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Abstract

Nanocrystalline bainite, commonly known as “superbainite”, is a novel class

of steel that utilises careful alloy design to reduce the bainite transformation tem-

perature to below 300℃. This results in grains that are tens of nanometres in

width, which make steel strong and tough. The structure can be produced in large

volumes without the need for rapid cooling or severe deformation.

The presence of austenite in nanocrystalline bainite is largely responsible for the

toughness. Unfortunately, the austenite is metastable and previous work has shown

that it decomposes into cementite and ferrite upon heating. This decomposition

makes the material weak and brittle.

The present work aims to develop new alloys that form nanocrystalline bainite,

but which are able to survive heating. Previous work has shown that cementite

precipitation is the first stage in the decomposition process and so the first alloys

developed aimed to suppress cementite precipitation. This resulted in a noticeable

improvement in thermal stability, although the austenite does eventually decom-

pose at higher temperatures.

Subsequent work led to an alloy which was designed not to resist cementite

precipitation, but to tolerate it without the associated loss of austenite. This was

achieved by the addition of large quantities of nickel to stabilise the austenite even

if its carbon content is depleted. This alloy is able to survive exposure to elevated

temperatures with the majority of austenite being retained.

The thermal stability of the alloys was assessed using time-resolved synchrotron
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X-ray diffractometry at both the Deutsches Elektronen Synchrotron (DESY) and

Diamond Light Source. The high-quality data that were collected allowed the

symmetry of the ferrite lattice to be investigated and it was found that the lattice

was best-described using a body-centred tetragonal crystal structure. This is the

first evidence of its kind.

Mechanical properties were investigated in the as-transformed condition at am-

bient temperature and at a temperature representative of aeronautic applications.

The alloys developed in this project have comparable strength, toughness and

fatigue performance to existing nanocrystalline bainitic steels. Mechanical proper-

ties were also measured after heating at 480℃ for 8 d and this was found to reduce

strength and toughness, consistent with the measured loss of austenite.
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der Schökel and Dr Ann-Christin Dippell and her colleagues for assistance in using

beamline P02.1.

I thank Diamond Light Source for access to beamline I12 (proposal EE9880)

that contributed to the results presented here. In particular, I would like to thank

Dr Michael Drakopoulos and Dr Robert Atwood for their assistance in preparation

for and during the beamtime.

I would like to thank ISIS for access to the HRPD beamline and to Dr Aziz

Daoud-Aladine for his assistance in performing the neutron diffraction experiment

there.

1Full details available at http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

v

http://www.doitpoms.ac.uk/miclib/index.php
http://creativecommons.org/licenses/by-nc-sa/2.0/uk/


vi



Acknowledgements

I would like to thank my parents for their endless encouragement and many sac-

rifices over the years to help get me where I am. I am forever in your debt.

I will be eternally grateful to my beautiful wife, Rebecka, for all the support,

practical help, tolerance and patience over the four years of this project and espe-

cially for not complaining when I talked materials!

I would like to thank everyone who has contributed to this project. In particular

I would like to thank Professor Harshad Kumar Dharamshi Hansraj Bhadeshia

for all his frequent and vital advice, ideas, encouragement and patience. Sincere

thanks also to Rolls-Royce plc and the Engineering and Physical Sciences Research

Council for funding this project, and in particular to Dr Paul Hill and Mr Martin

Rawson at Rolls-Royce plc for their technical input. I would also like to thank Dr

Steve Ooi and Dr Mathew Peet for their tireless assistance on both theoretical and

practical matters. I would also like to express my gratitude to Dr Ivan Lonardelli

for introducing me to high energy diffraction experiments.

I must give special mention to those without whom this project would have

been much more difficult, all of whom have my heartfelt gratitude: Mr Dave Saul

and Mr Frank Clarke for their help and advice on metallographic preparation and

for keeping a well-equipped teaching lab, Mr Andrew Moss and Mrs Mary Vickers

for getting me started with with X-ray diffractometry, Mr Simon Griggs for his

help with scanning electron microscopy, Mr Dave Nicol for assistance with trasmis-

sion electron microscopy and Drs Ed Pickering, James Nygaard, Tim Ramjaun,

Wilberth Solano, Lucy Fielding, Yan Pei and Hector Pous-Romero who, along with

the rest of the Phase Transformations and Complex Properties Research Group,

vii



made my lab and office a delightful place to work, and who have all been happy

to let me bounce ideas off them.

viii



Sherlock Holmes in the works of Sir Arthur Conan
Doyle:

“It is an old maxim of mine that when you have excluded the impossible,

whatever remains, however improbable, must be the truth.”, in The Adventure of

the Beryl Coronet

“I make a point of never having any prejudices, and of following docilely where

the facts may lead me.”, in The Reigate Squires

“It is a capital mistake to theorise in advance of the facts. Insensibly one begins

to twist facts to suit theories, instead of theories to suit facts.”, in A Scandal in

Bohemia

“Data! Data! Data!” he cried impatiently. ”I can’t make bricks without clay.”,

The Adventure of the Copper Beeches

John Fitzgerald Kennedy:

“We choose to go to the moon in this decade and do the other things, not

because they are easy, but because they are hard, because that goal serves to

organize and measure the best of our energies and skills, becuase that challenge

is one we are willing to accept, one we are unwilling to postpone, and one which

we intend to win, and the others, too.”

