How far from equilibrium is active matter?
Étienne Fodor,1 Cesare Nardini,2, 3 Michael E. Cates,2, 3 Julien Tailleur,1 Paolo Visco,1 and Frédéric van Wijland1
1Université Paris Diderot, Sorbonne Paris Cité, MSC, UMR 7057 CNRS, 75205 Paris, France
2SUPA, School of Physics and Astronomy, University of Edinburgh, Edinburgh EH9 3FD, United Kingdom
3DAMTP, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, United Kingdom
(Dated: May 27, 2016)

NUMERICAL SIMULATIONS

We use Euler time-stepping to simulate the dynamics of AOUPs:
\[\dot{r}_i = -\mu \nabla_i \Phi + v_i; \quad \tau \dot{v}_i = -v_i + \sqrt{2D} \eta_i, \]
(1)

To observe the MIPS reported in Fig. 1 of the main text, we use periodic boundary conditions and the repulsive potential given by Eq.(2) of the main text. The figure is obtained by starting from a random homogeneous configuration, integrating the dynamics (1) with a time-step \(dt = 10^{-3} \) and taking a snapshot of the particle positions after a time \(t = 10^4 \).

To test the validity of our modified FDT, we consider AOUPs in \(\mathbb{R}^2 \), confined by a harmonic potential
\[V_W(x,y) = \frac{\lambda}{2} \theta(x-L)(x-L)^2 + \frac{\lambda}{2} \theta(-x)x^2 + \frac{\lambda}{2} \theta(-y)y^2 + \frac{\lambda}{2} \theta(y-L)(y-L)^2, \]
(2)
where \(\theta(u) \) is the Heaviside function. In the simulations reported on Fig. 2 of the main text, we use \(\lambda = 10 \). We integrate the dynamics of AOUPs using \(dt = 5 \times 10^{-4} \). We first let the system relax to its steady-state by simulating its dynamics for a time 50.

To measure the correlation function \(C_{eff}(t) \), we choose a given value of \(t_0 \) and store \(x_i(t_0) \) and \(\dot{x}_i(t_0) \). We then compute \([x_i(t_0) - x_i(t_0 + t)]x_i(t_0 + t) \) and \([\dot{x}_i(t_0) - \dot{x}_i(t_0 + t)]\dot{x}_i(t_0 + t) \) for \(t \in [0, 2] \). We finally average over 20,000 values of \(t_0 \) to obtain the correlation function plotted in Fig. 2 of the main text.

To measure the susceptibility \(\chi(t) \), we create a copy of the system at a given time \(t_0 \). This copy evolves with a perturbed dynamics in which \(\Phi \rightarrow \Phi - f \epsilon_i x_i \) where the \(\epsilon_i \) are chosen at random in \(\{-1, 1\} \). The original system evolves with the unperturbed dynamics and we use the same noise realisations \(\eta_i \) for the two systems [1]. We then deduce the susceptibility as
\[\chi(t) = \sum_i \epsilon_i x^c_i(t + t_0) - x_i(t + t_0) / f, \]
(3)
for \(t \in [0, 2] \), where \(x^c_i \) are the abscissa of the perturbed system. We finally average over 20,000 values of \(t_0 \) to obtain \(\chi(t) \).