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Introduction  25 

Surgical site infection (SSI) related to orthopedic procedures is a major complication that 26 

is associated with increased morbidity, mortality, and financial expenses. Implant-related SSI can 27 

be difficult or impossible to resolve with routine antimicrobial therapy alone due to the formation 28 

of biofilms on the orthopedic implants (1). Staphylococci are the most frequent causes of 29 

biofilm-associated infections as they are common opportunistic bacteria that reside on the skin 30 

and mucous surfaces (2). The most clinically relevant Staphylococci are the coagulase positive 31 

Staphylococci, and in dogs specifically: Staphylococcus pseudintermedius. Recently, methicillin-32 

resistant Staphylococcus pseudintermedius (MRSP) has emerged as an important cause of SSI in 33 

dogs (3). MRSP isolates are often not only resistant to β-lactam antibiotics, but also to several 34 

other classes of antimicrobial drugs (4). The large increase in antimicrobial-resistant 35 

microorganisms clearly shows that new control strategies are required. Antimicrobial coatings of 36 

implant surfaces have a great potential in this context, such as coatings containing or releasing 37 

antimicrobial agents. Coatings containing inorganic antimicrobial agents are very attractive 38 

alternatives from the perspective of doping of biomaterials, which have advantages including 39 

good antibacterial activity, biocompatibility, and stability (5). Silver coated orthopedic implants 40 

have widely been used to prevent the growth of bacterial biofilms (6, 7) due to silver’s broad-41 

spectrum of activity against gram-positive and gram-negative bacteria. (8).  42 

As the use of silver and silver-based products increases, it is becoming important to 43 

clarify the efficacy and efficiency of silver against different microorganisms and biofilms. 44 

Accordingly, the objective of this study is to evaluate the in vitro antibacterial activity of new 45 

ultrathin plasma coating with polysiloxan embedded silver particles against a strong biofilm-46 

forming MRSP strain. 47 



Methods, Results & Discussion 48 

 Additional details are furnished in the supplemental materials. 49 

An MRSP isolate (OSU 12-2910), originally sourced from an infected canine total knee 50 

replacement in a 9 year old male neutered Kuvasz was evaluated for biofilm production using a 51 

microtitre plate assay (MPA) described by Stepanovich et al (9). The average OD570 of the 52 

triplicates of isolate and negative controls and the cut-off value (ODc) were established where 53 

ODc = average OD570 of the negative control + 3×SD of the negative control. According to the 54 

scheme of Stepanovich et al., the tested clinical MRSP isolate was classified as a strong biofilm 55 

producer where the OD570 of the eluted crystal violet was greater than 4 times of the cut off value 56 

(4×ODC), consistent with an earlier study of S. pseudintermedius, which showed that the 57 

majority of isolates produced biofilm, and 96% were classified as either strong or moderate 58 

biofilm producers (10).  59 

Silver/Siloxane chemistry (Ag/SiOxCy) plasma polymer-coated circular discs (10 mm 60 

diameter and 1 mm thickness) were manufactured from commercially pure titanium (ASTM 61 

F67), and had previously undergone cytotoxicity testing in L-929 mouse fibroblast cells with a 62 

method compliant with ISO 10993-5; 2009, with no cytotoxicity evident by 72 h (unpublished 63 

data). Uncoated titanium discs were used as negative controls. All discs were sterilized by 64 

gamma irradiation prior to laboratory testing. The in vitro antimicrobial activity assay was 65 

performed according to the standard test method, ASTM E-2180-07, with the modification of 66 

using one log step higher inoculum (11). The antimicrobial efficacies of silver-coated titanium 67 

specimens (n =12), and controls (n =12) were evaluated at two times: 5 minutes after inoculation 68 

of the specimens (T0) and after 24 hours of incubation (T24). The numbers of recovered 69 

organisms were averaged as the mean CFU/ml. The averaged means were then transformed and 70 



expressed as mean log10 CFU. The statistical significance between the mean log10 CFU counts of 71 

silver-coated and control specimens at T0 and T24 was evaluated using an unpaired t-test; a value 72 

of P <0.05 was considered statistically significant. 73 

At T0, there was no significant difference in MRSP growth between control uncoated 74 

(3.83 ± 0.51 log10 CFU/ml, mean ± SD) and silver-coated discs (3.59 ± 0.33 log10 CFU/ml) (P 75 

=0.36) (Figure 1). This demonstrates that the initial bacterial challenge was similar in test and 76 

control specimens. At T24, the silver coated discs had significantly reduced growth (0.64 ± 0.99 77 

log10 CFU/ml) which resulted in a difference of more than four log steps as compared to the non-78 

coated discs (4.60 ± 0.91 log10 CFU/ml) (P <0.0001). Uncoated discs did not show any reduction 79 

in the number of bacteria while the silver coating demonstrated a significant antimicrobial 80 

efficacy and showed more than 99.98 % reduction in the number of CFU/ml after 24-hour 81 

incubation. 82 

Previous studies that have evaluated clinically relevant Staphylococcus spp. affecting 83 

human beings rather than dogs, have shown excellent in vitro antimicrobial activity of different 84 

formulations of silver coatings against Staphylococcus aureus, Staphylococcus epidermidis, 85 

methicillin-resistant Staphylococcus aureus (MRSA), and methicillin-resistant Staphylococcus 86 

epidermidis (MRSE) (6, 12). Khalilpour et al. (6) reported that Ag/SiOxCy coating showed a 87 

significant in vitro antimicrobial activity against MRSA and ex vivo suppression of more than 88 