“Do not pray for easy lives. Pray to be stronger men.”

“Things do not hapen. Things are made to happen.”

“The goal of education is the advancement of knowledge and the dissemination of

truth.”

“Man is still the most extraordinary computer of all.”

ix



x



Nomenclature

Ae3 the highest temperature at which ferrite is thermodynamically

stable at equilibrium

AFM atomic force microscopy

APT atom probe tomography

α ferrite

α′ martensite, martensitic ferrite

αa acicular ferrite

αi idiomorphic ferrite

αlb lower bainite

αub upper bainite

αw Widmanstätten ferrite

BCC body-centred cubic

BCO body-centred orthorhombic

BCT body-centred tetragonal

Bs bainite start tempeature

β-NiAl nickel aluminide, NiAl

CCT continuous cooling transformation diagram
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d grain size

δ delta (high temperature) ferrite

EDM electrical discharge machining

ESR electro slag remelting

ε total strain

εe elastic component of strain

εp plastic component of strain

ε epsilon carbide, Fe2.4C

FCC face-centred cubic

GN universal nucleation function

γ austenite

γ’ austenite existing in equilibrium with other products following the

transformation of austenite of a different composition

γp plastic shear strain

γr retained austenite

η eta carbide, Fe2C

IPS invariant plane strain

L̄ mean lineal intercept
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Mf martensite finish tempeature

Ms martensite start tempeature

Rexp expected R-factor

Rwp weighted profile R-factor

SEM scanning electron microscopy

σUTS ultimate tensile strength

σy yield stress

σy,0 yield stress of large-grained sample of material

T0 the temperature at which austenite and ferrite of the same com-

position have the same Gibbs free energy

T ′

0 the temperature at which austenite and ferrite of the same compo-

sition have the same Gibbs free energy if the stored strain energy

is taken into account

TEM transmission electron microscopy

TTT time-temperature transformation

θ cementite, Fe3C

τy shear yield stress

VAR vacuum arc remelting

VIM vacuum induction melting

Ws Widmanstätten start temperature
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XRD X-ray diffraction

xT0 carbon content of austenite and ferrite of the same composition

and Gibbs free energy at a specified temperature

xT ′

0
carbon content of austenite and ferrite of the same composition

and Gibbs free energy at a specified temeprature if the stored

strain energy is taken into account
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Chapter 1

Introduction

Nanocrystalline bainitic steels are a recent development in steel metallurgy, pro-

duced via the bainite transformation at temperatures in the range 150℃–300℃.

The resultant material contains very fine mixtures of alternating platelets of bainitic

ferrite, typically ∼ 100 nm wide and films of retained austenite, ∼ 50 nm wide, to-

gether with larger blocks of retained austenite, usually several micrometres in size.

These low-temperature bainitic steels exhibit impressive combinations of strength

and toughness. Most steels with very fine grain structures are produced either by

rapid cooling or by severe plastic deformation, so there is a restriction on the size

and shape of the product that can be produced. Nanocrystalline bainitic steels

require neither rapid cooling nor plastic deformation and still form nanometre-

scale grains associated with an exceptionally high density of interfaces, which is

unique in steel metallurgy. This allows very large pieces of material to be produced

with extremely fine grain sizes. No exotic alloying elements are required to form

nanocrystalline bainite and extreme processing is unnecessary, making the pro-

duction of large quantities of high-strength and tough steel very economical. The

result of the combination of low cost, ease of production and excellent mechanical

properties has seen the commercial development of nanocrystalline bainitic steels

as armour [1].

Strong and tough materials are in high demand in many sectors, especially

where mass must be minimised, for example to improve fuel efficiency in auto-
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motive and aerospace applications [2, page 230] [3, page 12]. One potential area

of use for nanocrystalline bainitic steels is as components in gas turbine engines,

replacing other ferrous alloys that are either more expensive or possess inferior

mechanical properties which necessitate more material, and hence more mass, to

be used in the component. Use in such applications requires the material to per-

form for extended periods of time at somewhat elevated temperatures. Existing

nanocrystalline steels are not thermally stable and this makes them unsuitable for

use at elevated temperatures and prevents any high temperature treatment after

the bainite transformation, such as galvanising or dip-coating.

The work described in this dissertation documents the design and testing of

novel nanocrystalline steel compositions that are more resistant to thermal decom-

position, while maintaining the good mechanical properties and simple processing.

It has been proposed that bainitic ferrite may form with a body-centred tetrag-

onal lattice if it is forced to contain more carbon than is soluble in a body-

centred cubic lattice, much in the way as has been documented for martensite.

Work presented in this dissertation also investigates this using precise neutron

and synchrotron X-ray diffraction measurements of transformed nanocrystalline

steel. Should bainitic ferrite indeed possess non-cubic symmetry, there could be a

significant effect on the thermodynamic properties of the ferritic phase and, hence,

on thermal stability.

The scientific background to the thermal stability of nanocrystalline steels and

the phenomenon of non-cubic bainitic ferrite is presented in Chapter 2 and a sum-

mary of the design tools used in this project is given in Chapter 3. A study

of a nanocrystalline steel specifically designed to withstand thermal exposure is

described in Chapter 4. Chapters 5 and 6 report design of novel compositions ex-

pected to exhibit improved thermal stability. As-transformed microstructures are

investigated with optical, scanning electron and transmission electron microscopy

to show the as-transformed microstructures. X-ray diffractometry results are also

presented to corroborate the microscopy. Two alloys were selected for detailed

study and the transformation kinetics of these alloys are presented in Chapter 7.

