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Classical nucleation theory offers a good framework for understanding the common features of
new phase formation processes in metastable homogeneous media at rest. However, nucleation
processes in liquids are ubiquitously affected by hydrodynamic flow, and there is no satisfactory
understanding of whether shear promotes or slows down the nucleation process. We developed a
classical nucleation theory for sheared fluids systems starting from the molecular-level of the Becker-
Doering master kinetic equation, and analytically derived a closed-form expression for the nucleation
rate. The theory accounts for the effect of flow-mediated transport of molecules to the nucleus of
the new phase, as well as for the mechanical deformation imparted to the nucleus by the flow
field. The competition between flow-induced molecular transport, which accelerates nucleation, and
flow-induced nucleus straining, which lowers the nucleation rate by increasing the nucleation energy
barrier, gives rise to a marked non-monotonic dependence of the nucleation rate on the shear-rate.
The theory predicts an optimal shear-rate at which the nucleation rate is one order of magnitude
larger than in the absence of flow.

I. INTRODUCTION

Understanding the mechanism of shear-induced nucle-
ation processes [1, 2] could play an essential role in life
sciences where different phenomena, like protein [3] and
peptide [4] aggregation and crystallization, commonly
take place under applied shear flows. For example, un-
der in vitro conditions, shear is ubiquitous due e.g. to
stirring of the solution. Under in vivo and physiological
conditions, protein aggregation, condensation and crys-
tallization phenomena occur under cytoplasmic flow con-
ditions [5].

Anomalies in in vivo protein crystallization are respon-
sible for different pathological conditions. For example,
the crystallization of the mutated hemoglobin inside hu-
man blood cells underlies numerous condensation dis-
eases leading to anemia [6]. Furthermore, the cytoplas-
mic flows inside embryos may drive P granules conden-
sation during the specification of germ cells, a process
not fully understood in which flow-enhanced nucleation
could play an important role [7].

In a very different setting, shear-induced crystalliza-
tion in the supercooled melt is of vital importance in
metallurgy [2]. In particular, understanding the effect of
shear on crystallization rate is crucial in the processing
of metallic glasses which are cooled very rapidly from the
high-temperature melt. For example, recent experiments
reported a significant acceleration of the crystallization
rate in supercooled metallic melts [8]. Finally, crystal-
lization under shear, in spite of being poorly understood,
is a critical process in many industrial applications where
shear flow is ubiquitous in continuous industrial process-
ing and devices [9]. Here we can just recall the pervasive
role of shear flow in the industrial crystallization of phar-
maceutical molecules [10]. In the integrated modelling

of industrial processes there is considerable need of an-
alytical models which incorporate the basic microscopic
molecular physics of the system, in terms of molecular
interaction parameters, solvent properties, etc.

Due to the pivotal role of nucleation processes in many
fields, several experiments and simulations have been per-
formed in an attempt to rationalize the effect of shear on
nucleation. Very different outcomes have been reported
with different materials and in different conditions range.
In particular, while some studies have reported that shear
flow essentially slows down the nucleation rate [11, 12],
other studies have found that shear flow significantly
boosts or accelerates the nucleation rate [3, 4, 13–17]. Pi-
oneering simulations on colloids with Yukawa (screened-
Coulomb) repulsion showed that the nucleation barrier
increases quadratically with the shear rate [12], but the
overall effect of shear on the nucleation rate was not re-
ported. More recent simulations [18–20] suggested the
possibility that a maximum in the nucleation rate versus
shear rate may appear.

Kinetic models for nucleation in shear flow have been
proposed, for example using mesoscopic nonequilibrium
thermodynamics [21]. The latter study leads to a meso-
scopic Smoluchowski equation with flow and to a for-
mal dependence of the effective diffusion constant on the
anisotropoc flow field. However, a closed-form expression
for the nucleation rate was not reported, because this
requires solving the singularly-perturbed Smoluchowski
equation with shear [22]. On the whole, it is very diffi-
cult to rationalize all these very different outcomes, and
apparently contradictory evidences, in the absence of a
unifying, microscopic and analytical, description of the
microscopic mechanism by which crystal nuclei form in
sheared supercooled liquids.

Here we propose a microscopic analytical theory to
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provide a microscopic mechanism of the process, and pos-
sibly new insights into the qualitative physics. Deriving
a fully quantitative theory of nucleation in shear flows is
clearly impossible, as it is in fact already for the simpler
nucleation without shear. However, we show below that
our new theory predicts qualitative behaviour for the nu-
cleation rate in good agreement with recent simulation
and experimental data. More importantly, it suggests a
fundamental mechanism for the process, which was hith-
erto missing in the literature.

In our derivation, we take a very fundamental ap-
proach, and start from the microscopic level of the master
equation describing the nucleus formation by addition of
atoms/molecules to sub-critical clusters. At this level,
we account for the nonequilibrium effect of shear flow on
the transport of atoms/molecules to the cluster by us-
ing an analytical solution to the governing Smoluchowski
diffusion-advection equation. Further, we account for
the effect of shear-induced mechanical deformation of the
cluster. Our fully analytical theory allows one to disen-
tangle the different contributions of shear to the nucle-
ation rate, and to predict the nucleation rate as a func-
tion of shear rate, and of other important physical and
material parameters (e.g. molecular size, elasticity of the
new phase cluster, viscosity of the melt etc.). The nucle-
ation rate displays a pronounced maximum as a function
of shear rate which we are able to explain qualitatively,
for the first time, in terms of the competition between
flow-induced advective transport to the cluster and me-
chanical straining of the cluster.

II. DERIVATION

A. Becker-Doering master equation for cluster
growth

Let us start by considering a fluid of diffusing parti-
cles (which could be atoms, molecules or colloidal parti-
cles), mutually interacting with an arbitrary intermolec-
ular or interatomic interaction potential. The particles
which constitute the supercooled liquid can aggregate by
forming clusters (sub-critical nuclei) of different sizes.
We follow here the original approach and notation of
Zel’dovich [23].

