>
<td>1.07 (1.05-1.09) 3.09E-09</td>
<td>1.12 (1.08-1.15) 1.64E-10</td>
</tr>
<tr>
<td>2</td>
<td>rs9397437</td>
<td>Meta-analysis (BCAC ER- CIMBA)</td>
<td>rs1213570</td>
<td>151957714</td>
<td>0.10</td>
<td>1.08 (1.05-1.10) 9.65E-12</td>
<td>1.05 (1.01-1.09) 1.27E-02</td>
</tr>
<tr>
<td>3</td>
<td>rs851984</td>
<td>Overall breast cancer (BCAC)</td>
<td>rs851985</td>
<td>152020390</td>
<td>0.41</td>
<td>1.07 (1.05-1.09) 1.23E-12</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>rs9918437</td>
<td>Meta-analysis (BCAC ER- CIMBA)</td>
<td>rs9918437</td>
<td>1520727718</td>
<td>0.07</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>rs2747652</td>
<td>Overall breast cancer (BCAC)</td>
<td>rs2747652</td>
<td>152437016</td>
<td>0.54</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Unexcluded candidates^1

<table>
<thead>
<tr>
<th>Chromosome position, P-cond, r^2 with lead SNP</th>
<th>rs7589313</th>
<th>1.52E+08</th>
<th>1.83E-15</th>
<th>0.96</th>
<th>nd997437</th>
<th>1.52E+08</th>
<th>3.29E-08</th>
<th>0.73</th>
<th>rs851985</th>
<th>1.52E+08</th>
<th>9.65E-12</th>
<th>1.00</th>
<th>rs904031</th>
<th>1.52E+08</th>
<th>1.66E-05</th>
<th>0.82</th>
<th>rs910416</th>
<th>1.52E+08</th>
<th>2.70E-12</th>
<th>0.99</th>
</tr>
</thead>
<tbody>
<tr>
<td>rs3748006</td>
<td>1.52E+08</td>
<td>6.29E-16</td>
<td>0.87</td>
<td>rs6994027</td>
<td>1.52E+08</td>
<td>3.11E-15</td>
<td>0.76</td>
<td>rs651984</td>
<td>1.52E+08</td>
<td>1.11E-11</td>
<td>1.00</td>
<td>rs1361024</td>
<td>1.52E+08</td>
<td>8.74E-06</td>
<td>0.99</td>
<td>6-152434275</td>
<td>1.52E+08</td>
<td>2.24E-12</td>
<td>0.99</td>
<td></td>
</tr>
<tr>
<td>rs3797322</td>
<td>1.52E+08</td>
<td>7.99E-16</td>
<td>0.88</td>
<td>rs6994078</td>
<td>1.52E+08</td>
<td>1.32E-08</td>
<td>0.75</td>
<td>rs851983</td>
<td>1.52E+08</td>
<td>1.43E-11</td>
<td>1.00</td>
<td>rs9918437</td>
<td>1.52E+08</td>
<td>2.81E-06</td>
<td>1.00</td>
<td>rs34133739</td>
<td>1.52E+08</td>
<td>2.24E-12</td>
<td>0.99</td>
<td></td>
</tr>
<tr>
<td>rs11155803</td>
<td>1.52E+08</td>
<td>3.67E-15</td>
<td>0.89</td>
<td>rs8493947</td>
<td>6.26E-08</td>
<td>3.12E-08</td>
<td>1.00</td>
<td>rs851982</td>
<td>1.52E+08</td>
<td>1.45E-11</td>
<td>1.00</td>
<td>rs66485058</td>
<td>1.52E+08</td>
<td>1.35E-08</td>
<td>0.99</td>
<td>rs66485058</td>
<td>1.52E+08</td>
<td>5.81E-12</td>
<td>0.99</td>
<td></td>
</tr>
<tr>
<td>rs11155804</td>
<td>1.52E+08</td>
<td>2.13E-16</td>
<td>0.89</td>
<td>rs1213570</td>
<td>1.52E+08</td>
<td>2.92E-10</td>
<td>1.00</td>
<td>rs851982</td>
<td>1.52E+08</td>
<td>1.45E-11</td>
<td>1.00</td>
<td>rs2747652</td>
<td>1.52E+08</td>
<td>1.23E-12</td>
<td>1.00</td>
<td>rs11345553</td>
<td>1.52E+08</td>
<td>4.65E-11</td>
<td>0.97</td>
<td></td>
</tr>
<tr>
<td>rs11155805</td>
<td>1.52E+08</td>
<td>2.83E-15</td>
<td>0.99</td>
<td>rs17001533</td>
<td>1.52E+08</td>
<td>3.85E-10</td>
<td>1.00</td>
<td>---------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>rs7408666</td>
<td>1.52E+08</td>
<td>2.28E-15</td>
<td>0.90</td>
<td>rs3757318</td>
<td>1.52E+08</td>
<td>9.76E-05</td>
<td>0.45</td>
<td>---------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>rs2046210</td>
<td>1.52E+08</td>
<td>4.38E-17</td>
<td>1.00</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>rs7791637</td>
<td>1.52E+08</td>
<td>1.76E-15</td>
<td>0.90</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>rs6557160</td>
<td>1.52E+08</td>
<td>2.55E-15</td>
<td>0.90</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>rs6557161</td>
<td>1.52E+08</td>
<td>6.51E-16</td>
<td>0.96</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>rs6900157</td>
<td>1.52E+08</td>
<td>4.72E-16</td>
<td>0.96</td>
<td>---------</td>
<td></td>
</tr>
</tbody>
</table>

