Gene expression

DAPAR & ProStaR: software to perform statistical analyses in quantitative discovery proteomics

Samuel Wieczorek1,2,3,*, Florence Combes1,2,3,*, Cosmin Lazar1,2,3, Quentin Giai Gianetto1,2,3, Laurent Gatto4,5, Alexia Dorffer1,2,3, Anne-Marie Hesse1,2,3, Yohann Couté1,2,3, Myriam Ferro1,2,3, Christophe Bruley1,2,3 and Thomas Burger1,2,3,6,*

1Université Grenoble Alpes, BIG-BGE, Grenoble, 38000, France, 2CEA, BIG-BGE, Grenoble, 38000, France, 3INSERM, BGE, Grenoble, 38000, France, 4Computational Proteomics Unit, Cambridge, CB2 1GA, UK, 5Cambridge Center for Proteomics, Cambridge, CB2 1GA, UK and 6CNRS, BIG-BGE, Grenoble, 38000, France

*To whom correspondence should be addressed.

Received on December 14, 2015; revised on July 5, 2016; accepted on September 2, 2016

Abstract

Summary: DAPAR and ProStaR are software tools to perform the statistical analysis of label-free XIC-based quantitative discovery proteomics experiments. DAPAR contains procedures to filter, normalize, impute missing value, aggregate peptide intensities, perform null hypothesis significance tests and select the most likely differentially abundant proteins with a corresponding false discovery rate. ProStaR is a graphical user interface that allows friendly access to the DAPAR functionalities through a web browser.

Availability and implementation: DAPAR and ProStaR are implemented in the R language and are available on the website of the Bioconductor project (http://www.bioconductor.org/). A complete tutorial and a toy dataset are accompanying the packages.

Contact: samuel.wieczorek@cea.fr, florence.combes@cea.fr, thomas.burger@cea.fr

The objectives of quantitative discovery proteomics are to identify proteins in several biological samples that separate into at least two different biological conditions and to perform a relative quantification, so as to discriminate between the proteins which are significantly differentially abundant, and those which are not. This classically involves numerous steps: (i) protein extraction; (ii) proteins digestion into peptides; (iii) liquid chromatography and tandem mass spectrometry analysis; (iv) peptide identification on the basis of the fragmentation spectra; (v) peptide quantitation on the basis of the precursor chromatograms (XIC) and (vi) peptide aggregation into protein identity and abundance. The outcome of this analytical pipeline is a quantitative dataset that contains protein abundance across all replicates.

Once the quantitative dataset is available, the quantitative analysis may start. Its objective is to rely on an efficient and reproducible statistical pipeline to isolate the subset of proteins that are characteristic of the differences between the biological conditions, on which further more exhaustive wet-laboratory experiments will be performed.

Numerous tools are available to perform such quantitative analysis, either as stand-alone tools (e.g. MSstats; Choi et al., 2014) or as a module of a larger bioinformatics tool (e.g. Skyline; MacLean et al., 2010), or as generic software that is not restricted to proteomics, but can be used in a wider omics context (e.g. InfernoRDN—Former DAuTE; Polpitiya et al., 2008) or even for general purpose statistics (e.g. JMP—http://www.jmp.com/). It is also possible to sort the available tools according to their code being open (MSstats and more generally any R package) or not (Perseus—http://www.biochem.mpg.de/5111810/perseus), as well as according to the presence of a graphical user interface (GUI) or not: generally most of the R...
packages are not fit with a GUI, while other software tools are. To
date, the only software tool that is based on R and which is endowed
with a GUI is InfernoRDN. However, the underlying R packages are
not accessible, so that the code is not really open, and the GUI only
works on Windows operating systems. As a result, to the best of the
authors’ knowledge, there is so far no software tool that is (i)
devoted to proteomics; (ii) devoted to quantitative analysis; (iii)
with open-source code that guarantees reproducibility, interoper-
ability and quality control of the code; (iv) with a user-friendly GUI
and (v) which can be operated on any operating system. This lack
has motivated the developments reported here. In general, quantita-
tive analysis is composed of the following steps:

1. Filtering: Some peptides or proteins may be discarded, on the
 basis of several user-defined criteria (number of missing values
 within each or across all the biological condition(s), contamin-
ant database, decoy sequences, etc.).

2. Normalization: The protein abundances are rescaled (within or
 between conditions) to account for the variability between the
 analyses. Several algorithms can be used: quantile normalization
 (Bolstad, 2007), abundance normalization, scaling/centering (eit-
erally globally applied or by condition), etc.

3. Imputation: To maximize the power of the statistical analysis, the
 missing values are imputed. This is achieved with one of the mul-
tiple available algorithms that accounts in a specific manner each
 for the specific nature of missing values (missing at random, or
 lower abundance censorship): k Nearest Neighbors (Hastie et al.,
 2001), Maximum Likelihood Estimation (Schafer, 2008), Bayesian
 Principal Component Analysis (Stacklies et al., 2007), Quantile
 Regression to Impute Left-Censored data (Lazar, 2015), etc.

