T and B cell Responses to Multivalent Prime-Boost DNA and Viral Vectors Vaccine

Combinations against Hepatitis C Virus in Non-Human Primates

Running title: Genetic hepatitis C vaccines in non-human primates

Christine S Rollier1,2*, Ernst J Verschoor1, Babs E Verstrepen1, Joost AR Drexhage1, Glaucia Paranhos-Baccala3, Peter Liljeström4, Gerd Sutter5, Laura Arribillaga6, Juan Jose Lasarte6, Birke Bartosch7#, François-Loic Cosset7, Genevieve Inchauspe3 & Jonathan L. Heeney1£

1Department of Virology, Biomedical Primate Research Centre, P.O. Box 3306, 2280GH Rijswijk, The Netherlands. 2Oxford Vaccine Group, University of Oxford, CCVTM Churchill Hospital, Oxford OX3 7LE, UK. 3UMR2714 CNRS-bioMérieux IFR 128 Biosciences Gerland, 21 Av. Tony Garnier, 69365 Lyon Cedex 07, France. 4Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, S-171 77 Stockholm, Sweden. 5GSF Institut foer Molekular Virology, Germany. 6Immunology and Immunotherapy Program, Center for Applied Medical Research (CIMA), University of Navarra, 31008, IdiSNA, Pamplona, Spain. 7CIRI – International Center for Infectiology Research, Université de Lyon; Inserm, U1111; Ecole Normale Supérieure de Lyon; Université Lyon 1, Centre International de Recherche en Infectiologie; CNRS, UMR5308; LabEx Ecofect, Université de Lyon; Lyon, France.

#Present address Inserm U1052, Cancer Research Center of Lyon, University of Lyon, Lyon, France & DevWeCan Laboratories of Excellence Network (Labex), France. £Present address: Laboratory of Viral Zoonotics, University of Cambridge, CB3 OES, Cambridge, UK
*Corresponding author: Christine Rollier, Oxford Vaccine Group, University of Oxford, CCVTM Churchill Hospital, Oxford OX3 7LE, UK, Tel +44 1865 857 485, Fax +44 1865 857 420, Email christine.rollier@paediatrics.ox.ac.uk

Conflict of interest statement: the authors declare no conflict of interest.

Acknowledgments: This work was supported by European Union contract QLK2-CT-1999-00356, by the Biomedical Primate Research Centre, The Netherlands, and by the Swedish Research Council. We are grateful to Alexander van den Berg for technical assistance with the ICS, to our colleagues from Animal Science Department for technical assistance and expert care of the macaques, to the participants of the European HCVacc Cluster who provided help and support, and to Thomas Darton (Oxford Vaccine Group, UK) for input and advice on the manuscript. Christine Rollier is an Oxford Martin fellow and a Jenner Institute Investigator.

Keywords: hepatitis C virus, vaccines, viral vectors, non-human primate, immunogenicity
Abstract

Immune responses against multiple epitopes are required for the prevention of Hepatitis C Virus infection, and the progression to Phase I trials of candidates may be guided by comparative immunogenicity studies in non-human primates. Four vectors, DNA, SFV, human serotype 5 adenovirus (HuAd5) and Modified Vaccinia Ankara poxvirus (MVA), all expressing HCV Core, E1, E2 and NS3, were combined in three prime-boost regimen, and their ability to elicit immune responses against HCV antigens in rhesus macaques was explored and compared. All combinations induced specific T-cell immune responses, including high IFN-\(\gamma\) production. The group immunized with the SFV+MVA regimen elicited higher E2-specific responses as compared to the two other modalities, while animals receiving HuAd5 injections elicited lower IL-4 responses as compared to those receiving MVA. The IFN-\(\gamma\) responses to NS3 were remarkably similar between groups. Only the adenovirus induced envelope-specific antibody responses, but these failed to show neutralizing activity. Therefore, the two novel regimens failed to induce superior responses as compared with already existing HCV vaccine candidates. Differences were found in response to envelope proteins, but the relevance of these remain uncertain given the surprisingly poor correlation with immunogenicity data in chimpanzees, underlining the difficulty to predict efficacy from immunology studies.
Hepatitis C virus (HCV) vaccine candidates inducing HCV specific immune responses may protect naïve chimpanzees from heterologous experimental challenge; however the mechanism behind protection remains elusive. Although information regarding the immune correlates of protective immunity is incomplete, sufficient evidence points towards a pivotal role for a potent functional cellular immune response against several HCV proteins. Vaccine strategies inducing such strong cellular immunity in mice, rhesus macaques and humans often combine priming of the immune system with booster immunizations using DNA and recombinant viral vectors, including adenovirus and modified virus Ankara (MVA).