An assessment of the thermal stability of the chosen alloys using time-resolved

2



synchrotron X-ray and neutron diffraction results is presented in Chapter 8. A

range of mechanical tests was then performed to determine the properties of these

alloys as presented in Chapter 9. Experiments to investigate the phenomenon of

non-cubic bainitic ferrite are presented in Chapter 10.
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Chapter 2

Scientific background

2.1 Solid state transformations in steel

Careful control of processing conditions can lead to an extraordinarily wide va-

riety of physical properties in steels. Along with low production costs compared

to alternative metals, this is the main factor that makes steel so widely used: in

2014, 1.65 billion tonnes of steel was produced [4]. This is ten times as much by

weight as all other metals combined [5, figure 2]. The mass of steel produced

worldwide has more than doubled in fifteen years and is still on an upward trend.

Despite its popular image as symbolising the consumption of resources, steel re-

quires relatively little energy to be produced: 6 kWhkg−1, comparable to wood

(5) and glass (7), and significantly less than aluminium (40) or the polymer PET

(30) [6, page 88]. Any development that improves the mechanical properties of

steel without prohibitively increasing costs would allow a reduction in steel con-

sumption and would result in a significant environmental and economic benefit.

Should steel be developed such that it is usable at under extreme conditions, more

expensive and energy-intensive materials may be replaced with steel, again aiding

economy and the environment.

When assessing phase transformations in steel, there are strong effects of alloy-

ing additions and temperature on the stable phases. Phase diagrams detailing the

behaviour of the iron–carbon system are given in figure 2.1. In steel processing,
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it is common for the steel to be heated close to, or in excess of, 1000℃. At these

temperatures, many steels consist of austenite, a face-centred cubic phase usually

given the symbol γ. When this steel is cooled to ambient temperature, various

phase changes occur. At temperatures typically up to 900℃, a body-centred cubic

phase known as ferrite is stable. This phase is given the symbol α. The method of

transformation from austenite to ferrite is one of the most critical factors governing

the mechanical properties of any steel. The temperatures at which phase changes

occur and the identity of the phases that form depend both on the composition

of the steel, any deformation that the steel has been subjected to — the disloca-

tion density and distribution — and the temperatures that the steel is exposed

to: the steel’s thermal history. For simplicity, only the iron-carbon system will be

considered in this section and the effects of strain will be neglected.

2.1.1 Reconstructive transformations

If heat treatments are long and at sufficiently high temperatures, thermodynamic

equilibrium may be achieved and phase changes take place by reconstructive mech-

anisms where all elements are able to partition to minimise the Gibbs free energy

of the system. When this occurs in the absence of applied stresses, ferrite is usually

found to consist of equiaxed grains. Those grains nucleate on heterogeneous nu-

cleation sites such as austenite grain boundaries (allotriomorphs) or on inclusions

(idiomorphs). Examples of these structures are given in figure 2.2. In the case

of allotriomorphs, initial growth is along austenite grain boundaries as these are

easy diffusion paths and allow more rapid partitioning of alloying elements. The

shape of allotriomorphs bear no relation to the crystal structure of the growing

phase, but reflect the easy paths for growth. Over time, these grains of ferrite im-

pinge and form a conventional grain structure. Idiomorphs have no easy diffusion

paths and grow with crystal facets during transformation, reflecting the underly-

ing crystal structure of the new phase [11, page 42]. As is shown by figure 2.1,

ferrite has a very low solubility for carbon when in equilibrium with austenite or

cementite, so there are almost always carbon-rich precipitates in steels. At equilib-

rium, these precipitates will be graphite [12, page 39], however, kinetic limitations
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Figure 2.1: Iron–carbon phase diagram [7]. Solid lines represent results of calcula-

tions by Ohtani et al. [8] and dashed lines are earlier results obtained by Chipman

[9]. See [8] for full explanation. Reproduced from [10] with permission of ASM

International.
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restrict the formation of graphite and carbides tend to form instead. For this rea-

son, iron–carbon phase diagrams, such as those in figure 2.1 show cementite —

the most thermodynamically stable carbide in the iron–carbon system, with the

composition Fe3C, sometimes given the symbol θ — rather than graphite as the

most carbon-rich phase. It is, however, possible to form graphite in iron-carbon

systems, most notably in grey cast irons, but also in some steels at sufficiently

high temperatures and with a composition that is not conducive to cementite for-

mation. Both steels and grey cast iron rely on alloying elements that are insoluble

in cementite (that is have a high chemical potential when forced to occupy an iron

site in the cementite lattice, such as aluminium [13, page 243], nickel and silicon

[13, page 244] and consequently promote the formation of other phases) to form

graphite. Anexample of cementit in plain-carobn steel is given in figure 2.3(a),

while figure 2.3(b) shows an example of graphite in a silicon-rich cast iron. The

removal of silicon can lead to enhanced strength and toughness in steel. This is

discussed in more detail in section 2.3.8.

Prior austenite
grain boundary

Allotriomorphic
ferrite

Idiomorphic
ferrite

Figure 2.2: Schematic representation of allotriomorphic and idiomorphic ferrite.

