Increased cryosurvival of osteosarcoma cells using an amphipathic pH-responsive polymer for trehalose uptake

S.A. Mercado, N.K.H. Slater

PII: S0011-2240(16)30117-1
DOI: 10.1016/j.cryobiol.2016.08.002
Reference: YCRYO 3748

To appear in: Cryobiology

Received Date: 2 March 2016
Revised Date: 11 July 2016
Accepted Date: 2 August 2016

Please cite this article as: S.A. Mercado, N.K.H. Slater, Increased cryosurvival of osteosarcoma cells using an amphipathic pH-responsive polymer for trehalose uptake, Cryobiology (2016), doi: 10.1016/j.cryobiol.2016.08.002.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Increased cryosurvival of osteosarcoma cells using an amphipathic pH-responsive polymer for trehalose uptake

Mercado S. A., Slater N. K. H. *
Department of Chemical Engineering and Biotechnology, University of Cambridge, Pembroke Street, Cambridge CB2 3RA, United Kingdom

*Corresponding author. Tel.: +44 (0) 1223 762953; Fax: +44 (0) 1223 334796
Email address: nkhs2@cam.ac.uk (N. Slater)

Abstract

Amphipathic pH-responsive polymers have shown to increase the permeability of cell membranes to trehalose hence improving the cryopreservation of mammalian cells. However, the trafficking of both the polymer and trehalose across the cell membrane has not yet been thoroughly analysed. The objective of this study was to investigate the effect on cryopreservation of the trafficking of the disaccharide trehalose along PP-50, an amphipathic polymer, through an osteosarcoma cell line (SAOS-2). Confocal microscopy analysis confirmed the presence of intracellular labelled trehalose only when incubated in the presence of PP-50. Further analysis confirmed that both trehalose and PP-50 localised in the cytoplasm, accumulated mainly in the perinuclear area. Quantitative analysis of the colocalisation between trehalose and PP-50 showed Pearson and Manders coefficients of 0.862 ± 0.008 and 0.766 ± 0.033, respectively, suggesting a high degree of intracellular colocalisation between these molecules. Cryopreserved cells pre-incubated with trehalose and PP-50 showed increased cryosurvival when compared with cells pre-incubated in the absence of the polymer. PP-50 showed to be directly involved in the uptake of trehalose, a critical characteristic towards use in cryopreservation and biomedical applications.

Key words
Amphipathic polymer, trehalose, cryopreservation, drug delivery, colocalisation
1. Introduction

Recent developments in tissue engineering, recombinant DNA technologies and biopharmaceutical production have increased the importance of living cells for clinical medical care. The establishment of these areas in the past several decades has made it possible for the development of numerous therapeutic proteins and treatments to address a corresponding variety of unmet medical needs [1].

Major advances in these areas are frequently limited by the lack of understanding of long-term cryostorage of cells [2]. Cryopreservation of cell lines is a technically challenging process leading to persistent failures in terms of poor revival rate and atypical cell properties. Currently, no single cryopreservation method has been universally applied with variations in techniques applied depending on the facility and aim of use [3,4].

Cells normally require cryoprotective agents (CPAs) to survive long-term storage at low temperatures [5]. Cryoprotectants are essential additives to cell concentrates able to inhibit the formation of intra and extracellular crystals and hence cell death [3,6,7]. Successful cryopreservation of mammalian cells involves high CPAs concentrations and their toxicity has been recognized as a critical barrier to further progress in the field [5,8].

