Tissue-Specific Education of Decidual NK Cells

Andrew M. Sharkey, Shiqiu Xiong, Philippa R. Kennedy, Lucy Gardner, Lydia E. Farrell, Olympe Chazara, Martin A. Ivarsson, Susan E. Hibi, Francesco Colucci and Ashley Moffett

J Immunol 2015; 195:3026-3032; Prepublished online 28 August 2015;
doi: 10.4049/jimmunol.1501229
http://www.jimmunol.org/content/195/7/3026

Supplementary Material http://www.jimmunol.org/content/suppl/2015/08/28/jimmunol.1501229.DCSupplemental.html

References This article cites 44 articles, 22 of which you can access for free at:
http://www.jimmunol.org/content/195/7/3026.full#ref-list-1

Subscriptions Information about subscribing to The Journal of Immunology is online at:
http://jimmunol.org/subscriptions

Permissions Submit copyright permission requests at:
http://www.aai.org/ji/copyright.html

Email Alerts Receive free email-alerts when new articles cite this article. Sign up at:
http://jimmunol.org/cgi/alerts/etoc
Tissue-Specific Education of Decidual NK Cells

Andrew M. Sharkey,*,†,‡ Shiqiu Xiong,*,†,‡ Philippa R. Kennedy,*,† Lucy Gardner,*,† Lydia E. Farrell,*,†† Olympe Chazara,*,†† Martin A. Ivarsson,*,†† Susan E. Hiby,*,†† Francesco Colucci,†† and Ashley Moffett*,††

During human pregnancy, fetal trophoblast cells invade the decidua and remodel maternal spiral arteries to establish adequate nutrition during gestation. Tissue NK cells in the decidua (dNK) express inhibitory NK receptors (iNKR) that recognize allogeneic HLA-C molecules on trophoblast. Where this results in excessive dNK inhibition, the risk of pre-eclampsia or growth restriction is increased. However, the role of maternal, self-HLA-C in regulating dNK responsiveness is unknown. We investigated how the expression and function of five iNKR in dNK is influenced by maternal HLA-C. In dNK isolated from women who have HLA-C alleles that carry a C2 epitope, there is decreased expression frequency of the cognate receptor, KIR2DL1. In contrast, women with HLA-C alleles bearing a C1 epitope have increased frequency of the corresponding receptor, KIR2DL3. Maternal HLA-C had no significant effect on KIR2DL1 or KIR2DL3 in peripheral blood NK cells (pbNK). This resulted in a very different KIR repertoire for dNK capable of binding C1 or C2 epitopes compared with pbNK. We also show that, although maternal KIR2DL1 binding to C2 epitope educates dNK cells to acquire functional competence, the effects of other iNKR on dNK responsiveness are quite different from those in pbNK. This provides a basis for understanding how dNK responses to allogeneic trophoblast affect the outcome of pregnancy. Our findings suggest that the mechanisms that determine the repertoire of iNKR and the effect of self-MHC on NK education may differ in tissue NK cells compared with pbNK. The Journal of Immunology, 2015, 195: 3026–3032.

Natural killer cells are lymphocytes that function in both immune defense and in reproduction (1, 2). Tissue NK cells differ from circulating NK cells because their phenotype and function are modified by the local microenvironment (3). NK activity is controlled by integration of signals from activating and inhibitory receptors for stress ligands, adhesion molecules, and polymorphic HLA class I molecules (4). These include members of the killer cell Ig-like receptor (KIR), leukocyte Ig-like receptor (LILR), and C-type lectin-like receptor families (5, 6). Peripheral blood NK cells (pbNK) express inhibitory NK cell receptors (iNKR) stochastically, resulting in diverse NK subsets within an individual (7, 8). The uterine mucosa contains abundant uterine NK cells, present in the nonpregnant luteal phase and the first half of pregnancy. They are CD56
dbright NK cells. While the majority of these cells express inhibitory receptor CD94/NKG2A, which can bind HLA-E and HLA-C, 40% of dNK express inhibitory CD16
dbright receptor, a percentage that is increased in PbNK (95%) expressing CD16
dbright and CD56
ddim subpopulations in PbNK (9–11).