Preclinical evaluation of the potential efficacy of HCV vaccine candidates are limited to the chimpanzee and humanized mouse models. Several HCV vaccine candidates have been created, including viral vectors and typically encoding multiple target antigens, and relied on preclinical immunogenicity studies in non-human primates such as rhesus macaques. Comparison of different vectors and regimen in non-human primates are highly valuable for HCV vaccine development, to shed light on factors specifically influencing HCV vaccine immunogenicity as well as providing technological improvement in the field of genetic vaccination, as is performed in HIV development. In a recent study, HCV adenovirus vaccine boosting induced robust cellular responses, HCV pseudo particles enhanced the humoral response, and poxvirus priming induced both humoral and cellular responses. Immune responses were optimized with heterologous prime-boost regimens.

Vectors included plasmid DNA, recombinant SFV, replication-incompetent adenovirus and poxvirus (MVA) encoding the structural HCV antigens Core (C), the two envelope glycoproteins
E1 and E2, and the non-structural antigen NS3 were developed and evaluated for immunogenicity in mice, alone or in various prime-boost combinations. These vectors successfully elicited cellular and humoral immune responses including in HLA-A2 mice. Moreover, a DNA-DNA-MVA-MVA vaccine regimen induced robust immune responses associated with an early control of heterologous HCV infection in chimpanzees. In the present study, we explored the B and T-cell immune responses induced by this vaccine in rhesus macaques and investigated if two different immunization regimens, not investigated to date, have the potential to improve the HCV-specific immune responses: DNA followed by adenovirus, and SFV followed by MVA. We characterized the immune responses to each of the four vaccine antigens induced by the 3 regimens in rhesus macaques, and evaluated the predictive value of the rhesus macaque as a model for HCV vaccine immunogenicity by comparing the immune response observed in rhesus macaques after DNA-MVA to those observed in chimpanzees after the exact same DNA-MVA vaccine regimen.
Results

All regimens induced lymphoproliferative responses to NS3

Three regimens were tested in three groups of 4 animals (Fig. 1). Group I received the DNA vaccine twice followed by two immunizations with HuAd5, group II received the DNA vaccine twice followed by two immunizations with MVA, and group III received the rSFV vaccine twice followed by two immunizations with MVA. HCV-specific lymphoproliferative responses were tested using recombinant proteins: Core and NS3 from genotype 1a, E1 and E2 from genotype 1b. Responses were induced after the two DNA or SFV injections (Fig. 2, individual SI cumulated for all four antigens below 32), and were directed mainly to C (Fig. 2, top pie charts, and supplementary Fig.1), but no significant differences were observed between DNA (both DD groups) and SFV-immunized (SS) animals.

Lymphoproliferative responses were clearly boosted by the HuAd5 or MVA immunizations to similar high levels (Fig. 2, cumulative SI up to 168). Analysis of the contribution of each individual HCV vaccine antigen showed that after Ad or MVA boosting, the NS3-specific lymphoproliferation dominated, with individual SI ranging from 8 to 55 (Supplementary Fig. 1).

The combination SSMM (SFV+MVA) induced significantly higher proliferation to E2 (average SI of 28) as compared to the other vaccines (average SI of 6 in both DNA-primed groups, p=0.04, supplementary Fig.1).

All regimens induced a Th1-biased T-cell response

We enumerated the C and NS3 (genotype 1a), E1, E2 (genotype 1b)-induced secretion of IFN-γ, IL-2 and IL-4, the respective representative Th1 and Th2 cytokines (Fig. 3). Although the CD4+
cells were not separated from the PBMCs, the ELISPOT assay was performed with recombinant proteins as stimulus, therefore the responses detected are presumed to represent mainly CD4+ T cells. After immunization with either DNA or SFV, while lymphoproliferation was detected, only marginal cytokine production was induced: only 2 animals out of 12 mounting a detectable IFN-γ response, and very low-levels of IL-2 and IL-4 responses were detected (<50 and <34 SFU/million cells respectively against all antigens, data not shown). No difference was observed between groups (not shown).

