Martin Brasier’s contribution to the palaeobiology of the Ediacaran–Cambrian transition

ALEXANDER G. LIU¹, LATHA R. MENON², GRAHAM A. SHIELDS³, RICHARD H. T. CALLOW⁴ & DUNCAN McILROY⁵

¹ School of Earth Sciences, University of Bristol, 24 Tyndall Avenue, Bristol, BS8 1TQ, U.K.
² Department of Earth Sciences, University of Oxford, South Parks Road, Oxford, Oxfordshire, OX1 3AN, U.K.
³ Department of Earth Sciences, University College London, Gower Street, London WC1E 6BT, U.K.
⁴ Statoil ASA, 4035 Stavanger, Norway.
⁵ Department of Earth Sciences, Memorial University of Newfoundland, 300 Prince Philip Drive, St. John’s, NL, A1B 3X5, Canada.

Abstract

Martin Brasier’s work spanned almost the entire geological column, but the origin of animals and the nature of the Cambrian Explosion were areas of particular interest. Martin adopted a holistic approach to the study of these topics that considered the interplay between multiple geological and biological phenomena, and sought to interpret the fossil record within the broad context of geological, biogeochemical, and ecological changes in the Earth system. Here we summarize Martin’s main contributions in this area, and assess the impact of his findings on the development of this field.

“Karl Popper would have said that... palaeontology [is] not real science because you can’t go out and sample it. I think absolutely the opposite. I think this is actually where science is. It’s trying to guess what lies over the hill and map terra incognita. When people come in and colonize, that’s just technology.”

Martin Brasier, 2013

(Excerpted from a phone interview with Robert Moor, On Trails, 2016)
Martin’s path into the Ediacaran–Cambrian transition

Martin Brasier frequently articulated the story of his journey into the study of the Cambrian Explosion of animal life. Drawing comparisons to Darwin and Lyell, Martin observed that his research into the past also began by looking at the present – in his case, exploring Caribbean reefs and lagoons as a ship’s naturalist on-board HMS Fawn and HMS Fox during his doctoral work in 1970 (Brasier 2009). Much of his early palaeontological research focused on Foraminifera (see Brasier 2012; Gooday in review), but these interests broadened to encompass other groups and ever more ancient organisms. During his time at the University of Reading, Martin was shown macrofossil specimens from the Ediacaran of Australia by Roland Goldring, which Martin later quipped he didn’t study at the time because “[the Ediacara biota] had been solved, Glaessner had worked it all out”. Martin did however take an interest in Roland’s archaeocyathid sponges, which led him to Paris to work with Françoise Debrenne on the Cambrian Explosion.

Martin became fascinated by the conundrum of Darwin’s Dilemma: the mystery of why animal fossils seemingly extended back in time only to the Cambrian Period when evolutionary theory predicted a much more ancient history for metazoan lineages. He saw the Cambrian Explosion as “probably one of the strangest things that’s ever happened to life on our planet”, and dedicated a significant amount of his career to attempting to resolve this problem. An early contribution to this area involved helping Michael House to organize one of the first symposia on the Cambrian Explosion, for the Systematics Association in 1978. Meanwhile, work at the University of Hull explored the ecology and taphonomy of archaeocyaths and the “Tommotian” trace fossils and skeletal biota of Nuneaton: the Small Shelly Fossils, or “small smelly fossils” as Martin fondly referred to them (Brasier 1976, 1984, 1986; Brasier et al. 1978; Brasier & Hewitt 1979). Those studies later expanded to encompass the broader Cambrian Explosion, and particularly its global palaeoenvironmental context (Brasier 1982, 1985).

Following his move to the University of Oxford in 1988, Martin became focused on the interrelationship between the evolution of animal life, nutrient flux, and the global ocean-atmosphere system, as evidenced by authigenic minerals and geochemistry (e.g. Brasier 1990, 1991, 1992; Brasier et al. 1990; Brasier et al. 1992). His arrival in Oxford coincided with a surge in interest in carbon isotope perturbations around the Ediacaran–Cambrian boundary (Hsu et al. 1985; Knoll et al. 1986; Magaritz et al. 1986; Tucker 1986). With a
stable isotope laboratory at his disposal, Martin became an isotope enthusiast, launching a series of chemostratigraphic studies through the 1990’s, spurred on by a healthy rivalry with the competing Harvard group (e.g. Knoll et al. 1995). His interest in isotopes refined stable isotope stratigraphy across the Ediacaran–Cambrian boundary, culminating, through his involvement in the International Subcommission on Cambrian Stratigraphy, with an internationally agreed definition for the basal Cambrian boundary (Brasier et al. 1994a; Landing & Geyer this volume). By the end of the decade, Martin had fully incorporated global isotopic trends into a holistic synthesis of the Ediacaran–Cambrian transition (Brasier & Lindsay 2001) that had its roots 20 years earlier (Brasier 1980, 1982).