The online version of this article contains supplemental material.

*Department of Pathology, University of Cambridge, Cambridge CB2 1QW, United Kingdom; †Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 1QW, United Kingdom; and ‡Department of Obstetrics and Gynecology, University of Cambridge, Cambridge CB2 0SW, United Kingdom.

A.M.S. and S.X. contributed equally to this work.

ORCID: 0000-0002-5072-7748 (A.M.S.).

Received for publication May 28, 2015. Accepted for publication July 28, 2015.

This work was supported by Wellcome Trust Grants 090108/Z/09/Z and 085992/Z/08/Z, as well as by British Heart Foundation Grant PG/09/077/27964. P.R.K. was the recipient of a Wellcome Trust Ph.D. studentship.

A.M. and F.C. conceived the idea for this project, coordinated the work, and oversaw writing of the manuscript. A.M.S. and S.X. designed the experiments, performed NK cell isolations and phenotyping, functional experiments, and data analysis and interpretation, and jointly wrote the manuscript.

Abbreviations used in this article: C1, C1 epitope; C2, C2 epitope; DL, decidual leukocyte; dNK, decidual NK cell; EVT, extravillous trophoblast cell; iNKR, inhibitory NK receptor; KIR, killer cell Ig-like receptor; KIR2DL1, KIR2DL3 single-positive dNK cell; LILR, leukocyte Ig-like receptor; pbNK, peripheral blood NK cell.

This is an open-access article distributed under the terms of the CC-BY 3.0 Unported license.

Copyright © 2015 The Authors 0022-1767/15

The Journal of Immunology
www.jimmunol.org/cgi/doi/10.4049/jimmunol.1501229
carrying a C2 epitope (C2), a combination that will functionally result in strongly inhibitory signals to uterine NK cells (12, 23, 24). Conversely, the KIR B haplotype, which includes activating KIR2DL1 that binds C2 ligands, is associated with protection from pre-eclampsia and increased birth weight (12, 25). Ligation of KIR2DS1 by C2 stimulates secretion of cytokines, including GM-CSF, which enhances primary trophoblast migration in vitro, suggesting a mechanism for the protective effect of KIR2DS1 (26).

These genetic and functional data show that dNK activation can be regulated by C2 epitopes on EVT to influence placentation development. The weaker inhibitory interaction between KIR2DL3 and fetal C1 appears to have no significant effect on pregnancy outcome, emphasizing the importance of KIR2DL1 and fetal C2. However, dNK proliferate in the uterine microenvironment and it is not known how maternal HLA class I expression affects their education and potential to respond. NK cell education depends on interactions between iNKR and MHC class I molecules that fine-tune NK responsiveness so that stronger inhibition during NK maturation leads to more potent NK cells (27–29). In a situation where there is loss of self–MHC class I molecules, as in viral infection, education allows these highly responsive NK cells to detect the altered self. Individuals homozygous for the KIR A haplotype possess predominantly inhibitory KIR, including KIR2DL1 that binds strongly to C2 ligands. It follows that these individuals might have an advantage in surviving infection as well as cancer, as they will have more potent NK cells, especially if they also have C2-hearing allotypes.

