
A New Verified Compiler Backend for CakeML

Yong Kiam Tan
IHPC, A*STAR, Singapore
tanyongkiam@gmail.com

Magnus O. Myreen
Chalmers University of Technology,

Sweden
myreen@chalmers.se

Ramana Kumar
Data61, CSIRO / UNSW, Australia
ramana.kumar@data61.csiro.au

Anthony Fox
University of Cambridge, UK
anthony.fox@cl.cam.ac.uk

Scott Owens
University of Kent, UK
s.a.owens@kent.ac.uk

Michael Norrish
Data61, CSIRO / ANU, Australia
michael.norrish@data61.csiro.au

Abstract
We have developed and mechanically verified a new compiler back-
end for CakeML. Our new compiler features a sequence of inter-
mediate languages that allows it to incrementally compile away
high-level features and enables verification at the right levels of
semantic detail. In this way, it resembles mainstream (unverified)
compilers for strict functional languages. The compiler supports
efficient curried multi-argument functions, configurable data rep-
resentations, exceptions that unwind the call stack, register alloca-
tion, and more. The compiler targets several architectures: x86-64,
ARMv6, ARMv8, MIPS-64, and RISC-V.

In this paper, we present the overall structure of the compiler, in-
cluding its 12 intermediate languages, and explain how everything
fits together. We focus particularly on the interaction between the
verification of the register allocator and the garbage collector, and
memory representations. The entire development has been carried
out within the HOL4 theorem prover.

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Software/Program Verification—Correctness proofs, Formal
methods; F.3.1 [Logics and meanings of programs]: Specifying
and Verifying and Reasoning about Programs—Mechanical veri-
fication, Specification techniques, Invariants

Keywords Compiler verification; ML; verified optimisations.

1. Introduction
Optimising compilers are complex pieces of software and, as such,
errors are almost inevitable in their implementations, as Yang et al.
(2011) showed with systematic experiments. The only compiler
Yang et al. did not find flaws in was the verified part of the Comp-
Cert C compiler (Leroy 2009).

The CompCert project has shown that it is possible to formally
verify a realistic, optimising compiler, and thereby encouraged
significant interest in compiler verification. In fact, much of this

interest has gone into extending or building on CompCert itself
(Stewart et al. 2015; Ševčík et al. 2013; Mullen et al. 2016).

Verified compilers for functional languages have not previously
reached the same level of realism, even though there have been
many succesful projects in this space, e.g. the compositional Pilsner
compiler (Neis et al. 2015) and the previous CakeML compiler
which is able to bootstrap itself (Kumar et al. 2014).

This paper presents the most realistic verified compiler for a
functional programming language to date.

• The new compiler has a fully featured source language, namely
CakeML, which includes user-defined modules, signatures, mu-
tually recursive functions, pattern matching, user-defined ex-
ceptions and datatypes, references, mutable arrays, immutable
vectors, strings, etc.
• The compiler passes through all the usual compiler phases, in-

cluding register allocation via Iterated Register Coalescing. It
uses 12 intermediate languages that together allow implemen-
tation of optimisations at practically any level of abstraction.
• The compiler has efficient, configurable data representations

and properly compiles the call stack into memory, including the
ML-style exception mechanism.
• The compiler takes concrete syntax as input and produces con-

crete machine code in five real machine languages as output. It
supports both 32-bit and 64-bit architectures.

None of these are new ideas in compiler implementation, and we
freely take inspiration from existing compilers, including Comp-
Cert and OCaml. Our contribution here is the verification effort,
especially how it affects the compiler’s structure and vice versa.

Traditional compiler design is motivated by generated-code
quality, compiler-user experience (especially compile times), and
compiler-writer convenience. Designing a verified compiler is not
simply a matter of taking an existing compiler and proving it cor-
rect while simultaneously fixing all its bugs. To start with, it is
probably not written in the input language of a theorem proving
system, but even if it could be translated into such a form, we
would not expect to get very far in the verification effort. Although
theoretically possible, verifying a compiler that is not designed for
verification would be a prohibitive amount of work in practice.

To make the verification tractable, the compiler’s design must
also consider the compiler verifier. This means that the compiler’s
intermediate languages, including their semantics, need to be care-
fully constructed to support precise specification of tractable invari-
ants to be maintained at each step of compilation. Of course, we

This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive version was published in the following publication:

ICFP’16, September 18–24, 2016, Nara, Japan
ACM. 978-1-4503-4219-3/16/09...
http://dx.doi.org/10.1145/2951913.2951924

60

cannot forgo the other design motivations completely, and our first
contribution here is a design that allowed us to complete the ver-
ification while supporting good quality code (for multiple targets)
and the implementation of further optimisations in the future.

Our second contribution focuses on the interaction of register
allocation with copying garbage collection. A necessarily awkward
ordering of compiler phases posed new technical challenges for the
verification effort. The garbage collector (GC) must be introduced
as a primitive when the data abstraction is removed; but this phase
precedes phases (instruction selection, SSA-form introduction, and
register allocation) that determine in exactly what order the GC will
visit the roots. This awkward ordering of compiler phases makes
it tricky to specify the semantics of intermediate languages that
follow the introduction of the GC but precede register allocation.

The architecture of our compiler was designed to be extensible
and we hope that it will serve the role of a verified compiler artefact
for functional languages in future research.

All of our definitions and proofs are carried out in the HOL4
system. The code is available at https://code.cakeml.org.

2. Approach
In this section, we start with a brief overview of the compiler, the
semantics of its intermediate languages, and the correctness proofs.
Subsequent sections will expand on the details.

2.1 Compiler Implementation
The compiler passes through 12 intermediate languages (ILs). It
starts from full CakeML, which includes modules, nested pattern
matching, data types, references, arrays, and an I/O interface, and
targets five real machine architectures. Each important step is sep-
arated into its own compiler pass, including closure conversion, re-
moval of data abstraction, register allocation, concretisation of the
stack, etc. The compiler uses a configuration record which specifies
the data representation to use and details of the target architecture.

The top-level compiler function takes a string and configuration
as input, and produces, on a successful execution, a list of bytes
and a number m . The bytes are machine code for the specific target
architecture and m is the number of foreign function interface (FFI)
entry points the executable assumes it has access to. The generated
machine code needs to be executed in a setting where it can jump
to FFI functions for each index less than m .

The compiler function is allowed to fail, i.e., return an error. It
can return an error due to parsing failure, type inference failure, or
instruction encoding failure. The parser and type inferencer have
been proved sound and complete, which means that an error there
indicates a fault by the user. An instruction encoding error can
happen when a jump instruction or similar cannot be encoded at
the very last step of compilation.1 Encoding errors ought to be rare.

When designing the structure of a compiler there is a question:
should there be many intermediate languages or just a few? In the
context of a verified compiler, having fewer ILs supports the re-use
of infrastructure, including utility lemmas, that is specific to each
IL’s semantics. However, ILs whose semantics support both higher-
and lower-level features can complicate the invariants needed to
verify transformations, especially when no program will contain
both at the same time. Thus, our CakeML compiler introduces
a new intermediate language whenever a significant higher-level
language feature has been compiled away, or when a new lower-
level one is introduced. Although this leads us to 12 ILs, many
transitions work within a single IL, as can be seen from Figure 1.

1 An encoding error happens when the compiler attempts to encode, e.g., a
jump of l bytes where l is too large to fit within the offset field of the jump
instruction’s encoding.

source syntax

source AST

no modules

Parse concrete syntax

no cons. names

no declarations

full pat. match

no pat. match

ClosLang:
last language
with closures

(has multi-arg.
closures)

Eliminate modules

Infer types, exit if fail

Replace constructor
names with numbers
Reduce declarations to
exps; introduce global vars
Make patterns exhaustive
Compile pattern matches
to nested Ifs and Lets
Rephrase language
Fuse function calls/apps
into multi-arg calls/apps
Eliminate dead code
Prepare for closure conv.
Perform closure conv.

BVL: func.
lang. without

closures

Fold constants
Shrink Lets

only 1 global
Compile global vars into a
dynamically resized array

DataLang:
imperative
language

Switch to imperative style

WordLang:
imperative

language with
machine words,
memory and a
GC primitive

Remove data abstraction
Select target instructions
Perform SSA-like renaming
Force two-reg code (if req.)
Allocate register names
Concretise stack

StackLang:
imperative
language

with array-like
stack and

optional GC

Implement GC primitive
Turn stack access into
memory acceses
Rename registers to match
arch registers/conventions
Flatten code

LabLang:
assembly lang. Delete no-ops (Tick, Skip)

Encode program as
concrete machine code

ARMv6

Languages Compiler transformationsValues

ab
st

ra
ct

 v
al

ue
s

in
cl

. c
lo

su
re

s
an

d
re

f p
oi

nt
er

s
ab

st
ra

ct
 v

al
ue

s
in

cl
.

co
de

 p
oi

nt
er

s
an

d
re

fs
m

ac
hi

ne
 w

or
ds

 a
nd

 c
od

e
la

be
ls

32
-b

it
w

or
ds

64

-b
it

w
or

ds

ARMv8 x86-64 MIPS-64 RISC-V

Combine adjacent
memory allocations

All languages communicate with the external world
via a byte-array-based foreign-function interface.

Reduce caller-saved vars

Figure 1. The structure of the new CakeML compiler.

We expect future extensions to the compiler to mostly be new
transitions within the existing ILs, rather than adding new ILs.

2.2 Semantics of Intermediate Languages
The compiler’s intermediate languages can be divided into three
groups based on the values they operate over. The first group uses
abstract values that include closures; the second group uses abstract
values without closures; and the third uses machine words and
memory. See the annotations on the left in Figure 1.

61

https://code.cakeml.org

Every language has a semantics at two levels: there is the de-
tailed expression- or program-level evaluation semantics (called
evaluate), and an observational semantics for the whole program
(called semantics).

We define our semantics in functional big-step style (Owens
et al. 2016). This style of semantics means that the evaluate func-
tions are interpreters for the abstract syntax. These interpreter func-
tions use a clock, which acts as fuel for the computation, to ensure
that they terminate for all inputs. A special uncatchable timeout ex-
ception is raised if the clock runs out. An example of an evaluate
function is shown in Figure 2 in Section 4.