Between 1992 and 1995, Martin supervised his first student on the Ediacaran–Cambrian transition, Duncan McIlroy, and it was at this time that Martin was partly drawn away from the carbonate-rich Cambrian successions and towards the fossiliferous siliciclastic Ediacaran–Cambrian sections of Avalonia and Baltica (Brasier & McIlroy 1998; McIlroy et al. 1998). It was not until the early 2000s that Martin truly engaged with the Ediacaran during a visit to Mistaken Point with Guy Narbonne of Queens University. Following McIlroy’s move to Memorial University of Newfoundland (Canada), Martin became an adjunct professor at Memorial University, and from 2005 onwards he visited Newfoundland with graduate students for several weeks each year (Fig. 1) until his death. Many of these students, including Jonathan Antcliffe, Richard Callow, Alex Liu, Latha Menon, Jack Matthews and Renee Hoekzema, continue to explore aspects of Ediacaran geology and palaeobiology in Newfoundland and elsewhere. Although Martin extended his research ever further back in time, “working on ever older and more puzzling rocks – as I myself grew more ancient and puzzled” (see Antcliffe et al. this volume), the question of animal origins, and the enigma of the Cambrian Explosion, remained a core area of his studies. Some of the highlights of his Ediacaran and Cambrian work, and their intellectual impact on the field, are outlined below.

Refining stratigraphic understanding

Martin’s work, particularly in the 1980s and 1990s, had a strong focus on refining Ediacaran–Cambrian stratigraphy in order to develop a global framework upon which to pin geological and evolutionary events. He noted at his retirement event in 2014 that “although everybody is interested in the biology of the Cambrian Explosion, actually defining the terms and the nature of rocks across that time was a fundamental part of developing the language we
needed…” As part of his formal Reply upon receiving the Lyell Medal of the Geological Society that same year, he noted: “It took twenty years (1973–1993) to help settle a definition of the Precambrian–Cambrian boundary, and another two decades to help characterize the new Ediacaran System”.

Martin’s involvement in this important work utilized several independent records, across multiple continents. Following early work on the Cambrian boundary sections in India (Brasier & Singh 1987), he proceeded to integrate geochemical and biostratigraphic records from places as far afield as Scotland, Iran, Oman, China, Mongolia, Spain and Australia, demonstrating thereby major discontinuities in classic GSSP candidate sections (Brasier et al. 1979; Brasier, et al. 1990; Brasier et al. 1996; Shields et al. 1997; Brasier & Shields 2000; Lindsay et al. 2005). These studies contributed to an increasingly robust understanding of temporal changes in geochemical records during the Ediacaran–Cambrian transition, and also include some of the first publications to recognise overlaps in the biostratigraphic ranges of key Cambrian biotas (e.g. Brasier et al. 1979). Although he was not a geochronologist, Martin became associated with several projects involved in dating significant Ediacaran and Cambrian sections worldwide, including studies of material from Oman (Brasier et al. 2000), and most recently efforts to date the fossiliferous Ediacaran localities in Newfoundland.

Martin became involved in global discussions regarding Cambrian stratigraphic correlation during the late 1980s and early 1990s, holding positions as Secretary of the Working Group on the Precambrian–Cambrian boundary, and leader of IGCP Project 303 on Precambrian–Cambrian event stratigraphy (Brasier et al. 1994b). Most notably, in his role as President of the International Subcommission on Cambrian Stratigraphy (1992–1996) Martin presided over the key decision regarding the placement of the Global Stratotype Section and Point for the base of the Cambrian System. This process required considerable diplomacy, with multiple nations competing for the GSSP (Brasier et al. 1994a; Brasier 2009). The eventual GSSP section, at Fortune Head in Newfoundland, was chosen partly on the basis of its possession of the first appearance datum of the Treptichnus pedum (formerly Phycodes pedum) trace fossil assemblage (summarized in Brasier et al. 1994a; McIlroy & Brasier this volume). Although this decision has largely withstood the test of time, refinement of formal stratigraphy in both the Cambrian and the Neoproterozoic are ongoing (e.g. Narbonne et al. 2012; Shields-Zhou et al. 2012; Landing et al. 2013; Babcock et al. 2014; Geyer & Landing this volume). Martin retained an active role in Subcommission activities, and was a Voting
Decoding the Ediacaran biota