We let the coordinate R be the radius of the spherical
cluster, the growth thereof is described as a motion along
the R-axis. The growth takes place in discrete jumps of
length λ, i.e the radius variation due to the addition of a
particle. Since all cluster sizes are discretely distributed,
the allowed sizes define a set of nodes along the R-axis at
distance λ from each other. Nodes can be labelled with a
discrete index n expressing the number of particles form-
ing the nucleus n. We call the probabilities of a jump to
the right (particle addition to the cluster) or to the left
(particle loss), q+(n) and q−(n), respectively.
Therefore assuming the probability of the cooperative ac-
quisition or loss of two or more monomers to be negli-

FIG. 1: Schematic of the cluster assembling process via mi-
croscopic single-particle addition and dissociation processes,
in the presence of shear flow. The arrows schematically rep-
resent the flow velocity streamlines in a linear flow field. The
flow velocity field at any point, in Cartesian components, is
given by vx = γ̇y, where γ̇ is the applied shear rate.

gible, the variation in the probability density of nuclei
Z(n) at the nth node may be expressed by the following
Becker-Doering equation,

∂Z(n, t)

∂t
=− Z(n, t)[q+(n) + q−(n)]+

Z(n− 1, t)q+(n− 1) + Z(n+ 1, t)q−(n+ 1).

(1)

Denoting by b(n) the equilibrium number of nuclei of size
n, the principle of detailed balance gives:

b(n)q+(n) = b(n+ 1)q−(n+ 1)

b(n− 1)q+(n− 1) = b(n)q−(n)
(2)

We can thus eliminate from Eq.(1) all the dissociation
rates q−, and denote the remaining rate q+ simply by q.
This leads to:

∂Z(n, t)

∂t
= q(n)b(n)

[
Z(n+ 1, t)

b(n+ 1)
− Z(n, t)

b(n)

]
−

q(n− 1)b(n− 1)

[
Z(n, t)

b(n)
− Z(n− 1, t)

b(n− 1)

]
.

(3)

We can turn to a continuous distribution with density
Z(R), by setting Z(n) = λZ(R), Z(n+ 1) = λZ(R+ λ),
and so on. Assuming λ to be a small constant number, we
expand each term in Eq.(3) in a power series of λ; confin-
ing ourselves to the first non-vanishing term, one obtains
the following diffusion equation in cluster-size space [23]

∂Z

∂t
=

∂

∂R

(
λ2qb

∂

∂R

(
Z

b

))
=

∂

∂R

(
Db

∂

∂R

(
Z

b

))
(4)

where the quantity D = λ2q plays the role of a diffusion
coefficient for the stochastic evolution in the space of clus-
ter sizes [1, 23]. This is a crucial quantity which contains
the microscopic physics of molecular transport towards
the cluster, and thus it includes the effect of shear flow
on the nucleus growth.
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B. Meaning of detailed-balance condition within
classical nucleation theory

Above and in the following, we apply the Zeldovich
formulation classical nucleation theory (CNT), and our
original contribution lies in the specification of the micro-
scopic transport rate of a molecule to the cluster in shear
flows, and in the derivation of the modified nucleation
energy barrier to account for shear. Both these contri-
butions are derived in the following sections and will be
implemented within the Zeldovich framework for CNT
subsequently. Here we would like to briefly discuss and
contextualize the above derivation of a diffusive Fokker-
Planck equation which is standard in classical CNT but
raises some questions when applied to sheared systems.
For example, a fundamental question could be raised here
about the validity or applicability of the detailed-balance
condition within the Becker-Doering master equation in
the context of nonequilibrium driven systems.

More precisely, the detailed balance condition, in
Eq.(2), is assumed in the one-dimentional nucleus size-
space, but not in the phase-space of positions and mo-
menta of the molecules, and returns an equilibrium state
of zero current, J(R, t) = 0, associated with the equilib-
rium distribution b(R) ∝ exp[−F (R)/kBT ] .
Due to the shape of the free energy function in the nu-
cleus size space, which shows a barrier for a critical size
and becomes negative for larger sizes ( Fig.2), this solu-
tion would give a very large number of large nuclei after
the barrier, and cannot predict the kinetic development
of the nucleation process. Thus, in the spirit of Zeldovich
CNT we will solve Eq.(4) for a non equilibrium steady
state Zst under the assumption Zst/b ∼ 1 before the bar-
rier and Zst/b ∼ 0 after the critical size. Thus, within the
same approach, we assume the ratio between the attach-
ment and detachment rate in the equilibrium state to be
the same also in the stationary nonequilibrium state.

It is evident that nucleation, both with and without
shear, is therefore always a nonequilibrium process which
is accompanied by a non-zero flux (J = const). Detailed
balance is just an initial condition which is useful to de-
termine the dissociation rate (which is very difficult to
quantify otherwise) as function of the association rate,
and to eliminate it from the kinetic equations.

Importantly, the existence of the initial quasi-
equilibrium state in which Zst is very close to equilibrium
distribution is justified, following Zeldovich theory, by
the fact that the energy barrier is so steep that the initial
probability of finding a cluster of critical size is extremely
low, and hence Zst can be assumed to be thermalized and
close to the Boltzmann form b(R) ∝ exp[−F (R)/kBT ],
but only until the barrier.

In other words, the system is initially localized (in the
energy landscape) just below the steep energy barrier for
nucleation, in a sort of ”bound state” from which the es-
cape process is so slow due to the high barrier that even
if the distribution was not Boltzmann-like from the be-
ginning, a stationary distribution, with features stated

above, will have been established a long time before an
appreciable number of clusters have escaped over the bar-
rier. This is the same assumption underlying the deriva-
tion of Kramers’ escape rate of a Brownian particle over
a steep energy barrier [26].

There is nothing obvious which forbids assuming a sim-
ilar scenario for nucleation in shear flow as well, provided
that, also in this case, the energy barrier for nucleation in
size-space is also large and steep. In fact, as we will show
below, the energy barrier with shear is even larger than
in the absence of shear, which makes the above consid-
erations even more reasonable and even more applicable
for sheared systems compared to static systems.

These arguments thus provide the justification for us-
ing detailed balance, within the Zeldovich assumption of
initial quasi-equilibrium, to determine the dissociation
rate in the microscopic derivation of nucleation theory in
shear flows.