^1 Grayed out SNPs are mentioned in the text but have been excluded from being causal candidates based on likelihood ratio.
ONLINE METHODS

Study populations and genotyping

Epidemiological data were obtained from three separate consortia that had all conducted genotyping using the iCOGS array, a custom array comprising approximately 200,000 SNPs: 1) Data on overall breast cancer risk, tumor subtypes and grade came from fifty breast cancer case-control studies participating in the Breast Cancer Association Consortium (BCAC); these comprised 41 studies from populations of European ancestry and nine studies from populations of East Asian ancestry\(^1\). Details of the participating studies, genotyping calling and quality control (QC) are given elsewhere\(^1\). After quality control exclusions, we analysed data from 46,451 cases and 42,599 controls of European ancestry and 6,269 cases and 6,624 controls of Asian ancestry. A further 23 SNPs were directly genotyped in two case-control studies (CHHS and SEARCH). Estrogen receptor (ER) status of the primary tumor was available for 34,539 European and 4,972 Asian cases; of these the tumor was ER\(^{+}\) for 7465 (22\%) European and 1610 (32\%) Asian cases\(^1\). 2) Data on \(BRCA1\) mutation carriers were obtained through the Consortium of Investigators of Modifiers of \(BRCA1/2\) (CIMBA). Eligibility is restricted to females 18 years or older with pathogenic mutations in \(BRCA1\) or \(BRCA2\). The majority of the participants were sampled through cancer genetics clinics\(^37\), including some related participants. 51 studies from 25 countries contributed data on \(BRCA1\) mutation carriers who were genotyped using the iCOGS array\(^38\). After quality control of the phenotypes and genotypes, data were available on 15,252 \(BRCA1\) mutation carriers of whom 7,797 had been diagnosed with breast cancer, all of European ancestry. Analyses in \(BRCA1\) mutation carriers assessed associations with breast cancer risk. 3) Mammographic density information was available for 7,025 women from ten studies in BCAC and, in addition, 1,621 women from the Mayo Mammographic Health Study (MMHS). All were additionally participants in the Markers of Density Consortium (MODE). Forty-six women were excluded due to missing BMI information, leaving 8,600 women with mammographic density information, relevant covariates and iCOGS genotyping (2,955 breast cancer cases and 5,645 controls). Study details are given in Supplementary Table 14 and in Lindstrom et al\(^39\). Mammographic density measurements were performed on digitized analogue mammographic films using the ‘Cumulus’ software\(^40\). This applies a thresholding technique to measure the total area of the breast and the absolute dense area (DA), from which the absolute non-dense area (NDA) and percent dense area (PD) are derived. DA and NDA were converted to cm\(^2\) according to the pixel size used in the digitisation. Readers blind to genotype, case status and risk factor data conducted all measures. For cases, mammograms prior to the diagnosis of breast cancer were used or, where not possible, those from the contralateral breast.

