Von Hippel-Lindau Disease: Genetics and Role of Genetic Counseling in a Multiple Neoplasia Syndrome

1 Von Hippel-Lindau Disease: Genetics and Role of Genetic Counseling in a Multiple Neoplasia Syndrome

Sarah M. Nielsen1, Lindsay Rhodes2, Ignacio Guillermo Blanco3, Wendy K. Chung4, Charis Eng5,6, Eamonn R. Maher7, Stéphane Richard8, and Rachel H. Giles10,11

1Center for Clinical Cancer Genetics and Global Health, Department of Medicine, The University of Chicago, Chicago, IL, 60637 USA
2Department of Pediatrics, The University of Chicago, Chicago, IL 60637 USA
3Spanish Association of Human Genetics, Hospital Universitari Germans Trias i Pujol, UAB - Universitat Autònoma de Barcelona, Barcelona, Spain
4Departments of Pediatrics and Medicine, Columbia University, New York, NY 10032 USA
5Genomic Medicine Institute, Lerner Research Institute and Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH 44195 USA
6Department of Genetics and Genome Sciences and Germline High Risk Focus Group, CASE Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106 USA
7Department of Medical Genetics, University of Cambridge and Cambridge NIHR Biomedical Research Centre, Cambridge CB2 0QQ, UK
8Centre Expert National Cancers Rares PREDIR, INCa/AP-HP, Hôpital Bicêtre, 94275 Le Kremlin Bicêtre ; Génétique Oncologique EPHE, INSERM U1186, Gustave Roussy Cancer Campus, 94800 Villejuif-France
9Department of Nephrology, University Medical Center Utrecht, Regenerative Medicine Center Utrecht, Uppsalalaan 6, 3584CT Utrecht, The Netherlands
10Chair, Dutch VHL Patient Organization, www.vonhippellindau.nl

Nielsen et al. 1
Von Hippel-Lindau Disease: Genetics and Role of Genetic Counseling in a Multiple Neoplasia Syndrome

Running Head: Genetics of VHL Disease and Genetic Counseling Considerations

Key Words: VHL, genetics, genetic counseling, multiple neoplasia syndromes, genotype-phenotype correlation

Word Count: 5,219

Corresponding Author:

Sarah Nielsen, MS, CGC
The University of Chicago Medicine & Biological Sciences
5841 S. Maryland Ave., MC 2115, Chicago, IL, 60637
Office: 773-702-4749
Fax: 773-834-3834
Email: snielsen@medicine.bsd.uchicago.edu
Von Hippel-Lindau Disease: Genetics and Role of Genetic Counseling in a Multiple Neoplasia Syndrome

Abstract

Von Hippel-Lindau disease (VHL) is one of the most common inherited neoplasia syndromes characterized by highly vascular tumors of the eyes, brain and spine, as well as benign and malignant tumors and/or cysts of the kidneys, adrenal medullae/sympathetic paraganglia, endolymphatic sac, epididymis, and broad ligament. Since the discovery of the \textit{VHL} gene in 1993, >900 families with VHL have been identified and examined. Genetic testing for VHL is widely available and will detect a disease-causing mutation in rate 95-100\% of individuals who have a clinical diagnosis of VHL, making it the standard of care for diagnosis of VHL. Furthermore, genetic testing for \textit{VHL} is indicated in some individuals with apparently sporadic VHL-related tumor types since \leq 10\% of pheochromocytoma or early-onset renal cell carcinoma (personal communication, Dr. Brian Shuch) and up to 40\% of CNS hemangioblastoma harbor germline \textit{VHL} mutations without a family history or additional features of VHL disease.1,2 The majority of \textit{VHL} mutations are private, but there are also well-characterized founder mutations. VHL is a complex, multi-organ disease which spans the breadth of oncology subspecialties, and as such, providers in these subspecialties should be aware of 1) when to consider a diagnosis of VHL, 2) when to refer to a genetics specialist for consideration of gene testing, and perhaps most importantly, 3) how to communicate this sensitive information in an age-appropriate manner to at-risk families. This manuscript will provide state of the art information on the genetics of VHL and will serve as a key reference for non-genetics professionals who encounter VHL patients.
Von Hippel-Lindau disease (VHL) is an inherited multiple-neoplasia syndrome characterized by highly vascular tumors of the eyes, brain and spine (retinal and CNS hemangioblastomas; HB), as well as benign and malignant tumors and/or cysts of the kidneys (clear cell renal cell carcinoma; RCC), adrenal glands/sympathetic paraganglia (pheochromocytoma; PCC, paraganglioma; PGL), pancreas (cysts/cystadenomas or pancreatic neuroendocrine tumors; PNETs), endolymphatic sac (endolymphatic sac tumors; ELSTs), epididymis (epididymal cysts and cystadenomas), and broad ligament (broad ligament/mesosalpinx cystadenoma). Since the first description of the disease in 1926 and the discovery of the VHL gene over 60 years later, >900 families worldwide with VHL have been identified and examined.