Dimethyl sulfoxide (Me₂SO) is the standard cryoprotectant used to prevent freezing damage to living cells. Whilst the effectiveness of Me₂SO as a cryoprotectant is generally improved with increasing concentration, its toxicity to cells is both time and temperature dependent and has been thoroughly documented [9,10]. Serious adverse reactions have also been reported related to cardiovascular, respiratory and renal systems [3,11]. On the other hand, foetal bovine serum (FBS) is an essential component in cryopreservation media, although presents many challenges for the pharmaceutical industry since its usage involves both moral and scientific problems. In clinical applications the use of reagents of animal origin is undesirable due to potential transmission of animal pathogens and the risk of developing antibodies against FBS, leading to rejection of the transfused cells [12]. Because of the safety risks involved, regulatory authorities discourage the use of FBS for the production of biological products for human use [13]. Hence, significant interest exists in the development of non-toxic cryopreservation agents and cryopreservation techniques. Studies over the last 30 years have explored a variety of cryoprotective agents. Most attention has focused on the role of sugars in mammalian cells, predominantly the disaccharide trehalose [14].
Non-permeating sugars are important ingredients in a vast number of cryopreservation protocols. Sugars help in the dehydration of cells by increasing osmolarity, in addition to preserving structural integrity. They also function as an osmotic buffer, reducing osmotic shock by decreasing the speed and amount of cell swelling [15]. Although monosaccharides can transit across animal cell membranes, disaccharides cannot [16]. This issue is crucial when high intracellular concentrations of disaccharides such as trehalose are needed for viable cryopreservation [2,5].

To overcome this barrier, different methods have been used to increase intracellular disaccharides levels, such as the use of ATP receptor channels or engineered membrane pores [2,17,18]. Disadvantages of these alternatives include the induction of cell death by either necrosis or apoptosis, amongst others [19].

One successful method to induce disaccharide transport into cells includes the use of amphipathic biodegradable pH-responsive polymers given their ability to permeate cell membranes and biocompatibility [20–22]. These polymers were developed to mimic the membrane permeabilising activity of viral and bacterial peptides [23]. Typically, they go through a conformational change from extended charged chains to aggregated hydrophobic structures as the environmental pH drops below their pKa, thus interacting with the hydrophobic interior of phospholipid bilayers. This facilitates increased membrane permeability by pore formation or by increasing membrane solubilisation [24,25].

Recent studies have shown the impact of PP-50, a biopolymer consisting of poly(L-lysine iso-phthalamide) grafted with the hydrophobic amino acid L-phenylalanine, on increased post-thaw viabilities of cryopreserved red blood cells and osteosarcoma cells [26,27]. Despite its successful use in cryopreservation in previous studies, trehalose uptake mediated by PP-50 has not been studied in depth. In this work, the effect of PP-50 on trehalose transport was evaluated in osteosarcoma cells, a model for adherent cells, to provide key information regarding this amphipathic biopolymer towards use in cryopreservation and other clinical applications.

2. Materials and methods

2.1. Materials

The SAOS-2 cells were obtained from the European Collection of Cell Cultures. Dulbecco’s modified Eagle’s medium (DMEM), foetal bovine serum (FBS), L-glutamine, penicillin, trypan
blue, and streptomycin were purchased from Invitrogen (UK). \(\text{Me}_2\text{SO} \) and sodium hydroxide (NaOH) were purchased from ThermoFisher (UK). Phosphate-Buffered Saline (PBS), trypsin–EDTA, Alexa Fluor 647 cadaverin were purchased from Life Technologies™ (UK). N-(3-dimethylaminopropyl)-N’-ethylcarbodiimide hydrochloride (EDC), N-hydroxysuccinimide (sulfo-NHS), Hoechst H33342, propidium iodide, and trehalose were obtained from Sigma-Aldrich (UK). The CellTiter 96® AQueous One Solution Cell Proliferation Assay (MTS) was obtained from Promega (UK). Visking tubing was purchased from Medicell Membranes Ltd. (UK). FITC-labelled trehalose was trehalose was produced by the Davis Group, University of Oxford (UK) [28]. All chemicals and biochemicals used were of analytical grade.

2.2. PP-50 synthesis

The synthesis and characterisation of the PP-50 polymer were as previously described by Lynch et al. [26]. PP-50 consists of a poly(L-lysine iso-phthalamide) backbone grafted with L-phenylalanine at a degree of grafting of 46.2% (Mn = 23.0 kDa).

2.2.1. PP-50/AF647 synthesis

The conjugation of AF647 cadaverine to PP-50 was achieved by standard EDC/sulfo-NHS amide reaction [29]. The product was purified by dialysis against water in Visking tubing (MW cut-off 3,500 Da) and lyophilised using a Fisher Scientific Heto LyoLab3000 (UK) to yield a blue solid powder.