The semantics functions return the set of observable FFI-
and terminate/diverge-behaviours a program can exhibit. Below
φ ffi_state is the type of the FFI state which models how the
environment responds to a number of calls to the FFI.

semantics : φ ffi_state → program → behaviour set

If the evaluate function reaches a result for some clock value, then
the program has terminating behaviour with the resulting trace of
FFI communications. If the evaluate function hits a timeout for all
clock values, then it has diverging behaviour and returns the least
upper bound of the resulting FFI traces. Finally, if the evaluate
function hits an error, then the program is said to Fail.

2.3 Compiler Proofs
The objective of the compiler proofs is to show that the semantics
functions of the source and target produce compatible results. The
semantics function is overloaded: there is a version for each IL
(including source and target). We annotate the functions with A

and B for compilation from ILA to ILB. The FFI state, ffi , includes
an oracle specifying how foreign function calls behave. For most
compiler transitions, we can prove that the semantics functions
produce identical behaviours. These theorems have the form:

` compile config prog = new_prog ∧
syntactic_condition prog ∧
Fail /∈ semanticsA ffi prog ⇒
semanticsB ffi new_prog = semanticsA ffi prog

However, for some compiler transformations (e.g., removal of data
abstraction and stack concretisation), the output programs are al-
lowed to bail out with an out-of-memory error. In such cases, we
prove a weaker conclusion of the form:

semanticsB ffi new_prog ⊆
extend_with_resource_limit (semanticsA ffi prog)

These high-level correctness theorems are easy to compose. In the
proofs, we assume that the source IL’s semantics does not Fail. At
the top level we prove that a type correct program cannot Fail.

We prove the semantics theorems using simulation theorems
relating the respective evaluate functions. At the level of evaluate
functions, we prove correctness theorems of the following form,
where evaluation in the source IL is assumed and evaluation in the
target IL is proved.

` compile config exp = exp1 ∧
evaluateA exp state = (new_state,res) ∧
state_rel state state1 ∧ res 6= Error⇒
∃new_state1 res1.
evaluateB exp1 state1 = (new_state1,res1) ∧
state_rel new_state new_state1 ∧ res_rel res res1

The evaluate functions are also overloaded at each IL. They return
a new state, new_state , which includes the FFI state, and a result,
res , indicating a normally returned value or an exception or an
error. The state_rel and res_rel relations specify how values are
related from one IL to the next.

In some proofs, extra fuel needs to be added to the clock in
state1 because the compiled code uses (a constant number of)

extra ticks. Fuel is used for evaluation of the compiled code; the
compiler itself is proved to always terminate. This extra fuel is
usually existentially quantified along with new_state1 and res1.

The evaluate theorems are proved by induction on the structure
of evaluate for the source intermediate language. These proofs are
said to go in the direction of compilation since the source semantics
is in the antecedent of the implication and the target semantics is
in the consequent. Such proofs follow the intuition of the compiler
writer.

We only prove forward-style theorems when relating the com-
piler to the evaluate level of the semantics. They are sufficient2 for
proving the equivalence (or correspondence) of the observational
semantics at the higher level, which includes the proof of diver-
gence preservation. Our divergence preservation proofs follow the
style of Kumar et al. (2014) and Owens et al. (2016).

It should be noted that the entire compiler verification could
be done at the level of evaluate functions, letting us only at the
very end relate the semantics functions for the source and target
semantics. We opted for the approach where we relate semantics
functions for each major step in the compiler since the equations
between semantics functions are easier to compose.

2.4 Removal of Abstractions
Removal of abstractions is a theme that can be used to describe
most phases in our compiler. The original CakeML compiler’s pur-
pose was to get from source to target. Our new CakeML compiler
attempts to provide the architecture for making this translation well,
i.e., producing good code in the process. In particular, this goal re-
quires enabling vital optimisations.

Register allocation is a transformation that we found to be one
of the more complicated optimisations to support and we concen-
trate on it in this paper. Register allocation is tricky because it in-
teracts in a subtle way with the copying garbage collector. Briefly
speaking, the complication stems from the fact that the garbage col-
lector is introduced before the layout of the stack has been concre-
tised. The garbage collector depends on the stack, since the stack
is where the collector looks for roots. The order in which it sees
the roots has an effect on how the collector updates memory. The
actual order in which the collector sees the roots is only fixed by
the register allocator when it assigns names (i.e., locations) to the
variables it spills onto the stack.

From a high level, the order of the roots does not affect the
compiler’s correctness. The challenge is how to communicate this
fact through the compiler phases. The irrelevance of the order is a
property that can easily be derived from the invariants within the
proof about the removal of data abstraction, but the verification of
the register allocator is separate (for good reason, because both are
complicated proofs).

Our solution is to include a semantic mechanism, which we call
a permute oracle, allowing us to alter the order in which roots are
passed to the collector implementation. We use the permute oracle
to prove that data abstraction holds for whatever order the register
allocator decided to store the roots on the stack. Importantly, this
semantic mechanism is local to one intermediate language. This
approach is explained Section 7.

2.5 Multiple Targets
The compiler can produce code for several target architectures. The
compiler is parameterised by a compiler configuration that carries
around information about the target throughout the entire compiler.
This configuration includes an instruction encoding function for an
abstract syntax of general-purpose machine instructions. Since we

2 Throughout this work, we only work with determinstic ILs; see the exten-
sive discussion in Leroy (2009).

62

support both 64- and 32-bit architectures, we take care to make the
data abstraction configurable to accommodate the different limits
that these architectures impose.

2.6 Top-level Correctness Theorem
The top-level correctness theorem is stated in Section 10. Infor-
mally, this theorem can be read as follows:

Any binary produced by a successful evaluation of the com-
piler function will either behave exactly according to the
observable behaviour of the source semantics, or behave the
same as the source up to some point at which it terminates
with an out-of-memory error.
This theorem assumes that the compiler configuration is
well-formed, that the generated program runs in a environ-
ment where the external world only modifies memory out-
side CakeML’s memory region, and that the behaviour of
the FFI in the machine semantics matches the behaviour of
the abstract FFI parameter provided to the source semantics.

The details of the formal statement are made complicated by our
support for multiple architectures and the interaction with the FFI.

Structure The rest of the paper gives more details on how the
compiler operates, in particular how it removes abstractions as it
makes its way towards the concrete machine code of the target
architectures. Along the way, we provide commentary on our in-
variants and proofs. The description of the interaction between the
verification of the register allocator and our garbage collector, in
Section 7, is given most space.

3. Early Phases
The compiler starts by parsing the concrete syntax and by running
type inference — two phases that we re-use from the previous
CakeML compiler (Kumar et al. 2014; Tan et al. 2015).

The first few transformations of the input program focus solely
on reducing the features of the source language. Modules are re-
moved, algebraic datatypes are converted to numerically tagged tu-
ples, declarations are compiled to updates and lookups in a global
store, and pattern matches are made exhaustive and then compiled
into nested combinations of if- and let-expressions (which get op-
timised further down).

The early stages of the compiler end in a language called
CLOSLANG. This language is the last language with explicit closure
values, and is designed as a place where functional-programming
specific optimisations (e.g., lambda lifting) can prepare the input
programs for closure conversion.

CLOSLANG is the first language to add a feature: it adds sup-
port for multi-argument functions, i.e., function applications that
can apply a function to multiple arguments at once and construct
closures that expect multiple simultaneous arguments. All previous
languages required either currying or tupled inputs in order to sim-
ulate multi-argument functions. A naive implementation of curried
functions causes heap-allocation overhead which we reduce with
this feature.

A value in CLOSLANG’s semantics is either a number, a word,
an immutable block of values (constructor or vector), a pointer
to an array, or a closure. A closure can either be a non-recursive
closure (Closure) or a closure for a mutually recursive function
(Recclosure). The arguments for the Closure constructor are an op-
tional location for where the code for the body will be placed, an
evaluation environment (values for the free variables in exp), the
values of the already-applied arguments, the number of arguments
this closure expects, and finally the body of the closure. The argu-

ments for Recclosure are similar.3

v = Number int |Word64 (64 word) | RefPtr num
| Block num (v list)
| Recclosure (num option) (v list) (v list) . . .
| Closure (num option) (v list) (v list) num exp

Having closure values as part of the language adds a layer of
complication to the compiler proofs, since program expressions
(exp above) are affected by the compiler’s transformations. There
are different ways to tackle this complication in proofs.

For pragmatic reasons, most of our proofs use a simple syntac-
tic approach. Our proofs relate the values before a transformation
with the values that will be produced by the code after the trans-
formation. Concretely, for a compiler function compile, we define
a syntactic relation v_rel which recursively relates each syntactic
form to the equivalent form after the transformation. For example,

v_rel (Closure loc1 env1 args1 arg_count1 exp1)
(Closure loc2 env2 args2 arg_count2 exp2)

is true if the environment and arguments are related by v_rel and
the expressions are related by the compiler function compile, i.e.,
exp2 = compile exp1. This style of value relation is very simple to
write, but causes some dull repetition in proofs.

An alternative strategy is to use logical relations to relate the
values via the semantics: two values are related if they are semanti-
cally equivalent. We use an untyped logical relation for CLOSLANG

in some proofs (e.g., multi-argument introduction and dead-code
elimination), but will not go into details about this logical relation
in this paper.

4. Closure Conversion
Closures are implemented in the translation from CLOSLANG into a
language called bytecode-value language (BVL). We use this name
because BVL uses almost the same value type as the semantics for
the bytecode language of the original CakeML compiler. BVL’s
value type is also almost identical to CLOSLANG’s value type; the
difference being that BVL does not have closure values, instead it
has code pointers that can be used as part of closure representations.

v = Number int |Word64 (64 word) | CodePtr num
| RefPtr num | Block num (v list)

BVL is an important language for the new CakeML compiler,
and is perhaps the simplest language in the compiler. One can view
CLOSLANG, which comes before, as an extension of BVL with clo-
sures; and one can view the languages after BVL as reformulations
of BVL that successively reduce BVL to machine code.