A timely review of the genetics of VHL is warranted because genetics is becoming increasingly integrated into healthcare in the name of “personalized” or “precision” medicine; as such, health care providers must now more than ever understand the sensitive and unique nature of communicating genetic information to patients. This is especially true in the field of oncology, where both somatic and germline genetic testing is becoming a standard part of oncologic work-up and clinical care. In the context of VHL, it is important to consider the sensitive nature of pre-symptomatic testing of children, as well as “unexpected” (incidental) VHL diagnoses as a result of the incorporation of multi-gene next-generation sequencing panels into clinical practice for sporadic VHL-associated tumors, namely RCC and PCC/PGL. Other special considerations in VHL include preconception counseling (including pregnancy-related risks), and the burden of extensive clinical screening.
Clinical Diagnosis and VHL Gene

A VHL diagnosis is established in an individual with a family history of VHL when they present with a single characteristic VHL-related tumor (e.g. retinal or cerebellar HB, RCC etc.). In the absence of a family history of VHL, a diagnosis requires two or more retinal or cerebellar HB, or one HB and a visceral tumor (excluding epididymal and renal cysts which are common in the general population).3,11-13

The VHL tumor suppressor gene (VHL) was mapped to 3p25-26 in 1993.8 Individuals with the hereditary form of these tumors inherit a single mutant VHL allele, and tumor development occurs when the second wild-type copy is spontaneously lost or inactivated. This “second hit” can occur through a variety of mechanisms, including point mutations, deletions, or promoter hypermethylation.14 As with many predisposition genes causing rare inherited cancer syndromes, somatic loss-of-function of VHL occurs in sporadic cancers.15-17 Indeed, inactivation of VHL is a critical driver of nearly all clear-cell RCC,18,19 approximately 40% of sporadic CNS HB and 10% of sporadic PCC.20-23

Molecular Biology of VHL

Over two decades of research has implicated VHL protein (pVHL) in transcriptional regulation, apoptosis, extracellular matrix formation, and ubiquitinylatation of specific targets.23 In particular, the role of pVHL in the adaptive cellular response to hypoxia has been robustly investigated; pVHL regulates hypoxia-inducible genes through the targeted ubiquitinylation and degradation of the alpha-subunits of the hypoxia-inducible factor transcription factors (HIF-1α, -2α, -3α).
pVHL binds to elongin C, which forms a complex with elongin B, cullin-2 and Rbx1.

This complex catalyzes the polyubiquitylation of specific proteins and targets them for proteosomal degradation. Under normoxic conditions, HIFα subunits are hydroxylated by prolyl hydroxylases, a reaction requiring oxygen. The VHL protein then binds to hydroxylated HIFα, targeting it for degradation by its attached destruction complex. In the absence of oxygen or functional pVHL, HIFα subunits are stabilized, accumulate, and translocate to the nucleus where HIFα forms heterodimers with HIFβ to activate the transcription of dozens of hypoxia-inducible genes (i.e., VEGF, EPO, TGFα, PDGFβ). VHL-mutant cells experience pseudo-hypoxia and shift metabolism to glycolysis even in the presence of oxygen, a process referred to as the Warburg effect. In fact, our ability to better manage patients with non-familial advanced renal cell carcinoma as well as surgical management guidelines of small renal masses has been largely driven by a better understanding of the VHL and consequent biochemical alterations underlying these tumors, in particular first-line VEGF-targeting agents.

Pathogenic variants in VHL either reduce expression (i.e., deletions, frameshifts, nonsense variants, and splice site variants) or lead to the expression of an abnormal protein (i.e., pathogenic missense variants). The type of VHL that results from a pathogenic missense variant depends on its effect on the three-dimensional structure of the protein. Pathogenic variants in VHL cause misfolding and subsequent chaperonin-mediated breakdown. Pathogenic missense variants that destabilize packing of the alpha-helical domains, decrease the stability of the alpha-beta domain interface, interfere with binding of elongin C and HIFα, or disrupt hydrophobic core residues result in loss of HIF regulation. Furthermore, mutant pVHL may predispose to
Von Hippel-Lindau Disease: Genetics and Role of Genetic Counseling in a Multiple Neoplasia Syndrome

pHependromycytoma by altering the molecular regulation of apoptosis of sympatho-adrenal precursor cells during development.

HIF-independent pVHL functions have added greater breadth to the understanding of the pathophysiology of VHL. For example, cyst formation in VHL patients has been linked to microtubule-based organelles called primary cilia. pVHL directs microtubule orientation and subsequent stability. pVHL also regulates primary cilia, through both HIF- and microtubule-independent functions. Furthermore, genetic instability in tumors is driven by VHL loss.

pVHL has been shown to mediate in the transcriptional regulation of the nuclear factor NF-κB, the Rbp1 large subunit of the RNA polymerase complex II, the p53 tumor suppressor, the p400 chromatin remodeling factor and the JunB transcription factor via aPKC. However pVHL also plays an important transcription-independent role in the regulation of the extracellular matrix and the microtubule cytoskeleton. pVHL is involved in the correct formation and turnover of the extracellular matrix by interacting with collagen IV and fibronectin.

C. elegans vhl-1 knock out worms also displayed genetic evidence for defects in ECM formation. Furthermore, the activity of enzymes involved in degradation and remodeling of the ECM, matrix metalloproteinases MMP-2 and MMP-9, is increased in VHL-mutant cells, and HIF-2α induces the expression of membrane type 1-MMP. Since endothelial cells require pVHL for correct vascular patterning and maintenance of vascular integrity during development, loss of pVHL function causes both HIF-independent and HIF-dependent defects in the ECM that may promote angiogenesis, invasion and metastasis of tumor cells.