Do these concepts translate into the situation at the maternal/fetal interface in utero? Evidence in mice suggests that dNK education is imparted by maternal, not paternal, MHC class I molecules (30). This is supported by genetic findings in humans where women who have a KIR AA genotype and a fetus with a paternal C2 ligand are at greater risk of pre-eclampsia than when the fetal C2 is derived from the mother (12). The presence of maternal C2 appears protective. In pbNK, the presence of the C1 or C2 epitope affects the function of NK cells expressing the cognate KIR, and it may also affect their frequency of KIR expression, but whether this is true in dNK is unknown (8, 28). NKG2A and LILRB1 can also bind EVT and so may modify the function of dNK through education and during the effector phase. The frequency and distribution of expression of iNKR on dNK are variable and how this modifies functions regulated by KIR/HLA-C interactions is not known. Understanding how maternal and fetal HLA molecules interact with iNKR would enhance our ability to predict high-risk pregnancies. In this study, we have analyzed the expression of five iNKR that bind HLA class I molecules and compared how these regulate the function of specific subsets of dNK and pbNK. Our data reveal fundamental differences in how maternal iNKR are influenced by self–HLA class I molecules to regulate the phenotype, education, and responsiveness of dNK compared with pbNK.

Materials and Methods

Primary cells and tissue

Protocols using human tissue were approved by the Cambridge central Research Ethics Committee (study 04/Q0108/23). Informed written consent was obtained from all donors. Total decidual leukocytes (DL) were isolated by enzymatic digestion of maternal decidual tissue from donors undergoing elective termination between 7 and 12 wk of pregnancy, as described previously (10). PBMC were isolated by density centrifugation using Lymphoprep (Axis-Shield) from fresh venous blood obtained at the same gestational age. Genomic DNA for KIR and HLA-C typing was isolated from purified cells using the QIAmp kit (Qiagen).

Genotyping of KIR and HLA-C

KIR and HLA-C were typed from genomic DNA by PCR with sequence-specific primers for their presence or absence as described previously.

Flow cytometry

Fresh PBMC or decidual cells were washed and resuspended in 100 ml FACS buffer (PBS, 1% FCS) and incubated with 5 mg/ml human γ-globulins (Sigma-Aldrich) for 15 min to block nonspecific binding. Staining with directly conjugated Abs to surface markers was performed for 25 min at 4°C. Abs were CD56 (clone HCD56, BV421, BioLegend), CD3 (UCHT1, allophycocyanin-Cy7, BioLegend) and CD9-PercP-Cy5.5 (M-131, PerCP, BD Pharmingen), KIR2DL1 (143211, FITC, R&D Systems), NKG2A (Z199, allophycocyanin, Beckman Coulter), KIR2DL3/L2/S2 (GL183, PE-Cy7, Beckman Coulter), CD122 (Tu27, APC, BD Biosciences), and LILRB1 (HP-F1, PE, Beckman Coulter). For some donors KIR2DL3 alone was stained using clone 180701 (R&D Systems). KIR2DL3 was stained with DX9 conjugated to biotin (BioLegend). Cells were washed with FACS buffer twice followed by staining the near-IR fixable Live/Dead cell dye (Invitrogen) and biotinylated Ab was detected with streptavidin Qdot 605. After washing in FACS buffer, cells were fixed and stained in 2% paraformaldehyde. For intracellular Ags, cells were treated with FIX & PERM (Life Technologies) and stained for Ki67 (B56, PerCP-cy5.5, BD Biosciences) or c-Myc (9E10, Alexa487, Abd Serotec). Samples were run on an LSRFortessa FACS analyzer (BD Biosciences) and data were analyzed using FlowJo (Tree Star).

Functional assays

For functional assays, preparations of DL or PBMC were recovered overnight in RPMI 1640 medium, antibiotics, 10% FCS, and 2.5 ng/ml IL-15 (PeproTech). This low dose of IL-15 maintains NK viability without significant activation. DL preparations (>50% dNK) with <5% pbNK contamination (CD56"CD9") were used in functional assays. The education status of NK cells was assessed by incubation of 2 x 10^5 dNK per well with K562 cells for 5 h at an E:T ratio of 5:1. GolgiStop at 6 μg/ml (BD Biosciences) was added for the last 4 h of the incubation. Degranulation was assessed by staining with anti-CD107a in the PerCP-Cy5.5 channel (clone HA43, BioLegend) when staining dNK subsets as described above.