SNP selection, genotyping and imputation

We first defined a mapping interval of ~1Mb (Chromosome 6 positions 151,600,000-152,650,000; NCBI build 37 assembly). We catalogued 2,821 variants with a minor allele frequency (MAF) > 2\% using the 1000 genomes project (March 2010 Pilot version 60 CEU project data), of these, we selected 277 SNPs correlated with the three previously reported associated SNPs (rs2046210\(^1\), rs3757318\(^2\) and rs3020314\(^41\)) at \(r^2 > 0.1\), plus a set of 698 SNPs designed to tag all remaining SNPs with \(r^2 > 0.9\). 902 SNPs passed QC were included in this analysis. After completion of iCOGs genotyping, this initial set was supplemented with a further 23 SNPs selected from the October 2010 (Build 37) release of the 1000 Genomes Project, to improve coverage. These were genotyped in two large BCAC (CHHS and SEARCH) studies comprising 12,273 cases and controls, using a FluidigmTM array according to manufacturer’s instructions. Using the above data, results for all the additional known common variants (MAF > 0.02 in Europeans) on the January 2012 release of the 1000 Genomes Project were imputed using IMPUTE version 2.0. QC and imputation steps were carried out separately in the different consortia leading to slight differences in the numbers of SNPs with available data: In addition to the 902 successfully genotyped SNPs, genotypes at 2972 SNPs were imputed in BCAC and 2907 in CIMBA (imputation \(r^2\) score > 0.3 in each case). 3872 genotyped or imputed SNPs were available for the BCAC ER/CIMBA \(BRCA1\) meta-analysis.
Statistical analysis

Case-control analysis, logistic regression and retrospective cohort analyses

For the case-control analysis in BCAC, per-allele odds ratios (OR) and standard errors were estimated for each SNP using logistic regression, separately for subjects of European and Asian ancestry and for each tested phenotype. Principal components were included as covariates as previously described\(^2\). The statistical significance of each SNP was derived using a Wald test. To evaluate evidence for multiple association signals, we performed conditional analyses, in which the association for each SNP was re-evaluated after including other associated SNPs in the model. SNPs with a \(P\)-value < 10\(^{-4}\) and MAF > 2% in the single SNP analysis were included in this analysis\(^2\). Haplotype-specific odds ratios and confidence limits were estimated using haplo.stats\(^2\).

Associations between genotypes and breast cancer risk in \(BRCA1\) mutation carriers in CIMBA were evaluated using a 1 df per allele trend-test (\(P\)-trend), based on modeling the retrospective likelihood of the observed genotypes conditional on breast cancer phenotypes\(^4\). To allow for the non-independence among related individuals, an adjusted test statistic was used which took into account the correlation in genotypes\(^2\). Per allele Hazard Ratio (HR) estimates were obtained by maximizing the retrospective likelihood. All analyses were stratified by country of residence.

Conditional analyses were performed to identify SNPs independently associated with each phenotype. To identify the most parsimonious model, all SNPs with marginal \(P\)-value < 10\(^{-4}\) were included in forward-selection regression analyses with a threshold for inclusion of \(P\)-value < 10\(^{-4}\), and including terms for principal components and study. Similarly, forward-selection Cox-regression analysis was performed for \(BRCA1\) carriers, stratified by country of residence, using the same \(P\)-value thresholds. This approach provides valid significance tests of the associations, although the estimates quantifying the association can be biased\(^2\,4\). Parameter estimates for the most parsimonious model were obtained using the retrospective likelihood approach.