The development of malignant disease after biallelic inactivation of VHL has only been adequately addressed in the context of renal cell carcinoma. Several RCCs sequenced in two
Von Hippel-Lindau Disease: Genetics and Role of Genetic Counseling in a Multiple Neoplasia Syndrome

VHL patients revealed clonally independent and distinct secondary events all converging on the PI3K-AKT-mTOR signalling pathway, and not characterized by inactivating mutations in p53, similar to sporadic renal cell carcinomas in the general public.47 Overall there was limited evidence of intra-tumor heterogeneity in VHL patients, although the number was very small and requires independent validation.

Role of Genetic Testing, Mutation Frequency and Spectra

The role of genetic testing in VHL is to confirm or exclude a diagnosis in: 1) at-risk relatives from established VHL kindreds, 2) individuals with suspected clinical diagnoses, or 3) individuals with atypical presentation or moderate suspicion, keeping in mind that failure to find a disease-causing mutation does not rule out a clinical diagnosis in scenario 2.

Approximately 200 distinct mutations have been identified in >900 VHL kindreds.9,10,48 The mutation spectrum includes missense (52\% of patients), frameshift (13\%), nonsense (11\%), large/complete deletions (11\%), in-frame deletions or insertions (6\%), and splice-site (7\%).9 Almost 100\% individuals meeting classic VHL criteria with multi-organ involvement carry identifiable germline \textit{VHL} mutations; 24\% in those meeting criteria with limited VHL manifestations; and 3.3\% in those with VHL-associated tumors but do not meet diagnostic criteria.49 Unexpected germline \textit{VHL} mutations can be found in patients with apparently sporadic VHL-type tumors. \textit{VHL} germline mutations occur in 30-50\% of patients with retinal HB, 4-40\% of patients with CNS HB, 20\% of patients with ELST, 3-11\% of patients with PCC and 1-2\% of patients with RCC.1,3,50-55 These observations underlie guidelines suggesting genetics evaluation when certain tumors or clinical features are present. Referral to genetics professionals for consideration of testing (Table 1) has been suggested for individuals with simplex cases of
retinal or CNS HB, PCC, or ELST, as well as clear-cell RCC with any of the following features: 1) diagnosed ≤ age 46, 2) bilateral or multifocal tumors, 3) ≥ 1 close relative with clear-cell RCC. Whereas other groups have suggested that, in addition to the above, genetic evaluation is warranted for individuals with >1 of the following: pancreatic cystadenoma, pancreatic neuroendocrine tumor, epididymal/adnexal cystadenoma.

VHL Gene Testing

VHL genetic testing is available at multiple laboratories worldwide (Table 2). Sanger sequencing of the coding region, along with deletion/duplication analysis, is the gold standard for analyzing the VHL gene and results in 95-100% detection rate (though mosaicism may cause false negative test results). Multiplex ligation-dependent probe amplification (MLPA) is used for detecting partial and complete gene deletions/duplications.

When there is a high prior-probability of VHL mutation, single gene testing is appropriate. However, when the genetic differential diagnosis is large, next-generation sequencing multi-gene panels should be considered in the setting of genetic counseling. This technology is often utilized for testing apparently sporadic PCC/PGL or familial/early-onset RCC to determine if there is an inherited component. Thus, referral for genetics evaluation should be considered for RCC diagnosed ≤ 46 years old (though for clinical purposes we often cast a wider net and consider referral for diagnoses ≤ 50 years old) or with the presence of a family history or other syndromic features. Over 40% PCC/PGL are associated with germline mutation in any of 12 genes supporting multi-gene panel testing for all cases of PCC/PGL.
Many laboratories worldwide now offer “multi-gene” panels targeted towards PCC/PGL and RCC. It is critical to include genetics professionals in this testing process as they have the skills to ensure that the appropriate testing method is followed through their astute analysis of the personal and family history. If more than one syndrome is in the differential diagnosis, they will review the implications of each syndrome so that the patient is providing true informed consent, and there are no “surprise” diagnoses. Additionally, genetics teams have expertise in the interpretation of genetic testing results, which is particularly crucial in the realm of next-generation sequencing as results are often not straightforward and misinterpretation can have devastating effects on the patient and family. While positive genetic test results seem relatively straightforward, there are many issues to consider once a diagnosis has been made. Genetics professionals can help individuals cope with a diagnosis and develop strategies to share this information with at-risk family members. A negative genetic test result must be interpreted in the context of the individual’s personal and family history; very often it DOES NOT rule out a clinical or a hereditary cause for the cancer/disease in the family. In this instance, an individualized approach must be taken to further surveillance recommendations, taking into account personal/family history and patient preferences. Lastly, variants of uncertain significance (VUS) identified through genetic testing need to be carefully considered. A VUS means a genetic change is identified, but the significance of that change is unknown. The patient and their medical team need to understand that these results do not immediately affect medical management recommendations, which are always based on personal/family history until that VUS is reclassified, a process that could take several months or years.