C. Diffusion coefficient in cluster size space with
shear

In order to evaluate the diffusion coefficient in Eq.(4)
we have to estimate the probability q that a single par-
ticle of radius a joins a cluster of radius R in the pres-
ence of shear flow. The first obvious consideration con-
cerns the diffusion coefficient of Brownian molecules in
a shear flow. Due to the anisotropic geometry of shear,
the effective diffusion influenced by shear becomes also
anisotropic. For example, a formal expression for the
diffusion coefficient in shear flow as a function of the
flow field has been derived within the framework of meso-
scopic nonequilibrium thermodynamics [21]. Within the
microscopic framework of the Smoluchowski equation
with shear, this anisotropicity appears in the probability
distribution function of particles in space which is the so-
lution to the governing equation of motion. Within this
approach, the aim is to calculate the rate of collision be-
tween a molecule and a cluster; a necessary step towards
this aim is the evaluation of the flux over the cluster,
which is a spherical isotropic integral of the probability
distribution function of finding the molecule at a given
distance from the cluster.

In this way, the rate of a single-particle attachment
to the cluster can be estimated by solving the Smolu-
chowski equation with shear or diffusion-advection equa-
tion [22, 28], which governs the collision rate between the
cluster and the single particle in the presence of: (i) the
mutual Brownian diffusion of cluster and particle; (ii)
the intermolecular interaction field between cluster and
particle; (iii) the applied shear flow.

Let us consider spherical coordinates centred on the
nucleus of radius R, and c(r) the monomer concentra-
tion (or probability distribution function) averaged over
angular coordinates (θ, φ) in the spherical frame centred
on the cluster. As shown in details in Appendix A, c(r)
is the solution to the radial component of the two-body
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Smoluchowski diffusion-advection equation and defines
the probability of finding a single molecule at a radial
distance r from a cluster. The radial component of the
equation can be written as [29]:

1

r2

d

dr
r2

[
Dβ

(
dU

dr
−Bvr,eff

)
c+Dr2 dc

dr

]
= 0 (5)

where U is the intermolecular interaction (which may
also account for many-body correlations in an effective
way, e.g. if one takes the potential of mean force) be-
tween the particle and the cluster. D = Da + DR =
kBT (a + R)/6πηaR is the mutual diffusion coefficient
with η the solvent viscosity, B = 6πηaR/(a + R) is the
hydrodynamic drag. vr,eff is the effective radial compo-
nent of the relative velocity between the cluster and the
particle due to the shear flow (see its definition in Ap-
pendix B).

In particular, vr,eff 6= 0 and is given by the standard
radial component of the relative velocity, as given for
simple shear flows [30], only in those sectors of the solid
angle where vr < 0. These are the sectors of solid angle
where the flow brings the particles towards each other. In
those sectors where, instead, the two particles are pushed
away from each other and vr > 0, we take vr,eff = 0. The
motivation for this simplification is that, upon taking
the total inward flux, only those sectors of solid angle
contribute to the inward flux where the flow brings the
particles towards each other, whereas those sectors where
the two particles are pushed away from each other by
the shear field do not contribute to the inward flux. In
this way, the anisotropic character of the flow is fully
accounted for by the theory.

Importantly, this is not an uncontrolled simplification,
but a necessary step for calculating the rate. This is
reflected in the fact that different numerical values of
the rate are given by this theory for different flow ge-
ometries (e.g. axysimmetric extensional flow, shear flow,
sink flow, uniform flow etc), as discussed more in detail
in previous work [29]. For example, within this approach,
the value of the rate would be maximum for a sink ra-
dial flow [31], where the cluster is located at the sink
point for the streamlines, since this is the most isotropic
flow field, whereas the value is clearly much smaller for
strongly anisotropic flow fields like shear. One of course
could think of solving the fully anisotropic Smoluchowski
partial differential equation instead of its effective radial
component (which is an ordinary differential equation),
but this cannot be done analytically. It is instead pos-
sible to define the effective radial component of the flow
field as done in [29], which accounts for the anisotrop-
icity of the flow, and use this within the Smoluchowski
equation, Eq.(5), to calculate the collision rate which is
a spherically averaged quantity by definition.

It is also necessary to emphasize that the Smolu-
chowski equation with shear ensures that the anisotropic
dynamics of Brownian particles is correctly described. A
manifestation of this fact is that the local collision rate
according to Eq.(5) is anistropic and does depend on the

angular orientation in the solid angle, while the total in-
ward flux is independent (by construction, being an in-
tegrated quantity) of the angular orientations. Another
manifestation of the anisotropic dynamics predicted by
the Smoluchowski equation with shear becomes evident if
one transforms the Smoluchowski equation into its asso-
ciated Langevin equation with shear. The latter, in turn,
can be used to determine the mean squared displace-
ment at steady-state as a function of time, in a standard
way [32]. The coefficient in this relation is an effective
diffusion coefficient which is manifestly anisotropic [21].
Hence, the anisotropic diffusion is rather an outcome of
Eq.(5), not an input to it.

In dimensionless form, Eq.(5) becomes:

1
Pe(x+1)2

d
dx (x+ 1)2

[(
dŨ
dx − 4Peṽr,eff

)
c+ dc

dx

]
= 0 (6)

where x = [r/(R+ a)]−1, Pe = γ̇(a+R)2/ [4(Da +DR)]
with γ̇ the shear rate, and where we have introduced
the non-dimensionalised potential and velocity, Ũ = βU
and ṽr,eff = vr,eff/γ̇(R + a), respectively. We can set the
boundary conditions for the collision problem:

c = 0 for x = 0,

c = c0 for x = δ/(R+ a).
(7)

where c0 is the bulk density of molecules in the super-
cooled melt, and δ is the boundary-layer thickness which
is defined below.

As is known from many previous studies [22], the
above Smoluchowski equation with shear is singularly-
perturbed, and presents a boundary-layer structure. In
simple words, this means that no matter how small the
Peclet number is, the equation cannot be solved by a sim-
ple perturbative expansion in Pe. This problem arises
because the small parameter (the shear rate γ̇ or the
Peclet number, Pe) multiplies the relative radial velocity
in the above differential equation in the term −4Peṽr,eff,
which, for all linear shear flows, diverges as γ̇r → ∞ in
the far field limit, r → ∞. The singular perturbation
character means that no matter how small Pe is, the
flow term in the Smoluchowski equation is always going
to diverge right at the far field limit where a boundary
condition is required to integrate the differential equa-
tion. As a consequence, there exists an ”outer layer”, at
r > δ, where the shear advection term is always over-
whelming compared to the other terms in the equation.