Martin worked on several different groups of Cambrian and Neoproterozoic organisms, but perhaps the most challenging (and ultimately rewarding) group were the Ediacaran soft-bodied macrobiota. To the uninitiated, study of the Ediacaran macrobiota appears a daunting task: many of the fossils bear little or no resemblance to any extinct or extant taxon, and their paucity of recognisable morphological characters has contributed to significant uncertainty regarding their position in the eukaryotic tree. Martin conducted fieldwork in locations including Canada, Oman, Namibia and Brazil to attempt to resolve the question of what the Ediacaran organisms were. The consensus opinion when Martin began his Ediacaran–Cambrian research was that many of the Ediacaran macro-organisms were animals (cf. Glaessner 1984), but following Seilacher’s famous suggestion of an alternative Vendobiont hypothesis (Seilacher 1984, 1989), considerable debate and uncertainty has surrounded their phylogenetic position. Martin was keen to emphasize that the Precambrian world was different, and that the principle of uniformitarianism could not be extrapolated back into the Precambrian as reliably as it could in the Phanerozoic: “the world before the Cambrian was, arguably, more like a distant planet” (Brasier 2009). He also recognized that ‘shoehorning’ Ediacaran fossils into modern groups was unwise, since many characters diagnostic of extant crown groups were likely to have developed in response to extrinsic events or factors that had not yet come to pass in the Ediacaran. In particular, he was in recent years a vocal advocate of questioning the assumption that many Ediacaran macro-organisms were metazoan, critically assessing the evidence, promoting consideration of the null hypothesis, and encouraging debate and discussion (e.g. Antcliffe et al. 2014). Where the evidence weighed against the null hypothesis, however, he remained open to the possibility that some Ediacaran forms might represent simple animals (e.g. Liu et al. 2015b).

Although he participated in field trips to Ediacaran localities from the 1970s onwards, it was only in the early 2000s that Martin started to seriously examine Ediacaran macrofossils, with his first foray in this field being a Masters student project on Charnia masoni (completed by Jo Slack). This led to over a decade of research into the Ediacaran macrobiota, which coincided with a significant global invigoration of the field. Perhaps
unsurprisingly, this work also included occasional descriptions of microfossils (e.g. Zhou et al. 2001).

Consideration of growth and development

Martin’s approach to investigating Ediacaran macro-organisms was to focus on a small number of iconic, representative taxa; to study these in detail; and to assess their growth and development in order to attempt to constrain their phylogenetic position (an approach outlined in Brasier & Antcliffe 2004). Work undertaken with Jonathan Antcliffe on Charnia demonstrated how its mode of growth seemingly differs from that of extant sea pens, thus permitting a pennatulacean affinity for Charnia to be refuted (Antcliffe & Brasier 2007a, 2008). Similar studies into Dickinsonia (Brasier & Antcliffe 2008; utilising specimens from the Goldring collection) and Palaeopascichnus (Antcliffe et al. 2011) provided further contributions to our knowledge of those taxa and their construction, and expanded the armoury of approaches used to examine Ediacaran macrofossils. The influence of this work can be clearly seen in recent studies into the growth, development and morphogenesis of Ediacaran macrofossils (e.g. Hoyal Cuthill & Conway Morris, 2014; Gold et al. 2015).

Martin’s studies also introduced a technological innovation to Ediacaran palaeobiology: the laser scanning of fossil-bearing surfaces (Fig. 2; Antcliffe & Brasier 2011). Laser scanning permits fine-scale quantitative studies of morphology, and reveals morphological characters that cannot be easily observed in the field.

Consideration of other Ediacaran frondose taxa (e.g. Bradgatia and Charniodiscus) explored how those organisms might be related to one another (Brasier & Antcliffe 2004, 2009), how disparate their morphologies could be (Antcliffe & Brasier 2007b) and the details of their architecture and taxonomy, culminating in the development of a coherent system with which to describe and classify rangeomorph organisms (Brasier et al. 2012). That latter publication provided a testable framework in which to explore frondose taxa, and has stimulated ongoing research into the fundamental question of what constitutes ecophenotypic versus genotypic variability in Ediacaran populations (e.g. Wilby et al. 2015; Liu et al. 2016). Though he did not describe significant numbers of new Ediacaran macrofossil taxa, Martin was particularly proud of deciphering Beothukis mistakensis (Brasier & Antcliffe 2009), which he considered to be a ‘Rosetta Stone’ for the understanding of rangeomorphs. As with the other taxa he named from Newfoundland (e.g. Vinlandia, Brasier et al. 2012), Martin
favoured names that celebrated the history of the island and the language of its indigenous populations.

A focus on Avalonia

Martin’s work included descriptions of Ediacaran fossils from Australia (Brasier & Antcliffe 2008), Iran (Menon et al. In Prep), Brazil (Parry et al. In Prep) and Siberia (Liu et al. 2013), but much of his Ediacaran research was undertaken on sites either in England, or in Newfoundland. The classic English localities of the Long Mynd and Charnwood Forest, along with the coastal sections of Newfoundland, all lay on the margins of the microcontinent of Avalonia during late Ediacaran times (Cocks et al. 1997). As such, they exhibit many similarities in age, facies and fossil assemblage (Wilby et al. 2011; Noble et al. 2015), and in the past decade Martin made a concerted effort to better understand these regions and their relationship to wider global patterns and processes.

Charnwood Forest

The Ediacaran–Cambrian inlier of Charnwood Forest in Leicestershire, central England, was for Martin a classic place to take new students due to its accessibility, its historical importance in Ediacaran palaeontology, and because it is not a very easy area to understand without geological mapping and careful fieldwork. The art of deciphering stratigraphy and palaeoenvironment is something that Martin always loved, be it mapping the location of Precambrian cherts (e.g. Wacey et al. 2010) or working out field relations between dated igneous rocks and Ediacaran successions to indirectly constrain the age of the Ediacaran biota (McIlroy et al. 1998).