BVL is a first-order functional language with a code store,
sometimes called a code table. It uses de Bruijn indices for local
variables. The abstract syntax for BVL is given below. Tick decre-
ments the clock in BVL’s functional big-step semantics. Call also
decrements the clock: its first argument indicates the number of
ticks the call consumes. Its second argument is the optional destina-
tion of the call, where None means the call is to jump to a CodePtr
provided as the last argument in the argument list.

exp = Var num | Raise exp | Tick exp
| Let (exp list) exp | Handle exp exp
| Op op (exp list) | If exp exp exp
| Call num (num option) (exp list)

Figure 2 shows an extract of BVL’s functional big-step seman-
tics, i.e., functions in HOL that define BVL’s big-step semantics.

3 Through the paper, we use HOL4’s type definition syntax: each construc-
tor name is followed by the types of its arguments (Haskell-style), but type
constructors use postfix application (ML-style).

63

evaluate ([],env ,s) = (Rval [],s)
evaluate (x ::y::xs,env ,s) =
case evaluate ([x],env ,s) of
(Rval v1,s1) ⇒
(case evaluate (y::xs,env ,s1) of
(Rval vs,s2) ⇒ (Rval (v1 @ vs),s2)
| (Rerr e,s2) ⇒ (Rerr e,s2))

| (Rerr e,s1) ⇒ (Rerr e,s1)
evaluate ([Var n],env ,s) =
if n < len env then (Rval [nth n env],s)
else (Rerr (Rabort Rtype_error),s)

evaluate ([Let xs x],env ,s) =
case evaluate (xs,env ,s) of
(Rval vs,s1) ⇒ evaluate ([x],vs @ env ,s1)
| (Rerr e,s1) ⇒ (Rerr e,s1)

evaluate ([Op op xs],env ,s) =
case evaluate (xs,env ,s) of
(Rval vs,s1) ⇒
(case do_app op (rev vs) s1 of
Rval (v ,s2) ⇒ (Rval [v],s2)
| Rerr err ⇒ (Rerr err ,s1))

| (Rerr e,s1) ⇒ (Rerr e,s1)
evaluate ([Raise x],env ,s) =
case evaluate ([x],env ,s) of
(Rval vs,s1) ⇒ (Rerr (Rraise (hd vs)),s1)
| (Rerr e,s1) ⇒ (Rerr e,s1)

evaluate ([Handle x1 x2],env ,s) =
case evaluate ([x1],env ,s) of
(Rval v ,s1) ⇒ (Rval v ,s1)
| (Rerr (Rraise v),s1) ⇒ evaluate ([x2],v ::env ,s1)
| (Rerr (Rabort e),s1) ⇒ (Rerr (Rabort e),s1)

evaluate ([Call ticks dest xs],env ,s) =
case evaluate (xs,env ,s) of
(Rval vs,s1) ⇒
(case find_code dest vs s1.code of
None ⇒ (Rerr (Rabort Rtype_error),s1)
| Some (args,exp) ⇒

if s1.clock < ticks + 1 then
(Rerr (Rabort Rtimeout_error),s1 with clock := 0)

else evaluate ([exp],args,dec_clock (ticks + 1) s1))
| (Rerr e,s1) ⇒ (Rerr e,s1)
· · ·

do_app (Const i) [] s = Rval (Number i ,s)
do_app (Cons tag) xs s = Rval (Block tag xs,s)
· · ·

Figure 2. Extracts of BVL’s semantics.

The evaluate function takes a list of BVL expressions exp and re-
turns a list of values v corresponding to the expressions.

The exception mechanism shapes the look of the BVL seman-
tics. Each evaluation returns either a return-value Rval or raises
an exception Rerr. An exception Rerr (Rraise . . .) is produced
by the Raise program expression; running out of clock ticks re-
sults in an Rerr (Rabort Rtimeout_error); and hitting an error
in the program results in Rerr (Rabort Rtype_error). Most ex-
pressions pass on exceptions that occur inside subexpressions, with
Handle being the only construct that can catch exceptions. Handle
can only catch Rraise exceptions, i.e. both Rabort exceptions can-
not be caught and will always bubble up to the top-level. We prove
that well-typed CakeML programs cannot produce Rtype_error.

The semantics of Call is the most interesting part of BVL. Call
starts by evaluating the argument expressions. It then finds the code
for the called function from the code field of the state. If the name
of the called function is given explicitly in dest then the values

vs are used as arguments, otherwise the last value in vs must be
a CodePtr and all but the last element of vs is returned as args .
The value of the clock is checked before evaluation continues into
the code of the called function; a too small clock value causes a
Rtimeout_error. The values of the passed arguments args are the
initial environment for the evaluation of the called function.

4.1 Closure Representation
We use BVL’s Blocks and value arrays to represent closures in
BVL. Non-recursive and singly recursive closures are represented
as Blocks with a code pointer and the argument count followed by
the values of the free variables of the body of the closure.

Block closure_tag
([CodePtr ptr ; Number arg_count] @ free_var_vals)

Mutually recursive closures are represented as Blocks, where the
free-variable part is a reference pointer to a value array.

Block closure_tag
[CodePtr ptr ; Number arg_count ; RefPtr ref _ptr]

Such arrays contain the closures for each of the functions in the
mutual recursion and the values of all their free variables. Arrays
are used for the representation of mutually recursive closures since
such closures need to contain their own closure values. Arrays are
the only way to construct the required cyclic structures in BVL. The
arrays used for closures are only mutated as part of the closure-
creation process.

The compilation of closure construction relies on a preliminary
pass within CLOSLANG that annotates each closure creation with the
free variables of the closure bodies. The same transformation shifts
the de Bruijn indices to match the updated evaluation environment.

The compilation into BVL needs to implement CLOSLANG’s
function application expression. The semantics of CLOSLANG’s
function application expression is far from simple, since CLOSLANG

allows multi-argument closures and multi-argument function appli-
cations. In particular, the semantics deals with the case where the
argument numbers do not match. Each n-argument function ap-
plication is compiled to code which first evaluates the arguments
and then the closure; it then checks if the closure happens to ex-
pect exactly the given number of arguments; if it does, then the
code calls the code pointer in the closure (or makes a direct jump
if the CLOSLANG function application expression is annotated with
a known jump target, which is the case for known functions). In all
other cases, i.e., if there is any mismatch between the number of
arguments, the code makes a call to a library function (also written
in BVL), which implements CLOSLANG’s mismatch semantics. The
semantics dictates that partial applications result in new closure
values with additional already-provided arguments. Applications
that are given too many arguments — a valid case — are split into
a call to the expected number of arguments, followed by a call
for the remaining arguments. Jump-table-like structures are used to
quickly find the right case amongst all the combinations of possible
cases. The BVL code for these library functions is generated from
verified generator functions; given a maximum number of argu-
ments that can be passed in one go, these generator functions will
generate all of the required library functions.

Our support for this kind of multi-argument semantics is similar
to OCaml’s, and relies on the adoption right-to-left evaluation order
for application expressions. We expect most well-written CakeML
programs to use mutable state sparingly, and that applied arguments
will usually be pure. Therefore, the evaluation order should not
matter. This change was necessary to keep the BVL code that
implements multi-argument function applications short and fast.

64

5. Going Fully Stateful
BVL programs are compiled via an IL to an imperative version
of BVL called DATALANG. DATALANG is the last language with
functional-style abstract data. In DATALANG, local variables are
held in state as opposed to in an environment. Subsequent lan-
guages, WORDLANG and STACKLANG, mimic DATALANG in style
and structure.

In DATALANG’s abstract syntax below, all numbers (of type num)
are variable names with the exception of the second argument to
Call which is an optional target location for the call. As in BVL,
None indicates that a code pointer from the argument list is to be
used as the target. The first argument to Call is a return variable
name, where None indicates that this is a tail call. The last argument
to Call is an optional exception handler. The exception handlers
are fused into Calls so that raising an exception always rewinds
the stack to a well-defined stack frame. The finite sets of numbers
(of type num_set) are cut-sets that keep track of the local vari-
ables which must be preserved past subroutine calls. Besides Call,
MakeSpace also takes a cut-set argument since its implementation
may make a call to the GC. Similarly, Assign needs an (optional)
cut-set argument because the implementations of some operations,
e.g. bignum arithmetic, may internally require calls to the GC or to
library code.

prog = Skip | Tick | Raise num | Return num
| Move num num | Seq prog prog
| MakeSpace num num_set | If num prog prog
| Call ((num × num_set) option) (num option)

(num list) ((num × prog) option)
| Assign num op (num list) (num_set option)

DATALANG’s semantics uses the same value type as BVL and
operates over a state that is similar to BVL’s. The most significant
differences in the state are: DATALANG has a stack; raising an
exception affects the state of the stack, it rewinds the stack; and
there is a notion of available space as described below.

The compiler performs a few optimisations in DATALANG. In
particular, the compiler combines memory allocations (MakeSpace)
in straight-line code. The semantics of MakeSpace n names is to
guarantee that there are at least n units of space available, while op-
erations such as Cons consume space equal to one plus the length
of the Block that is produced. Some operations (e.g. bignum addi-
tion) consume a statically unknown amount of space, which resets
the available space to zero. In DATALANG, this space measure is an
abstract notion since there is no memory.

6. Removal of Data Abstraction
DATALANG sets the stage for the removal of data abstraction. DATA-
LANG is compiled into a language called WORDLANG, which has
an abstract syntax that at a glance looks very similar to DATA-
LANG’s. The major difference is in the values of the semantics:
DATALANG values are of type v, whereas WORDLANG values are of
type α word_loc, which are machine words and labels. The type
variable α indicates the length of the machine word. Our proofs as-
sume that α is either 32 or 64. Labels, i.e. Loc n1 n2 values, have
two parts: n1 is the name of the function, and n2 is the label name
within function n1.

α word_loc = Word (α word) | Loc num num

Compared with DATALANG, WORDLANG operates over a more
complex state. The WORDLANG state, a record as shown below,
includes (in order) a local variable store, a global variable store,
a stack, a word-addressed memory and the memory domain. It
also contains a code table (looked up by function calls), a state
for the FFI, a clock (used in functional big-step semantics), a
handler pointer, and a flag controlling big-endianness. The last two

components, namely the GC primitive and the permute oracle will
be explained in Section 6.1 and Section 7.1 respectively.