Statistical analysis

The Wilcoxon signed rank test was used to compare two groups of paired data, and the Mann–Whitney U test was used for comparison of groups of nonpaired data. A nonparametric Friedman ANOVA was used to test for differences between multiple KIR2DL1* subsets with different iNKR. A p value <0.05 was considered statistically significant. Correlation between CD122 and c-Myc expression in dNK subsets was tested by calculating the Spearman rank correlation coefficient.

Results

Maternal HLA-C genotype affects the frequencies of KIR2DL1* and KIR2DL3* dNK

dNK express an unusual repertoire of iNKR compared with their blood counterparts. We used nine-color flow cytometry to examine the expression of selected iNKR (KIR2DL1, KIR2DL3/L2/S2, KIR3DL1, LILRB1, and NKG2A) in samples of freshly isolated dNK and pbNK (Fig. 1A). As previously reported (21), the frequency of KIR2DL1* and KIR2DL3/L2/S2* dNK is increased compared with pbNK, whereas KIR3DL1 is similar (Fig. 1B). NKG2A is expressed on >90% of dNK compared with 48% of pbNK. Expression of LILRB1 is similar for pbNK (mean, 37%; range, 4–79%) and dNK (mean, 43%; range, 8–85%). Analysis of matched pairs of pbNK and dNK from the same donor gave similar results (Supplemental Fig. 1). We examined whether the overall frequency of dNK expressing KIR2DL1 or KIR2DL3 was affected by the mother’s HLA-C genotype. The frequency of KIR2DL1* dNK was significantly decreased in mothers with at least one C2 epigone, the ligand for KIR2DL1 (mean, 31%; range, 4.2–74%) compared with those who were homozygous C1/C1 (mean, 40%; range, 5–82%; Fig. 1C). In contrast, the frequency of KIR2DL3* dNK was increased in C1/X (mean, 55%; range,
allows quantification of 32 distinct NK subsets, producing a characteristic “fingerprint” for pbNK and dNK from each donor (Fig. 2A). Although the repertoires from each individual are different, the dNK repertoire has distinctive common features. Although most dNK are NKG2A⁺, an equal proportion of pbNK and dNK express NKG2A without other iNKR (~25%). Notably, 44% of dNK express three or more iNKR compared with only 8.3% of pbNK (Fig. 2B). This dramatic increase is due to expansion of dNK subsets that are KIR2DL3 ⁺ NKG2A ⁺ and not simply the higher overall frequency of NKG2A⁺ dNK (Fig. 2A, Supplemental Fig. 2). The frequency of Ki-67⁺ cells in each dNK subset also increases as the number of iNKR rises, suggesting dNK subsets with multiple iNKR expand due to enhanced proliferation (Fig. 2C, 2D). IL-15, a potent mitogen for dNK, is produced by decidualized stroma (31, 32). Intensity of staining for both CD112 (a component of the IL-15 receptor) and c-Myc (a downstream target of IL-15) correlates with Ki-67 staining, implying that dNK subsets with more iNKR expand because of increased sensitivity to IL-15 (Fig. 2D, 2E). Overall, the data suggest clear differences in the effect of maternal HLA-C on the percentage of dNK and pbNK expressing KIR2DL1 or KIR2DL3.