Clinical and Genetic Features

Nielsen et al. 10
Von Hippel-Lindau Disease: Genetics and Role of Genetic Counseling in a Multiple Neoplasia Syndrome

The incidence of VHL is approximately 1 in 36,000.63 It has a penetrance of over 90\% by age 65, with mean age at tumor diagnosis of 26 years (range 1-70).5,64 The breakdown of frequency and mean age at diagnosis of specific VHL tumor types is outlined in Table 3. Long-term outcomes in individuals with VHL continue to improve due to improvements in surveillance and treatment of RCC and CNS HB, the leading causes of morbidity and mortality in VHL.64 Phenotypic heterogeneity (both inter- and intrafamilial) is a hallmark of VHL.65,66 Clinically, VHL is classified into type 1 or type 2 disease based on the frequency of RCC and PCC (see Table 4).67-69 Although this classification facilitates genotype-phenotype studies (reviewed elsewhere9), it has limited clinical utility as kindreds move between subtypes as additional tumors are discovered.6,23 Briefly, kindreds with truncating mutations or exon deletions infrequently manifest PCC, and thus usually have type 1 disease characterized by increased incidence of RCC and retinal/CNS HBs (but not PCC), whereas Type 2 VHL is characterized by missense mutations predisposing to PCC, some with PCC alone (type 2C) and other families with additional manifestations.70 As the relationship between genotype and phenotype is still evolving, it is recommended that all individuals with a diagnosis of VHL follow the same surveillance protocol, which screens for all possible manifestations of the disease.

As with most tumor suppressors, the majority of VHL mutations are private. However, recurrent founder mutations are well-documented. The most well-characterized founder mutations are those originating from Germany: c.T292C (previously c.T505; p.Y98H) in families from the Black Forest region, and c.T334C (previously c.T547C; p.Y112H) in families from east central Germany (Leipzig).67,71-75 These families have migrated across Europe and America,
Von Hippel-Lindau Disease: Genetics and Role of Genetic Counseling in a Multiple Neoplasia Syndrome

especially Western Pennsylvania. Both mutations predispose to Type 2A VHL, with a high risk of PCC, moderate risk of retinal/CNS HB, and low risk of RCC.74,76

A mutation hotspot is at codon 167, due to the presence of CpG dinucleotide with attendant risks of deamination.69 There have been more than 82 families identified with mutations at this location, representing \textasciitilde 43\% of mutations in American and Canadian families with VHL type 2.9,59,69 Individuals with mutations at this location have a high risk of developing PCC (\textasciitilde 62\%) and RCC.69

VHL genotype-phenotype correlation is further complicated by a unique congenital polycythemia syndrome caused by biallelic (homozygous/compound heterozygous) mutations of the \textit{VHL} gene without any manifestations of VHL disease.6 The most frequent mutation in this syndrome is c.C598T (p.R200W).77 Individuals homozygous for this mutation have polycythemia, pulmonary hypertension, varicose veins, elevated serum VEGF concentrations, and occasional vertebral hemangiomas.6,78

VHL is inherited in an autosomal dominant manner, with the majority (80\%) of cases being inherited from an affected parent, and up to 20\% \textit{de novo}.79,80 Once a VHL mutation is identified in a family, it is recommended to offer genetic testing to that individual’s parents (if they are available) even in the absence of an apparent family history, as family history may appear to be negative due to reduced penetrance or later age-of-onset, variable expressivity among family members, or death of an affected parent before onset of symptoms.81 Mosaicism occurs when a new mutation arises in some but not all tissues, which can result in negative genetic testing if an unaffected cell or tissue type is sampled.80 There are data suggesting that
Von Hippel-Lindau Disease: Genetics and Role of Genetic Counseling in a Multiple Neoplasia Syndrome

Mosaicism is an under-recognized phenomenon in VHL, which could result in an overestimation of true cases of de novo mutations in probands. Generally, mosaic individuals tend to be more mildly affected or asymptomatic81, though this is not always the case and mosaicism has been confirmed in individuals with classic VHL disease as well.82,83 It is now recommended that additional testing methods be employed to rule out mosaicism in parents of a proband with an apparent de novo mutation, as well as cases moderately or highly suspicious of VHL in whom standard testing methods have failed to detect a disease-causing mutation.80-83 Various techniques have been successful in identifying mosaic mutations.80,82 Alternatively, different tissue types can be sampled, including skin fibroblasts and oral epithelial cells.81,84 Detection of mosaicism is critical in terms of confirming a diagnosis and estimating the risk to siblings and offspring.82,83 As next-generation sequencing replaces Sanger sequencing, mosaic cases may be more easily detected which could provide the data needed to elucidate the true frequency of mosaicism in VHL.

Genetic Counseling & Surveillance Considerations

Genotype-phenotype issues are only of scientific value at this point and play no role in clinical or counseling care to the VHL patient. Given the complexity of the disease, a multidisciplinary approach with coordination of care amongst multiple medical specialists, including genetics professionals, is essential for individuals with VHL. Although preventative treatment cannot yet be offered for VHL, it is generally accepted that comprehensive surveillance programs do improve the outcomes by preventing avoidable morbidity and mortality.6,85,86 Therefore, genetics professionals may take a more directive approach to their counseling because of the importance of initiating or continuing screening for gene carriers (and

Nielsen et al. 13
discontinuing it for non-carriers). At-risk family members who received genetic counseling were more likely to pursue VHL testing compared to those who were only informed of the possibility of testing through a relative or written material. Genetics professionals can aid families in the risk communication process and help identify and work through barriers to genetic testing and follow-up.