(α, φ) state =
<| locals : (α word_loc num_map);

store : (store_name 7→ α word_loc);
stack : (α stack_frame list);
memory : (α word → α word_loc);
mdomain : (α word set);
code : ((num × α prog) num_map);
ffi : (φ ffi_state);
clock : num;
handler : num;
be : bool;
gc_fun : (α gc_fun_type);
permute : (num → num → num) |>

The stack is a list of stack frames of the type shown below. The as-
sociation list (alist) is an ordered mapping from variable names
to values stored in the stack frame. The triple of numbers holds
information about an optional exception-handling frame. The han-
dler pointer always points to the latest handler frame in the stack,
if there is one.

α stack_frame =
StackFrame ((num, α word_loc) alist)

((num × num × num) option)

Importantly, WORDLANG is set up to allow easy manipulation
of local variables, including renaming of variables, introduction of
new variables, and parallel copying/movement of variables. These
kinds of manipulations are required for instruction selection and
register allocation.

6.1 Garbage Collection Primitive
The garbage collector is present in the WORDLANG state as a black-
box primitive (gc_fun) since it cannot be implemented as a WORD-
LANG program. There are two reasons for this: functions in WORD-
LANG cannot inspect or update their callers’ stack frames, and com-
pilation of WORDLANG programs passes through register allocation
which can lead to spilling of local variables onto the stack. Having
part of the GC’s state spilled onto the stack would cause compli-
cations, since the GC walks the stack as part of its execution. Our
solution is to avoid these complications by making the GC a spe-
cial semantic subroutine that one can call through execution of a
WORDLANG command called Alloc. The GC primitive is abstractly
characterised in the correctness theorem from DATA-to-WORD, and
it is removed, i.e., implemented as a call to verified library code, in
STACKLANG.

The semantics of executing WORDLANG’s GC primitive is
shown in Figure 3. The GC function is passed the roots extracted
from the stack. It updates the stack with the new root values when
it completes.

We ensure that a stack swapping property holds of WORDLANG

semantics: for any WORDLANG program, its local execution be-
haviour is unchanged when we swap the stack component – as long
as the new stack’s roots after enc_stack look the same. Intuitively,
this holds because the only semantic primitive that directly inspects
the stack is the GC, and its behaviour is unchanged when it sees the
same roots.

Why is the GC primitive a component of the WORDLANG state?
We could have used the specific function from the WORD-to-STACK

compiler instead of the semantic function in the state. However,
such a solution would have blurred the line between compiler im-
plementation and semantics. In particular the compiler configura-
tion, which determines the value representation used by the GC,
would need to be a part of the semantics of WORDLANG.

65

gc s =
let roots = enc_stack s.stack
in
case s.gc_fun (roots,s.memory,s.mdomain,s.store) of
None ⇒ None
| Some (new_roots,new_m,new_st) ⇒

case dec_stack new_roots s.stack of
None ⇒ None
| Some new_stack ⇒

Some
(s with
<|stack := new_stack ; store := new_st ;
memory := new_m|>)

enc_stack [] = []
enc_stack (StackFrame l hndlr ::st) = map snd l @ enc_stack st

Figure 3. The semantics of invoking WORDLANG’s GC.

6.2 Value Representation and Heap Invariant
The compiler from DATALANG to WORDLANG is set up so that the
only interesting thing it does is change the value representation.
Even so, it is non-trivial to verify. The proofs about the value
representation is made complicated by the big leap in abstraction
level, the fact that WORDLANG can run a garbage collector, and the
flexibility we want in the data representation.

The details of the value representation’s definition are dictated
by the presence of the garbage-collector verification. We adapted
the original CakeML compiler’s verified copying collector (Myreen
2010), which is defined at an abstract level in order to maximise
potential for reuse. The invariant relating DATALANG’s values with
WORDLANG’s machine words and memory is phrased as an instan-
tiation of the garbage collector’s abstract datatypes.

Unfortunately, the layered structure of this definition, which
makes the proofs manageable, also makes the definitions too long
to reasonably fit into this paper. An important abstraction in the in-
variant used for the DATA-to-WORD compiler proof is memory_rel,
which relates the reference store and space of a DATALANG state s ,
with the global store, memory and big-endianess (be) of a WORD-
LANG state t , as well as a list, value_pairs , of pairs (v ,w) with
the first component a value from DATALANG and the second a value
that fits into a local variable in WORDLANG (i.e., a α word_loc).

memory_rel config s.refs s.space t .store t .memory
t .mdomain t .be value_pairs

Here s.space is a lower bound: memory_rel is true for space n if
there is at least space for n α word_loc values in the heap.

The data representation is kept configurable since it is hard to
find one solution that works for all situations, in particular our
support for both 64- and 32-bit architectures forces us to be flexible
with the details of the data representation.

We opt for an informal description of the specifics of the rep-
resentation of DATALANG’s values in WORDLANG. Our convention
is to use word values with a least significant bit of zero for values
that the GC is not to treat as pointers (i.e., small numbers, empty
Blocks and code pointers). We chose zero because it allows addi-
tion and subtraction of small numbers to be performed directly on
the word values. Similarly, we arrange the assembler to two-byte
align all labels so that Loc values are all represented (further down)
with zero as the least significant bit. This way the garbage collector
treats code pointers as small integer values, i.e. the collector leaves
them untouched.

Pointers can carry information. Each pointer has a least signif-
icant bit of 1, followed by a length field, a tag field, some zero

padding and finally the actual address of the pointer.

0 . . . 00110011101 00 01 010 1

length
tag

padding
address value marker

Example pointer value:

The lengths of the padding-, length-, and tag-fields are config-
urable and can be set to zero, i.e., removing them from the repre-
sentation. The padding helps remove extra shift instructions. Each
pointer dereference uses shifts to remove the extra information
around the pointer value. One (logical) right shift deletes the ex-
tra information. An additional left shift is required to word align
the address value in case there are not enough zero padding bits (3
for 64-bit and 2 for 32-bit) for the first shift to leave behind.

The length and tag fields are used for storing information about
the object pointed to. These fields are used in the implementation
of DATALANG primitives used by pattern matching: if the tag and
length values to be checked are small enough to fit in these fields,
then no pointer dereference is needed. Values that exceed the ca-
pacity of the small length and tag fields of pointers are represented
as a bit pattern of all ones.

Currently, elements on the heap are represented by a header
word followed by the payload of the heap element. The header
contains information indicating what kind of heap element the
payload is. For example, the header of a Block element:

• tells the GC that the payload is garbage collectable values, and
• contains the tag and length of the Block.

At the time of writing, we are considering dropping the header
from the memory representation in cases where the tag and length
fields of pointers carry all the necessary information. Such an
optimisation would save space for many common constructors, e.g.
list-cons is likely to be represented as two words in memory as
opposed to the current three.

7. Register Allocation
Once data abstraction has been removed, the compiler runs instruc-
tion selection, an SSA-like variable transformation, and register al-
location. We describe these transformations next.

In our context—a functional language with a copying garbage
collector—verifying register allocation is more complicated than
usual. The GC affects the situation via a combination of circum-
stances:

• The GC looks for roots in the stack as part of its operation.
• The order in which these roots are processed affects the output

of our copying GC. A new order can result in a different output.
• The exact order of the roots on the stack is determined by the

register allocator when it gives names to spilled variables.
• The verification proof for the register allocator does not have

direct access to invariants from the DATA-to-WORD proof, which
imply that any order will do.

In what follows, we explain how we have used a semantic device,
which we call a permute oracle, to communicate that any order
picked by the register allocator will do for the overall proof.

7.1 Permute Oracle
The WORDLANG semantics has a component called the permute
oracle which allows us to influence the order in which the GC
primitive sees its roots. Briefly speaking, we use this oracle to
control variable orderings on the stack in WORDLANG so that we can
decouple reasoning about an abstract GC function from its concrete

66

implementation in STACKLANG (the language after WORDLANG).
Formally, a permute oracle is an infinite sequence of bijections
between natural numbers (i.e. WORDLANG variable names).

Stack frames in WORDLANG are created when a caller function
needs to give up control to its callee: it saves the local variables it
needs onto the stack and pops them off when control is returned4.
To create a stack frame, the locals are first reduced down to the
set of variables that need to be saved, then they are sorted by
variable names to get a list of pairs of variable names and their
values. The head of the permute oracle is popped and used to
permute this sorted list by index, and the resulting list is added to
the WORDLANG stack as a new stack frame. The semantics uses the
following functions to push a stack frame onto the stack. Here the
option indicates whether an exception handler is to be pushed, and
the list_rearrange function permutes a list according to a given
function.

env_to_list env bij_seq =
let mover = bij_seq 0;

permute = (λn. bij_seq (n + 1));
l = toAList env ;
l = sort key_val_compare l ;
l = list_rearrange mover l

in
(l ,permute)

push_env env None s =
let (l ,p) = env_to_list env s.permute
in

s with
<|stack := StackFrame l None::s.stack; permute := p|>

push_env env (Some (w ,h,l1,l2)) s =
let (l ,p) = env_to_list env s.permute;

h = Some (s.handler,l1,l2)
in

s with
<|stack := StackFrame l h::s.stack; permute := p;
handler := len s.stack|>

The presence of this oracle component in WORDLANG is best
motivated by considering the adjacent correctness theorems. For
brevity, we only show the general shape of these theorems. We also
annotate each of the evaluation and compilation functions with the
first letter of the associated languages e.g. D for DATALANG.

For compilation from DATALANG into WORDLANG (DATA-to-
WORD), we want to show that it is correct regardless of the order
in which the GC visits the roots. This is controlled by the order in
which values appear on the stack, and therefore, by how we per-
mute the values when creating stack frames. Hence, in the theorem
below, we prove that DATA-to-WORD is correct for all choices of
permute oracles perm .

` evaluateD (prog,s) = (res,s1) ∧
res 6= Some (Rerr (Rabort Rtype_error)) ∧
state_rel c l1 l2 s t [] locs ⇒
let (res1,t1) =

evaluateW
(compileDtW c n l prog,t with permute := perm)

in
. . .