Conversely, for sufficiently small separations, there ex-
ists an ”inner layer” where all contributions (diffusion,
potential, shear) are important. The width δ of the
boundary layer thus separates the inner from the outer
layer. Using the method of matched-asymptotics [33],
one can thus develop a perturbative expansion in 1/Pe
in the outer layer where the shear term dominates, and a
different expansion in Pe for the inner layer where shear
does not dominate over the other terms. The two ex-
pansions can then be matched at the boundary layer δ
to recover the full approximate solution over the entire
domain of r.
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Since we are interested in determining the collision
rate, we only need the inner layer solution, but we also
need to know the location of the boundary layer because
we need to take the surface integral of the concentration
profile. It is found [29, 34] that δ ∝ Pe−1/2. Physi-
cally, this means that at very high Peclet numbers where
the shear dominates over Brownian motion, the bound-
ary layer is shifted towards very small separations, and
the inner layer eventually shrinks to zero (δ → 0) in the
limit of Pe→∞. In this limit, the diffusive term in the
equation can be dropped and the dynamics is entirely
controlled by the flow advection [22, 29, 34].

Anyway our interest is not directed towards this lat-
ter extreme case, because we want to limit our study
to the range of small shear rate. Thus the solution
for the concentration profile inside the inner layer can
be built here upon integrating the dimensionless equa-
tion, with boundary conditions Eq.(7), up to the non-
dimensionalized boundary layer width δ

R+a ,

c(r) = exp

∫ x

δ
R+a

dx

(
−dŨ
dx

+ 4Peṽr,eff

)

×

[
c0 +

Φ0

4π(R+ a)(Da +DR)

∫ x

δ
R+a

dx

(x+ 1)2

× exp

∫ x

δ
R+a

dx

(
dŨ

dx
− 4Peṽr,eff

)] (8)

where Φ0 is the inward flux of molecules colliding onto
the cluster surface at x = 0 [29]. Solving for Φ0 we
obtain

Φ0 =
8π(R+ a)(Da +DR)c0

2
∫ δ
R+a

0
dx

(x+1)2 exp
[∫ x

δ
R+a

dx
(
dŨ
dx − 4Peṽr,eff

)] .
(9)

The change in single-particle concentration per unit time
can be obtained upon multiplying the flux by the con-
centration of nuclei cR, so that the kinetic equation for
the rate reads as

dc0
dt

= −Φ0cR = −8π(R+ a)(Da +DR)

WΦ
c0cR, (10)

where we have defined

WΦ = 2
∫ δ
R+a

0
dx

(x+1)2 exp
[∫ x

δ
R+a

dx
(
dŨ
dx − 4Peṽr,eff

)]
. (11)

The Eq.(10) outlines the analogue of a second-order
chemical reaction with the reaction rate given by

q =
4π(R+ a)(Da +DR)c0∫ δ

R+a

0
dx

(x+1)2 exp
[∫ x

δ
R+a

dx
(
dŨ
dx − 4Peṽr,eff

)] . (12)

We note that in the limit of Pe = 0 and U = 0, the rate q
correctly reduces to the diffusion-limited rate of a second-
order chemical reaction [35]: q = 4π(Da +DR)(R+a)c0.

D. Nucleus free energy under shear

In classical nucleation theory [1], the free energy of a
nucleus is the sum of an enthalpy term which is propor-
tional to the volume of the nucleus, and an interface term
which is proportional to its surface. Taking these two
contributes into account gives the standard free energy
of the nucleus in the form [1]

F (R) = −4

3
πR3 |∆µ|

v′
+ 4πR2ν, (13)

where ∆µ < 0 is the difference in the chemical poten-
tial between the new phase (e.g. the crystal) and the
metastable phase (e.g. the liquid), v′ is the volume of
one particle, and ν is the surface tension.

As is well known, for small R values the surface en-
ergy term dominates, the free energy thus increases with
increasing R, while for large R values the bulk enthalpy
term dominates, and the free energy starts to decrease
with increasing nucleus sizeR. Therefore, there is a range
of R where a free energy barrier arises with a maximum
located at the critical value R∗, which defines the critical
nucleus. Since our interest is in studying a system with
shear, we have to consider also a further contribution Fs
in the free energy expression due to the nucleus deforma-
tion caused by the shear. If we consider a small elastic
deformation due to the shear stress transmitted by the
surrounding fluid motion onto the nucleus, the additional
free energy contribution Fs reads [36, 37],

Fs
V

=
1

2
σikuik (14)

where V is the nucleus volume while σik and uik rep-
resent the elastic stress and the symmetric component
elastic of the strain tensor, respectively.

For a laminar shear flow, the hydrodynamic stress ten-
sor in the fluid is given by [38]:

~~σ =

 0 ηγ̇ 0
ηγ̇ 0 0
0 0 0

 (15)

where η is the fluid viscosity and γ̇ is the shear rate. We
assume that the elastic stress acting upon the nucleus is
equal to the average hydrodynamic stress in the sheared
fluid. Upon considering that the elastic stress on the
nucleus is given by σxy = 2Guxy [36], where G is the
shear modulus of the nucleus, the elastic strain to which
the nucleus is subjected is given by

~~u =

 0 ηγ̇
2G 0

ηγ̇
2G 0 0
0 0 0

 . (16)

Then the total free energy of the nucleus becomes

F = −4

3
πR3 |∆µ|

v′
+4πR2ν

(
1 +

7

24

η2γ̇2

G2

)
+

1

2

η2γ̇2

G

4

3
πR3,

(17)
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FIG. 2: Free energy as a function of the nucleus radius R.
The continuous solid line is the dependence without shear,
while the dashed line is the free energy in presence of shear
as given by Eq. 17.

which is depicted in Fig.2. In this derivation we
accounted for the shape deformation of the spherical
nucleus into ellipsoid due to shear stress. This effect
results in a correction term to the nucleus surface which
derivation is shown in more details in the Appendix B.
Without this correction, the surface term in the free
energy of the nucleus would be simply 4πR2ν, as for a
sphere. It is important to note that the shear-induced
deformation doesn’t affect the volume of the nucleus
which remains constant as expected for simple shear
deformations which are volume-preserving.