After the booster immunizations with HuAd5 or MVA, all three regimens induced strong HCV-specific IFN-γ production in all animals, with numbers of specific IFN-γ producing cells ranging from 140 to 1050 SFU/million cells (Fig. 3a). There was no statistical difference between the three groups (Fig. 3a). All four antigens contributed to the IFN-γ responses (Fig. 3a, pie charts, and supplementary Fig.2), and no statistically significant difference was observed between the groups, even for the apparent higher C-specific response observed after SFV+MVA injections (p=0.08). The apparent higher E1 response in the group DDAA is also not statistically significant, due to the high variability of the E1-specific responses in this group (p=0.19, supplementary Fig.2). In contrast, and similarly to the lymphoproliferative response after the two MVA injections, SSMM induced a significantly higher IFN-γ response to E2 (with an average of 95 SFU/million cells) as compared to the other vaccine strategies (with averages of 54 and 10 SFU/million cells in the DDAA and in the DDMM groups respectively, p=0.006, supplementary Fig.2).

The number of HCV-specific IL-2 secreting cells detected after HuAd5 or MVA injections was lower than for IFN-γ, ranging from 55 to 280 SFU/million cells, and was equivalent between groups (Fig. 3b). All four antigens contributed to the HCV-specific IL-2 response in all three
groups (Fig. 3b, pie charts, and supplementary Fig.3), however again the SFV+MVA regimen (SSMM) induced a significantly higher response to E2 (p=0.0005, supplementary Fig.3). After HuAd5 or MVA boosts, all animals elicited IL-4 responses, overall lower than IFN-γ responses (up to 460 SFU/million cells, Fig. 3c). The DNA+HuAd5 regime induced lower IL-4 responses than the two other regimen involving MVA (p=0.04), and no response to C. All vaccine antigens contributed to the IL-4 response (except for C in the DDAA group), and again the SFV+MVA vaccinated animals elicited significantly higher responses to E2 (p=0.01, supplementary Fig.4). In addition, DNA-MVA induced significantly higher E1 responses than the other regimens (p=0.048, supplementary Fig.4).

Taken together, these results demonstrate that the three prime-boost vaccine regimens were able to induce C, E1, E2 and NS3-specific T-cell responses after the HuAd5 or MVA injections, that included higher IFN-γ production than IL-4 (Fig. 3d). Notably, animals receiving two HuAd5 boosts induced lower IL-4 response as compared to the other groups boosted with MVA, suggestive of a stronger Th1-bias (Fig. 3d). The group immunized with the SFV+MVA regimen elicited higher E2-specific lymphoproliferation and cytokine responses as compared to the two other vaccine combinations.

Induction of IFN-γ and IL-2 responses to E1 and NS3 peptide pools.
The IFN-γ ELISPOT was also performed with overlapping peptides covering E1 and NS3 from the genotype 1b J strain used in the vaccine vectors. Peptide pools (pp) containing 24 peptides for E1 (aa 193-377) and 39 peptides for NS3 (NS3pp1 covering aa 1028 to 1346, NS3pp2 covering aa 1340 to 1659) were used. Only 3 animals mounted a detectable E1 or NS3 peptide-specific IFN-γ response after DNA injections, while none responded after the SFV injections.
The low NS3pp-specific responses in DDAA and DDMM had waned by week 12, 6 weeks post last DNA injection (Fig. 4c). In contrast, HuAd5 booster-injections induced E1 peptide-specific responses in all 4 animals (20 to 690 SFU/million cells, Fig. 4a), while MVA induced lower E1 peptide-specific responses, in 2/4 animals in the DNA+MVA group and in 3/4 animals in the SFV+MVA group (Fig. 4a). Both HuAd5 and MVA boosts induced high NS3-specific responses in all animals, ranging from 265 to 1525 SFU/million cells for the HuAd5-induced responses, 340 to 1240 in the DNA+MVA-immunized animals, and 215 to 2180 after the SFV+MVA regimen (Fig. 4b). The NS3-specific responses were remarkably similar between groups both in total levels (Fig. 4b), in kinetic (Fig. 4c), and in the contribution of the N-and C-terminal ends of the protein (Fig. 4d).