Pre-symptomatic testing of children

Since children of an individual with VHL each have a 50% chance of being affected, the topic of genetic testing for VHL in children is one that arises often in clinical care. For healthy children, many professional statements and guidelines support the recommendation that genetic testing only be pursued if the condition is associated with childhood onset and if a positive result leads to effective and safe screening and/or interventional options, thereby reducing morbidity and mortality. Although the average age of onset of VHL tumors is in the third decade of life, some patients do develop tumors under the age of 10 and as early as infancy and therefore pre-symptomatic genetic testing in VHL is justified. Pre-symptomatic genetic testing also identifies those children who did not inherit the familial VHL mutation, thus sparing them from a lifetime of clinical screening.

There are many factors to be considered before pre-symptomatic genetic testing is pursued. Genetic testing may be offered to a family with a child who is too young to give their informed assent, leading to potential loss of autonomy for that child who may grow up with genetic information that they were not able to elect for themselves. Testing can also be associated with many complex emotions, including anxiety, denial, and guilt on the part of the
parent who is affected with VHL. Many families may have lived through the experience of loved ones developing tumors or other VHL-related complications at young ages that may impact their coping when their children are found to carry the VHL mutation. Additionally, at-risk or affected children may be treated differently than their non-carrier siblings. Surveillance fatigue/burnout should also be considered in families considering testing for VHL in their children, since the surveillance is initiated in childhood for mutation-positive children and is lifelong. This topic is discussed more extensively in a subsequent section. It is strongly recommended that genetic counseling for pre-symptomatic genetic testing be conducted by a genetics professional in a comfortable environment, with the option of having multiple genetic counseling sessions, as necessary.

Genetic communication needs of children with VHL

A major question that arises from parents and health professionals is how and when to inform children of their genetic status. Research specific to communication among families with VHL is limited, but studies on the communication needs of children with other genetic condition have found that the majority of patients would have preferred receiving information before the age of 12 years, ideally between 6 and 10 years of age. The majority parents with VHL want their children tested either at birth or at least before the age of 10 years. Adolescents preferred that the focus of a genetic counseling session be on understanding and managing their health condition rather than on their reproductive risks. They also identified their parents as their primary source of genetic information (with doctors or other health professionals coming second to this) and many wanted to be seen by their health care provider with their parents present.
Parents are often unsure of the best way to discuss information regarding a genetic diagnosis with their children and common concerns include how the information may impact their child’s self-esteem, coping, and anxiety level. Parents may feel overwhelmed by the information, not knowing how, when, or what information to provide. Additionally, they may feel insecure in their own understanding of that information. Studies show that parents feel guidance and support from health care professionals on how to deliver this information is very important though often not available. An important part of the genetic counseling process is to discuss with families how they plan to present the information to their children throughout different stages of their lives.

Children report their preference of learning about their genetic condition gradually through open and continuous communication throughout childhood. In this way children are provided with developmentally appropriate information that they can ask questions about and understand at their own pace, helping them come to terms with their genetic risk in a natural and self-driven way. This genetic information then becomes part of the family narrative or culture; talking about those in the family who are also affected helps normalize the information by making it part of a shared family identity.

In contrast, not acknowledging the genetic condition in the family dissuades children from asking questions, as they do not want to upset their parents. Genetics professionals can help facilitate the communication process, elicit any perceived barriers to communication and provide a safe place for parents to practice these discussions. Resources that provide parents with techniques, diagrams, and appropriate language to use while communicating with their children can be developed, and support groups or additional professional psychosocial support
should be encouraged. One such example available to the VHL community is the VHLA Handbook Kids’ Edition (accessible at http://www.vhl.org/wordpress/patients-caregivers/resources/vhl-handbooks/).

Pre-conception counseling (including pregnancy-related risks)

The availability of genetic testing for VHL introduces options for couples at-risk of having a child with VHL, including prenatal diagnosis and pre-implantation genetic diagnosis (PGD). Although perceptions may vary across countries, the French VHL study group interviewed 18 women and 13 men with VHL and found that a significant proportion of them (11 women and 11 men; ~70%) intended to use prenatal diagnosis in the case of a pregnancy, although half of the group would not terminate an affected pregnancy (or were undecided) because they hoped for better outcomes and treatments in the future for their children compared with their own experience of VHL. PGD uses in-vitro fertilization techniques to identify genetic mutations within embryos prior to implantation. This is a technology that VHL patients are interested in exploring: 71% of Australian patients (10/14 respondents) viewed it as a favorable option to avoid having a child with VHL compared to 33% (26/79 respondents) in the Dutch population. At least eleven children have already been born using this method from the French VHL study group, which now comprises 802 individuals living with VHL, 28 of whom have attempted to have children using PGD (Coupier et al., unpublished data). It is important that patients understand the practical limitations of PGD, namely cost as many insurances currently will not cover the service. Additionally, there are limitations to the technology that must be communicated, including 1) the germline mutation in the family must be known; 2) there are no data about the effect of IVF-related hormone treatment for egg harvest on
Von Hippel-Lindau Disease: Genetics and Role of Genetic Counseling in a Multiple Neoplasia Syndrome

tumor development; and 3) the process often takes over a year and if a tumor develops in that period, application of PGD may be delayed or abandoned.