Within MODE mammographic DA, NDA and PD were each square-root transformed to fit a normal distribution. For the ten MODE/BCAC studies, a linear regression assuming a multiplicative per-allele model adjusting for study, age at mammogram, BMI, menopausal status (pre- or post-) and the first six principal components was carried out for each trait and for each SNP. The MMHS participants were analysed separately in the same way, but without the principal components covariates, and the results were combined with those from BCAC using a standard inverse variance weighted fixed-effects meta-analysis.

Expression analysis

Expression quantitative trait locus (eQTL) analyses were conducted in 57 normal breast samples from the Genotype-Tissue Expression (GTex) project\(^4\) and 135 adjacent normal breast samples from women of Caucasian origin in the Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) study\(^4\). For the METABRIC analyses, matched gene expression (Illumina HT-12 v3 microarray) and germline SNP data that was either genotyped (Affymetrix SNP 6.0) or imputed (1000 Genomes Project, March 2012 data using IMPUTE version 2.0) were used. Correlations between the five signal-representative SNPs and expression levels of nearby genes (500 Kb upstream and downstream of the SNPs) were assessed using a linear regression model in which an additive effect on expression level was assumed for each copy of the rare allele. Calculations were carried out using the eMap library in R.

Allele specific expression (ASE) analysis

ASE analysis has been described previously\(^1\). Three SNPs for signal 1, two SNPs for signal 3 and a proxy SNP for signal 2 (\(r^2 = 0.85\)) were on the Affymetrix SNP Array 6.0. TCGA genotype calls and corresponding confidence scores were retrieved using level 2 TCGA SNP array Birdseed data downloaded from TCGA portal. Genotyping data with a confidence score of equal to or above 0.1
were excluded. We selected 742 breast cancer samples with Caucasian ancestry. The corresponding RNA-sequencing BAM files and metadata are available from the Cancer Genomics Hub (CGHub). Marker SNPs, the exonic SNPs of the target genes, were extracted from dbSNP human Build 142 (collectively ~800 SNPs for ESR1, RMND1, C6orf211 and CCDC170) and RNA-sequencing read counts on SNP sites for reference and alternative alleles were computed. Homozygote marker SNPs and those with low coverage (less than 15x) were excluded. Major allele fraction (μ) representing allelic imbalance for each marker SNP was computed and an average of allelic imbalances for each gene was calculated for individual tumor samples. Marker SNPs with extreme μ values ($\mu > 0.75$) were not included in the analysis. Level 3 SNP array data were downloaded from TCGA portal and GISTIC version 2.0.16 was used to identify copy number variations (CNVs) for each sample. Samples with low or high CNV levels, as presented in the gene-based GISTIC module report, were excluded from the analysis of the corresponding gene. For each risk SNP, allelic imbalance for the target transcripts was compared between heterozygote (AB) and homozygote (AA and BB) samples. For a given risk SNP and target gene, we used Levene's Test, a more robust test than F-Test, for equality of variances when the risk SNP was not in linkage disequilibrium with any of the marker SNPs on that gene ($r^2 < 0.5$). Otherwise, a two-tailed t-Test was used for equality of means.46

Estrogen receptor (ER) protein expression

Normal breast samples derived from 150 postmenopausal donors (non-Hispanic, mean age 62 years) and identified through the Susan G. Komen for the Cure® Tissue Bank at the IU Simon Cancer Center were used in this study.47 DNA was extracted from the blood cells at the Indiana CTSI Specimen Storage Facility using an AutogenFlex Star instrument (Autogen) and the Flexigene AGF3000 blood kit for DNA extractions (Qiagen). SNP analysis was performed with 1 ng DNA using TaqMan genotyping assays for rs2046210 (C_12034236_10), rs3757322 (C_27475059_10), rs9397437 (C_11556300_10), rs851984 (C_2496819_10), rs9918437 (C_29496189_10), rs2747652 (C_2823750_10) from Life Technologies, following the manufacturer’s protocol. ER was measured by immunohistochemical semi-quantitation using an anti-ERα antibody (clone 6F11; dilution 1/40; Leica Microsystems) and quantified with (i) H-score consisting of the sum of the percent of tumor cells staining, multiplied by an ordinal value corresponding to the intensity level (0 = none, 1 = weak, 2 = moderate, and 3 = strong; **Supplementary Fig. 2**), and (ii) percent of positive cells. Correlations between the H scores and ER IHC values were calculated using Spearman’s rank correlation analysis. All P-values reported are two-sided, and values < 0.05 were considered statistically significant.