When significant amounts of alloying elements are present, these may be ac-

commodated in iron-rich carbides, may be rejected from iron carbides or may form

carbides without iron. With sufficient temperature and time, these carbides form

as large precipitates in such a shape as to minimise the total interfacial energy

of the system. Just as in other alloy systems, when iron carbide precipitates are
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a

50µm

b

100µm

Figure 2.3: (a) spheroidal cementite (dark spots) in ferrite matrix in Fe–0.3wt%C,

adapted from [14, micrograph 242]; (b) spheroidal graphite in ferrite matrix in Fe–

3.2C–2.5 Si–0.05Mg (wt%), adapted from [14, micrograph 781].

small, they tend to form with some well-defined orientation between their crystal

and that of the matrix from which they have grown. This reduces the interface en-

ergy at the expense of restricting the shape of the precipitate to allow for atomic

correspondence across the interface and possibly introducing strain, required to

cause the atomic spacings to match across the interface. This matching of atomic

spacings is called coherency. As precipitates grow, any strain energy caused by

coherency at the precipitate/matrix interface will increase, and the restrictions

on shape may become prohibitive. Large precipitates are, therefore, likely to ex-

hibit semi-coherent (only match some atomic spacings) or incoherent (match no

spacings) interfaces.

Reconstructive transformations tend to be observed when steel is at elevated

temperatures for extended periods of time. While there are examples of practices

where this occurs, a wide range industrial processes involve forming steel at high

temperatures and then allowing the steel to cool at a rate which does not allow

full equilibrium to be reached. In this case, some other transformation will occur

that does not represent the lowest attainable energy state of the material, but

which is able to take place in the time allowed. In other words, the transformation
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products are metastable. During service at elevated temperatures, the microstruc-

ture may change to a more thermodynamically stable state. This will result in a

corresponding change in mechanical properties during service and may lead to the

steel being unsuitable for the purpose it was designed for.

2.1.2 The eutectoid transformation: pearlite

One of the key features of the iron–carbon system is the eutectoid point at 727℃

and 0.76wt% carbon (figure 2.1). As a eutectoid transformation, one solid phase

— in this case, austenite — transforms simultaneously into two others. For iron–

carbon these product phases are ferrite and cementite. In order to produce two

phases from one solid parent phase, the growth mechanism involves a common

growth interface for both product phases with diffusion occurring parallel to the

growth interface, as shown in figure 2.4. This results in a microstructure known as

pearlite where many alternating regions of ferrite and cementite form from a single

pair of nucleation sites. In section, the morphology resembles a lamellar structure,

such as is shown in figure 2.5.

C C C

α α α

θ θ

growth
direction

growth
direction

Figure 2.4: Schematic representation of the growth direction and diffusion direc-

tions during the pearlite transformation

A more physically accurate description is that the pearlite consists of two inter-

penetrating crystals. In other words, in each individual region of pearlite formed

from one nucleation site (termed a ‘colony’ of pearlite), all of the ‘lamellae’ of

ferrite are in fact one branched crystal, as are the ‘lamellae’ of cementite. Within

one phase in one colony it is possible to trace a path from each lamella to each
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other lamella in without crossing a grain boundary [15].

The ferrite and cementite form from the austenite after a diffusive redistri-

bution and rearrangement of atoms. There is therefore no relationship between

the crystals of the parent austenite and those of the product phases. One conse-

quence of having interpenetrating crystals is that there is a large interfacial area

per unit volume. It is therefore likely that the interface will be such as to min-

imise interfacial energy and thereby minimise the energy of the system. This is

achieved by there being some correspondence between the crystals of the product

phases, which requires a well-defined relationship between the crystallographic ori-

entations. The relationship between the two crystals is known as an orientation

relation. There are three common orientation relations found in pearlite, the first

of which is named after Pitsch and Petch (equations 2.1–2.3) [16, 17], the sec-

ond named after Bagaryatski (equations 2.4–2.6) [18] and the third after Isaichev

(equations 2.7 and 2.8) [19].

(001)θ ∥ (5̄21̄)α (2.1)

(010)θ 2-3 ° from [113̄]α (2.2)

(100)θ 2-3 ° from [131]α (2.3)

(100)θ ∥ (01̄1)α (2.4)

(010)θ ∥ (11̄1)α (2.5)

(001)θ ∥ (211)α (2.6)

[010]θ ∥ [111]α (2.7)

(101)θ ∥ (112̄)α (2.8)

Although this reduces the energy contribution from the interfaces within the

lamellar structure, the system energy may still be lowered if the lamellae break up
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and the (minority) cementite regions change their shape to reduce the total inter-

facial area in the microstructure. This is an example of a material changing its

microstructure during exposure to elevated temperature and is known as spheroidi-

sation [20, 21]. Figure 2.3(a) is an example of spheroidal cementite, formed from

pearlite when heated close to the eutectoid temperature. Due to the change in

microstructure, the mechanical properties of the steel change [22] and in this case,

the steel becomes softer once spheroidisation begins and continues to soften as the

spheroidised particles coarsen.

20µm

a b

5µm

Figure 2.5: Micrographs showing the possible morphologies of pearlite, (a) optical

micrograph with dark cementite adapted from [14, micrograph 15] and (b) with

cementite bright, adapted from [14, micrograph 20]. The inversion of the shading

is a result of the differing imaging techniques.