The Charnian successions became a central focus of Martin’s research following his 2005 visit to Mistaken Point in Newfoundland, during which time his Oxford group first started to develop ideas pertaining to growth and morphology of the Ediacaran macro-organisms. The easy accessibility of type material of Charnia masoni and Bradgatia linfordensis allowed Martin to employ his skills as an artist to create sketches that were more informative than any individual photograph. Martin used a technique where he drew the same fossil multiple times using illumination from different directions to build up a picture of
the specimen that was simultaneously lit from several directions (Fig. 3). Although he called it ‘*camera lucida*’, in truth it often involved him tracing over images directly on his computer monitor. While drawing the type material of *Charniodiscus*, Martin suggested that it might actually be composed of several fronds orientated at angles to one another and compressed into the same plane (unpublished work discussed widely at conferences; Fig. 3; contrast this with Brasier & Antcliffe 2009, fig. 12), which, if correct, potentially has implications for all the other currently valid species of *Charniodiscus* (*C. arboreus*, *C. longus*, *C. oppositus*, *C. procerus*, *C. spinosus* and *C. yorgensis*), which appear to only have one frond and as such would have to be transferred to another genus. *Charniodiscus* is a particularly problematic taxon, and although progress is being made in understanding its morphology (e.g. Ivantsov 2016), it remains to be seen whether Martin’s interpretation is correct. Much of Martin’s work on rangeomorphs utilized material from Charnwood, and he also contributed to discussions regarding protection of the Charnwood localities in his role as a member of the *Charnia* Research Group.

The Long Mynd, Shropshire

The other main English Ediacaran sections are to be found on the Long Mynd of Shropshire. The purported macrofossils from this area were first described by John Salter (Salter 1856, 1857) who was a contemporary of Charles Darwin, and the material from the Long Mynd was posited by Darwin as a partial solution to the unexpectedly sudden appearance of fossils at the base of what we now call the Cambrian Explosion (Darwin 1859). Martin had been fond of relating the sad story of John Salter, who was from a relatively humble background and had worked his way up to be a palaeontologist for the British Geological Survey, only to be sacked just before reaching pensionable age. Struggling to support his family, and suffering from bouts of depression, he finally committed suicide (Callow *et al.* 2011). In the course of Martin’s revisiting of the Longmyndian fossils, the wonderful Darwin Correspondence Project (e.g. Burkhardt & Smith 1985) provided a more complete story of Salter’s last years, which lends support to the idea that he suffered from what we would now call bipolar disorder (Callow *et al.* 2011). Salter’s tragic story, especially the way that his work was overlooked and side-lined, touched Martin, who took delight in bringing Salter’s work to a modern audience within the context of historical geology.
The key scientific questions regarding the Longmyndian relate to what its dominantly discoidal fossil assemblage represents, and how the shallow-marine to fluvial depositional environments relate to the largely marine sections seen elsewhere in Avalonia. The various discoidal structures of the Long Mynd have been the subject of much discussion in the geological literature (summarised in Callow & Brasier 2009a; Callow et al. 2011). Debate had surrounded the biogenicity of the small, circular impressions from the Burway, Synallds and Lightspout formations, with interpretations ranging from gas escape structures or raindrops to body and trace fossils of Ediacaran macro-organisms (e.g. Cobbold 1900; McIlroy et al. 2005; Toghill 2006). Martin’s own investigations in the Long Mynd led to expanded descriptions of microfossils (originally described by Timofeyev et al. 1980, and Peat 1984), and the recognition that they could be preserved in multiple taphonomic styles (Callow & Brasier 2009b). Follow-up work with Latha Menon investigated the problem of what the discoidal structures actually represent by utilising serial grinding techniques to digitally reconstruct their three-dimensional morphology. This work revealed that the Longmyndian discoidal impressions were formed by the interaction of escaping fluids within finely laminated, microbial-mat-bound sediments (Menon et al. 2016; Menon et al. this volume), finally establishing that they arose from a combination of abiogenic processes and the presence of microbial mats.