On the other hand, when we compile from WORDLANG into
STACKLANG (WORD-to-STACK), we need to concretely implement
the stack. One critical step of this concretisation is to give a fixed
ordering to variables on the stack; this allows us to generate fixed
lookups into the stack and fixed code for the GC implementation
later. Hence, we have to pick some fixed permute oracle and prove

4 We treat calls to the GC similarly so that it only needs to look at the stack
for the root set.

that WORD-to-STACK is correct with respect to it. In the following
theorem, we choose the oracle to be the infinite sequence of identity
functions.

` evaluateW (prog,s) = (res,s1) ∧ res 6= Some Error ∧
state_rel k f f ′ s t lens ∧ s.permute = K I ∧ . . . ⇒
∃ ck .
let (res1,t1) =

evaluateS
(compileWtS prog bs (k ,f ,f ′),
t with clock := t .clock + ck)

in
. . .

Finally, the oracle allows us to reason about WORDLANG to
WORDLANG (WORD-to-WORD) code transformations where vari-
ables are renamed. Without the oracle, renamed variables may not
be sorted in the same order when creating stack frames. In that case,
the GC will not see the roots in the same order, and its behaviour
will be altered. By choosing the oracle so that the values of stack
frames always line up, we can avoid explicit reasoning about the
GC in our proofs for these kinds of transformations.

` . . . ⇒
∃ perm ′.
let (res,rst) =

evaluateW (prog,st with permute := perm ′);
(res′,rcst) =
evaluateW
(compileWtW t k a c ((name,n,prog),col),
st with permute := perm)

in
. . .

Given this intuition, and considering the adjacent correctness
theorems, we arrive at a slightly surprising form for correctness the-
orems for WORDLANG transformations that change variable names.
We shall prove that for any oracle perm used to evaluate the pro-
gram after the transformation, there exists some oracle perm ′ such
that the program semantics were preserved with respect to the un-
transformed program. This is useful in two ways: (1) multiple trans-
formations that have correctness theorems of this form can be com-
posed to give a correctness theorem with the same form, and (2) it
connects with the correctness theorems for the adjacent languages.

The reasoning for the latter point is as follows: for the oracle
we picked in WORD-to-STACK compilation, the WORD-to-WORD

correctness theorem gives us some oracle such that the WORD-
to-WORD transformations preserve program semantics. Since the
DATA-to-WORD compilation works for any oracle, this choice of
oracle can be used to instantiate its correctness theorem when we
compose all of these correctness theorems. Note that the permute
oracle is a local mechanism to connect the correctness theorems
of these passes; after composing the theorems, the permute oracle
does not appear in our top-level correctness theorem.

7.2 Register Allocation, SSA Form and Instruction Selection
The register allocator compiles from an infinite set of temporary
variables down to the finite set of registers available in the target
machine. At a high-level, this proceeds in two steps: we first per-
form liveness analysis to find variables that cannot be assigned to
the same registers, then we allocate variables to registers following
those constraints. The latter step is done heuristically, with the aim
of minimising the number of spilled variables and maximising the
number of coalesced moves.

Since the semantics of WORDLANG does not distinguish regis-
ters from temporaries, the allocator implicitly adopts special nam-
ing conventions for variables and we separately prove that it gener-
ates syntactically correct outputs for the next phase of compilation.
For example, even variable names of the form 2n where n is less

67

than the number of registers refer to the nth target register. This
syntactic separation also lets us easily force the allocator to set up
syntactic calling conventions. We use it to ensure that all caller save
variables are appropriately assigned to stack positions when mak-
ing function calls, and also that callee arguments are passed inside
the appropriate registers (some may also be passed on the stack if
there are too many of them). To prevent these conventions from de-
grading the performance of the allocator, we also introduce extra
temporaries and moves between them and the appropriate registers
/ stack positions so that the register allocator can potentially per-
form some coalescing.

Since we use a graph-colouring based allocator, we refer to the
mapping from temporaries to registers as a colouring function and
the output after register allocation as a coloured program.

There are two simplifications to our register allocator: (1) the
control flow graph of its input programs always forms a directed
acyclic graph5, and (2) we assume that two registers are kept for
loading/saving from the stack.

Because of the first simplification, liveness analysis can be per-
formed with a simple bottom-up traversal of the WORDLANG pro-
gram instead of a more complicated fixed-point iteration. The first
step in our verification is the characterisation of suitable colouring
functions: given a function, f , the abstract liveness analysis phase
checks that f is injective over all live/clash sets of the program.

This abstract characterisation gels well with the required seman-
tics preservation, i.e., correctness theorem involving the oracle. The
crucial argument is as follows: we need to show that whenever we
create a stack frame during the evaluation of the coloured program,
there exists a permutation such that the values of the corresponding
stack frame in the original program gets ordered in the same way.
Injectivity allows us to construct this permutation directly, because
it implies the existence of a bijection between the variable names
in the two stack frames.

The other ingredient is a state invariant that holds across a for-
ward simulation of coloured and original programs in their respec-
tive states. Here, we assume that every live starting variable in the
original state corresponds to a variable in the coloured state un-
der the colouring function and we prove that this continues to hold
for the output local variables and outgoing live set if the colouring
function used is suitable. These kinds of generalised inductive in-
variants are fairly standard in compiler proofs, and we mostly omit
them for the rest of this paper.

Next, we extract from the input WORDLANG program a simple
tree-like control flow structure, where each instruction is reduced
to the list of variables that it reads and writes. Correspondingly,
we define and verify a colouring function checker that checks the
aforementioned injectivity property over this tree. Crucially, this
intermediary checker is designed to evaluate efficiently in the logic
and it will be used later in Section 11.

Finally, we verify a graph colouring register allocator that pro-
duces the actual colouring function. One common property of many
graph colouring algorithms is that they can be viewed as heuris-
tics for choosing an appropriate order in which to pick colours for
vertices of the graph. For correctness, we only need to verify the
colour picking function, i.e., show that it always gives any two con-
nected vertices distinct colours (and also that it generates the syn-
tactic properties we need). Using this technique, we verified both a
simple allocator and an Iterated Register Coalescing-based alloca-
tor (George and Appel 1996); since the latter allocator is relatively

5 Control flow graphs are directed acyclic graphs in WORDLANG because
all loops in CakeML are written using recursion and control-flow within
functions can only flow forward. All tail-recursive calls are optimised to
direct jumps; either to a fixed-offset when the target is known, or to a
register value otherwise. However, the compiler currently does not go as
far as inlining tail-recursive functions as while loops or similar.

slow, a flag controls which of these allocators is used during com-
pilation. The correctness theorem here is connected back to our
semantics theorem by showing that all the vertices in any clique of
the clash graph are given distinct colours by the colouring function
produced, and then showing that this implies the required injectiv-
ity property.

Register allocation performance can be further improved by re-
ducing the live ranges of the input program’s variables. We achieve
this by performing an Static Single Assignment (SSA)-like pass be-
fore register allocation. The resulting program is not strictly in SSA
form because our semantics do not have φ-functions. Instead, we
implicitly perform φ-elimination (replacing φ-functions with vari-
able movement) directly inside the SSA pass. Since this transfor-
mation renames variables (like register allocation), we again have
to provide oracle permutations. The insight here is, similarly, to
show that the SSA mapping defines an injective function.The rea-
soning about the interaction between stack frames and the oracle is
similar to that used for the liveness analysis proofs.

Instruction selection is another important pass within WORD-
LANG. It flattens arbitrary depth expression trees down to a se-
quence of instructions implementing that tree. The instructions
need to make use of extra temporaries, but since we have an SSA
pass, it uses the same temporaries throughout and relies on the SSA
pass to appropriately rename the temporaries. We use a maximal
munch instruction selector that is parametrised by the target archi-
tecture’s constraints, e.g. whether it only allows 2-register instruc-
tions, and the bounds on allowed memory operation constants. Ad-
ditional expression-based optimisations are also performed within
the phase, e.g. constant folding. Unlike the two aforementioned
passes, this pass does not perform any variable renaming. Instead,
it just introduces an extra temporary, and so its correctness theo-
rem does not need to mention the permute oracle. The correctness
theorem shows that the sequence of instructions picked for each
expression correctly implements that expression, and that WORD-
LANG programs are invariant to extra temporaries not mentioned in
the program. This is the usual form of a forward simulation-style
proof, and it can be composed with our permute oracle-style theo-
rems as well.

8. Compilation of Stack and Exceptions
The overall aim of STACKLANG, as its name suggests, is to support
a concrete implementation of the stack. The STACKLANG transfor-
mations also implement the GC primitive as STACKLANG code.

8.1 An Array-like Stack
The translation from WORDLANG into STACKLANG compiles the
abstract stack of WORDLANG into an array-like stack. Here, we
implement the naming conventions used by the register allocator:
WORDLANG names corresponding to stack variables are compiled
into element lookups in stack frames, and those corresponding to
registers are compiled into registers. In addition, we compile the
parallel moves generated within WORDLANG down to single simple
move instructions in STACKLANG.6

Unlike stack frames in WORDLANG, stack frames in STACKLANG

allocate enough space for all of the stack variables that may be used
inside a function body. However, not all of these stack positions will
be live at every call from the body and, in particular, it would be
inefficient to sanitise all of the non-live positions in stack frames
on every function call. Therefore, caller functions always write a
number into the top entry of their stack frames. This is used to
index into a bitmap table to obtain a bitmap that corresponds to the
live positions in each stack frame. When the GC is called, it looks

6 Our implementation and proof of the parallel moves compilation step is a
HOL formalisation of Rideau et al. (2008).

68

up and decodes the retrieved bitmap, and then uses it to consider
only the variables that are live in each stack frame.7

stack

0010110101010

bitmaps

These bitmaps are designed to be as compact as possible. A
bitmap can consist of multiple words. Each word except the last
has its most significant bit set to one; in the last word, the most
significant one bit represents the end of the frame being described.
The payload of the bitmap, consisting of the remaining bits, has
the same length as the length of the stack frame it describes. Each
position in the bitmap tells the GC whether the corresponding index
in the stack frame contains a live variable that the GC needs to
process. Bitmaps are shared between call sites that happen to have
the same bitmap layout.

The following diagram illustrates how the details of bitmaps
are set up. Note that this illustration shows the most significant bit
furthest to the right. The GC walks these bitmaps from left-to-right,
from least-significant bit to most-signifiant bit. This illustration
pretends that words are 8 bits. In reality they are 32 or 64 bits.