However, the correction term for the nucleus surface
change upon deformation into an ellipsoid, is negligible
for a large class of systems where the deviation from
spherical shape is small, and for some of those it has
been indeed observed that this change happens at sub-
stantial values of shear rates, e.g. ∼ 10 − 100s−1 for
polymers [39]. The deformation of the nucleus into an
ellipsoid, furthermore, does not depend uniquely on the
applied shear rate γ̇, but it has to depend necessarily
also on the shear rigidity of the nucleus. For example, if
the nucleus were infinitely rigid, it would forever retain
its spherical shape also at extremely high shear rates.
Since the surface of the deformed ellipsoidal nucleus in-
creases as ∆S ∼ (ηγ̇/G)2, this relation gives the limit for
which the nucleus can be described as spherical as long
as (ηγ̇/G)2 � 1 is satisfied.

E. Analytical expression for the nucleation rate
with shear

The nucleation rate can be estimated using Kramers’
escape rate theory for the crossing rate of the energy bar-
rier [26, 32], when the growth of the clusters is governed

by the Smoluchowski equation [23]. Starting from Eq.(4),
and assuming the equilibrium distribution to have the
Boltzmann form

b(R) ∼ e−
F (R)
kBT , (18)

the associated current in cluster-size space is given by

J = −De−
F (R)
kBT

∂

∂R

(
Ze

F (R)
kBT

)
, (19)

where we recall that D = λ2q with q given by the Eq.(12)
and λ = a is the radius of a single particle. At steady-
state (i.e J = const) upon integrating Eq.(19) on both
sides between R0 ≡ 0 and a point RB located sufficiently
far away beyond the barrier, andRB such that F (RB)�
F (R0), we obtain

J = −
Zst(R)e

F (R)
kBT |RBR0∫ RB

R0

1
D e

F (R)
kBT

' Zst(R0)e
F (R0)
kBT∫ RB

R0

1
D e

F (R)
kBT

' Zst(R0)∫ RB
R0

1
D e

F (R)
kBT

(20)

where Zst is the stationary distribution of cluster sizes.
The integral in the denominator is dominated by the

exponential near the barrier, so neglecting the depen-
dence of D on R (as discussed in [23] and [40]), expand-
ing F (R) in a second-order Taylor series around the max-
imum, and extending the limits in the integration domain
to infinity, we find

J ' Zst(R0)

1
D(R∗)

∫ RB
R0

e
F (R∗)+ 1

2
F ′′(R∗)(R−R∗)2

kBT

' Zst(R0)D(R∗)√
2πkBT
−F ′′(R∗)e

F (R∗)
kBT

.

(21)

Near R = 0 we can approximate the stationary distribu-
tion Zst(R) with the equilibrium Boltzmann distribution
[23], b(R), which in R0 is given by

Zst(R0) = b(R0) =
Ntote

−F (R=0)
kBT∫ R∗

R0
e
−F (R)
kBT

(22)

where Ntot is the total number of particles in the
metastable state, before the barrier.

The integral in the denominator is dominated by the
exponential near the origin, hence upon expanding F (R)
in a second-order Taylor series around R0 and recalling
that F (R0) = 0, we obtain

b(R0) ' Ntot∫ R∗
R0

dRe
− 1

2
F ′′(R0)(R−R0)2

kBT

' 2Ntot√
2πkBT
F ′′(R0)

.

(23)
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In the last step, we have extended the upper limit in the
integration domain to infinity since contributions to the
integral past the barrier are negligible [26]. Finally, the
nucleation rate is defined by KN ≡ J

Ntot
and reads

KN =
D(R∗)

πkBT

√
−F ′′(R∗)F ′′(R0)e

−F (R∗)
kBT

=
(8ν + 7γ̇2η2ν

3G2 )D(R∗)

kBT
e
−F (R∗)

kBT

(24)

where in the second line we considered F ′′(R0) =

−F ′′(R∗) = 8πν + 7πγ̇2η2ν
3G2 , obtained from Eq. (17) with

R∗ =
νv′

6G

24G2 + 7η2γ̇2

2G | ∆µ | −η2γ̇2v′
.

The free energy barrier at the critical nucleus size R∗

is found to be

F (R∗) =
νv′2ν3π

648G4

(24G2 + 7η2γ̇2)3

(2G | ∆µ | −η2γ̇2v′)2
(25)

which increases as γ̇ increases, as illustrated in Fig. 2.

In particular, upon Taylor-expanding this expression
around γ̇ = 0, we find that the first non-vanishing term
in γ̇ is the quadratic term, i.e. F (R∗) ∼ γ̇2. The effect
of the shear rate on the total free energy is to increase
the height of the barrier F (R∗), where R∗ is the critical
nucleus size, and to shift its position to a higher R value,
thus slowing down the nucleation process. Therefore, our
Eq.(24)-(25) explain the quadratic increase of the nucle-
ation energy barrier as a function of shear rate, which has
been observed in numerical simulations in the past [12].

From a physical point of view, the quadratic increase
of the free energy barrier for nucleation with the shear
rate is explained within our framework in terms of the
increased elastic energy of the nucleus imparted by the
elastic straining due to hydrodynamic flow stress. It can-
not be excluded that for certain systems the increase of
nucleation barrier due to the increase of elastic energy
may abruptly culminate with the breakup of fragmen-
tation of the nucleus [41], as the mechanical yielding of
the nucleus may be achieved at high enough shear rates,
a possibility discussed for example by Onuki [42], which
certainly plays an important role for aggregating colloidal
phases [43].

It is also important to note that, within our theory, a
critical value of shear rate γ̇∗ exists, for which the denom-
inator in Eq.(25) goes to zero, causing the nucleation rate
to vanish. This situation corresponds to the extreme case
where not even the smallest infinitesimal nuclei would be
mechanically stable under such large flow stresses, and
nucleation is thus suppressed completely by the mechan-
ical instability of the new phase under the imposed shear
stress.