The DDAA vaccine induced superior E2-specific antibody response

The capacity of the three different prime/boost combinations to induce HCV envelope-specific B-cell responses was analyzed by ELISA using recombinant E1 and E2 proteins from genotype 1b and neutralization assays. Virtually no antibody responses to E1 were detected at any time point (Fig. 5a). In contrast, E2-specific antibody responses were detected in all three groups (Fig. 5b). The DNA or SFV injections were poor inducers of antibody responses. After two HuAd5 injections, strong E2-specific responses were elicited in all 4 animals previously primed with DNA (Figs 5b and c), while little or no antibody responses were generated in the 8 animals that received MVA booster injections (Fig. 5c). None of the sera had neutralizing activity in an E1E2 pseudoparticle assay (data not shown), using pseudoparticles with 100% homology in the hyper variable region 1 (HVR1 containing the neutralization epitope, Supplementary Fig. 5).
Discussion

In this study, the immunogenicity of three HCV prime-boost vaccine regimens was evaluated in non-human primates. DNA was compared to SFV immunization, followed by immunizations with either adenovirus or MVA in rhesus macaques. All vaccine regimens induced Th1 and IFN-gamma T cell responses. Only the DNA+HuAd5 regime induced antibody responses to the envelope protein E2, while SFV+MVA induced stronger E2-specific T cell responses.

The comparison of DNA and SFV was not conclusive. While lymphoproliferative responses were induced in all animals, only a limited subset of animals elicited detectable antigen-specific cytokine responses after DNA or SFV priming. The DNA immunization may not have provided an optimal priming, as use of specific formulations or delivery devices such as electroporation would have induced superior priming15,22. Notably, higher E2-specific lymphoproliferation and E2-specific cytokine production were induced after MVA boosting in the group immunized with SFV+MVA as compared to DNA+MVA, indicating that SFV priming was responsible for this effect, even though this did not lead to an antibody response to E2 in this group. This could be due to differences in the constructs rather than the delivery vector: for technical reasons the E2 gene was inserted in a E1-E2 expressing SFV particle as opposed to a combined C-E1-E2 as in the DNA, adenovirus and MVA vectors. Therefore, differences may be due to different levels of antigen expression from each vector, or whether the antigens are presented on the cell surfaces.

Combined expression of 3 antigens from the same vector may have compromised independent expression, or processing or presentation within antigen presenting cells.

Other questions addressed by this study included: 1) was HuAd5 “boosting” superior to MVA after DNA priming and; 2) were rhesus macaque immune responses predictive of the protective
HCV responses observed in chimpanzees challenged with HCV? Regarding the boosting potential of HuAd5, T-cell responses were relatively similar between the DNA+HuAd5 and DNA+MVA groups. Trends were observed indicating higher proliferation with MVA-boosted and higher IFN-γ responses in the HuAd5-boosted groups, but these were not statistically significant. The absence of significant differences may be due to the low number of animals per group, a limitation that is a direct consequence of working with non-human primates. In addition, the respective immunogenicity of adenovirus and MVA vaccines may be partially antigen-dependent, as the effect of each antigen immunomodulatory properties may also influence the cytokine microenvironment induced by the vector. For example, HuAd5 and MVA have been compared in the context of other antigens: HuAd5 was found superior to poxviruses for induction of IFN-γ T-cell responses to malaria antigens, while MVA encoding the MTB 85A antigen induces stronger IFN-γ producing T-cells after a BCG prime.

All three vaccine strategies induced Th1 biased immune responses, with IFN-γ responses largely exceeding the IL-4 responses. A striking difference observed however was the lower IL-4 response in the HuAd5-immunized animals, revealing a more Th-1 bias. However, while MVA has been shown to induce antibody response to different antigens such as CMV, SARS, Flu, blood-stage malaria, in this study only the HuAd5 vector induced a strong but transient antibody response to one of the two envelope proteins. This is in agreement with other recent HCV vaccine developments demonstrating the capacity of adenovirus boosts to support envelope-specific antibodies, but confirm that caution should be taken when trying to use results from different immunogens to influence the design of vaccines for other diseases. However the antibody response elicited by HuAd5 immunization in our study was not neutralizing and was short-lived, maybe inducing antibodies masking the neutralization epitopes...
as recently described5,30. The absence of functional activity or persistence of antibodies using viral vectors was also previously observed31-33.

This study offers the unique opportunity to compare the immune response elicited by the DNA+MVA regimen between rhesus macaques and chimpanzees. The exact same constructs and regimen were used to immunize 4 chimpanzees20. In chimpanzees, immunization induced robust multi-specific immune responses in all four animals, which, following HCV1b exposure, was associated with a drastic reduction in the peak viremia and RNA levels in liver during the acute phase of infection. The vaccine regimen induced IFN-\(\gamma\) and IL-2 responses as detected by ELISPOT, with a similar pattern to the one observed in rhesus macaques (strong IFN-\(\gamma\) responses and lower IL-2 responses, especially to NS3). Contrary to rhesus macaques however, the chimpanzees mounted more potent IL-4 responses with numbers of antigen-specific IL-4 producing cells comparable to the number of IFN-\(\gamma\) producing cells in 3 out of the 4 animals20.