Cell lines

Breast cancer cell lines MCF7 (ER$^+$; ATCC #HTB22), T47D (ER$^+$; ATCC #HTB133), BT474 (ER$^+$; ATCC #HTB20) were grown in RPMI medium with 10% FCS and antibiotics. Normal breast epithelial cell lines MCF10A (ATCC #CRL 10317) and Bre-80 (provided as a gift from Roger Reddel, CMRI, Sydney) were grown in DMEM/F12 medium with 5% horse serum (HS), 10 mg/ml insulin, 0.5 mg/ml hydrocortisone, 20 ng/ml epidermal growth factor, 100 ng/ml cholera toxin and antibiotics. Cell lines were maintained under standard conditions routinely tested for Mycoplasma and short tandem repeat (STR) profiled.

Chromatin conformation capture (3C)

3C libraries were generated using EcoRI, HindIII or BglII as described previously.15 3C interactions were quantitated by real-time PCR (Q-PCR) using primers designed within restriction fragments (**Supplementary Table 15**). Q-PCR was performed on a RotorGene 6000 using MyTaq HS DNA polymerase (Bioline) with the addition of 5 mM of Syto9, annealing temperature of 66°C and extension of 30 sec. 3C analyses were performed in three independent 3C libraries from each cell line with each experiment quantified in duplicate. BAC clones (RP11-108N8, RP11-713G5, RP11-450E24, RP11-55K19) covering the 6q25 region were used to create artificial libraries of ligation
products in order to normalize for PCR efficiency. Data were normalized to the signal from the BAC clone library and, between cell lines, by reference to a region at within GAPDH. All Q-PCR products were electrophoresed on 2% agarose gels, gel purified and sequenced to verify the 3C product.

Electromobility shift assays (EMSAs)

Gel shift assays were performed with ER\(^+\) MCF7 or ER\(^-\) Bre80 nuclear lysates and biotinylated oligonucleotide duplexes (Supplementary Table 16). Nuclear lysates were prepared using the NPER nuclear and cytoplasmic extraction reagents (Thermo Fisher Scientific) as per the manufacturer's instructions. Total protein concentrations in nuclear lysates were determined by Bradford's method. Duplexes were prepared by combining sense and antisense oligonucleotides in NEBuffer2 (New England Biolabs) and heat annealing at 80°C for 10 min and slow cooling to 25°C for 1 hour. Binding reactions were performed in binding buffer [10% (vol/vol) glycerol, 20 mM HEPES (pH 7.4), 1 mM DTT, protease inhibitor cocktail (Roche), 0.75 µg poly(dI:dC) (Sigma-Aldrich)] with 7.5 µg of nuclear lysate. For competition assays, binding reactions were pre-incubated with 1 pmol of competitor duplex (Supplementary Table 17) at 25°C for 10 min before the addition of 10 fmol of biotinylated oligo duplex and a further incubation at 25°C for 15 min. Reactions were separated on 10% (wt/vol) Tris-Borate-EDTA (TBE) polyacrylamide gels (Bio-Rad) in TBE buffer at 160 V for 40 min. Duplex-bound complexes were transferred onto Zeta- Probe positively-charged nylon membranes (Bio-Rad) by semi-dry transfer at 25 V for 20 min then cross-linked onto the membranes under 254 nm ultra-violet light for 10 min. Membranes were processed with the LightShift Chemiluminescent EMSA kit (Thermo Fisher Scientific) as per the manufacturer’s instructions. Chemiluminescent signals were visualized with the CL-DiGit blot scanner (LI-COR).