PP-50/AF647 was analysed by using attenuated total reflectance FTIR (ATR-FTIR) spectroscopy to determine whether PP-50 were successfully conjugated with Alexa Fluor 647 cadaverine. Spectra were collected using a Thermo Nicolet Nexus 870 spectrometer (Waltham, MA, USA) as the average of 32 scans with a wavenumber resolution of 4 cm\(^{-1}\) in the 600-4000 cm\(^{-1}\) range.

2.3. Cell culture

SAOS-2 osteosarcoma cells were cultured in growth media consisting of DMEM with FBS (10% v/v), L-glutamine (2 mM), penicillin (100 IU/ml), and streptomycin (100 µg/ml) in 75 cm\(^2\) flasks supplied by Corning (UK). Cells were incubated at 37 °C with 5 % of CO\(_2\). At 70% confluence, cells were washed twice with PBS, then subcultured with trypsin (0.05% w/v) and EDTA (0.02% w/v) and subsequently replated for further expansion or experiments.
2.4. Trehalose uptake mediated by PP-50

Cells were seeded on 1.8 cm² chambered cell culture cover glasses (Nunc, UK) at a density of 3 x 10⁴ cells/well and grown for 24-48 hours. Cells were then incubated with 50 mM FITC-trehalose in the presence or absence of 250 µg/ml PP-50 for 2, 4, and 6 hours. FITC-trehalose and PP-50 solutions were prepared in DMEM. Cells were washed twice with PBS and extracellular labelled molecules were quenched using 0.4 % trypan blue [30]. Cells were washed again with PBS and left in growth media. Cells were incubated for 15 minutes with 5 µg/ml PI and 5 µg/ml H33342 then incubated in growth media and analysed using a TCS SP5 inverted laser scanning microscope (Leica, Germany). An argon laser was used to visualise FITC-trehalose (emission at 488 nm and an emission filter set at 505-555 nm). To visualise propidium iodide, a helium neon laser was used (emission at 633 nm and emission filter set at 650-700 nm). H33342 stained nuclei were excited using a diode laser emitting at 405 nm. Images were taken sequentially.

2.5. Colocalisation of labelled PP-50 with labelled trehalose

Cells were assessed using 250 µg/ml PP-50/AF647 and 50 mM FITC-trehalose after 4 hours of incubation. In addition, the permeable dye Hoechst 33342 (5 µg/ml) was used to evaluate the nuclear morphology of cells. Cells were placed on 1.8 cm² chambered cell culture cover glasses (Nunc, UK) at a density of 3 x 10⁴ cells and imaged using a TCS SP5 inverted laser scanning microscope (Leica, Germany). To visualise PP-50/AF647, a helium neon laser was used (emission at 633 nm and emission filter set at 650-700 nm). Images were taken sequentially.

2.6. Image analysis

Fluorescent images of cells incubated with labelled trehalose in the presence of labelled PP-50 were acquired using the appropriate wavelengths for each molecule, as explained above. Images were then merged and converted to 8 bit RGB images using ImageJ software. Analysis with the JACoP plugin provided Pearson’s and Manders' overlap coefficient.

2.7. Cryopreservation using PP-50

SAOS-2 cells were seeded into 6-well plate culture dishes at 3 x 10⁵ cells/well. Once cells reached 75% confluence, they were washed twice with PBS and incubated in one of the
following solutions: 1) 100 % (v/v) DMEM containing 200 mM trehalose with and without 250 µg/ml PP-50; 2) 90 % (v/v) DMEM and 10 % (v/v) FBS containing 200 mM trehalose with and without 250 µg/ml PP-50. All DMEM solutions were supplemented with L-glutamine, penicillin, and streptomycin at a pH of 7.05. After 4 hours of incubation, treated cells were washed twice with PBS and 200 µl/well of trypsin/EDTA was added. Cells were then incubated for 5 minutes and centrifuged at 350 g for 5 minutes. Each pellet was then resuspended with 1 ml of a solution of 90 % (v/v) FBS and 10 % (v/v) DMEM. Control cells were resuspended in two different solutions; 100 % (v/v) DMEM was used as a negative control C(-) for cryosurvival, whereas 90 % (v/v) FBS with 10 % (v/v) Me₂SO was used as a positive control C(+). All samples were transferred to cryovials and placed into freezing containers at -80 °C for 48 hours and then stored in liquid nitrogen for 72 hours.