The most striking difference between the two primate species was that DNA+MVA regime induced a robust antibody response in all chimpanzees against both E1 and E2. It is possible that the stronger IL-4 response observed in chimpanzees supported the more potent B-cell response, but the reason for the difference is unknown, and the IL-4 response was not absent in rhesus macaques, just lower than the IFN-\(\gamma\) response. This underlines the difficulty to predict the immunogenicity of a specific vaccine regime based on only one primate species, and to unravel the relative contribution of cellular and humoral immunity to prevent acute or chronic disease.

With the availability of highly efficient antiviral drug treatments able to cure a large proportion of HCV infections, the relevance and cost of HCV vaccine development is questioned. However the treatments are extremely expensive, particularly for developing countries, and thus a vaccine for preventing or treating HCV infection still has an indication in high prevalence countries34,35.
While the strong restrictions on research involving chimpanzees will restrict efficacy studies, expensive phase II clinical trials will become the only possibility for evaluating the efficacy of vaccine candidates. Therefore, studies identifying approaches that are or not optimal, and investigating the predictive value of non-human primates are highly relevant in this context.
Materials and Methods

Animals.

Twelve outbred, purpose bred naïve rhesus macaques (*Macaca mulatta*) imported from China, seronegative for adenovirus preponderant genus (including serotype 5) and poxviruses (IgG anti vaccinia virus IgG), were selected following a comprehensive health-check, and were randomly assigned into 3 groups. The study and all experimental procedures were approved by the local animal ethical and use committee and were performed in accordance to the Dutch and international standards for the use of animals in science. Serum and peripheral blood mononuclear cells (PBMC) were isolated from blood samples collected at regular time points under sedation using aseptic techniques (Becton Dickinson, Vacutainer systems). Body weight, temperature, hematology and biochemistry values were monitored at routine intervals.

Generation of vaccine constructs.

The gene inserts encoding the proteins C, E1, E2 and NS3 were based on genotype 1b, J strain of HCV (GenBank: D90208.1) for all the vectors used for immunization and described below. All vectors encoding NS3 (DNA, SFV and HuAd5) were described previously. The plasmid DNA-C-E1-E2, obtained by inserting the C-E1-E2 (aa 1-746) gene sequences into pgWiz (Gene Therapy System INC, San Diego), was described previously. The SFV-C and SFV-E1-E2 particles were prepared by inserting the corresponding fragments isolated by PCR into an SFV expression vector, and packaging of the recombinant RNA into SFV particles. Production of HCV proteins by the rSFV particles was confirmed by immunofluorescence and by *in vitro* transfection of BHK cells, metabolic labeling (pulse-chase) and immunoprecipitation followed
by SDS-PAGE (data not shown). The SFV-NS3, SFV-core and SFV-E1-E2 were mixed for
immunization. The C-E1-E2 expressing human type 5 replication-defective adenovirus (HuAd5-
C-E1-E2) was described earlier. Human adenovirus serotype 5 was chosen as a prototypic
adenovirus for this study. The recombinant MVA-C-E1-E2, and MVA-NS3 vectors were both
constructed by transient host range selection using the HCV-1b structural (amino acids, aa 1-
830) and nonstructural 3 (aa 1028-1658) genes respectively, as previously described. All
vectors used for immunization and their transgenes are described in Fig.1.

Peptides and recombinant proteins used for in vitro assays.
The C polypeptide (a.a. 1-120) and NS3 helicase (NS3h, aa 1193-1458), derived from HCV
genotype 1a, were expressed in E. coli and purified on Ni-NTA column as described
previously. The envelope proteins E1 and E2, deleted from their transmembrane domain, were
derived from the HCV-1b sequence cloned into pT-alpha vector, and were described
previously. Fifteen-mer peptides, with overlaps of 7 amino acids covering the C, E1, E2 and
NS3 sequences (genotype 1b, J strain), were purchased from Clonestar Biotech (Brno, Czech
republic).