F. Prefactor of the nucleation rate expression

We can explicitly evaluate the prefactor in front of the
exponential in Eq.(24)

K0
N =

(8ν + 7γ̇2η2ν
3G2 )D(R∗)

kBT
. (26)

In the expression for the diffusion coefficient in size-space
D(R) we substitute the rate q from Eq.(12) and we get:

K0
N =

(8ν + 7γ̇2η2ν
3G2 )4a2π(R∗ + a)(Da +DR∗)c0

kBT
∫ δ

(R+a)

0
dx

(x+1)2 exp
[∫ x

δ
(R+a)

dx
(
dU
dx − 4Peṽr,eff

)] .
(27)

In the presence of an intermolecular or interatomic inter-
action potential, with a range ξ, between the particles,
it was previously established by means of scaling argu-
ments and in comparison with full numerical simulations
of the Smoluchowski diffusion-advection equation [29],
that δ/(R + a) ' ((R + a)Pe/ξ)−1/2. In hard-sphere
(HS) systems, the range of the bare pair-interaction is
zero, by definition. However, the relevant interaction
which causes the particles to stick onto a cluster is not
the two-body pair potential, but rather the potential of
mean force which features an attractive part with a finite
range ξ, as discussed below.

G. Calculation of the crystallization rate in
sheared hard-sphere colloid systems

Colloidal HS systems have been studied intensively
both experimentally and computationally, as model sys-
tems to understand complex many-body dynamics and
phase transitions. In the HS phase diagram, the control-
ling parameter is the volume fraction φ occupied by the
colloidal particles. For example, HS systems undergo a
first-order transition from liquid to crystal at the freezing
packing fraction φ = 0.54, which is the analogue of the
freezing temperature of atomic and molecular systems.
Colloidal HS liquids at φ > 0.54 are therefore metastable
and nucleation processes take place leading to the forma-
tion of the new crystal phase [44].

In HS systems, the bare two-body pair-potential is an
infinitely steep wall and has zero range. However, at
high particle density such as in the metastable regime
φ > 0.54, many-body correlations lead to a potential of
mean force which features a pronounced effective attrac-
tion between two particles. The potential of mean force is
defined by Vmf/kBT = − ln g(r), where g(r) is the radial
distribution function. The effective attraction between
two nearest-neighbour particles arises due to the osmotic
pressure, exerted by all the other particles, which remains
unbalanced in the gap between the two particles [22, 45].
Therefore, Vmf cannot be confused with the simple two-
body pair potential (which is just a hard wall here) be-
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cause it crucially accounts for collective processes that
are responsible for the cohesion of the crystal.

This entropic effective attraction is what drives the
attachment of a particle to a cluster or nucleus of the
crystal nucleus, and is the consequence of many-body ef-
fects. The effective attraction has been calculated using
different approaches, and it features an energy minimum
of the order of 8 − 10kBT with a range ξ ≈ 1.5σ = 3a,
where σ is the hard-sphere diameter [46]. Here, for our
illustrative calculation, we assume that the potential of
mean force is what governs the effective attraction be-
tween a particle freely moving in the supercooled liquid
phase and a particle protruding on the cluster surface.
Very schematically, we model the attraction as a ramp
potential with an energy minimum of −8kBT and range
ξ = 3a,

U = Vmf =

[
8kBT

3a
(r − (R− a))− 8kBT

3a
3a

]
θ(R+2a−r)

(28)
where θ is the Heaviside function.

The qualitative behaviour of the denominator in
Eq.(27), for a simple shear velocity field [29]: ṽr,eff =
−1/3π(x + 1), as a function of Peclet number, can be
easily estimated numerically and decreases as the Peclet
number increases. Further, in the numerator the depen-
dence of Da+DR∗ upon γ̇ can be neglected in comparison
with the dependence of R∗ on γ̇ and the explicit depen-
dence on γ̇2 . Hence the prefactor K0

N of the nucleation
rate displays an increasing trend with the shear rate.

In the expression of the nucleation rate, Eq.(24), two
opposite contributions brought by the shear are present,
in the prefactor (Eq.(27)) and inside the exponential fac-
tor (Eq.(25)), respectively. In fact, while the prefactor
increases with the shear rate due to the enhancement of
advective-diffusive transport towards the nucleus, the ex-
ponential factor decreases upon increasing the shear rate
due to the increased elastic energy of the nucleus which
increases the nucleation barrier. As a consequence of
this competition (prefactor increasing with γ̇, exponen-
tial factor decreasing with γ̇), an overall non-monotonic
dependence of the nucleation rate upon the shear rate,
with a point of maximum, arises.

We calculated the nucleation rate on the example
of the crystallization of a HS colloidal suspension of
poly(methyl methacrylate) (PMMA) spheres in a mix-
ture of decahydronaphthalene and cyclohexylbromide.
If not stated otherwise, parameters values, reported in
Tab.I, are taken from Ref. [44]. The viscosity η ≈
1.8×10−1 Pa·s is estimated by the calibration of our the-
oretical prediction of nucleation rate in absence of shear,
with the experimental results of Ref. [44]. It is impor-
tant to note that the chemical potential difference be-
tween crystal and liquid ∆µ is in general a function of
the control parameter which for colloids is volume frac-
tion φ (it would be the temperature in atomic systems),
and the same applies to the viscosity. These parameters
therefore introduce a dependency on the supersaturation

TABLE I: Parameters values for a colloidal suspension of
PMMA spheres in a mixture of decahydronaphthalene and
cyclohexylbromide. The nucleation rate obtained with these
values is plotted in Fig.3. The parameter values are taken
from [44], with the exception of the viscosity which has been
tuned in our calculation to recover the experimentally mea-
sured nucleation rate in the absence of shear.

Parameter Value Units

∆µ 5.25 × 10−22 J

η 1.8 × 10−1 Pa · s

ν 6.87 × 10−11 N/m

G 1.6 × 10−3 Pa

c0 6 × 1016 1/m3

kBT 4 × 10−21 J

which here we do not consider explicitly and we focus on
a fixed quench into the metastable regime.

On theoretical grounds [48], the first phase formed
near the melting line is the BCC crystal phase, al-
though the stable phase is the FCC crystal. For our
illustrative calculations, we assume the BCC structure,
although of course the calculation can be done for any
crystal structure using the Born-Huang theory of elastic
constants of crystals. Therefore, the shear modulus G
is estimated using the standard Born-Huang formula
for BCC crystals [47] G = 2

3
κ
l assuming that only

nearest-neighbours matter. Hence, using κ ≈ 10kBT/l
2,

we estimate G = 10 · 2
3kBT/l

3 where l ≈ 2a is the crystal
lattice constant. The nucleation rate with shear flow for
this system was calculated using Eq.(24), and is plot-
ted in Fig.3 for selected values of the physical parameters.