Another factor that complicates reproductive decision making in VHL are the pregnancy-related risks associated with the disease. While generally pregnancy is not considered a contraindication in VHL patients, certain precautions must be considered. Available studies on the subject show conflicting results regarding development or progression of tumors and disease-related complications. It is critical to evaluate for potentially life-threatening complications, namely PCC or hydrocephalus due to cerebellar HB, before attempting to become pregnant.

Many groups also advocate for additional screening and monitoring during pregnancy, including routine evaluation of retinal angiomas, non-contrast MRI during fourth month for CNS lesions, plasma metanaphrine testing during early, mid and late pregnancy as well as consideration of delivery via caesarian section to lower the chance of increased intracranial pressure. As long as patients are followed closely by a multidisciplinary team, pregnancy is typically a safe option for women with VHL, but other options such as surrogacy and adoption can also be explored.

Psychosocial impact of VHL, including burden of lifelong surveillance

There are little data on the psychosocial impact of complex tumor predisposition syndromes with limited prevention options. However, the data that do exist suggest that a significant proportion of those affected by VHL and those who care for them experience clinically important levels of distress. Those that experienced the death of a close relative due to VHL during adolescence were particularly vulnerable. About one-third of participants had
received professional psychosocial support, and the rest seemed amenable to it.107 Many patients struggle with the complex medical, social and psychological aspects of VHL, for example, uncertainty about future tumor development, frustration regarding lifelong screening, strained relationships with family and partners, difficulty communicating with others about VHL, and complex decisions regarding childbearing.87,108

A highly sensitive concern for VHL patients is the burden of lifelong surveillance. Suggested surveillance guidelines are summarized in Table 5. While surveillance can pick up early-stage lesions that are amenable to treatment i.e. retinal angiomas, it also identifies lesions for which there is no immediate clinical benefit i.e. pancreatic cysts, and even findings unrelated to VHL that require further follow-up.86 For these reasons, most individuals with VHL view surveillance regimens as a “necessary yet anxiety-provoking burden” that incite a variety of responses including denial, anger, fear, sadness and anxiety.87 While the uptake of genetic testing is generally high in VHL families, as many as 60\% of identified mutation carriers will be lost to follow-up 5 years after testing, suggesting that patients’ concerns regarding surveillance are not being appropriately addressed.90 As current VHL surveillance guidelines are largely based on expert medical opinion and limited evidence, healthcare providers also struggle with determining “optimal” surveillance recommendations while also minimizing the patient’s psychological distress ("scanxiety") and expenses to the healthcare system.109

Recently, nationwide efforts by VHL care teams in Denmark and the Netherlands have sought to address these issues by providing additional evidence regarding the optimal initiation and frequency of surveillance regimes.109-113 Kruizinga et al. calculated organ-specific age to initiate surveillance (and surveillance intervals), which were 0 years/at birth for the adrenal
Von Hippel-Lindau Disease: Genetics and Role of Genetic Counseling in a Multiple Neoplasia Syndrome

glands (4 year interval between screenings), 7 years for the retina (2 year interval), 14 for the cerebellum (1 year interval), 15 for the spinal cord (1 year interval), 16 for the pancreas (2 year interval), and 18 for the kidneys (1 year interval). These findings represent significant deviation from current surveillance guidelines particularly in terms of adrenal and retinal surveillance, with a 6 year later initiation of retinal surveillance and one year longer interval follow-up, and 5 year earlier initiation of adrenal surveillance with 3 year longer interval follow-up. They were also able to calculate the age, 34 years old, at which the probability of developing a first manifestation of VHL is <5%, representing a reasonable age to stop surveillance, for instance in at-risk family members of a proband whose disease-causing mutation cannot be identified.

Other groups have suggested possible modifications in the current guidelines for other organs, for example, Poulson et al. found that biennial CNS examinations led to relatively high rate (7.2%) of interval lesions with clinical consequences, whereas annual screening reduced the risk to an acceptable rate of 2.7%. Binderup et al. pointed out that these and other previous studies have assumed the risk of new tumor development is constant throughout a VHL patient’s lifetime, however, risk can vary significantly with age and genotype and depends on the organ involved. They found that tumor development was highest at 30-34 years, and when broken down by the most common organs affected in their cohort, the risk of retinal tumors was highest during teenage years (15-19 years) and the risk of cerebellar tumors was highest during the 30s. Therefore, adherence to surveillance of these organs during those times should be particularly encouraged. Additionally, they stratified by genotype, and found that carriers of truncating mutations had significantly higher rates of manifestations compared to missense mutation.
carriers, with the exception of retinal tumors which were significantly less frequent in carriers of truncating mutations.109 While some argue that surveillance recommendations should not be influenced by specific mutations as the second hit that results in tumor development is random, the goal in any hereditary cancer predisposition syndrome is to be able to tailor management guidelines based on individual factors, such as genotype, environmental stimuli, or other genetic alterations.

As all of the above mentioned studies represent significant deviations from the current surveillance guidelines, they would need to be confirmed by larger prospective studies in other geographic populations before being incorporated into clinical practice.