Immunizations
The immunizations with DNA or rSFV consisted of 2 injections at weeks 0 and 6, and HuAd5
and MVA were administered at weeks 14 and 20 (Fig. 1). For each DNA immunization, 2 mg
DNA-C-E1-E2 and 2 mg DNA-NS3 dissolved in saline buffer were equally divided and
administered both intramuscularly (IM) and intradermally (ID). For each SFV immunization,
5x10^9 pfu of each construct dissolved in saline were injected subcutaneously (SC). Animals from
group I were boosted SC twice with 5×10^{10} pfu of each HuAd5 construct. Animals from groups II and III were boosted twice with 5×10^8 pfu MVA of each construct, again administered both IM and ID. The constructs were not mixed, the C, E1 and E2 constructs were injected on the left side and the NS3 on the right. Therefore, the vaccine vectors have been administered via different routes: the route for each vector was selected to induce the strongest immune response. Because routes may impact on magnitude and quality of resulting immune responses, the aim of this study was not to compare the vector’s potency by a single route, but to identify the optimal vaccine regimen, with each vector injected by its optimal route.

Analysis of the humoral immune responses

Quantification of anti-adenovirus antibodies was performed in frozen serum by an independent hospital laboratory (Erasmus MC – Virology, Rotterdam, Netherlands), with a quantitative enzyme immunoassay (SERION ELISA classic Adenovirus IgG/IgA), detecting antibodies to eight preponderant genus specific epitopes. Anti-HCV antibody responses in frozen sera were measured using ELISA with HCV C (0.5 mg/ml), E1 (4 µg/ml), E2 (1 µg/ml) or NS3-helicase proteins (0.5 mg/ml). ELISA was performed as described previously20. For each experiment, the cut off was determined as the mean value plus three times the standard deviations obtained with serum of three random naïve serum samples.

The capacity of the frozen sera to neutralize HCV was analyzed using HCV pseudo-particles with E1E2 glycoproteins of strain CG1b in infection assays on Huh-7 target cells as previously described41. Control neutralizations were performed using pseudo-particles generated with glycoproteins derived from the feline endogenous retrovirus RD114 (RD114pp).
Analysis of the cellular immune responses by lymphoproliferation and ELISPOT.

Lymphoproliferation was measured by 3H-thymidine incorporation as previously described, using fresh PBMCs 42. The results were expressed as stimulation index (SI), calculated as cpm with antigen divided by cpm with medium alone. Lymphoproliferation was considered positive when the SI exceeded 2. Quantification of specific cytokine secreting cells was performed by IFN-γ, IL-2 and IL-4 ELISPOT assays using fresh PBMCs according to the manufacturer’s instructions (U-Cytech, Utrecht, Netherlands), using concanavaline A (ConA), or recombinant proteins or peptides (5 µg/ml), or medium alone. The results were expressed as mean spot forming units (SFU) of triplicate assay per one million PBMCs minus the mean number of spots obtained with the cells cultured in medium alone (also in triplicate assays). Results superior to 5 SFC/million PBMCs were considered a positive response.

Statistical analysis.

To compare the immunogenicity of the different vaccine combinations, ANOVA, with p values calculated by exact methods and two-tailed, was used. Difference was considered statistical significant when $p \leq 0.05$.
Acknowledgments: This work was supported by European Union contract QLK2-CT-1999-00356, by the Biomedical Primate Research Centre, The Netherlands, and by the Swedish Research Council. We are grateful to Alexander van den Berg for technical assistance with the ICS, to our colleagues from Animal Science Department for technical assistance and expert care of the macaques, to the participants of the European HCVacc Cluster who provided help and support, and to Thomas Darton (Oxford Vaccine Group, UK) for input and advice on the manuscript. Christine Rollier is an Oxford Martin fellow and a Jenner Institute Investigator.

Conflict of interest statement: the authors declare no conflict of interest.
Reference list

Figure legends

Fig. 1. Immunization schedule. Three groups of four macaques per group were immunized at the four time-points indicated by arrows (at weeks 0, 6, 14 and 20), with the vaccine immunogens as indicated, further referred to as DNA+HuAd5 (DDAA), DNA+MVA (DDMM) and SFV+MVA (SSMM). The composition of vectors and their transgenes used for each immunization (DNA, HuAd5, MVA or SFV) is indicated.

Fig. 2. Lymphoproliferation responses induced against all four HCV proteins (graph) and the proportional contribution of each antigen (pie charts) after priming and boosting. The cumulated SI to all four HCV antigens of each animal is shown, each diamond representing one animal, 2 weeks after the two DNA or SFV injections, and 2 weeks after HuAd5 or MVA injections. Individual values mentioned in the text are indicated. The geometric mean + SD of each group at both time-points are also represented as horizontal bars. The contribution of each antigen-specific lymphoproliferation is represented on top of each vaccine regimen, each pie chart representing the geometric mean lymphoproliferation of each group to each antigen as indicated in the legend. Lymphoproliferation was performed using recombinant proteins.