. . . | 00000101 | 00100100 | . . .

pointer live var

continues last word
end of frame

The STACKLANG semantics represents the bitmaps as a state
component separate from the array-like stack which is also separate
from the data heap. The bitmaps are moved into the state’s memory
component by a later transformation (Section 8.3).

In addition to concretising stack variables, the WORD-to-STACK

compiler also concretises the exception mechanisms. Stack frames
with exception-handling information are converted to two stack
frames: one for the variables part and one small frame for the han-
dler information. The code for raising an exception rewinds the
stack by simply assigning a stored value to the stack pointer and
jumping to a stored code pointer. Installing exception handlers in-
volves storing information about the previously most current han-
dler onto the stack before making a normal call to a function that
holds the body of the handler expression.

The main verification difficulty in this step is to set up the
appropriate state invariant between the abstract and concrete stacks.
Our technique reconstructs an abstract stack (and local variables)
from the concrete stack, and then defines a stack invariant between
the two abstract stacks.

8.2 Implementation of the GC Primitive
STACKLANG’s array-like stack and separate bitmap store provide a
convenient level of abstraction for implementation and verification
of the GC primitive. A simple compiler phase replaces every call
to Alloc with a call to a library function, which we prove imple-
ments the GC. The GC implementation is parametrised by the data
configuration specified in the compiler configuration.

7 Our compiler writes such a bitmap-index number to the stack at every
non-tail call. In contrast, GCs for conventional implementations tend to use
return addresses stored in the stack to find the relevant bitmaps. At the time
of writing, we are looking into switching to the conventional return-address-
based indexing because that would make function calls faster.

α inst = Skip | Arith (α arith)
| Const num (α word) | Mem mem_op num (α addr)

mem_op = Load | Load8 | Load32 | Store | Store8
| Store32
α addr = Addr num (α word)

α arith = Binop binop num num (α reg_imm)
| Shift shift num num num
| AddCarry num num num num

shift = LogicalLeftShift | LogicalRightShift
| SignedRightShift

cmp = Equal | Lower | Less | Test | NotEqual
| NotLower | NotLess | NotTest

binop = Add | Sub | And | Or | Xor
α reg_imm = Reg num | Imm (α word)

Figure 4. The instruction datatype.

We equip the state of the semantics with a switch which deter-
mines whether calls to the GC primitive in STACKLANG’s state are
allowed. We prove that the GC implementing transformation allows
us to turn the switch off, forbidding calls to Alloc thereafter.

8.3 Moving the Stack and Bitmaps into Memory
The next transformation moves STACKLANG’s stack, bitmaps and
global variable store into memory. Operations that interact with
each of these primitive state components are implemented by one
or two straightforward assembly instructions. This transformation
turns off semantic switches, like the one for the GC primitive
mentioned above. The result of the STACKLANG transformations is a
structured program where only machine-instruction-like operations
are permitted.

9. Compiling to Multiple Targets
Our compiler targets concrete machine code for multiple targets
and supports a foreign-function interface (FFI). This section ex-
plains the final phases of the compiler and how the target specific
details are factored in.

9.1 Abstract Machine Instructions
The compilation from DATALANG to WORDLANG is the first phase
that reveals details specific to the target. This phase introduces the
size of the machine words (either 64 or 32 bit), but is otherwise
target independent.

The instruction selector, which runs right before register allo-
cation, is the next phase to be affected by the target architecture.
The instruction selector compiles WORDLANG’s expressions into in-
structions of the datatype shown in Figure 4.

The instructions that each target supports is a subset of these,
e.g., no real target allows arbitrary sized constants in the immedi-
ate operands on arithmetic instructions. It is the job of the instruc-
tion selector to pick instructions that are acceptable for the target
architecture. Each target architecture is described by a record with
information about the target. This information is included in the
compiler configuration.

After instruction selection, the register allocator picks register
names and stack positions that fit within the number of registers al-
lowed by the target. We chose to use our own naming schemes and
calling conventions for most of the compiler in order to maintain
uniformity throughout the interesting parts of the compiler.

The target-specific renaming of registers is performed as a
STACKLANG-to-STACKLANG transformation, which occurs just be-
fore the compiler translates STACKLANG programs into a flat la-

69

belled assembly language. This renaming is no more than an appli-
cation of a bijective renaming function to the names of the STACK-
LANG registers. The mapping ensures, for example, that CakeML’s
return address register (zero) gets mapped to the corresponding reg-
ister of the target, e.g. register 14 on ARM. By the x86-64 calling
convention, the return address is passed on the stack. The CakeML
compiler ignores this convention internally, but adheres to it when
calling external functions through the FFI.

9.2 Labelled Assembly Language
We use a flat labelled assembly language, called LABLANG, as a
stepping stone between reduced STACKLANG and concrete machine
code. This assembly language has the following abstract syntax.
A LABLANG program consists of a list of sections (α sec). Each
section has a name and contains a list of assembly lines (α line).
Each line is either a label (Label), a simple assembly instruction
(Asm), or a labelled assembly instruction (LabAsm).

Each line includes fields that can hold information about the
byte encoding of the line. Label lines Label l1 l2 l mention the
name of the label (l1, l2) and have a length l . This length field is
non-zero if padding is required to align the value of the label to
an even machine address. Certain labels need to be placed at even
machine addresses in order for all code pointers to have to have
their least significant bit set to zero, so that the garbage collector
does not mistake code pointers for pointers to heap data. The
simple (Asm) and labelled assembly lines (LabAsm) have a length
field that simply records the length of their concrete byte encoding
(8 word list).

α sec = Section num (α line list)
α line = Label num num num
| Asm (α asm) (8 word list) num
| LabAsm (α asm_with_lab) (α word)

(8 word list) num
α asm_with_lab = ClearCache | Halt | Jump lab
| Call lab | CallFFI num | LocValue num lab
| JumpCmp cmp num (α reg_imm) lab

lab = Lab num num

9.3 Removal of Tick Instructions
Before LABLANG programs are converted to concrete machine
code, they go through a simple transformation that removes all
skip instructions. Why are there skip instructions in the code at this
stage of the compiler? The answer is that skip instructions are the
result of compiling STACKLANG’s Tick instructions into LABLANG.
Tick instructions are a side effect of using a functional big-step se-
mantics. All compiler transformations thus far have produced code
that ticks as much or more than the code before. Some transfor-
mations, such as function-inlining, introduce Tick expressions that
artificially ensure generated programs tick more than the programs
they were generated from. By removing the skip instructions in
LABLANG, we remove the artificial ticks.

The most interesting aspect of this proof is that it is the only
proof we have that goes against the direction of compilation: we
prove that adding back the removed skip instructions cannot change
the observational semantics of the transformed program.

9.4 Concrete Machine Code
The compiler ends with a translation of LABLANG programs into
concrete machine code. The transformation starts by encoding all
instructions using an encoding function from the target configura-
tion; it then performs a loop which computes the location of all
labels and re-encodes all jumps and other label-dependent instruc-
tions. This loop is run until the lengths of all jump instructions is
unchanged. The loop can only increase the length of jump encod-

ings, and thus it terminates because every jump has a maximum
encoding length.

The instruction encodings are stored in the syntax of the
LABLANG program. On exit from the loop above, the compiler
checks that all instructions (jumps in particular) are encodable with
the assigned arguments (e.g. jump lengths). If they are not encod-
able, then the compiler returns an error. Otherwise, the compiler
returns a list of bytes that is the concatenation of all byte-list anno-
tations in the LABLANG program.

9.5 Target Semantics
The correctness of the LABLANG-to-target compiler is proved with
respect to the target semantics. The target is given a functional big-
step semantics with evaluate and semantics functions similar to the
languages above. The evaluate function for the target is split into
two layers. First, we have the target instruction-set-architecture’s
next-state function and state type. On top of this, we define a
second layer which is the evaluate function that executes the next-
state function in the presence of an interference oracle and the FFI
interface. The definition is too long to be shown here, so we explain
it informally. The evaluate function operates as follows:

• If the clock has hit zero, exit with a timeout.
• Decrement the clock.
• Read the program counter’s value pc from the machine state.
• If pc is a memory address within the region for the generated

machine code, then execute the target’s next-state function fol-
lowed by an environment interference function (which is al-
lowed to change any state outside of the CakeML processes
registers and memory).
• If pc is the exit address, then stop; return success if the return

value is 0, otherwise raise resource-bound-hit.
• If pc is an FFI entry point, then execute the FFI semantics

according to the current FFI state, followed by an application
of an FFI interference oracle which can arbitrarily change the
state of the the caller-saved registers, etc.
• In all other cases, fail.

The environment interference oracle is run in between every target
machine instruction; it can arbitrarily update parts of memory that
are irrelevant to the CakeML process. We have such an oracle to
model the interference of an operating system, which can interrupt
and later restore the CakeML process’s execution at any time.

9.6 Correctness of the Assembler Function
We prove that all well-annotated LABLANG programs (i.e. ones
that have passed the exit condition for the loop described above,
Section 9.4) will flatten to a byte list that executes on the target
machine with an equivalent observable semantics.

In order to make this proof manageable, with support for multi-
ple targets, we decoupled the target-specific proof from LABLANG

by having another abstraction layer. We define the following ab-
stract syntax for non-labelled assembly instructions, and prove for
each target that any target-specific encoding of these will produce
a simulation of the abstract instruction using the target machine’s
next-state function and environment interference oracle. The en-
vironment oracle comes into play here because some some ab-
stract instructions are encoded using multiple instructions in the
target architecture. For example, loading a large constant requires
some target- and constant-dependent number of instructions: 1–6
for MIPS; 1–4 for RISC-V; 1–4 for ARMv8; 1–2 for ARMv6; and
just one for x86-64. The environment interference oracle is allowed

70

` config_ok cc mc ⇒
case compile cc prelude input of
Success (bytes,ffi_limit) ⇒
∃ behaviours.
cakeml_semantics ffi prelude input =
Execute behaviours ∧
∀ms.
code_installed (bytes,cc,ffi ,ffi_limit ,mc,ms)⇒
machine_sem mc ffi ms ⊆
extend_with_resource_limit behaviours

| Failure ParseError ⇒
cakeml_semantics ffi prelude input = CannotParse

| Failure TypeError ⇒
cakeml_semantics ffi prelude input = IllTyped

| Failure CompileError ⇒ true

Figure 5. Top-level compiler correctness theorem.

to alter the state midway through this execution.