As shown in Fig.3, the nucleation rate increases with
the shear rate until it reaches a maximum value for an
optimal value of shear rate γ̇∗. The three curves in Fig.3
are obtained upon varying colloid size: as the latter de-
creases, a significant shift of the optimal shear value takes
place, while the peak amplitude remains almost constant.
The physical origin of this effect is partly controlled by
the nucleus elasticity: smaller particles make stronger nu-
clei and the increase of elastic energy becomes important
at comparatively higher γ̇, while at lower γ̇ the nucle-
ation rate is comparatively lower because the advective-
diffusive transport towards the nucleus is slower with
smaller particles (which have smaller Pe numbers). If
the particle-size effect was solely controlled by the nu-
cleus elasticity, we would expect a dependence of the
nucleation rate peak on the shear rate as to the cubic
power, because the elastic modulus scales as kBT/a

3.
The dependence is however somewhat stronger, to the
fourth power, because of the size effect due to molecular
transport.



9

FIG. 3: Nucleation rate of BCC colloidal crystals as a func-
tion of the shear rate γ̇, plotted using the parameters values
reported in Tab.I. Different curves are obtained for different
values of the particles radius.

III. SIMULATIONS AND EXPERIMENTS:
FROM COLLOIDS TO ATOMIC SYSTEMS

Recent simulation results [18–20], showed the exis-
tence of a peak in the nucleation rate with a characteris-
tic non-monotonic dependence of nucleation rate on the
shear rate. The nucleation rate is sped up at low shear
rates up to the peak value, after which it decreases with
further increasing shear rate. This qualitative behaviour
was not explained by any clear or simple microscopic
mechanism thus far, and to our knowledge the theory
presented here provides the first mechanistic explanation
of this effect in terms of the competition between advec-
tive enhancement of molecular transport to the nucleus
and increased energy barrier due to straining.
The same qualitative behaviour has been reported re-
cently for the nucleation kinetics of amyloid aggregation
in shear flow [49], whereby the nucleation rate extracted
based on a Finke-Watzky model features a maximum as
a function of the shear rate.

While this qualitative agreement is certainly encour-
aging, a more quantitative comparison with either simu-
lations or experiments is still out of reach. The main
issue here is the unavailability of physical parameters
such as e.g. the viscosity, the nucleus’ shear modulus,
its surface energy or its volume-energy term, which are
not provided in previous studies. Also, whenever they
were measured, these parameter values are often model-
dependent or based on assumptions which are foreign to
our theory. For example, the nucleation energy barrier
in [18] was extracted based on the assumption of an ef-
fective temperature which is unnecessary and redundant
in our framework where the effect of shear is described
at the microscopic level of molecular motion and cluster
growth. The estimate of the energy barrier provided by
those authors takes into account also the microscopic ef-
fect of shear on molecular transport and using it in our

framework would lead to counting this effect twice since
we already account for it in a different way.
In future simulations or experimental studies, these pa-
rameters need be estimated independently of any model
assumption for the specific systems under study, to allow
a more quantitative comparison with predictions of the
theory presented here. Of course this is a very challeng-
ing task for which no solution is yet in sight.

Calculations similar in spirit to the illustrative predic-
tions for colloidal crystallization presented above could
be done, in principle, for atomic systems as well, such
as silicon [17], or more complex metallic melts [8]. It is
expected that the peak of shear rate in those systems
be found at much higher shear rates (in fact of order
1s−1 as reported recently for metallic melts [8]), due to
the much smaller size of the building blocks (atoms in-
stead of colloidal particles). However, extrapolating our
theory for colloids presented above by just replacing the
colloid size with an atomic size, would predict that shear
effects become important only for enormously high shear
rates. This unreasonable outcome for atomic systems is
due to the fact that the theory for colloids cannot be ex-
trapolated to atomic systems without, at the same time,
adjusting the other physical parameters such as the vis-
cosity and the shear modulus which are many orders of
magnitude larger in atomic systems. This effect can be
understood by considering the important role played by
the viscosity in modulating the effect of shear on the
atomic motion. The Peclet number increases linearly
with the viscosity, but our prefactor in the nucleation
rate depends exponentially on the Peclet number. The
viscosity in atomic systems is 10 orders of magnitude
larger than in colloidal systems (it increases strongly non-
linearly with decreasing the building block size), which
makes the effect of shear remain important at accessi-
ble shear rates in atomic systems, thus compensating the
effect of decreasing the size building block size.

Finally, an other word of caution should be spent
about comparing theoretical predictions to simulation
data. Currently used protocols vary from Langevin dy-
namics where shear flow is treated as an external force in
the equation of motion, to nonequilibrium molecular dy-
namics employing microscopic equations of motion such
as the DOLLS or the SLLOD equation of motion [50].
Each of these methods has a number of idiosyncrasies
(e.g. the SLLOD equation of motion cannot be derived
from a Hamiltonian, whereas the DOLLS yields erro-
neous results at moderate shear rate) which makes any
comparison with analytical theory a highly non-trivial
business. Another possible issue of discrepancy in such
a comparison comes from the role of boundary condi-
tions and boundary effects in simulations. It is clear
that, whenever periodic boundary conditions (e.g. Lees-
Edwards) are not employed, particles moving close to
the driven boundary experience non-trivial entropic ef-
fects while their affinity to the wall of the simulation
box introduces another source of important additional
effects, which are absent in analytical theories that work
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in the homogeneous, thermodynamic limit. On the other
hand, also the use of Lees-Edwards periodic boundary
conditions is not free from arbitrary assumptions (start-
ing from the choice of way particles are re-inserted into
the system as they cross a boundary), and different im-
plementations are available [51].

IV. CONCLUSIONS

Nucleation phenomena in liquids are always occur-
ring under some external perturbation, especially in in-
dustrial settings and in biological systems. Shear flow
is the paradigmatic external drive to approximate me-
chanical perturbations on otherwise quiescent, equilib-
rium systems. We started off from the basic (Becker-
Doering) master equation for the nucleus self-assembly
by molecular transport-driven attachment and detach-
ment of molecules to and from the nucleus cluster.

