Chromatic aberration is not colour vision

Yakir Luc Gagnon⁎,1, Daniel Osorio⁎, Trevor Wardill†, N. Justin Marshall⁎, Wen-Sung Chung ⁎, and Shelby Temple†

⁎University of Queensland; †University of Sussex; ‡University of Cambridge; ₪Bristol University

This manuscript was compiled on August 31, 2016

Fig. 1. Reflectance spectra (solid black lines) from underwater substrate (including live coral, dead coral, sand, green algae, brown algae, and red algae; taken from [6]) are a lot duller than the saturated spectra used in Stubbs and Stubbs study (dash-dotted red lines).

S tubb and Stubbs presented a novel visual mechanism based on chromatic aberration that might allow animals with only one spectral photoreceptor-type to perceive color [1] (see [1] for details about their mechanism). They chose cephalopods to showcase their hypothesis and claim that discrepancies between earlier [2, 3] and recent [4, 5] negative behavioural color vision tests in cephalopods can be explained by their mechanism. While the Stubbs and Stubbs mechanism works in theory, we identified several factors that would decrease the utility of the suggested signal given the visual ecology of cephalopods.

The strength of the signal depends on how saturated the color of the object is. For the eye to quickly find the focal length that results in the best focus, the viewed object should come to focus at a narrow range of focal lengths while remaining defocused at all other focal lengths. The focus of an object with a broadband reflectance will change significantly less than the focus of an object reflecting a narrow range of wavelengths because the ‘whiter’ object’s focus will be equally distributed at all focal lengths. Although most of the colored surfaces to which cephalopods camouflage are broadband, the authors used only saturated colors to test the mechanism’s performance (Figure 1).

Importantly, viewing distance reduces the strength of any signal. Because of the wavelength dependent attenuation and turbidity of the water [7], the object’s color-contrast rapidly diminishes with increasing distance. The water’s turbidity further blurs the object’s edges minimizing the remaining signal even more (Figure 2). Additionally, the spectrum of the downwelling light becomes narrower at greater depths, leaving little information at shorter and longer wavelengths. Stubbs and Stubbs calculations were at a shallow depth of 3 meters, using ultra-clear pelagic waters (chlorophyll value 0.043 mg m⁻³), and at a sighting distance of zero. We argue that using deeper, benthic-coastal waters, and a range of relevant viewing distances would result in a substantially weaker signal.

Finally, the authors explain that at short ranges the object focus is affected by the viewing distance as well as the object’s spectrum. Thus, without an additional cue for the object’s distance (e.g., via stereopsis), the animal will fail to sense the color of nearby objects. Because benthic cephalopods are mostly monocular [8] and inspect detailed conspecific signals at less than a body-length’s distance [9], and most frequently respond to camouflage cues that are closest to them [10], such a limitation undermines the mechanism’s usefulness when color vision is presumably most important – at short ranges.

We conclude that Stubbs and Stubbs mechanism could work for a narrow range of visual tasks. The viewed object would need to be not too close as to confuse the spectral discrimination mechanism, nor too far for the water’s attenuation and turbidity to completely destroy the signal, in very shallow and clear waters, and have saturated colors. While cephalopods may have evolved adaptations that deal with all these limitations or even use this mechanism to detect apostatic signals for example, we await to see how an animal that indeed exhibits Stubbs and Stubbs mechanism tackles these limitations.

⁎To whom correspondence should be addressed. E-mail: yakir@gmail.com

www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX

PNAS | August 31, 2016 | vol. XXX | no. XX | 1–2
Fig. 2. The color and edge information of fish deteriorates with increasing viewing distances (taken at a depth of 0.5 meters in reefwater outside of Heron Island, Australia by N. Justin Marshall).