α asm = Inst (α inst) | Jump (α word)
| Call (α word) | JumpReg num
| Loc num (α word)
| JumpCmp cmp num (α reg_imm) (α word)

The LABLANG-to-target compiler’s proof lifts per instruction
simulations to a simulation result for the entire LABLANG program.

10. Top-level Correctness Theorem
The top-level correctness theorem relates the source semantics, the
compiler, and the target semantics.

The top-level semantics of CakeML, cakeml_semantics, is
defined as follows based on the specification of the parser, the
specification of what is typeable, and the observable semantics,
semantics, of executing a CakeML program.

cakeml_semantics ffi prelude input =
case parse (lex input) of
None ⇒ CannotParse
| Some prog ⇒

if can_type_prog (prelude @ prog) then
Execute (semantics ffi (prelude @ prog))

else IllTyped

We define semantics in the style of Owens et al. (2016) as a
function that returns a set of behaviours. A behaviour is either
divergence, termination, or failure. The first two carry a possibly
infinite stream of FFI I/O events, representing a trace of all the I/O
actions that the program has performed given the initial FFI state.
As mentioned earlier, an FFI state is an oracle that specifies how
the environment will respond to calls to the FFI.

behaviour = Fail | Diverge (io_event stream)
| Terminate outcome (io_event list)

The top-level correctness theorem is shown in Figure 5. Here
ms is the machine state, mc is the machine configuration and
extend_with_resource_limit adjusts the behaviours set to allow
early exit on the outcome which signals a resource-limit-hit.

11. Evaluation of the Compiler in the Logic
One of the important properties of the first CakeML compiler is the
ability to bootstrap itself in the logic. Bootstrapping the compiler
in the logic has become harder to achieve in reasonable time for the
new version because we have more transformations in the compiler,
and some of these transformations scale poorly when evaluated
in the logic. Register allocation is the most significant scalability

bottleneck — even though it is fully verified, evaluating it in the
logic on the large clash graphs of the compiler is infeasible.

In order to make evaluation in the logic feasible again, we opted
for a translation validation approach for the register allocator that
produces HOL theorems comparable to the ones produced by a
direct evaluation. The translation validation produces theorems of
the following form, which fits the top-level correctness theorem.

` compile cc prelude input =
Success (concrete_machine_code,number)

The translation validation approach is logically set up to avoid
an in-logic execution of the register allocator function. The logical
setup is simple: we store a list of colouring functions into the com-
piler configuration and make the register allocator check whether
the next colouring it finds is a valid colouring for the current pro-
gram fragment; if it is, then it uses the colouring, otherwise it runs
the verified allocator. We run an SML version of the verified allo-
cator to initialise the list of colouring functions.

Another bottleneck is the evaluation of the instruction encoder
in the assembler. Here, a speed up was achieved by memoisation
and use of specialised evaluation theorems. At the time of writing,
the assembler loop’s final exit condition is the most significant per-
formance bottleneck. We believe it can be significantly improved,
both by proving that some of the checks are always going to be
true, and rephrasing the computation of the remaining checks.

12. Discussion of Related Work
There has been much interest in verified compilation and optimi-
sation; CompCert, a verified optimising compiler for C, is perhaps
the most well-known project. Like CompCert, our work focuses on
verifying an entire compiler, rather than specific verified optimisa-
tions. In this section, we first give a comparison with the previous
CakeML compiler, then we discuss related work for various parts
of our new compiler.

Detailed Comparison with Previous Compiler Our source lan-
guage (CakeML) has been extended with an FFI, allowing for I/O
within CakeML programs. We also added support for new primi-
tive datatypes: strings, bytes, words, immutable vectors and muta-
ble arrays. We have improved the source semantics by removing
the pre-type-checking elaboration step; closure values now include
the lexically scoped top-level environments (containing data con-
structor and top-level/module-top-level definitions).

The product of the previous compiler was a verified interactive
loop (REPL) since our focus there was on end-to-end verification.
We have not yet constructed a similar REPL for the new compiler.
The previous compiler compiled from source to a single IL, then to
stack-machine-based bytecode and finally to x86-64. The bytecode
was designed so that each operation mapped to a fixed sequence of
x86 instructions, and it was also designed to make verification of
the GC as easy as possible. Unfortunately, the ease of verification
also meant that the compiler had poor performance – we found the
bytecode IL too low level for functional programming optimisa-
tions (multi-argument functions, lambda lifting, etc.) and too high
level for backend optimisations. For example, it naively followed
the semantics and allocated a closure on each additional argument
to a function, pattern matches were not compiled efficiently (even
for exhaustive, non-nested patterns), and the bytecode compiler
only used registers as temporary storage within single bytecode in-
structions. The new version fixes all of these problems and further
splits each improvement into its own phase and IL in order to keep
the verification of different parts as separate and as understandable
as possible.

Optimisations The CompCert project has investigated a slew of
verified optimisations, and some of our optimisations, e.g. compila-

71

tion of parallel moves (Rideau et al. 2008) is based on work done in
Coq for CompCert. Coalescing register allocation was also verified
for CompCert (Blazy et al. 2010). However, CompCert still uses
a translation validation approach for its register allocation phase
(Rideau and Leroy 2010). We have the same setup in our compiler,
although we only use the translation validation approach when we
need to evaluate the compiler in the logic; the main reason, like
in CompCert, is for speed of evaluation. Our proof technique for
the coalescing allocator also differs in that we do not prove cor-
rectness with respect to a full specification of the IRC algorithm.
We are confident that our proof decoupling allows for other types
of allocators, e.g. linear scan, to be verified on top of the intricate
liveness analysis theorem. There has also been much interest in for-
mally verified SSA-form middle ends: the CompCertSSA project
(Barthe et al. 2014) extended CompCert with a formally specified
SSA form middle-end, and also investigated formal verification of
optimisations in their semantics (Demange et al. 2015). Similarly,
SSA-based optimisations were verified in the Vellvm project (Zhao
et al. 2013). Other work (Ullrich and Lohner 2016) has focused
on finding minimal SSA representations that are more efficient for
these optimisations.

Garbage Collection GCMinor (McCreight et al. 2010) is an inter-
mediate language with GC primitives, that can be compiled down
to CMinor with calls to a verified GC. They do not run into the same
problem as we do because register allocation occurs in CompCert
after CMinor. The main difference between our approaches is that
they need to use an explicit shadow stack to track and modify live
roots in the GC. Instead, our GC is implemented at a lower level,
where it is allowed to directly inspect and modify the entire stack.
This necessarily makes our proofs more complicated, as evidenced
by the need for the permute oracle, but it is important, because we
need to minimise (stack-related) function call overhead in a func-
tional language such as CakeML.

Both GCMinor and our work focus on compilation for single
processors, and so our GC algorithm and its related proofs work
only for the non-concurrent setting. State-of-the-art, concurrent
GCs have also been verified (Gammie et al. 2015), although that
work was not done in the context of verified compilation.

Compilers for Functional Languages The LambdaTamer project
(Chlipala 2010) focuses on proof and tactic engineering for effi-
cient verification of compilers. The end product is a verified com-
piler for a functional language down to idealised assembly with
register allocation, but without garbage collection.

The Cogent (O’Connor et al. 2016) language has a proof-
producing compiler down to C, which can be further compiled
with CompCert, or via translation validation (Sewell et al. 2013).
It is a pure, functional and total language, aimed at reasoning for
systems programming. Unlike our work, Cogent leaves the optimi-
sation up to the C compiler and it does not need a garbage collector
since their focus is on producing efficient snippets of systems code.

The verified Lisp implemenation of Myreen and Davis (2011)
is a precursor to the CakeML compilers and read-eval-print loop.

Compositional Compilers Compositional compilers have also re-
ceived much attention recently; amongst other advantages, they al-
low for separate (modular) compilation and hence modular verifi-
cation of large-scale programs. In this space, Compositional Comp-
Cert (Stewart et al. 2015) extends CompCert to the compositional
setting. More closely related to our work, Pilsner (Neis et al. 2015)
is a compositional compiler for an imperative, functional program-
ming language – while our work has focused on realistic, end-to-
end compilation, combining this with compositionality is certainly
a task that warrants further work.

Modelling Memory Usage High-level source semantics, such as
CakeML’s, typically do not have a notion of memory usage. In con-

trast, the amount of memory that can be accessed on the physical
target machine is finite. For our compiler, we resolve this mismatch
by allowing the compiled program to terminate early with an out-
of-memory error.

CompCert instead uses an infinitely addressable memory in
its target semantics and proves correctness against this semantics.
The Peek framework (Mullen et al. 2016) extends CompCert’s
x86 semantics with a fixed-size, 32-bit integer indexed memory.
This is used to provide a target in which assembly level peephole
optimizations can be easily verified. Their correctness theorem
assumes that all pointers generated by CompCert fit within 32-
bit integers. Going further, Quantitative CompCert (Carbonneaux
et al. 2014) modifies the target semantics to add an explicit notion
of stack overflow. They also provide (automated) tools with which
quantitative stack space bounds can be proved at the source level
and refined down to the target, hence removing the possibility of
stack overflow at the target.

The CerCo project (Amadio et al. 2014) developed a verified C
compiler that allows precise source-level proofs about the time and
space consumption of the generate object code. Their method for
formal reasoning about time and space consumption has also been
adapted to apply to higher-order functional languages (Amadio and
Régis-Gianas 2011).

13. Conclusions
This paper has presented the structure of a new verified com-
piler backend for CakeML. The design of the compiler attempts
to mimic mainstream compilers, while still keeping the verification
understandable and, most importantly, extensible. The entire devel-
opment is approximately 100 000 lines of HOL4 proof scripts.

This new CakeML compiler is designed as a platform for future
research and experimentation. For example, we believe many parts
of the compiler are suitable for extensions: CLOSLANG is a language
suitable for projects on optimisation within functional languages;
BVL is a simple abstract language were many transformations are
simple to verify; and WORDLANG can easily be a platform for the
implementation of lower-level optimisations.