Individual vials were thawed in a 37 °C water bath with continuous and mild agitation for 5 min. Viability was firstly determined by the trypan blue exclusion method using a cell counter [31]. Cells negative for trypan blue were considered live and those stained blue were considered dead. Viable cells were also determined using the CellTiter 96® AQueous One Solution Cell Proliferation Assay according to the manufacturer’s instructions. Briefly, the MTS assay was performed in 96-well plates by adding 20 µL of 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium salt to the cells [32,33]. Cells were then incubated for 1 hour at 37 °C. Absorbance was then measured at 490 nm using a 96-well plate reader (BMG Labtech, UK) to determine the formazan concentration, which is proportional to the number of living cells. Absorbance was corrected by subtraction of background absorbance. Data was normalised to the positive freezing control C(+).

2.8. Statistical analysis

All measurements were carried out in three independent replicates. Results were analysed using a one-way ANOVA followed by a Tukey’s test for multiple comparisons. The tests were analysed using GraphPad Prism (GraphPad Software, US). The difference was considered statistically significant when p < 0.05.

3. Results

3.1. Trehalose uptake mediated by PP-50

The effect on trehalose uptake when incubated with PP-50 was investigated using confocal microscopy (Fig. 1). Cells were incubated with FITC-trehalose in the presence and absence
of PP-50 for 2, 4 and 6 hours. As seen in Fig. 1, intracellular labelled trehalose (green fluorescence) was seen only when incubated in the presence of PP-50. In addition, a direct correlation was found between intracellular labelled trehalose and incubation time. Cells displayed normal nuclei features, shown by the staining with Hoechst H33342 (blue fluorescence), and high viability, shown by the lack of propidium staining (red fluorescence).

3.2. Colocalisation of labelled PP-50 with labelled trehalose

The colocalisation of PP-50 with trehalose was analysed by confocal microscopy (Fig. 2). Cells were incubated with PP-50/AF647 (red fluorescence) and FITC-trehalose (green fluorescence) for a period of 4 hours. The colocalisation of these molecules is shown in yellow. As seen in the figure, osteosarcoma cells incorporated intracellularly both labelled PP-50 and trehalose. Both molecules appeared in the cytoplasm, located mainly in the perinuclear space. A high degree of colocalisation was observed between the polymer and trehalose. Cells also displayed normal nuclei features, shown by the staining with Hoechst H33342.

3.3. Image analysis of PP-50 colocalisation with trehalose

The analysis of the colocalisation of labelled PP-50 with labelled trehalose was assessed using ImageJ software and at least 5 independent images. The Pearson (PC) and Manders (M1) overlap coefficients were derived with the JaCoP ImageJ tool. The PC and M1 coefficients were 0.862 ± 0.008 and 0.766 ± 0.033, respectively.

3.4. Cryopreservation using PP-50

To evaluate the effect of trehalose uptake mediated by PP-50 on cryopreservation, osteosarcoma cells were pre-incubated with trehalose, FBS or a combination of both molecules in the presence and absence of PP-50, and then cryopreserved (Fig. 3). Trypan blue staining and the MTS assay were used to measure viability immediately post-thaw, i.e. cryosurvival. As shown by both assays, a higher cryosurvival was observed when cells were incubated in the presence of PP-50 for all pre-freezing incubation media. The largest cryosurvival was observed when cells were pre-incubated with trehalose and serum in the presence of PP-50 (64 ± 3 %), as measured by trypan blue staining. A significant disparity in cryosurvival was observed between both methods used.

4. Discussion
In this study, the effect of PP-50 on trehalose uptake was analysed in SAOS-2 cells. Analysis by confocal microscopy, quantification of colocalisation, and cryopreservation, all showed that incubation with PP-50 induced the transport of trehalose across the cell membrane resulting in increased cryosurvival of osteosarcoma cells.