4. Aggregation: The peptide intensities are aggregated together so as
 to infer back the abundances of the proteins originally present in
 the samples. Several aggregation functions are classically used:
 sum, mean or median of the intensities of a set of peptides (all of
 them, the protein specific ones or only the N most abundant ones).

5. Differential analysis: Finally, null hypothesis significance testing
 (with a Welch or limma t-tests; Ritchie et al., 2015), as well as P-
 value adjustment are conducted, leading to a list of differentially
 abundant proteins endowed with a false discovery rate estimation.

DAPAR (differential analysis of protein abundance with R) is an R
package that either proposes new algorithms for these five computa-
tional steps or simply binds the R packages implementing pre-existing
state-of-the-art methods (refer to the ProStaR and DAPAR tutorial for an
updated list of the available algorithms). The main feature of
DAPAR is to gather in a single package, all the necessary statistical rou-
tines for quantitative analysis. Moreover, it is completely compatible
with (i) the MSnbase package (Gatto and Lilley, 2012), which provides
a standard format for quantitative datasets, as well as with (ii) any bio-
conductor package, so that its functionalities can be easily extended.
However, as is, its use requires being comfortable with R program-
ing, which is not the case for all proteomics practitioners.

This is why DAPAR is accompanied by ProStaR, a package that relies on Shiny technology (http://shiny.rstudio.com/) to dynamically
build web-based GUI to DAPAR functionalities. All the user has to do is to copy–paste the following command lines

```r
source(‘http://www.bioconductor.org/biocLite.R’)
biocLite(‘DAPAR’); biocLite(‘Prostar’);
library(Prostar); Prostar()
```
in the R console to open the GUI and to start the quantitative ana-
lysis by a series of clicks. Moreover, ProStaR is also available in
server mode: a single (server) machine is installed and maintained
with R, DAPAR and ProStaR, on which each practitioner connects
through a given URL. This makes ProStaR particularly suited for
proteomics labs where a single bioinformatician deploys and main-
tains the tools that are used by the proteomicians for their data ana-
lyses. In addition, to providing menus devoted to each of the five
processing steps (filtering, normalization, imputation, aggregation and
differential analysis), ProStaR provides import/export functions,
as well as a ‘descriptive statistics’ menu where it is possible to
visualize the dataset in hands, so as to best understand it or to pro-
duce display elements for publications.

The packages DAPAR and ProStaR are separated for two rea-
sons: first, ProStaR may be bypassed by any R coder that may want
to directly access the low level functions of DAPAR, script their own
pipelines and reproduce them in a better and simpler way. Second,
the DAPAR functions can be directly mapped to other GUI (such as
for instance ProLine software—http://proline.protoproteomics.fr/),
so as to provide the same statistical pipeline in a different computa-
tional environment.

DAPAR and ProStaR are actively maintained. Further versions of
DAPAR will include additional algorithms for the five aforemen-
tioned processing steps, as well as possibly new steps, such as for in-
stance, bioanalyisis and biological inference. ProStaR will include
the interfaces to these new functionalities, as well as predefined
pipelines proposing only a restricted set of functionalities that are
particularly adapted to specific proteomics analysis (e.g. tandem af-
finity purification and subcellular localization). Finally, a demo
version of ProStaR can be directly tested online at the following URL:

Funding

This work was supported by ANR-2010-GENOM-BTV-002-01 (Chloro-
types), ANR-10-INBS-08 (ProFI project, ‘Infrastructures Nationales en
Biologie et Santé’, ‘Investissements d’Avenir’), EU FP7 program (Prime-XS
Project, Contract no. 262067), the Prospectorn project (Mastodonton 2012
CNRS Challenge) and the BBSRC Strategic Longer and Larger grant (Award
BB/0028171). The authors thank the PRABI (Pôle Rhône-Alpes
Bioinformatique) for providing its computing and hosting facilities.

References

R package version 1.32.0.

Choi, M. et al. (2014) MSstats: an R package for statistical analysis of quanti-
tative mass spectrometry-based proteomic experiments. Bioinformatics, 30,
2524–2526.

Gatto, L., and Lilley, K.S. (2012) MSnbase—an R/Bioconductor package for iso-
tative mass spectrometry-based proteomic experiments. Bioinformatics, 28,
288–289.

version 1.44.0.

ing data imputation. CRAN.

and analyzing targeted proteomics experiments. Bioinformatics, 26, 966–968.

Polypitaya, A.D. et al. (2008) Dante: a statistical tool for quantitative anal-

Ritchie, M.E. et al. (2015) limma powers differential expression analyses for

Stacklies, W. et al. (2007) pcaMethods—a bioconductor package providing