Fig. 3. Enumeration of IFN-γ (a), IL-2 (b) and IL-4 (c) producing cells by ELISPOT against all four HCV proteins (graphs) and the proportional contribution of each antigen (pie charts) after HuAd5 or MVA-booster injections. (a, b and c) The cumulated HCV-specific Spot Forming Units /million cells per animal are shown after two HuAd5 or MVA injections as indicated, each diamond representing one animal. The mean + SD of each group are also
represented as horizontal bars. Some individual values (black) and average group values (red) are indicated for ease of comparison. * indicates statistical significant difference by ANOVA. The contribution of each antigen-specific cytokine production is represented on top of each regimen, each pie chart representing the mean of IFN-γ (a), IL-2 (b) and IL-4 (c) producing cell number of the group to the corresponding antigen as indicated in the coloured legend. (d) Pie charts of the geometric mean cytokine-producing cells showing the contribution of each cytokine responses to all 4 antigens for each regimen. The ELISPOT assays were performed using recombinant proteins.

Fig. 4. Individual E1 (a) and NS3 (b, c and d) peptide pool-specific IFN-γ production by PBMCs. IFN-γ production to E1 or NS3 peptide pools as tested by ELISPOT are represented for each animals from each group post HuAd5 or MVA immunization (a and b respectively). Results are expressed as mean number of spots of triplicate assay per one million cells minus the mean number of spots obtained with the medium cultured cells (also in triplicate assays) + 2SD. (c) the time course of NS3-specific response is shown for the 3 groups as indicated in the legend, as the geometric mean numbers of cytokine producing cells per group. Grey arrows indicate the timing of DNA or SFV injections, and black arrows indicate the timing of HuAd5 or MVA injections. (d) Individual responses to NS3pp1 covering aa 1028 to 1346 and NS3pp2 covering aa 1340 to 1659 after HuAd5 or MVA immunizations are shown, along with the geometric mean of the group.

Fig. 5. Serum antibody responses to E1 and E2 recombinant proteins. The geometric mean titers ± SD of the E1 (a) and E2 (b)–specific antibody responses in each of the three groups is
represented over time. Black arrows indicate the timepoints of immunizations (DNA or SFV at weeks 0 and 6, HuAd5 or MVA at weeks 14 and 20). (c) Individual responses to E2 at week 22, each dot representing one animal and the horizontal lines representing the geometric mean of the group. Differences of statistical significance between groups are indicated by *. ELISA were performed with recombinant proteins.
Figure 1

Constructs used for immunizations:

DNA:
- DNA-NS3 + DNA-C-E1-E2

HuAd5:
- HuAd5-NS3 + HuAd5-C-E1-E2

MVA:
- MVA-NS3 + MVA-C-E1-E2

SFV:
- SFV-NS3 + SFV-C + SFV-E1-E2
Figure 2

[Graph showing SI values for different combinations of alleles (DD, DD, SS) and markers (C, E1, E2, NS3) with bar charts and error bars.]

- DD+AA lymphoproliferation: Total=33.4
- DD+MM lymphoproliferation: Total=58.7
- SS+MM lymphoproliferation: Total=72.1

SI values for C, E1, E2, NS3 are also indicated.
Figure 3

(a) IFN-γ SFU/million cells

(b) IL-2 SFU/million cells

(c) IL-4 SFU/million cells

(d) IFN-gamma, IL-2, IL-4

Legend:
- C
- E1
- E2
- NS3

Total values:
- IFN-γ: DDAA 473.75, DDMM 228, SSMM 280.75
- IL-2: DDAA 95, DDMM 130, SSMM 167.5
- IL-4: DDAA 23.75, DDMM 168.75, SSMM 167.5
Figure 4

a. E1

![Bar graph showing IFN-γ SFU/million cells for DDAA, DDMM, and SSMM.](image)

b. NS3

![Bar graph showing IFN-γ SFU/million cells for DDAA, DDMM, and SSMM.](image)

c. DDAA

![Line graph showing IFN-γ SFU/million cells over time (weeks) for DDAA.](image)

d. NS3pp1 and NS3pp2

![Scatter plot showing IFN-γ SFU/million cells for DDAA, DDMM, and SSMM.](image)
Figure 5

a. E1
- DDAA
- DDMM
- SSMM

b. E2
- DDAA
- DDMM
- SSMM

c. E2 at week 22
- DDAA
- DDMM
- SSMM

Antibody titers vs. Time (weeks)

Differences are statistically significant:
- p<0.005
- p<0.001
Supplementary Figure 1