Confocal microscopy was used to investigate labelled trehalose uptake mediated by PP-50 on osteosarcoma cells (Fig. 1). Labelled trehalose diffused across cell membranes only in the presence of PP-50, demonstrating the polymer’s ability to transport hydrophilic molecules across the cell membrane. Propidium iodide, a non-permeable dye, was used to assess cell viability as it is not taken up by living cells [34,35]. This dye was utilised after incubation with PP-50 and trehalose to confirm that trehalose uptake was due to polymer transport and not cell permeability caused by polymer cytotoxicity. Lack of propidium iodide staining confirmed PP-50 mediated transport and suggested the absence of noticeable apoptosis and necrosis. This is in agreement with previous studies regarding the biocompatibility of PP-50, where higher concentrations of the polymer showed no negative effect on osteosarcoma cells [22].

To investigate the trafficking of trehalose and PP-50 across the cell membrane, colocalisation of labelled trehalose and polymer was accomplished using confocal microscopy (Fig. 2). As observed, the majority of labelled molecules localised jointly within the perinuclear area. This area is located next to the cell nucleus and contiguous with the lumen of the endoplasmic reticulum, where most delivery system agents are targeted [36]. As PP-50 was developed to mimic viral peptides that penetrate cell membranes, this is in agreement with the fate of most efficient DNA viruses that localise in this area to deposit their genomic DNA near the host nucleus [21,37,38]. A similar accumulation has been shown also for polyethyleneimine (PEI), one of the most efficient non-viral gene transfer agents known, when used along DNA complexes [39]. This result highlights the use of PP-50 as a drug delivery system. It is worth noticing that the labelling of trehalose and PP-50 may have affected their physical properties and cell trafficking. The impact of this labelling will be the topic of future studies.

The trafficking of trehalose through the endolysosomal pathway was not investigated in this study. However, previous studies have shown that escaping the endolysosomal route is a process preceding the accumulation in the perinuclear area [39]. The fate of both the polymer and trehalose after being accumulated in the perinuclear area should be investigated in future studies.
Next, trehalose and PP-50 colocalisation was quantitatively analysed by using the Pearson and Manders coefficients. These coefficients show the fraction of trehalose colocalised with the polymer, and vary from 0 for non-overlapping images to 1 for complete colocalisation \[40,41\]. Both coefficients were close to 0.8, suggesting a high degree of colocalisation between trehalose and PP-50. Confocal visualisation and quantitative analysis of the colocalisation were in agreement, strongly indicating the direct involvement of PP-50 in the trafficking of trehalose across the cell membrane.

A trehalose concentration of 200 mM was chosen for cryopreservation experiments, as previous studies have shown intracellular trehalose concentrations higher than 200 mM when cells were pre-incubated in the presence of PP-50 \[26\]. This concentration was higher than the one used in confocal microscopy, and was selected to ensure an intracellular concentration sufficient to provide freezing protection \[2,42,43\]. A labelled trehalose concentration of 50 mM was used for confocal analysis due to material limitation.

In order to further analyse the impact of trehalose transport mediated by PP-50, cells were pre-incubated with trehalose, FBS or a combination of both molecules in the presence and absence of PP-50, and then cryopreserved (Fig. 3). The cytotoxicity of these molecules was previously investigated and no negative effect on cellular viability was observed \[22\]. As seen in the figure, a large disparity was observed between cryosurvival as measured by trypan blue staining and metabolic activity. A vast majority of cells alive according to the trypan blue staining were not confirmed with the MTS assay. Trypan blue is excluded from intact cells and the MTS assay depends on the activity of cell cytoplasmic esterases that are capable of degrading permeable MTS into formazan \[44,45\]. Since both methods rely exclusively on the permeability of lipid bilayers immediately after thawing, these assays may not be the most suitable options when cell membranes are transiently more stable due to the trehalose, proven to stabilise membrane components \[46\].