In terms of practical strategies for increasing adherence to surveillance protocols, it is crucial for health care providers to set expectations before screening regarding benefits and limitations, and logistical matters including how and when results will be relayed. It is important to engage the whole family in this discussion if possible, as studies have shown that family members tend to take the same stance towards long-term surveillance.90 Families also need to understand that absence of symptoms is not a reason to delay screening; the variable nature of the disease within families can create the misconception that only the members who are the most symptomatic require close follow-up.90,112 It is also important that health care providers adhere to national guidelines for surveillance because patients given variable advice at different institutions tend not to fully adhere to the given advice.112 If feasible, a “case manager” (specially trained nurse practitioner or genetic counselor) for VHL families is advised in order to serve as a primary contact and help coordinate multidisciplinary care, including medical follow-up and psychosocial needs.112
The role of patient associations is crucial in disseminating up-to-date information about rare diseases to patients and physicians. The VHL Alliance, established in 1994, has a worldwide presence and actively contributes to supporting VHL research and works with experts in the field to establish current surveillance recommendations (www.vhl.org). There are now National VHL networks and/or specialized clinical care centers in over 30 countries that offer specialized medical and psychosocial support and opportunity to connect with VHL patients from around the world.48,106 Table 4 provides a list of VHL and genetics resources for patients, their caregivers, and managing physicians.

In summary, VHL is a complex and intriguing disease from a genetic, clinical, and psychosocial standpoint. It is a disease that spans a breadth of pediatric and adult oncologic subspecialties and as such providers should be aware of when consider the diagnosis and the special considerations involved in genetic workup and familial testing. There have been many advances in the understanding of VHL over the years, and continued discoveries will lend insight into the treatment of variety of hereditary and sporadic cancers and help optimize all aspects of care for VHL patients and their families. Strategies may need to adjust as new therapies are expected to become available, likely on an organ-by-organ basis. For example, for the treatment of ccRCC, both VHL patients and sporadic patients have enormously benefited from VHL-driven molecular biology, in particular VEGF pathway inhibitors like sunitinib and pazopanib which currently form the only two first-line therapies recommended for treatment of metastasized RCC. However, recent FDA approval of immuno-oncological agents like nivolumab for second-line treatment of advanced renal cell carcinoma114 should be carefully followed in VHL patients, since presumably a single VHL patient may have hundreds or more
subclinical lesions throughout their body. Exciting developments in gene therapy offer future promise for VHL patients, but for now surveillance remains the best approach for disease management.

Acknowledgements

This review is dedicated to all our patients and their families, and their multidisciplinary caregivers and researchers. We would also like to thank the VHL Alliance, particularly Ilene Sussman, and Eric Jonasch, MD for suggesting this collaboration and supporting our efforts.

C.E. is the Sondra J. and Stephen R. Hardis Endowed Chair of Cancer Genomic Medicine at the Cleveland Clinic, and an American Cancer Society Clinical Research Professor. RHG acknowledges the Dutch Kidney Foundation “KOUNCIL” consortium (CP11.13).
Von Hippel-Lindau Disease: Genetics and Role of Genetic Counseling in a Multiple Neoplasia Syndrome

References

Von Hippel-Lindau Disease: Genetics and Role of Genetic Counseling in a Multiple Neoplasia Syndrome

Von Hippel-Lindau Disease: Genetics and Role of Genetic Counseling in a Multiple Neoplasia Syndrome

Nielsen et al. 27
Von Hippel-Lindau Disease: Genetics and Role of Genetic Counseling in a Multiple Neoplasia Syndrome

Von Hippel-Lindau Disease: Genetics and Role of Genetic Counseling in a Multiple Neoplasia Syndrome

Von Hippel-Lindau Disease: Genetics and Role of Genetic Counseling in a Multiple Neoplasia Syndrome

Von Hippel-Lindau Disease: Genetics and Role of Genetic Counseling in a Multiple Neoplasia Syndrome

Nielsen et al. 32
Von Hippel-Lindau Disease: Genetics and Role of Genetic Counseling in a Multiple Neoplasia Syndrome

Von Hippel-Lindau Disease: Genetics and Role of Genetic Counseling in a Multiple Neoplasia Syndrome

Von Hippel-Lindau Disease: Genetics and Role of Genetic Counseling in a Multiple Neoplasia Syndrome

Table 1. Indications for consideration of genetic counseling/testing for VHL56,57,61

<table>
<thead>
<tr>
<th>Simplex Case is Sufficient for Referral</th>
<th>Presence of >1 Tumor is Suggested for Referral</th>
</tr>
</thead>
<tbody>
<tr>
<td>Retinal/CNS HB</td>
<td>Pancreatic cystadenoma</td>
</tr>
<tr>
<td>PCC/PGL</td>
<td>PNET</td>
</tr>
<tr>
<td>ELST</td>
<td>Epididymal/adnexal cystadenoma**</td>
</tr>
<tr>
<td>Clear-cell RCC*</td>
<td>Clear-cell RCC***</td>
</tr>
</tbody>
</table>