2.1.3 Shear transformations

The austenite to ferrite shear transformation

Under conditions where diffusion is not possible, for example, at low temperatures,

or not sufficiently rapid, for example during rapid straining, phase changes may

occur via a mechanism that involves the coordinated movement of atoms without

the need for any diffusion at all. The austenite to ferrite transformation can
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proceed via a mechanism known as the Bain strain. It is possible to describe a face-

centred cubic crystal as a body-centred tetragonal lattice, as shown in figure 2.6,

where all atoms form two unit cells of the face-centred cubic crystal and one unit

cell of the equivalent body-centred tetragonal crystal is denoted by the black atoms.

An expansion of around 12% in the tetragonal a and b directions together with

a contraction of 17% in the common c direction could form a body-centred cubic

crystal [12, page 103].

Figure 2.6: The body-centred tetragonal lattice (black) that is equivalent to the

face-centred cubic lattice (all atoms) and that may be transformed to a body-

centred cubic lattice by the Bain strain

While capable of generating the correct crystal structure, the Bain strain is not

able to produce either the observed orientation relationships or the correct shape

of ferrite that is observed experimentally. The Bain strain on its own suggests that

⟨001⟩ of the austenite and ferrite are parallel and that the parent ⟨110⟩ is parallel
to the product ⟨110⟩. In reality, the orientation has irrational Miller indices and

brings the closest-packed planes and directions of both parent and product crystals

into approximate coincidence.

It is also necessary that there is a high degree of atomic correspondence across

the interface, otherwise diffusive rearrangement of atoms would be necessary.

There is no possible plane that allows face-centred cubic and body-centred cubic

lattices with lattice parameters typical of steels to form a coherent and strain-free
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interface. The highest coherency that is possible is if one direction is left undis-

torted and unrotated across the interface. In other words, there is an invariant

line at the interface.

The Bain strain may be modified to produce an invariant line if a rigid-body

rotation is performed on the crystal after the Bain strain has been applied 1. This

may equivalently be achieved by applying two invariant plane strains on non-

parallel planes, such as transforming figure 2.7(a) to figure 2.7(c). The invariant

line is then the direction common to both invariant planes.

This still does not address the problem of the incorrect shape of the prod-

uct crystal, which is shown schematically in figure 2.7(c). The observed macro-

scopic interfacial plane is called the habit plane. This may be explained if there

is some lattice-invariant deformation within the parent crystal, such as twinning

(figure 2.7(d)) or dislocation motion (figure 2.7(e)). The deformation shifts the

interface so that it appears, at least macroscopically, to obey the observed habit

plane. On a local (atomic) level, the habit plane can still be that predicted by the

Bain strain, but the plane that describes the average interface is that observed in

practice. It is this plastic deformation that results in irrational Miller indices in the

macroscopic habit planes of many displacive transformations in steel. Generally

speaking, dislocations are favoured since the stored energy required to accommo-

date the transformation strain of the Bain strain is significantly less than that

stored by twinning: 20 J, compared to 100 J [23]. However, twins may form if the

transformation is rapid as a twinned interface is more glissile than an interface

heavily populated by dislocations.

This transformation mechanism has been measured to impart a shear strain

in the habit plane of between 0.22 and 0.45, depending on the transformation

product [11, page 47]. An accompanying dilatational strain of ∼ 0.03 is observed,

reflecting the lower packing efficiency of ferrite. The shear strain, which can be

either elastic or plastic, depending on the transformation conditions, results in a

large stored energy of transformation once it has been accommodated.

1in practice all of these operations happen together at the transfer interface
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a b

c d

e

Figure 2.7: Schematic of the Bain strain [12, adapted]. (a) starting austenite.

A single shear generates (b) which is the correct shape but the wrong crystal

structure. A second shear generates the correct crystal structure (BCC), but

has the wrong shape. Macroscopic deformation that does not change the crystal

structure can regenerate the correct shape, e.g. twinning (d) or slip (e). All figures

represent the same amount of material.
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Widmanstätten ferrite

Once ferrite allotriomorphs form and populate the prior austenite grain boundaries,

the austenite to ferrite transformation can only increase if the ferrite is able to grow

into the body of the austenite grain. As indicated by the iron–carbon phase dia-

gram (figure 2.1), ferrite and austenite coexist over a range of temperatures. The

highest temperature at which α-ferrite (i.e. not δ-ferrite) may exist in equilibrium

with austenite is known as the Ae3 temperature [12, page 40]. At temperatures

close to Ae3, there is little driving force for the transformation of austenite to

ferrite, given the symbol ∆G
γ→

(

γ′
+α

)

. Since the system is at a temperature only

slightly below the equilibrium, it is said to have a low undercooling. Although

diffusive rearrangement of atoms may occur after extended periods of time, the

first transformation to occur is one that does not require bulk redistribution of all

atoms. Secondary Widmanstätten ferrite, αw, grows as fine plate-like structures

from grain boundary allotriomorphs. An example is shown in figure 2.8. Primary

Widmanstätten ferrite is also possible, nucleating directly on prior austenite grain

boundaries if allotriomorphs are absent.