So from a position where Martin felt that the Longmyndian sections were key to understanding evolution in the latest Ediacaran (his Kotlin Crisis; Brasier 1995), gradually, taxon by taxon, detailed objective work has reduced us to a position where there are no longer any authentic Ediacaran macrofossils reported from the Long Mynd (though that is not to say his Kotlin Crisis has been abandoned; see for example Kolesnikov et al. 2015). John Salter’s novel assertion that there was Precambrian animal life is correct (Salter 1856), but sadly not based on the material he knew. The critical reassessment of the discoidal forms of the Long Mynd owe much to Martin instilling into his students the importance of constant vigilance in interpreting ancient markings, and his emphasis on the importance of the null hypothesis. In this case, the influence of microbial mats on fluid-filled sediments, driving millimetre-scale fluid escape, and affecting their surface expression, was entirely sufficient to explain the range of discoidal markings found on the Long Mynd. This work also expanded the range of influence of microbial mats on Ediacaran sediments, and highlighted the need to recognize the key role of microbes when examining the fossil record - a subject close to Martin’s heart (e.g. Callow & Brasier 2009a; Brasier et al. 2010).
Meanwhile Martin’s interests in determining the origin of the Long Mynd’s other enigmatic surface impression, Arumberia (Bland 1984; McIlroy & Walter 1997; McIlroy et al. 2005; Kolesnikov et al. 2012), and in refining the geochronological record of the locality, are ongoing areas of research for his group. He passed away before embarking on the next phase of our Longmyndian investigations—an opportunity to compare the sections to thick non-marine Ediacaran successions in Newfoundland—but he would have been amused to note that, as in all known non-marine Ediacaran successions, there is currently no evidence for the classic Ediacaran macrobiota. Had the Ediacaran biota truly been composed of lichens (Retallack 1994), environments like this are surely amongst the most likely places where we would have expected to find them.

Newfoundland, Canada

In addition to the work on rangeomorphs mentioned previously, Martin supported the exploration of sites in Newfoundland by his students. Research into Ediacaran taphonomy, largely using data collected from Newfoundland, offered a comprehensive assessment of how taphonomic processes and styles changed across the Ediacaran–Cambrian boundary, and their impact on our interpretation of the fossil record (Callow & Brasier 2009a). Martin also contributed to the recognition that some impressions on Ediacaran fossil-bearing surfaces previously described as valid taxa (e.g. Ivesheadia, Shepshedia and Blackbrookia; Boynton & Ford 1995) instead reflect decayed carcasses of other Ediacaran organisms (Liu et al. 2011; though see Laflamme et al. 2011; Wilby, et al. 2011). The recognition that time averaging occurs on Ediacaran bedding planes was a revolutionary idea at the time, and has been built upon by several other studies recognising the presence of multiple successive communities preserved on individual Ediacaran bedding planes (e.g. Antcliffe et al. 2015; Wilby et al. 2015). It has also inspired studies into the potential ecological impact of the appearance (and post-mortem influence) of macroscopic soft-bodied organisms on both benthic communities and the late Ediacaran carbon cycle (e.g. Liu et al. 2015a; Budd & Jensen 2015; Dufour & McIlroy this volume).

Martin and his students have also made significant contributions to the Ediacaran ichnofossil record. The description and interpretation of 565 Ma horizontal surface trails in the Mistaken Point Formation of Newfoundland (Liu et al. 2010a; Liu et al. 2014a), and of ~560 Ma vertical equilibration traces in the Fermeuse Formation (Menon et al. 2013), extend
the record of metazoan movement considerably into the Ediacaran Period. Those discoveries provided a search image for Ediacaran researchers that appears to have stimulated a considerable increase in the recognition of late Ediacaran trace fossils worldwide (e.g. Chen et al. 2013; Carbone & Narbonne 2014; Macdonald et al. 2014; see Liu & McIlroy 2015), providing some of the strongest existing evidence for the presence of motile metazoans among the largely sessile Ediacaran macro-organisms. However, Martin was wary of accepting all claims for complex metazoan movement or feeding, staying true to his belief that the null hypothesis must first be rejected before considering more ground-breaking claims (Brasier 2015). He was involved in questioning both ‘grazing’ traces of Dickinsonia-like organisms (McIlroy et al. 2009), and claims for bioturbation in Siberian rocks (Brasier et al. 2013a). These challenges were nevertheless constructive, and were intended to spur debate that will ultimately resolve the nature of these important materials.

Martin oversaw the description of discoveries of communities of juvenile rangeomorphs within the Mistaken Point Ecological Reserve (Liu et al. 2012), and personally discovered the holotype of what would come to be known as Haootia quadriformis (Liu et al. 2014b) on the Bonavista Peninsula. This remarkable fossil caused a lot of head-scratching and beard-stroking, but upon discovery of a second specimen in 2013, an interpretation of Haootia as recording an organism with fibrous musculature was developed (Liu et al. 2014b, 2015b). Once again, Martin was keen to ensure that the null hypothesis was first rejected before he would seriously consider options that implied the presence of metazoan musculature, and even after publication he was careful to stress that this interpretation was a “tentative reconstruction”, made on the basis of available evidence. His demand for high standards continued throughout his Ediacaran research, for example in his questioning of the terrestrial interpretation of the Ediacaran biota (e.g. Retallack 2010, 2013). He considered such interpretations to require special pleading to reinterpret sections that, on process-based physical sedimentological evidence, have always been considered marine (e.g. Liu et al. 2010b; Callow et al. 2013).