99.9% of bacterial growth by the coating compared to non-coated samples after 28 days. Furkert 89 

et al. (7) observed similar results during a study on Staphylococcus epidermidis where they 90 

demonstrated that fixation pins coated with silver showed a 3-log step reduction in the number of 91 

biofilm-forming bacteria compared to a non-coated stainless steel or titanium implant. Similarly, 92 

the present study demonstrated that the new silver plasma coating was highly effective against 93 



biofilm-forming MRSP and showed more than 99.98 % reduction in the number of CFU 94 

compared with the non-coated specimens. This work is the first report of successful application 95 

of silver coating technology to a MSRP isolate that is of direct relevance to canine orthopedics.  96 

The antimicrobial activity of silver is dependent on the availability of free silver ions 97 

(SI). In the presence of moisture, the embedded metallic silver particles (Ag
0
) generate silver 98 

ions (SI) which diffuse through the siloxane top layer to create an antimicrobial surface.  The 99 

pure metallic silver particles act as a depot of silver and provides a continuous and long term 100 

generation of silver ions. SI strongly bind to cellular components such as enzymes and structural 101 

proteins leading to altered function (8, 13, 14). Free SI interfere with bacterial cell metabolism 102 

and disturb the integrity of the bacterial cell membrane (13, 15). Furthermore, SI can interact 103 

with the DNA of bacteria, preventing bacterial replication (15).  Antimicrobial coating of 104 

surfaces with silver seems to reveal differences based on the size of the silver particles, which 105 

are used. Meyer et al. (16) reported that the use of colloidal silver for coating of fixation pins 106 

caused deficient antimicrobial effect. In contrast, nanoparticulate silver provides a larger active 107 

surface area and a more homogeneous distribution of silver on biomaterials. The titanium 108 

specimens used in this study were coated with a plasma polymer in which silver nanoparticles 109 

(5–50 nm) were embedded. Our findings are similar to those demonstrated by Panácek et al. (13) 110 

who reported that the smaller particles with a larger surface area available for interaction 111 

provided a more efficient means of antibacterial activity than larger particles. It has been 112 

reported that impregnation of silver into a coating can be more effective than direct surface 113 

coating alone as surface silver can be deactivated by protein anions (14). 114 

In vitro antibacterial efficiency of the silver coating and biofilm structure was secondarily 115 

evaluated by scanning electron microscopy (SEM). Three titanium specimens (one silver-coated 116 



and two control uncoated) were incubated separately, each in a petri dish containing 10 ml of 117 

MRSP suspension in tryptic soy broth of OD600 = 0.5 for 24 hours aerobically at 37°C to initiate 118 

biofilm formation. Following incubation, each specimen was washed by immersion in 10 ml of 119 

PBS and then fixed with 2.5% glutaraldehyde in 0.1 M phosphate buffer; pH 7.4 at 4°C until 120 

time of SEM imaging. The results obtained by SEM revealed no bacterial growth or biofilm 121 

formation on the silver-coated specimen (n =1) after 24 hours of incubation in strong biofilm 122 

forming MRSP suspension, while biofilm formation was observed on the control uncoated 123 

specimens (n =2). The biofilm was characterized by micro colonies of bacteria along with large 124 

amounts of irregularly extracellular polymeric substances (EPS) (Figure 2). Similar findings 125 

were observed by Singh et al. (10). These SEM images correlated with the lower number of CFU 126 

recovered on the silver-coated specimens after 24 hours of incubation compared to uncoated 127 

specimens.   128 

In conclusion, the results from this laboratory confirm the in vitro antimicrobial activity 129 

of the silver impregnated coating against a strong biofilm-forming MRSP strain that was isolated 130 

from a dog with an infected total knee replacement. Our findings suggest that this silver plasma 131 

coating may represent a potentially valuable strategy for reducing adhesion of MRSP and 132 

preventing implant-associated infections in dogs undergoing orthopedic surgery.  133 

 134 
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Figure legends 173 

Figure 1 174 

Antimicrobial efficiency of control uncoated and silver-coated specimens against biofilm 175 

forming MRSP at T0 and T24 (log10 CFU/ml).  (*) significant difference at p < 0.0001. 176 

 177 

 178 

Figure 2 179 

Scanning electron microscopy (SEM) of non-coated (left) and silver-coated (right) titanium 180 

specimens inoculated with MRSP. The SEM images were taken at three different magnifications, 181 

1000x, 2500x, 10000x (from top to bottom). 182 
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Figure 1. Antimicrobial efficiency of control uncoated and silver-coated specimens against 185 

biofilm forming MRSP at T0 and T24 (log10 CFU/ml).  (*) significant difference at p < 0.0001. 186 
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 190 

Figure 2. Scanning electron microscopy (SEM) of non-coated (left) and silver-coated (right) 191 

titanium specimens inoculated with MRSP. The SEM images were taken at three different 192 

magnifications, 1000x, 2500x, 10000x (from top to bottom). 193 
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