Using a matched-asymptotics approximation of
the singularly-perturbed diffusion-advection dynam-
ics (Smoluchowski equation with shear), within the
Zel’dovich reduction of the Becker-Doering equation to
a Fokker-Planck equation in cluster-size space, we were
able to estimate the effect of shear flow on the growth
rate of nuclei and to derive a closed-form expression for
the nucleation rate. The latter step is achieved using
Kramers’ method to evaluate the rate of crossing the
nucleation barrier.
Further to the effect on the transport rate of molecules
towards the nucleus, the shear flow also affects the
energetics of the nuclei. The shear flow imparts shear
stress on the nucleus which reacts elastically, and this
increases its energy. For the case of crystallization, the
contribution of shear stresses to the energy barrier for
nucleation is always positive (energy barrier increases
due to strain), and can be estimated in good approxima-
tion using the Born-Huang theory of crystal elasticity
for different lattice structures.

This framework delivers an analytical theory of
crystallization kinetics in shear. The main outcome
of the theory is the non-monotonic dependence of the
nucleation rate on the shear-rate. At low shear rates,
the nucleation rate increases with shear rate because of
the increase in advective transport towards the nucleus.
As the shear rate increases further, the increase in the
elastic energy of the strained nucleus becomes more and
more important, which increases the nucleation energy
barrier. The competition between these two opposite
contributions (flow advection and shear-induced strain
energy, respectively) is responsible for the appearance of
a maximum in the nucleation rate. Past the maximum,
the nucleation rate starts to decrease upon further in-
creasing the shear rate as the controlling effect becomes
the increase in strain energy leading to higher barriers
inside the exponential Arrhenius factor. This framework
opens up the possibility of understanding nucleation
in flowing systems, with widespread applications, from

shear-induced crystallization in metallic melts, to protein
crystallization under physiological conditions. Also, it
may help the rational design of experimental systems for
the direct verification of the laws predicted by our theory.
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APPENDIX A: SMOLUCHOWSKI EQUATION
WITH SHEAR FOR THE

ORIENTATION-AVERAGED CONCENTRATION
FIELD

In order to derive Eq.(5) is convenient to start from
the full Smoluchowski equation for a sheared system:

~∇ ·
[
βD

(
−~∇U + b~v

)
−D~∇

]
c = 0 (A1)

with the associate current:

~J =
[
βD

(
−~∇U + b~v

)
−D~∇

]
c (A2)

The incoming flux of particles on a spherical surface is
given by:

Φ =

∮
~J · ~̂ndS =

∮ [
−D~∇c− βD

(
~∇U − b~v

)
c
]
· ~̂ndS

=

∮
D

(
β
dU

dr
c− βbvrc+

dc

dr

)
r2 sin θdθdφ

= 4πDr2

[
β

(
dU

dr
〈c〉 − b〈vrc〉

)
+
d〈c〉
dr

]
(A3)

where ~̂n is the unit vector directed inwardly. Since we
are interested in the net inward flux of particles, we can
run the angular integration only on those angles such
that the radial component of the velocity field is negative
(which corresponds to the two particles being advected
into each other by the flow). It is thus convenient to
define an effective radial velocity which depends on the
angular orientation as:

vr,eff =

{
vr if vr < 0

0 otherwise.
(A4)

Under this assumption the inward flux becomes:

Φ = 4πDr2

[
β

(
dU

dr
〈c〉 − b〈vr,effc〉

)
+
d〈c〉
dr

]
(A5)
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and supposing that convection is not overwhelming
Brownian motion we can also assume a weak correlation
between the concentration profile and the velocity field:

〈vr(~r)c(~r)〉 ' 〈vr(~r)〉〈c(~r)〉 (A6)

which allows us to obtain an analytical expression for the
flux as:

Φ = 4πDr2

[
β

(
dU

dr
−B〈vr,eff〉

)
+

d

dr

]
〈c〉. (A7)

It is possible to show that the same result can be ob-
tained starting directly from the following Smoluchowski
equation:

~∇ ·
[
βD

(
−~∇U +B~vr,eff

)
−D~∇

]
〈c〉 = 0 (A8)

where we defined the effective (inwardly directed) veloc-
ity field as ~vr,eff = [〈v−r 〉, 0, 0]T. Writing Eq.(A8) for the
radial coordinate as appropriate for determining the flux,
and setting 〈c〉 for economy of notation, we recover Eq.(5)
of the main text.

APPENDIX B: SHEAR-INDUCED
DEFORMATION OF THE NUCLEUS INTO AN

ELLIPSOID

The action of a simple shear flow described by the fluid-

flow strain tensor for simple shear flow ~~s. It is important
to note that this is different from the elastic strain ten-
sor in Eq.(16), which describes the elastic contribution to
the free energy and has to be necessarily symmetric and
cannot include rotational components (which are associ-

ated with dissipation). The fluid strain tensor ~~s, instead,
must include also the rotational component and gives rise

to an affine deformation ~X ′ =
~~T ~X where ~X is a generic

point in 3D space and:

~~T = 1 + ~~s =

1 α 0
0 1 0
0 0 1

 . (B1)

where we defined α = ηγ̇
G .

We are now interested in observing how this deforma-
tion modifies the surface and volume of a spherical object
in the limit of small α. For the sake of simplicity let us
consider a unitary sphere described by the equation:

~XT
1 ~X = 1. (B2)

Under the action of T the equation becomes that of an
ellipsoid:

~X ′
T
T−TT−1 ~X ′ = 1. (B3)

Writing the quantity T−TT−1 in diagonal form, gives1 0 0

0
2+α2−α

√
(4+α2)

2 0

0 0
2+α2+α

√
(4+α2)

2

 . (B4)

The eigenvalues of this matrix represent the lengths of
semi-axes of the ellipsoid with equation:

x2

a2
+
y2

b2
+
z2

c2
= 1. (B5)

Using the Legendre’s approximated expression [52] to cal-
culate the surface of an ellipsoid:

S = 4πab

(
2

3
+
c2b2 + c2a2

6a2b2

)
(B6)

and Taylor expanding around α = 0 we obtain:

S = 4π +
7πα2

6
+O[α]3 (B7)

which gives a correction to a spherical surface of the
second order in γ̇.
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