Palaeoenvironmental and preservational context was central to Martin’s approach to fieldwork, and he would encourage his students to visualize fossil assemblages in their original depositional environments, expertly producing impromptu sketches of possible scenarios in his notebook after meticulously recording his field observations (e.g. Fig. 4). This broad consideration of palaeoenvironment and context formed an important counterpoint to the detailed study of individual Ediacaran fossils. His work on both was driven by a
combinations of detailed observation, imagination, and biological insight, guided and
tempered by his wide experience. An example of his rapid assimilation and interpretation of
new observations is given by the reinterpretation of the remarkable preservation of Ediacaran
rangeomorphs at Spaniard’s Bay (Brasier et al. 2013b). An observation by one of his students
that the basal discs of fronds preserved on this surface show a steep undercutting on one side
struck him immediately as of significance, and led to his proposing a hydraulic model, which
the group tested and confirmed with sedimentological and morphological evidence. This
reassessment of the context of preservation has important implications for the interpretation
of morphological features in Ediacaran rangeomorphs (e.g. compare discussions in Brasier et
al. 2013b with those in Narbonne et al. 2009). In addition to studying the fossils and their
sedimentological context, Martin, along with Duncan McIlroy and Jonathan Antcliffe, had in
recent years developed hypotheses regarding the role of geochemical cycling in Ediacaran
ecosystems (Dufour & McIlroy this volume). These hypotheses are currently being tested
through the application of NanoSIMS to investigate sulfur cycling, in collaboration with
David Wacey, using material from Newfoundland in particular. This line of research was in
its infancy at the time of Martin’s death, but had begun to yield preliminary results by
demonstrating the biogenic origin (via microbial sulfate reduction) of pyrite framboinds within
mineralized veneers at macrofossil-bearing interfaces (Wacey et al. 2015; see also Liu 2016).
Further sulfur isotope data will be published in the coming years as this avenue of research is
explored in greater detail.

Martin’s work in Newfoundland led to his being invited along with Alex Liu to write
the Global Comparative Analysis of Ediacaran Fossil Sites for the Government of
Newfoundland and Labrador: a document that in 2015 was submitted to UNESCO as part of
the Canadian nomination of Mistaken Point Ecological Reserve for World Heritage Site
status (Liu & Brasier 2012). As well as comparing Ediacaran fossil sites worldwide against a
number of palaeontological criteria, the report set out a protocol for the assessment of the
Outstanding Universal Value of Precambrian fossil sites, which Martin hoped would make a
lasting contribution to society’s appreciation of important palaeontological localities
worldwide.

Considering the interplay between Earth and Life
Core to Martin’s thinking when assessing Ediacaran and Cambrian evolutionary events was
the interplay between evolution and the wider biosphere. He realized that the patterns
revealed in the fossil record could only be deciphered through consideration of the
contemporaneous geological and geochemical events that triggered, or were consequences of,
evolutionary innovations. His deep musing on approaches to interpreting the fossil record,
which he regarded as akin to playing a card game without knowing the rules (see Antcliffe et
al. this volume), was reflected in his public lectures and nicely summarised in his popular
science book on the subject, *Darwin’s Lost World* (Brasier 2009). In this book, intended to
inspire new generations of students as well as the general reader, he highlighted the dramatic
impact of the evolutionary innovation of predation among early animals, driving an arms race
of attack and defence mechanisms and culminating in the “circus of worms”—the sudden
appearance of widespread and deep burrowing—that so strikingly characterizes the transition
from the Ediacaran to Cambrian (Herringshaw et al. this volume; McIlroy & Brasier this
volume). His perspective was profoundly influenced by an Earth Systems view, involving
feedbacks, symbiotic associations, and the possibilities of catastrophic collapses of
interconnected webs resulting from subtle internal as well as external factors. These ideas,
many of which stem from observations made during his time as a ship’s naturalist, fed even
more strongly into his second book, about the origins of complex life, *Secret Chambers*
(Brasier 2012).

The forcing factors for animal evolution and the Cambrian Explosion

A particularly long-running strand of Martin’s research was his investigation of whether the
Cambrian Explosion was a real event, and what may have triggered it. Over two decades,
Martin continually refined his ideas towards a sophisticated synthesis of intricately
interconnected phenomena, which together provided the environmental context for the
evolutionary diversification of animals. Some of his earliest work investigated the role of sea
level change and facies variations in driving the Cambrian Explosion (Brasier 1982).
Extensive erosion continues to be explored as a tenable trigger for the Cambrian radiation
(e.g. Peters & Gaines 2012). Martin later considered the impact of factors such as climate
change, carbon cycle instability, eutrophication and anoxia (Brasier 1991, 1992), and even
supercontinent amalgamation (Brasier & Lindsay 2001), the latter in part informed by his
previous work collating the distribution of fossils and facies in several regions to assist in the
assembly of widely cited Neoproterozoic to Palaeozoic palaeogeographic reconstructions (McKerrow et al. 1992; Torsvik et al. 1996). The occurrence of a broad belt of glauconite and phosphate-rich sedimentary facies in the Early Cambrian was a long-lasting source of inspiration and intrigue (Brasier 1980, 1992; Brasier & Callow, 2007), and Martin’s favourite question for speakers on Ediacaran–Cambrian topics at conferences was “but what about the phosphate?”, a question he argued could be asked with justification of any researcher of this interval. Martin’s observations of the apparent onset of phosphatization at shallow depths within the sediment profile led him to invoke nutrients such as phosphate as a potential trigger for the Cambrian Explosion and the advent of biomineralization (Brasier 1980, 1990, 1992). Whether phosphate deposition was a cause (Brasier 1992) or a consequence (e.g. Butterfield 2003) of the Cambrian radiation has yet to be resolved, but Martin undoubtedly caused many to ponder the fundamental importance of nutrients for evolution (e.g. Tucker, 1992; Boyle et al. 2014). Resolving the role of phosphate in fossilization (Brasier 1984, 1985, 1990) and oxygenation (Brasier & Callow 2007) became another long-running theme of Martin’s research, and was used as a primary example of his hypothesis that the nature of the fossil record has changed through time (cf. Callow & Brasier 2009a; Brasier et al. 2011). He recognised that soft-bodied forms are preserved by phosphate in exquisite detail from the Early Cambrian to the late Mesoproterozoic, and suggested that the quality of the fossil record (somewhat paradoxically) improves the further back in time we go (Brasier 2009).