Plasmid construction and reporter Assays

Promoter-driven luciferase reporter constructs were generated by the insertion of PCR amplified fragments containing ESR1A, ESR1B, C6orf211, RMND1 or CCDC170 promoters into the KpnI and MluI sites of pGL3-Basic. To assist cloning, AgeI and SbfI sites were inserted into the BamHI and SalI sites downstream of the luciferase gene. A 1496 bp signal 1 putative regulatory element (PRE) fragment, a 997 bp signal 2-PRE fragment, a 1566 bp signal 3-PRE fragment, a 1463 bp signal 4-PRE fragment, and a 1349 bp signal 5-PRE fragment were generated by PCR or gBlocks (Integrated DNA Technologies) and cloned into AgeI and SbfI sites of the modified pGL3-promoter constructs. The minor alleles of individual SNPs were introduced into the PRE sequences by overlap extension PCR or gBlocks. Sequencing of all constructs confirmed variant incorporation (AGRF). ER\(^+\) MCF7 and BT474 or ER\(^-\) Bre-80 cells were transfected with equimolar amounts of luciferase reporter plasmids and 50 ng of pRLTK transfection control plasmid with Lipofectamine 3000. The total amount of transfected DNA was kept constant at 600 ng for each construct by the addition of pUC19 as a carrier plasmid. Luciferase activity was measured 24 hr posttransfection by the Dual-Glo Luciferase Assay System. To correct for any differences in transfection efficiency or cell lysate preparation, Firefly luciferase activity was normalized to Renilla luciferase, and the activity of each construct was measured relative to the promoter alone construct, which had a defined activity of 1. Statistical significance was tested by log transforming the data and performing 2-way ANOVA, followed by Dunnett’s multiple comparisons test in GraphPad Prism.

Chromatin Immunoprecipitation (ChIP)

ER\(^+\) MCF7 and BT474 breast cancer cell were cross-linked with 1% formaldehyde at 37°C for 10 min, rinsed once with ice-cold PBS containing 5% BSA and once with PBS, and harvested in PBS containing 1X protease inhibitor cocktail (Roche). Harvested cells were centrifuged for 2 min at 3000 rpm. Cell pellets were resuspended in 0.35 mL of lysis buffer (1% SDS, 10 mM EDTA, 50 mM Tris-HCl, pH 8.1, 1X protease inhibitor cocktail) and sonicated 3 times for 15 sec at 70% duty cycle (Branson SLPl) followed by centrifugation at 13000 rpm for 15 min. Supernatants were
collected and diluted in dilution buffer (1% Triton X-100, 2 mM EDTA, 150 mM NaCl, 20 mM Tris-HCl, pH 8.1). Two micrograms of antibody was prebound for 6 hours to protein G Dynabeads (Life Technologies) and then added to the diluted chromatin for overnight immunoprecipitation. The magnetic bead-chromatin complexes were collected and washed six times in RIPA buffer (50 mM HEPES [pH 7.6], 1 mM EDTA, 0.7% Na deoxycholate, 1% NP-40, 0.5 M LiCl), then twice with TE buffer. To reverse the cross-linking, the magnetic bead complexes were incubated overnight at 65°C in elution buffer (1% SDS, 0.1 M NaHCO3). DNA fragments were purified using a QIAquick Spin Kit (Qiagen). For QPCR, 2.0 uL from a 100 uL immunoprecipitated chromatin extraction and 40 cycles of amplification were used. All PCR products were sequenced by Sanger sequencing (AGRF). Antibodies used were ant-CTCF (C-20;sc-15914), anti-GATA3 (HG3-31;sc268) and control IgG (sc-2027). ChIP primers are listed in Supplementary Table 18.

METHODS-ONLY REFERENCES