The entire CakeML compiler can be connected up to program
synthesis tools or other verified CakeML applications, while parts
of the new compiler backend can be used for other language im-
plementations. For example, it would probably be a simple student
project to construct a passable compiler for a first-order Lisp by
starting from BVL and adjusting the configurable data representa-
tions to suit Lisp.

Acknowledgments
We thank Mike Gordon, Konrad Slind and the anonymous review-
ers for their helpful comments on drafts of this paper. The second
author was partially supported by the Swedish Research Council,
Sweden; the fourth author was partially supported by EPSRC Pro-
gramme Grant EP/K008528/1, UK; and the fifth author was par-
tially supported by EPSRC Grant EP/K040561/1, UK.

References
R. M. Amadio and Y. Régis-Gianas. Certifying and reasoning on cost anno-

tations of functional programs. In R. Peña, M. C. J. D. van Eekelen, and
O. Shkaravska, editors, Foundational and Practical Aspects of Resource
Analysis (FOPARA), Revised Selected Papers, volume 7177 of LNCS.
Springer, 2011. doi:10.1007/978-3-642-32495-6_5.

R. M. Amadio, N. Ayache, F. Bobot, J. P. Boender, B. Campbell, I. Garnier,
A. Madet, J. McKinna, D. P. Mulligan, M. Piccolo, R. Pollack, Y. Régis-
Gianas, C. Sacerdoti Coen, I. Stark, and P. Tranquilli. Certified com-
plexity (CerCo). In U. Dal Lago and R. Peña, editors, Foundational and

72

http://dx.doi.org/10.1007/978-3-642-32495-6_5

Practical Aspects of Resource Analysis (FOPARA), Revised Selected Pa-
pers. Springer, 2014.

G. Barthe, D. Demange, and D. Pichardie. Formal verification of an SSA-
based middle-end for CompCert. ACM Trans. Program. Lang. Syst., 36
(1), Mar. 2014. doi:10.1145/2579080.

S. Blazy, B. Robillard, and A. W. Appel. Formal verification of coalescing
graph-coloring register allocation. In A. D. Gordon, editor, European
Symposium on Programming (ESOP). Springer, 2010. doi:10.1007/978-
3-642-11957-6_9.

Q. Carbonneaux, J. Hoffmann, T. Ramananandro, and Z. Shao. End-to-end
verification of stack-space bounds for C programs. SIGPLAN Not., 49
(6), June 2014. doi:10.1145/2666356.2594301.

A. Chlipala. A verified compiler for an impure functional language. In
M. V. Hermenegildo and J. Palsberg, editors, Principles of Programming
Languages (POPL). ACM, Jan. 2010. doi:10.1145/1707801.1706312.

D. Demange, D. Pichardie, and L. Stefanesco. Verifying fast and sparse
SSA-based optimizations in Coq. In B. Franke, editor, Compiler Con-
struction (CC). Springer, 2015. doi:10.1007/978-3-662-46663-6_12.

P. Gammie, A. L. Hosking, and K. Engelhardt. Relaxing safely: verified on-
the-fly garbage collection for x86-TSO. In D. Grove and S. Blackburn,
editors, Programming Language Design and Implementation (PLDI).
ACM, 2015. doi:10.1145/2813885.2738006.

L. George and A. W. Appel. Iterated register coalescing. ACM Trans.
Program. Lang. Syst., 18(3), May 1996. doi:10.1145/229542.229546.

R. Kumar, M. O. Myreen, M. Norrish, and S. Owens. CakeML:
a verified implementation of ML. In S. Jagannathan and
P. Sewell, editors, Principles of Programming Languages (POPL), 2014.
doi:10.1145/2535838.2535841.

X. Leroy. A formally verified compiler back-end. J. Autom. Reasoning, 43
(4), 2009. doi:10.1007/s10817-009-9155-4.

A. McCreight, T. Chevalier, and A. Tolmach. A certified framework
for compiling and executing garbage-collected languages. In Interna-
tional Conference on Functional Programming (ICFP). ACM, 2010.
doi:10.1145/1863543.1863584.

E. Mullen, D. Zuniga, Z. Tatlock, and D. Grossman. Verified peephole
optimizations for CompCert. In C. Krintz and E. Berger, editors, Pro-
gramming Language Design and Implementation (PLDI). ACM, 2016.

M. O. Myreen. Reusable verification of a copying collector. In G. T. Leav-
ens, P. W. O’Hearn, and S. K. Rajamani, editors, Verified Software: The-
ories, Tools, Experiments (VSTTE). Springer, 2010. doi:10.1007/978-3-
642-15057-9_10.

M. O. Myreen and J. Davis. A verified runtime for a verified theorem prover.
In M. C. J. D. van Eekelen, H. Geuvers, J. Schmaltz, and F. Wiedijk,

editors, Interactive Theorem Proving (ITP), 2011.

G. Neis, C. Hur, J. Kaiser, C. McLaughlin, D. Dreyer, and V. Vafeiadis.
Pilsner: a compositionally verified compiler for a higher-order im-
perative language. In K. Fisher and J. H. Reppy, editors, In-
ternational Conference on Functional Programming (ICFP), 2015.
doi:10.1145/2784731.2784764.

L. O’Connor, C. Rizkallah, Z. Chen, S. Amani, J. Lim, Y. Nagashima,
T. Sewell, A. Hixon, G. Keller, T. C. Murray, and G. Klein. CO-
GENT: certified compilation for a functional systems language. CoRR,
abs/1601.05520, 2016.

S. Owens, M. O. Myreen, R. Kumar, and Y. K. Tan. Functional big-step se-
mantics. In P. Thiemann, editor, European Symposium on Programming
(ESOP), LNCS. Springer, 2016.

L. Rideau, B. P. Serpette, and X. Leroy. Tilting at windmills with Coq:
Formal verification of a compilation algorithm for parallel moves. J.
Autom. Reason., 40(4), May 2008. doi:10.1007/s10817-007-9096-8.

S. Rideau and X. Leroy. Validating Register Allocation and Spilling.
In R. Gupta, editor, Compiler Construction, volume 6011 of LNCS.
Springer Berlin Heidelberg, 2010. doi:10.1007/978-3-642-11970-5_13.

J. Ševčík, V. Vafeiadis, F. Zappa Nardelli, S. Jagannathan, and P. Sewell.
CompCertTSO: A verified compiler for relaxed-memory concurrency.
J. ACM, 60(3), 2013. doi:10.1145/2487241.2487248.

T. A. L. Sewell, M. O. Myreen, and G. Klein. Translation validation for a
verified OS kernel. In Programming Language Design and Implementa-
tion (PLDI). ACM, 2013. doi:10.1145/2491956.2462183.

G. Stewart, L. Beringer, S. Cuellar, and A. W. Appel. Compositional Comp-
Cert. In S. K. Rajamani and D. Walker, editors, Principles of Program-
ming Languages (POPL). ACM, 2015. doi:10.1145/2676726.2676985.

Y. K. Tan, S. Owens, and R. Kumar. A verified type system for CakeML. In
Implementation and Application of Functional Programming Languages
(IFL). ACM Press, 2015. doi:10.1145/2897336.2897344.

S. Ullrich and D. Lohner. Verified construction of static single assignment
form. Archive of Formal Proofs, Feb. 2016. http://afp.sf.net/
entries/Formal_SSA.shtml, Formal proof development.

X. Yang, Y. Chen, E. Eide, and J. Regehr. Finding and understand-
ing bugs in C compilers. In M. W. Hall and D. A. Padua, edi-
tors, Programming Language Design and Implementation (PLDI), 2011.
doi:10.1145/1993498.1993532.

J. Zhao, S. Nagarakatte, M. M. Martin, and S. Zdancewic. Formal ver-
ification of SSA-based optimizations for LLVM. In H. Boehm and
C. Flanagan, editors, Programming Language Design and Implementa-
tion (PLDI). ACM, 2013. doi:10.1145/2491956.2462164.

73

http://dx.doi.org/10.1145/2579080
http://dx.doi.org/10.1007/978-3-642-11957-6_9
http://dx.doi.org/10.1007/978-3-642-11957-6_9
http://dx.doi.org/10.1145/2666356.2594301
http://dx.doi.org/10.1145/1707801.1706312
http://dx.doi.org/10.1007/978-3-662-46663-6_12
http://dx.doi.org/10.1145/2813885.2738006
http://dx.doi.org/10.1145/229542.229546
http://dx.doi.org/10.1145/2535838.2535841
http://dx.doi.org/10.1007/s10817-009-9155-4
http://dx.doi.org/10.1145/1863543.1863584
http://dx.doi.org/10.1007/978-3-642-15057-9_10
http://dx.doi.org/10.1007/978-3-642-15057-9_10
http://dx.doi.org/10.1145/2784731.2784764
http://dx.doi.org/10.1007/s10817-007-9096-8
http://dx.doi.org/10.1007/978-3-642-11970-5_13
http://dx.doi.org/10.1145/2487241.2487248
http://dx.doi.org/10.1145/2491956.2462183
http://dx.doi.org/10.1145/2676726.2676985
http://dx.doi.org/10.1145/2897336.2897344
http://afp.sf.net/entries/Formal_SSA.shtml
http://afp.sf.net/entries/Formal_SSA.shtml
http://dx.doi.org/10.1145/1993498.1993532
http://dx.doi.org/10.1145/2491956.2462164

	Introduction
	Approach
	Compiler Implementation
	Semantics of Intermediate Languages
	Compiler Proofs
	Removal of Abstractions
	Multiple Targets
	Top-level Correctness Theorem

	Early Phases
	Closure Conversion
	Closure Representation

	Going Fully Stateful
	Removal of Data Abstraction
	Garbage Collection Primitive
	Value Representation and Heap Invariant

	Register Allocation
	Permute Oracle
	Register Allocation, SSA Form and Instruction Selection

	Compilation of Stack and Exceptions
	An Array-like Stack
	Implementation of the GC Primitive
	Moving the Stack and Bitmaps into Memory

	Compiling to Multiple Targets
	Abstract Machine Instructions
	Labelled Assembly Language
	Removal of Tick Instructions
	Concrete Machine Code
	Target Semantics
	Correctness of the Assembler Function

	Top-level Correctness Theorem
	Evaluation of the Compiler in the Logic
	Discussion of Related Work
	Conclusions