There is little driving force for the change of crystal structure and so the trans-

formation must proceed in such a way as to minimise the amount of energy con-

sumed during the transformation. Potential sinks for energy include high-energy

interfaces, elastic and plastic transformation strains in either or both of the parent

and product phases, trapping of atoms in the product phase (atoms occupying

sites in the product crystal, despite their chemical potential being higher in the

product phase than the parent phase). Together, these energy penalties associated

with the transformation mechanics are referred to as stored energy. In the case of

Widmanstätten ferrite, the stored energy is approximately 50 Jmol−1 [24].

Since Widmanstätten ferrite is formed via a displacive mechanism, it may be

expected that there will inevitably be some trapping of atoms in the product phase.

Examination of the iron–carbon phase diagram shows that there is very little sol-

ubility of carbon in ferrite. This may be explained by looking at the chemical

potential of carbon in austenite and ferrite, as shown in figure 2.9. By definition,

the Gibbs’ free energy of a system if the sum of the total chemical potential of all
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50µm

Figure 2.8: Example of Widmanstätten ferrite (circled) growing from allotri-

omorphs in a “slow-quenched” Fe–0.55wt%/,C steel[14, micrograph 308, adapted]

species in all phases, G =
∑

i,j µi,jxi,j , where µi,j is the molar chemical potential of

the ith component in the jth phase and xi,j is the number of moles of the ith com-

ponent in the jth phase. The greater chemical potential of carbon in ferrite would

result in a large increase in free energy of the system, should carbon be forced in to

the ferrite. For this reason, carbon may not be present when the crystal structure

changes and instead diffuses immediately ahead of the austenite/ferrite interface

— the formation of Widmanstätten ferrite proceeds under paraequilibrium. The

diffusion of carbon ahead of the growth interface is the rate-limiting step in the

growth process and is also required for nucleation of Widmanstätten ferrite [24].

This contributes to the slow rate of formation of Widmanstätten ferrite.

While the partitioning of carbon reduces the free energy of the system com-

pared to the case of a completely diffusionless transformation, partitioning of every

species in the system — i.e. an equilibrium transformation — would further reduce

the free energy of the product. However, the low driving force for the formation of

Widmanstätten ferrite is due to there being little difference in chemical potential
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Figure 2.9: Calculated chemical potential of carbon in austenite and ferrite in

Fe–1.0wt%C as a function of temperature [25, 26]

for each species between austenite and ferrite. Diffusion occurs down gradients of

chemical potential and so a shallow chemical potential gradient will result in slow

diffusion. Since the partitioning of substitutional solutes is very slow, the growth of

Widmanstätten ferrite proceeds via the paraequilibrium mechanism whereby only

interstitial solutes partition and achieve a common chemical potential in both the

product and parent phases. Substitutional solutes exist in the same quantities in

both phases, but will exhibit different chemical potentials.

Another factor that restricts the rate of formation of Widmanstätten ferrite,

also related to the need to minimise stored energy, is the slow rate of nucleation.

Since the crystal structure does not have time to change via a diffusive process, it

must do so by a displacive mechanism. As discussed in section 2.1.3, this neces-

sarily imparts a large shear stress in the untransformed region around the product

crystal. This strain energy must be minimised to allow the transformation to

proceed at low undercoolings. This is achieved by nucleating two ferrite plates

next to each other which grow with antiparallel strains such that very little strain

is imparted in the untransformed material [27]. The boundary between the two

adjacent grains comprises a low-misorientation boundary. Any strain that is im-
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parted into the lattice is accommodated to minimise the overall energy stored due

to deformation [28]. This is shown schematically in figure 2.10.

Free surface

γ

a

γ

αw

γ

b

γ

αwαw

γ

c

Figure 2.10: Nucleation of Widmanstätten ferrite. Arrows indicate the shear strain

caused by the transformation. (a) before nucleation; (b) deformation if one ferrite

plate forms and (c) deformation if two ferrite plates nucleate back-to-back.

The habit plane between austenite and Widmanstätten ferrite is approximately

{558}γ [11, page 511]. The necessity to nucleate two plates adjacent to each other

forces the interfaces to consist of two variants of the {558}γ. This results in the

angle between the habit planes being sharp (approximately 23°).

Martensite

In contrast to Widmanstätten ferrite, martensite tends to form when a large driv-

ing force is present and when other transformations are not able to occur suffi-

ciently rapidly. The transformation is completely diffusionless at all stages and
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there is sufficient driving force for carbon to be trapped in the ferrite. Martensite

consists of lenticular grains of ferrite in a matrix of austenite. As will be discussed

in detail in section 2.4, in interstitial-containing alloys, the phase produced by the

martensitic transformation will be body-centred tetragonal. In interstitial-free al-

loys, such as Fe–30wt% Ni, the martensite will be body-centred cubic [29] unless

the substitution atoms order. The presence of carbon impedes dislocation motion

due to the formation of Cottrell atmospheres and the lower symmetry of the BCT

crystal results in fewer slip systems, further impeding dislocation motion. This

makes this type of steel strong, since dislocations do not move easily, but brittle

since little plastic work may be done before failure occurs [12, page 26]. Tempering

the steel allows carbon to leave solution in the martensite, either by precipitat-

ing as carbides or by diffusing into another phase. This raises the toughness and

ductility of the steel at the expense of reducing the yield strength.