Other factors possibly involved in this discrepancy of cell cryosurvival include the limitations of both methods used to quantify cryosurvival. Although the trypan blue staining method is widely used to measure cell viability, it has been described as highly subjective and possessing significant accuracy errors in numerous studies \[31,47\]. Additionally, cell metabolism may have been undermined immediately after thawing in cells incubated with trehalose or FBS. True cryosurvival, i.e., cell growth, was not taken into account using either trypan blue staining or the MTS assay \[48\]. Cells with intact membranes that have initiated apoptotic pathways not manifested yet with the achievement of cell death were also not
considered. Normally, cell death is manifested hours after the cells are thawed through apoptosis or necrosis. Assessments conducted at different time points could give insights on the delayed decline in cell viability, a process often not detected immediately post-thawing [49]. Future work should aim to use an assay that considers both the capability of cells to duplicate and their ability to maintain cell properties after cryopreservation.

The use of FBS in the pre-incubation media significantly increased the cryosurvival of osteosarcoma cells compared to pre-incubation media without it. This trend was even more pronounced when PP-50 was also present in the pre-incubation media. This highlights the role of FBS as an important source of proteins that may play a major role in cell cryopreservation when used along permeating agents such as PP-50. However, since FBS presents several disadvantages when used in biomedical applications, future work should aim at identifying effective substitutes for cryopreservation-promoting factors present in FBS.

In this work, PP-50 has been shown to mediate the transport of trehalose, highlighting its use in existing cell cryopreservation protocols and therapeutic applications.

5. Conclusions

In this study, the cellular trafficking of labelled trehalose when using an amphipathic pH-responsive biopolymer was studied. Intracellular trehalose loading in the presence of PP-50 was shown by confocal microscopy. Quantitative analysis of colocalisation resulted in a high degree of colocalisation between the trehalose and polymer. Both molecules were shown to accumulate in the perinuclear area of cells, highlighting the use of PP-50 as a drug delivery system. Cryopreservation of cells incubated in the presence of trehalose and PP-50 showed increased cryosurvival rates as measured by trypan blue staining and metabolic activity. Further work is needed to determine the intracellular fate of trehalose and PP-50. This study provides an important step toward the use of amphipathic biopolymers for cryopreservation and biomedical applications.

6. Acknowledgements

Mercado S. A. wishes to thank the Agency for Science and Technology Research, CONICYT (Chile), for the provision of a studentship during the tenure of which this work was conducted. The authors would like to thank Radu Lazar, Department of Chemical Engineering and Biotechnology, University of Cambridge.
7. References

List of Figures

Figure 1: Confocal microscopy analysis of SAOS-2 cells incubated with labelled trehalose in the presence and absence of PP-50. Cells were incubated with for different periods of time with 50 mM of FITC-trehalose in the presence or absence of 250 μg/ml PP-50. After incubation, cells were stained with 5 μg/ml propidium iodide (red fluorescence) and 5 μg/ml Hoechst H33342 (blue fluorescence). Data are representative of a minimum of three separate experiments. Scale bar represents 30 μm.

Figure 2: Colocalisation analysis of labelled PP-50 with labelled trehalose by confocal microscopy. Cells were incubated with 250 μg/ml PP-50/AF647 (red fluorescence) and 50 mM FITC-trehalose (green fluorescence) for 4 hrs. Subsequently cells were stained with 5 μg/ml Hoechst H33342 (blue fluorescence) for 15 min. Colocalisation is shown in yellow. Data are representative of a minimum of three separate experiments. Scale bar represents 25 μm.

Figure 3: Cryosurvival of SAOS-2 cells incubated with different media measured by trypan blue and the MTS assay. Error bars represent the standard deviation of three replicates. C(-) represents the negative control of freezing, i.e. untreated cells frozen in media composed of 100 % (v/v) DMEM, whereas C(+) represents the positive control of freezing, i.e. untreated cells frozen in media composed of 90 % (v/v) DMEM and 10 % (v/v) Me₂SO. Data were normalised to the positive control of freezing C(+). **P<0.01, ***P<0.001, ****P<0.0001.
A figure showing the normalised cryosurvival of cells treated with different conditions. The x-axis represents different treatments: C (-), PP-50 (-), PP-50 (+), PP-50 (-), PP-50 (+). The y-axis represents the normalised cryosurvival percentage. The treatments are categorized into two groups: 200 mM trehalose and 200 mM trehalose with 10% (v/v) FBS. The figure includes statistical significance markers: **, *** and **** for different comparisons.