Decidual NK cells are educated by maternal HLA-C molecules

Our genetic findings point to the pivotal role of interactions between maternal KIR2DL1 and fetal C2 epitopes in regulating reproductive success. In contrast, in pregnancies with a C1/C1 fetus, outcomes are independent of KIR genotype. We next asked whether the responsiveness of KIR2DL1⁺ dNK depends on education by maternal HLA-C molecules. We used staining for CD107a to measure degranulation of KIR2DL1⁺ dNK in response to the HLA class I target cell, K562. This is a robust assay used to measure NK education in human pbNK, which also allows direct comparison of dNK and pbNK (28). In line with previous reports, KIR2DL1⁺ pbNK showed increased CD107 degranulation in response to K562 in subsets expressing multiple iNKR (Fig. 3A). This reflects the increased education status of NK cells expressing multiple iNKR for self-HLA class I molecules. In contrast, degranulation of KIR2DL1⁺ dNK was lower than for the corresponding pbNK subset and showed no increase with the number of additional iNKR expressed (Fig. 3A; see Supplemental Fig. 3 for all 32 subsets). To determine whether KIR2DL1 can educate dNK, we compared degranulation of dNK from mothers homozygous for HLA-C1 alleles (C1/C1) to those with at least one HLA-C2 allele (C2/X). KIR2DL1 single-positive dNK (KIR2DL1sp) degranulated more vigorously when the mother was C2/X, confirming that maternal C2 epitopes can educate KIR2DL1sp dNK cells as for pbNK (Fig. 3B). Coexpression of KIR2DL1 and NKG2A enhanced degranulation in both dNK and pbNK and preserved the education effect mediated through KIR2DL1 and HLA-C2. In contrast to pbNK, when dNK coexpress KIR2DL1 with either LILRB1 or KIR3DL1, the educating effect of KIR2DL1 was lost (only data for LILRB1 is shown) (Fig. 3B). We also studied whether these educating effects are additive by analyzing heterozygous C1/C2 donors, where education can occur through both KIR2DL1 and KIR2DL3/L2. Degranulation was enhanced in pbNK that coexpressed KIR2DL1 and other iNKR, but not in dNK (Fig. 3C). We conclude that the reduced responsiveness of dNK in subsets expressing multiple NK occurs because, unlike pbNK, coeducation does not take place.

The effect of iNKR on NK responsiveness differs between dNK and pbNK

We then determined how NKG2A or LILRB1 modulate responses of all 32 NK subsets in C1/C2 donors. In pbNK, NKG2A
has a strong educating effect and all NKG2A+ subsets show enhanced responses to K562, compared with the corresponding NKG2A− subset, regardless of how many other iNKR are coexpressed (Fig. 4A). The effect of NKG2A on dNK is more complex. For subsets that express a single additional iNKR, NKG2A enhances responsiveness, but this effect is lost in dNK expressing multiple iNKR. For LILRB1, the opposite effect is observed; coexpression of LILRB1 in subsets with a single iNKR decreases the responses of dNK and the effect persists in subsets with more iNKR. Degranulation of pbNK subsets was unaffected by coexpression of LILRB1 as previously reported (8) (Fig. 4B). In summary, dNK are educated through the interaction of maternal HLA-C with KIR2DL1 and education by NKG2A can enhance these responses. However, unlike pbNK, where LILRB1 has no significant effect, LILRB1 downregulates responses of dNK subsets in which it is expressed and this can overcome any educating effect of KIR2DL1 or NKG2A. Taken together, these results show that dNK differ significantly from pbNK in the way iNKR regulate overall responsiveness.

Discussion
Pregnancy is unique in that the degree of dNK inhibition depends on both maternal and fetal HLA. Interactions between maternal dNK and fetal HLA-C that result in excessive dNK inhibition are associated with an increased risk of pregnancy complications (12, 23, 24). In this study, we have examined the distribution of five major inhibitory NKR for HLA class I molecules on dNK and analyzed how maternal HLA class I molecules regulate their function. We find there are major differences in how maternal HLA class I molecules regulate dNK responsiveness compared with pbNK, through effects both on the iNKR repertoire and education of dNK.