Going forward

At the time of his death, Martin’s research into the Ediacaran–Cambrian transition was far from over, and there remains much to do to understand evolutionary events and processes during this interval. We have touched upon several of the ways in which studies Martin was involved in are already being built upon (e.g. Dufour & McIlroy this volume). However, Martin’s greatest legacies in this field are arguably his involvement in defining the Ediacaran–Cambrian boundary (and also the basal Ediacaran GSSP in his role as a voting member of the Ediacaran Subcommission), and his support and expansion of the Ediacaran scientific community, both through the guidance of members of his own group, and the encouragement he offered, both informally and in reviews, to many scientists around the world seeking to tackle Ediacaran–Cambrian problems.
Martin’s work questioned several of the hypotheses that were ‘in vogue’ at the time, for example the severity of Neoproterozoic Snowball Earth events (Leather et al. 2002; Allen et al. 2004; Kilner et al. 2005). Importantly, in the best scientific tradition, he was not above questioning his own previous interpretations, for example revoking specimens he had earlier described as peristaltic burrowing (Brasier & McIlroy 1998; then see Brasier & Shields 2000) and the oldest sponge spicules (Brasier et al. 1997; then see Antcliffe et al. 2014). In much the same way as his approach to palaeobiology in general, Martin’s Ediacaran–Cambrian work challenged existing paradigms, expanded knowledge via application of new techniques to known sections, and provided novel hypotheses for critical testing. His studies throughout his career were rigorous, vigorous, thought-provoking, and scholarly. They often combined strong fieldwork elements in order to provide essential context for palaeontological material with the development of theoretical frameworks through which to make sense of the unusual organisms and events. This approach is something that many of his former students are keen to uphold. At its core, Martin’s Ediacaran–Cambrian work was focused on pushing the boundaries of knowledge: “trying to guess what lies over the hill and map terra incognita”, and ultimately understand the questions of how and why animals evolved. He may not have answered those questions completely, but he certainly played a prominent role in steering the scientific community towards the solutions.

Acknowledgments

We thank Palaeocast for making public their recordings of Martin’s Lyell Lecture at his retirement event at the University of Oxford in September 2014, from which several of the quotes in this article were taken, and the Geological Society of London, whose website records Martin’s formal Reply upon receiving the Lyell Medal in 2014. Simon Harris of the British Geological Survey provided an image for Figure 3a, and Per Ahlberg kindly provided information on Martin’s Cambrian Subcommission activities.

References

BOYNTON, H.E. & FORD, T.D. 1995. Ediacaran fossils from the Precambrian (Charnian
Supergroup) of Charnwood Forest, Leicestershire, England. Mercian Geologist, 13,
165-182.

BRASIER, M.D. 1976. Early Cambrian intergrowths of archaeocyathids, Renalcis, and
pseudostromatolites from South Australia. Palaeontology, 19, 223-245.

BRASIER, M.D. 1980. The Lower Cambrian transgression and glauconite-phosphate facies in

BRASIER, M.D. 1982. Sea-level changes, facies changes and the Late Precambrian—Early
Cambrian evolutionary explosion. Precambrian Research, 17, 105-123.

BRASIER, M.D. 1984. Microfossils and small shelly fossils from the lower Cambrian
Hyolithes limestone at Nuneaton, English Midlands. Geological Magazine, 121, 229-
253.

BRASIER, M.D. 1985. Evolutionary and geological events across the Precambrian–Cambrian
boundary. Geology Today, 1, 141-146.

BRASIER, M.D. 1986. The succession of small shelly fossils (especially conoidal microfossils)
from English Precambrian–Cambrian boundary beds. Geological Magazine, 123, 237-
256.

BRASIER, M.D. 1990. Phosphogenic events and skeletal preservation across the Precambrian-
Cambrian boundary interval. Geological Society, London, Special Publications, 52,
289-303.