*If diagnosed <50 years old or \(\geq 1 \) close relative with clear-cell RCC

** Bilateral papillary cystadenomas of adnexal/broad ligament are pathognomonic for VHL

*** If diagnosed >50 years old or no close relatives clear-cell RCC

Table 2. VHL and Genetics Testing Resources

<table>
<thead>
<tr>
<th>Organization</th>
<th>Website</th>
</tr>
</thead>
<tbody>
<tr>
<td>VHL Family Alliance</td>
<td>www.vhl.org</td>
</tr>
<tr>
<td>National Society of Genetic Counselors</td>
<td>www.nsgc.org</td>
</tr>
<tr>
<td>GeneTests™</td>
<td>https://www.genetests.org/</td>
</tr>
</tbody>
</table>
Table 3. Frequency and Age of Onset of VHL-associated Tumors5,6,48,58

<table>
<thead>
<tr>
<th>Location</th>
<th>Mean (range) age of onset (years)</th>
<th>Frequency in patients</th>
</tr>
</thead>
<tbody>
<tr>
<td>CNS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Retinal HB</td>
<td>25 (1-68)</td>
<td>25-60%</td>
</tr>
<tr>
<td>ELST</td>
<td>22 (12-50)</td>
<td>10-15%</td>
</tr>
<tr>
<td>Craniospinal HB (overall)</td>
<td>30 (9-70)</td>
<td>60-80%</td>
</tr>
<tr>
<td>Cerebellum</td>
<td>33 (9-78)</td>
<td>44-72%</td>
</tr>
<tr>
<td>Brainstem</td>
<td>32 (12-46)</td>
<td>10-25%</td>
</tr>
<tr>
<td>Spinal cord</td>
<td>33 (11-66)</td>
<td>13-50%</td>
</tr>
<tr>
<td>Visceral</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RCC or cysts</td>
<td>39 (13-70)</td>
<td>25-75%</td>
</tr>
<tr>
<td>PCC</td>
<td>27 (5-58)</td>
<td>10-25%</td>
</tr>
<tr>
<td>PNET or cyst</td>
<td>36 (5-70)</td>
<td>35-75%*</td>
</tr>
<tr>
<td>Epididymal cystadenoma</td>
<td>Unknown</td>
<td>25-60%</td>
</tr>
<tr>
<td>Broad ligament cystadenoma</td>
<td>Unknown (16-46)</td>
<td>Unknown</td>
</tr>
</tbody>
</table>

* Frequency of PNET is 11-17\% whereas that of pancreatic cysts is up to 75\%48

Adapted from Lonser et al. 20035 and Maher & Kaelin, 199758
Table 4. VHL Subtypes

<table>
<thead>
<tr>
<th>VHL Subtype</th>
<th>VHL Mutation Type</th>
<th>High Risk</th>
<th>Low Risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type 1</td>
<td>Deletions, insertions, truncations, missense</td>
<td>CNS/retinal HB, RCC</td>
<td>PCC</td>
</tr>
<tr>
<td>Type 1B</td>
<td>Contiguous gene deletions encompassing VHL</td>
<td>CNS/retinal HB</td>
<td>PCC, RCC (risk may increased if C3orf10 remains increased)</td>
</tr>
<tr>
<td>Type 2A</td>
<td>Missense; e.g. p.Y98H, p.Y112H, p.V116F</td>
<td>CNS/retinal HB, PCC</td>
<td>RCC</td>
</tr>
<tr>
<td>Type 2B</td>
<td>Missense; e.g. p.R167Q, p.R167W</td>
<td>CNS/retinal HB, RCC, PCC</td>
<td>PCC</td>
</tr>
<tr>
<td>Type 2C</td>
<td>Missense; e.g. p.V84L, p.L188V</td>
<td>PCC</td>
<td>CNS/retinal HB, RCC absent</td>
</tr>
</tbody>
</table>
Von Hippel-Lindau Disease: Genetics and Role of Genetic Counseling in a Multiple Neoplasia Syndrome

Table 5. Suggested VHL Surveillance Guidelines

<table>
<thead>
<tr>
<th>Age</th>
<th>Screening</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-4</td>
<td>• Eye/retinal exam with indirect ophthalmoscope</td>
<td>Annually</td>
</tr>
<tr>
<td></td>
<td>• Physical exam with blood pressure check & neurological assessment</td>
<td>Annually</td>
</tr>
<tr>
<td>5-15</td>
<td>Above plus:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Test for plasma free metanephrines, or urinary metanephrines using 24-hour urine test</td>
<td>Annually</td>
</tr>
<tr>
<td></td>
<td>• Abdominal u/s from 8yrs or earlier if indicated; abdominal MRI or functional imaging scan only if biochemical abnormalities found</td>
<td>Annually</td>
</tr>
<tr>
<td></td>
<td>• Audiology assessment; in the case of repeated ear infections, MRI with contrast of the internal auditory canal</td>
<td>2-3 yrs (1 yr if tinnitus, hearing loss or vertigo)</td>
</tr>
<tr>
<td>16+</td>
<td>Above plus:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Quality ultrasound of abdomen</td>
<td>Annually</td>
</tr>
<tr>
<td></td>
<td>• MRI of abdomen with and without contrast</td>
<td>Every 2 yrs</td>
</tr>
<tr>
<td></td>
<td>• MRI of brain and cervical spine</td>
<td>Every 1-2 yrs</td>
</tr>
</tbody>
</table>