Individual lymphoproliferation to each HCV antigen. Some individual (black) and average (red) values mentioned in the text are indicated for ease of reading.

a. Core

b. E1

c. E2

d. NS3

ANOVA p=0.04
Supplementary Figure 2

Individual IFN-gamma responses to each HCV antigen after Ad or MVA boost. Some individual (black) and average (red) values mentioned in the text are indicated for ease of reading.

a. Core

b. E1

c. E2

ANOVA p=0.006

d. NS3
Supplementary Figure 3

Individual IL-2 responses to each HCV antigen after Ad or MVA boost. Average values for E2 are indicated in red.

a. Core

b. E1

c. E2

ANOVA p=0.0005

d. NS3
Supplementary Figure 4

Individual IL-4 responses to each HCV antigen after Ad or MVA boost. Average values for E2 are indicated in red.

a. Core

IL-4 SFU/million cells

DDAA DDMM SSMM

b. E1

DDAA DDMM SSMM

ANOVA p=0.048

0 50 100 150 200 250 300 350

120

0 50 100 150 200 250 300 350

10 7.5

c. E2

ANOVA p=0.01

DDAA DDMM SSMM

120

DDAA DDMM SSMM

d. NS3

DDAA DDMM SSMM
Supplementary Figure 5

Sequence homology between the reagents used in the vectors and in the pseudoparticle assay, performed with CLUSTAL W (1.74) multiple sequence alignment. The HVR1 sequence is indicated with a black line.

```
GC1b
l J
GLGIFLVLGAPLGAARALAHGVRLLEDGVAYTAGLPGCSIFILLALLSCLITPASA
GLGIFLVLGAPLGAARALAHGVRLLEDGVAYTAGLPGCSIFILLALLSCLITPASA

GC1b
l J
YEVRNSGYHTVNDSCSNIISYEAADMIMIHTPGCVPRESNFSCWALTPLAAAN
YEVRNSGYHTVNDSCSNIISYEAADMIMIHTPGCVPRESNFSCWALTPLAAAN

GC1b
l J
SIPTITIRHRVVLVGAALCSAMYVGDLCGSVFLVSQLFTFSRPRYETV0DCNSIYPG
SIPTITIRHRVVLVGAALCSAMYVGDLCGSVFLVSQLFTFSRPRYETV0DCNSIYPG

GC1b
l J
HSQHRMAWDDMNWSPTTALVVSQLLRPQVAVVDMVAGHGWGLAGVAYLIMSVG
HSQHRMAWDDMNWSPTTALVVSQLLRPQVAVVDMVAGHGWGLAGVAYLIMSVG

GC1b
l J
LWMLLFAVGDDTHVTGGRVASESTQ5LSWSLGSQS5QKIQLQTVGTVSWSHINTALCN
LWMLLFAVGDDTHVTGGRVASESTQ5LSWSLGSQS5QKIQLQTVGTVSWSHINTALCN

GC1b
l J
SLTGIFAALFMAYHRRNASQCPERMASCRIKDFQAGGWGPHYHFPHNPPORPCWYAP
SLTGIFAALFMAYHRRNASQCPERMASCRIKDFQAGGWGPHYHFPHNPPORPCWYAP

GC1b
l J
0PCGFVSAP0VCSPGVCYFCFTSPVSPVPTTVDDSGVPTYSWGENETVL9LLNTRPQFGWFG
PCGFVSAP0VCSPGVCYFCFTSPVSPVPTTVDDSGVPTYSWGENETVL9LLNTRPQFGWFG

GC1b
l J
CTWNSGTGFGTGCGGCPSC1IGVGVOAOTLIICPDICRFKHFHYKTGTCSGCGWLTIPCLVD
CTWNSGTGFGTGCGGCPSC1IGVGVOAOTLIICPDICRFKHFHYKTGTCSGCGWLTIPCLVD

GC1b
l J
PYRLRMYCTINFTFKRMRVYVGVHEHLLWACNQTVGRCDELQRDRELSPSSLTCETTE
PYRLRMYCTINFTFKRMRVYVGVHEHLLWACNQTVGRCDELQRDRELSPSSLTCETTE

GC1b
l J
WQYLPSCFTLTPALSTLHILQH5IVD9LYC5VSQ3V5V5KWEYVLLFLLLLADAV
WQYLPSCFTLTPALSTLHILQH5IVD9LYC5VSQ3V5V5KWEYVLLFLLLLADAV

GC1b
l J
CACLWMMILIAQAE
CACLWMMILIAQAE
```