The primary determinant of iNKR expression in pbNK is genetic. Stochastic promoter regulation leads to an NK cell repertoire with thousands of subsets that can differ even between
monozygotic twins (33, 34). KIR gene copy number, host HLA status, and viral infection can impose further changes, including expansion of specific NK subsets (7, 35). The factors determining the repertoire of HLA-binding iNKR in NK cells residing in human tissues (as opposed to blood) remain poorly understood. Our data suggest that selective expansion of certain subsets may contribute to the tissue-specific repertoire seen in dNK. Ki-67 frequency and staining intensity for CD122, the β-chain of the IL-15 receptor, were highest on subsets with multiple iNKR, which also showed upregulation of c-Myc. Higher CD122 may increase sensitivity to IL-15, a cytokine that stimulates vigorous dNK cell division and acquisition of KIR (36, 37). Selective expansion of dNK subsets that coexpress KIR2DL3 and NKG2A was also found, but because these subsets did not show increased CD122, other mechanisms must regulate their expansion.

When donors were stratified based on the presence of C1 or C2 epitopes, we found that KIR2DL1 frequency was significantly decreased in dNK in C2 mothers whereas KIR2DL3 increased in dNK in mothers with C1. This contrasts with pbNK, where some studies have reported increased expression of KIR2DL1 in pbNK of C2 individuals, whereas others have found no effect (38–40). We found no evidence that fetal HLA-C genotype affected KIR in dNK. Why KIR2DL1 and KIR2DL3 frequencies in dNK should be differently affected by their maternal HLA ligands is not clear. The reduction in frequency of KIR2DL1+ dNK by maternal C2 epitopes could be an evolutionary adaptation to reduce risk in pregnancies where the chance of an HLA-C2 fetus is at least 50% and help to maintain HLA-C alleles with C2 epitopes in the human population (22).

Because the overall inhibition experienced by dNK appears to regulate placentation, a key aim of this study was to determine how the main iNKRs for HLA class I molecules regulate dNK responsiveness. KIR2DL1 has previously been shown to educate pbNK through C2, and we show in the present study that KIR2DL1

![Figure 3](http://www.jimmunol.org/)

Fig. 3. dNK are educated differently by iNKR compared with pbNK. (A) Degranulation was measured by CD107a staining of 32 separate NK subsets from pbNK (○) and dNK (●), following coculture with K562 cells (n = 28 and 35, respectively). Only KIR2DL1+ subsets are shown (see Supplemental Fig. 3 for all 32 subsets). Subsets were defined by expression of five selected iNKRs as described in Fig. 1A. Frequency of CD107a+ cells is the percentage of NK cells in that subset that stain positive for CD107a (mean ± SD). Donors were not stratified according to HLA-C genotype. (B) Effect of donor’s HLA-C genotype on degranulation in pbNK and dNK in response to K562 was compared between donors stratified according to the maternal HLA-C genotype. C1/C1 indicates donor homozygous for C1 group; C2/X indicates C1/C2 or C2/C2. Subsets shown are KIR2DL1sp, KIR2DL1+, NKG2A+, and KIR2DL1*LILRB1+. **p < 0.01, Mann–Whitney U test. Bar shows mean. (C) Effect of multiple iNKR on degranulation in response to K562 in pbNK (n = 12) and dNK (n = 14) from C1/C2 donors where both KIR2DL1 and KIR2DL3 will have a maternal HLA-C ligand (●, receptor present on subset). There was a statistically significant difference in degranulation with increasing iNKR on each subset. **p < 0.001 for both pbNK and dNK, Friedman nonparametric ANOVA.
also educates dNK upon interaction with maternal C2 (28, 41). Owing to the scarcity of relevant donors, we were unable to determine whether dNK are also educated by KIR2DL3 binding to maternal C1 epitopes. Collection of sufficient KIRAA mothers with C2X or C1C1 genotypes is ongoing. dNK proliferate vigorously in the decidua while expressing a full complement of KIR and NKG2A. Because these freshly produced dNK are educated by HLA-C, this suggests that adaptation to the maternal HLA environment takes place locally in the decidua tissue. These findings are similar to those in the mouse where maternal but not paternal MHC ligands educate NK cells in the decidua (30).