Since no diffusion whatsoever is required for martensite to form, the transfor-

mation can be extremely rapid, limited only by the rate at which atoms can move

in a disciplined manner. This may approximate to the speed of sound in the metal.

Such rapid transformations can result in audible sounds [30–32].

Due to the low temperatures at which martensite forms the yield strength of the

parent austenite is higher than during other transformations and a significant pro-

portion of the transformation strain is accommodated elastically. Typically, this

stored energy is of the order of 600 Jmol−1. Contributions due to the interfaces in

transformation twins are of the order of 100 Jmol−1. Some plastic relaxation may

occur during the transformation, but the total energy of the resulting dislocations

is an order of magnitude less than the twinning and elastic strain energies. The in-

terface energy between the parent austenite and the martensitic ferrite is typically

1 Jmol−1, which is significantly smaller than the strain energies but is significant,

especially during nucleation [33, page 10]. Given the much larger strain energies

involved in the transformation, martensite plates tend to form with small ratios

of thickness to length, i.e. a small aspect ratio (figure 2.11(a)). Plates form in a

zig-zag pattern which represents an array in which each plate accommodates the

shape change of adjacent plates (figure 2.11(b)).
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Since martensite forms by a displacive mechanism, there is a well-defined ori-

entation relationship between the parent and product phases. In the Kurdjumov-

Sachs relationship [34], where the close-packed planes of the austenite and ferrite

are parallel, as are a pair of close-packed directions within those planes. The other

close-packed direction is slightly misaligned with the corresponding direction in

the austenite:

{011}α ∥ {111}γ (2.9)

⟨111̄⟩α ∥ ⟨101̄⟩γ (2.10)

The Nishiyama-Wasserman orientation [35, 36], is rotated relative to the Kurdjumov-

Sachs orientation by 5.25° about the normal to the parallel, close-packed planes.

This results in both close-packed directions being misaligned by half the angle of

that in Kurdjumov-Sachs. In the Greninger-Troiano relation [37], the close-packed

planes are misaligned by 2.7° and the close-packed directions lie 0.2° apart. All

of these orientation relations are idealisations and the true orientation relation is

irrational.

Martensite will only form in a given steel below a certain temperature known as

the martensite-start temperature, Ms. Below this temperature, it does so rapidly

depending on the available thermodynamic driving force. If there is only just

enough driving force to start the martensite transformation, the transformation

will stop with only a small amount of martensite in the steel. This is because strain

accumulates in the parent austenite and the volume available for new martensite

grains to form is limited by the presence of existing ones. Holding at a particu-

lar temperature for a long time will not alter the fraction of martensite formed,

only reducing the temperature may do this. Below some temperature, no further

martensite formation occurs. This temperature is known as the martensite-finish

temperature, Mf .

Bainite

Martensite forms at large undercoolings where there exists a large driving force

that can overcome the nucleation barrier. Equilibrium microstructures exhibit very
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Figure 2.11: Optical micrographs of martensite, (a) Fe–30wt% Ni–0.4wt% C.

Adapted from [14, micrograph 846]; (b) zig-zag arrangement of martensite in Fe–

29wt% Ni [32] (no scale bar provided).

small stored energies, mainly due to the formation of interfaces. One intermediate

case is Widmanstätten ferrite (section 2.1.3). Another is bainite.

Bainite forms at temperatures too high to sustain diffusionless nucleation but

only forms at temperatures below which there is sufficient driving force to overcome

the stored energy contributions, which have been quantified to be 400 Jmol−1 [38].

The temperature at which bainite first forms is referred to as the bainite-start

temperature, Bs.

2.2 The bainitic microstructure

First identified by Davenport and Bain in 1930 [39], bainite results from the trans-

formation proceeding at temperatures too low to allow a reconstructive transfor-

mation but too high to drive the diffusionless martensitic transformation.

Even 85 years after the discovery of bainite at the time of writing, the exact

nature of the bainite transformation is the subject of continued debate, with two

alternative models proposed. The first is that proposed by an international com-

mittee in 1912 [40], developed by Bain for martensite [41] and applied to bainite by

Hehemann and others [40]. This theory asserts that bainite nucleates displacively

22



under paraequilibrium conditions and then grows, like martensite, by a diffusion-

less mechanism, but that carbon partitions after the phase change has occurred to

reduce the stored energy of transformation relative to that of martensite under the

same conditions. Small regions of austenite transform to lenticular plates of ferrite

known as sub-units. Many sub-units are formed together to form a packet. The

second model has been supported by Hultgren [42] and later by Aaronson [43] and

Hillert [44] and asserts that bainite grows by a ledge-propagation mechanism that

is rate-limited by the diffusion of carbon ahead of the transformation interface and

that both nucleation and growth take place under paraequilibrium conditions, as

for Widmanstätten ferrite.