BRASIER, M.D. 1991. Nutrient flux and the evolutionary explosion across the
Precambrian-Cambrian boundary interval. Historical Biology, 5, 85-93.

the Geological Society, 149, 621-629.

BRASIER, M.D. 1995. The basal Cambrian transition and Cambrian bio-events (from
Terminal Proterozoic extinctions to Cambrian biomes). In: WALLISER, O.H. (ed.)

BRASIER, M.D. 2015. Deep questions about the nature of early-life signals: a commentary on
Lister (1673)‘A description of certain stones figured like plants’. Philosophical
Transactions of the Royal Society of London A: Mathematical, Physical and
Engineering Sciences, 373, 20140254.

BRASIER, M.D. & ANTCLIFFE, J.B. 2004. Decoding the Ediacaran enigma. Science, 305, 1115-
1117.

morphology and body construction. Palaeogeography, Palaeoclimatology,
Palaeoecology, 270, 311-323.

BRASIER, M.D. & ANTCLIFFE, J.B. 2009. Evolutionary relationships within the Avalonian
Ediacara biota: new insights from laser analysis. Journal of the Geological Society,

BRASIER, M.D. & CALLOW, R.H.T. 2007. Changes in the patterns of phosphatic preservation
across the Proterozoic-Cambrian transition. Memoirs of the Association of
Australasian Palaeontologists, 34, 377-389.

BRASIER, M.D. & HEWITT, R.A. 1979. Environmental setting of fossiliferous rocks from the
uppermost Proterozoic—Lower Cambrian of central England. Palaeogeography,
Palaeoclimatology, Palaeoecology, 27, 35-57.

BRASIER, M.D. & LINDSAY, J.F. 2001. Did supercontinent amalgamation trigger the Cambrian
Cambrian Radiation. Perspectives in Palaeobiology and Earth History. Columbia
University Press, New York.

BRASIER, M.D. & MCLROY, D. 1998. Neonereites uniserialis from c.600Ma year old rocks in
western Scotland and the emergence of animals. Journal of the Geological Society,
London, 155, 5-12.

BRASIER, M.D. & MCLROY, D. THIS VOLUME. Ichnological evidence for the Cambrian
explosion in the Ediacaran to Cambrian succession of Tanafjord, Finnmark, northern
Society of London, Special Publication **, **-**.

BRASIER, M.D. & SHIELDS, G. 2000. Neoproterozoic chemostratigraphy and correlation of the
Port Askaig glaciation, Dalradian Supergroup of Scotland. Journal of the Geological
Society, 157, 909-914.

BRASIER, M.D. & SINGH, P. 1987. Microfossils and Precambrian–Cambrian boundary

CALLOW, R.H.T., BRASIER, M.D. & MCILROY, D. 2013. Discussion: "Were the Ediacaran siliciclastics of South Australia coastal or deep marine?" by Retallack et al., Sedimentology, 59, 1208-1236. Sedimentology, 60, 2.

DUFOR, S.C. & MCLROY, D. THIS VOLUME. Chemosynthesis and the ancestral feeding mode of early Ediacaran animals.

MCILROY, D. & BRASIER, M.D. THIS VOLUME. Possible in-vivo frond-sediment interactions of an unknown frondose taxon from Mistaken Point, Newfoundland.

MENON, L. BRASIER, M.D., & MCILROY, D. THIS VOLUME. Intrites from the Longmyndian of Shropshire, UK reinterpreted as a new form of MISS.

Figure captions

Fig. 1 Martin Brasier in Newfoundland. (a) On the ‘E’ Surface at Mistaken Point, in his socks, 2005. (b) Sketching on the Bonavista Peninsula, 2008. Photo credit: Jack Matthews.

Fig. 2 (a) Martin (inset) undertaking laser scanning in the field, Memorial Crags, Charnwood Forest, Leicestershire. (b) An example of a laser-generated digital image: the holotype of *Charnia masoni* (see Brasier & Antcliffe 2009).
Fig. 3 Martin’s method of drawing Ediacaran fossils, as exemplified by his work on the holotype of *Charniodiscus concentricus*, from Charnwood Forest, Leicestershire. (a) Photograph of a cast of the holotype specimen in New Walk Museum, Leicester, image courtesy of the British Geological Survey. (b) Martin’s sketch of the key features of the specimen, developed via drawings made from photographs and laser scan data. (c) Martin’s novel interpretation of multiple fronds emanating from the stem of the organism.

Fig. 4 Excerpt from one of Martin’s (many) field notebooks, showing a log drawn through the fossil-bearing section at Spaniard’s Bay, Newfoundland (work that was eventually published in Brasier *et al*. 2013b).
Section through 2 fossil beds (photos)

- Type 4: Parallel lam., Buonna sill/mud, D
- Type 3: Finely graded
- Type 2: Small-scale, Buonna CB, 3/4
- Type 1: Bitter but resistant, Woleu conglomerate, Buonna, C

+ * = Main fossil bed