An important finding is that there are major differences in how iNKR combine to regulate responsiveness of dNK compared with pbNK. In pbNK, NKG2A, KIR2DL2/3, and LILRB1 are educated by maternal HLA-C2 epitopes (12, 23–25). The interaction between KIR2DL3 and fetal C1 appears to have no significant effect on pregnancy outcome. The contrasting effect of maternal HLA-C on KIR2DL1 and KIR2DL3 expression in this study highlights their different roles in placentation. In the present study, we have shown that dNK proliferate vigorously in the decidua while expressing a full complement of KIR and NKG2A. Because these freshly produced dNK are educated by maternal HLA-C, this suggests that adaptation to the maternal HLA environment takes place locally in the decidua tissue. These findings are similar to those in the mouse where maternal but not paternal MHC ligands educate NK cells in the decidua (30).

The Journal of Immunology 3031

FIGURE 4. NKG2A and LILRB1 have different effects on responses of pbNK and dNK subsets. (A) Effect of presence of absence of NKG2A on degranulation was measured by CD107a staining of 32 separate NK subsets in pbNK and dNK following coculture with K562 cells (n = 12 and 14, respectively; all donors genotyped as C1/C2). Subsets were defined as described in Fig. 1A. Average frequency of CD107a+ cells is the percentage of the total NK cells in that subset that stain positive for CD107a (mean ± SD). The response of each subset lacking NKG2A expression (●) is compared with the corresponding subset expressing NKG2A (○). (B) The same analysis was performed to compare degranulation of subsets with (○) and without (●) LILRB1 in both pbNK and dNK.

man tissues. Although heterogeneous, NK cells in other human tissues share some characteristics of dNK. They tend to be CD56bright, NKG2A+, produce a variety of cytokines, and are less cytotoxic than pbNK (3). In the liver, ~50% of the NK cells are NKG2A+, and they are educated by KIR that bind self-HLA-C (43). In fetal tissues, up to 90% of NK cells are NKG2A+. Fetal NK cells are educated by NKG2A+ but not by KIR binding to self-HLA; instead, KIR+ fetal NK cells are hyporesponsive (44). Our finding that some dNK are more responsive when they are NKG2A+ suggests that this NKR may also educate NK cells in the decidua, but the educating effect was not seen in all subsets (Fig. 4A). An alternative explanation is that NKG2A does not educate dNK but is a marker for more activated NK cells in decidua. However, all dNK are CD69+, so there is currently no evidence for differential activation among dNK subsets (10). These studies emphasize that the functional consequences of iNKR–HLA interactions on repertoire and NK function based on results from pbNK may be misleading. This is particularly relevant as clinical trials begin with mAbs targeting iNKR.

Our genetic findings in several cohorts indicate that the key effects of HLA-C in pregnancy are mediated by KIR that recognize C2 epitopes (12, 23–25). The interaction between KIR2DL3 and fetal C1 appears to have no significant effect on pregnancy outcome. The contrasting effect of maternal HLA-C on KIR2DL1 and KIR2DL3 expression in this study highlights their different roles in placentation. In the present study, we have shown that dNK functionally adapt to the presence of maternal C2 through education in the decidua as well as by reducing the frequency of cells expressing KIR2DL1. Both findings suggest mechanisms whereby maternal HLA-C2 can modify the risk of abnormal placentation in KIRAA mothers with an HLA-C2 fetus (12, 24). However, how education by maternal C2 actually alters dNK function in a manner beneficial to pregnancy remains to be elucidated. Finally, we have also shown that there are significant differences in how KIR2DL1 and other iNKR combine to educate NK cells in decidua compared with pbNK. Whether these differences in education of NK cells occur in other tissues will clearly be important in understanding NK function in diseases such as cancer.
Acknowledgments

We thank Diane Moore and all the clinical staff and donors at Addenbrookes Hospital without whom this study would not have been possible. We also thank Nigel Miller for assistance with FACS and the Centre for Trophoblast Research for generous support.

Disclosures

The authors have no financial conflicts of interest.

References