Evidence in support of the diffusionless hypothesis includes:

• introduction of surface relief, measured using atomic force microscopy (AFM),

that was consistent with an invariant plane strain (IPS), characteristic of the

shear operations seen in the Bain strain [45];

• the accumulation of high dislocation density in the material, observed in

transmission electron microscopy (TEM), atom probe tomography (APT)

and dilatometry, consistent with the plastic accommodation of transforma-

tion strains arising from a displacive transformation [46–49];

• the synchrotron X-ray diffraction (XRD) experiments of Stone et al. [50],

which investigated the bainite transformation in-situ and in real time, re-

vealing:

– the accumulation of non-uniform stresses after the bainite transforma-

tion, characteristic of displacive transformation strains;

– the lack of austenite heterogeneity at any stage prior to the bainite

transformation in a synchrotron study, precluding carbon redistribution

ahead of the transformation;

– the evolution of a second austenite peak simultaneous with or a short

time after the formation of bainitic ferrite. This is consistent with
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the formation of a population of carbon-enriched austenite as carbon

partitions from supersaturated ferrite;

• the derivation of a consistent kinetic theory that has been able to accurately

predict transformation behaviour of bainitic steels [51];

• XRD and APT experiments that have shown carbon content in bainitic fer-

rite limited to the level consistent with diffusionless growth [47, 48, 52–57];

• a plethora of data showing bainitic ferrite carbon contents above that ex-

pected under paraequilibrium conditions, in particular atom probe measure-

ments showing Cottrell atmospheres and carbon supersaturation in bainitic

ferrite after and during the early stages of the bainite transformation [54];

• high-precision measurement showing no substitutional solute partitioning af-

ter the formation of bainite.

Evidence in favour of the paraequilibrium ledge-growth mechanism includes:

• directly-observed growth velocities that are more typical of diffusion veloci-

ties rather than displacive transformation velocities [58–60];

• scanning tunnelling microscope and AFM measurements showing surface re-

lief more consistent with ledgewise growth rather than IPS [61, 62];

• the analogous microstructures of bainite and that formed during solidification

of cast iron (referred to as ledeburite) and the fact that the latter certainly

occurs via a carbon-diffusion-controlled ledge growth mechanism [63].

Most of the evidence of low growth rates presented to support the ledgewise

growth mechanism is based on optical microscopy and can be equally-well ex-

plained by slow nucleation and fast growth of bainitic ferrite sub-units. Hu et al.

[60] used laser scanning confocal microscopy to isolate an individual ferrite sub-

unit, and measured its growth rate to be 5.1µms−1, however, this is based on only

three frames taken over 5 seconds and the growth velocity is not constant during

even this short time. It is also not certain that the plate was growing parallel to
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the surface. The samples used by Hu et al., were 10mm thick and it is possible

that the plate of bainitic ferrite used for the measurement was growing at some

angle to the polished surface, meaning that only a component of its growth velocity

was measured. This issue was noted by Quidort and Brechet [59], who restricted

analysis to only the longest laths to ensure the maximum growth velocity was ob-

tained. Quidort and Brechet [59] combined micrographs and dilatometry to derive

the length of the ferrite ‘laths’ and time for which the material transformed, re-

spectively. Yada et al. [58] used hot stage microscopy with in-situ transformation,

however it is likely that the optical technique used was not able to resolve individ-

ual sub-units and so the measurement was for the growth of a packet. A similar

study by Kang et al. [64] observed growth of bainite sub-units using hot-stage

TEM and concluded that growth occurred by shear and not ledgewise growth.

While the overall surface relief of both the bainite ‘plate’ and the ‘sub-subunit’

measured by Fang et al. [61] are described as ‘tent shaped’ and consistent with a

ledgewise growth mechanism, the actual shape is similar to that observed by Swal-

low and Bhadeshia [45]. The only difference between the two studies is that Fang

et al. [61] attributes each ‘tent shaped’ region to ferrite only, with no austenite in-

side their (lower) ‘bainite plate’. This ‘plate’ consists of ‘sub-subunits’ that exhibit

a similar surface relief to that measured in subunits by Swallow and Bhadeshia

[45]. This does not, therefore, provide diagnostic evidence for ledgewise growth of

bainite.

The similarity in morphology between ledeburite, Widmanstätten ferrite and

bainite are intriguing, the most likely explanation is coincidence. Ledeburite forms

during a solidification reaction, and the presence of liquid relieves any transforma-

tion strain during the solidification of the primary phase. There is no reason why

a solid-state reaction would necessarily appear the same if it proceeds by a similar

mechanism, as strain energy could lead to a different morphology. Furthermore,

even if one concludes that the microstructures do look similar, there is no phys-

ical evidence that the same mechanisms governed the reactions, as is claimed by

Borgenstam et al. [63].

On the balance of the evidence listed, it seems clear that the diffusionless
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growth mechanism is correct and this mechanism is therefore used when designing

new compositions.

In the type of steel relevant to the present work, bainite consists of alternat-

ing regions of transformed ferrite and untransformed austenite. Nucleation is on

austenite grain boundaries and grows into the austenite grain [38, 65]. At low

magnifications, it appears as though there is a modulated (layered) microstruc-

ture, such as that shown in figure 2.12(a). At high magnifications it becomes

possible to resolve the features in figure 2.12(b). These features reveal that bainite

grows in packets, where clusters of platelets with similar orientations grow with

untransformed austenite between them. This is analogous to lath martensite [66].

Each platelets grows to a limited size since defects created by the plastic accom-

modation of the shape change render the interface immobile. The transformation

propagates due the nucleation of new platelets in close proximity. Each ferrite

grain produces a strain field around it, which leads to more favourable nucleation

sites near its tip. The growth of each bainitic ferrite platelet — known as a sub-

unit when it forms a constituent of a packet — is driven by the thermodynamic

driving force for the diffusionless transformation of austenite to ferrite (shown in

figure 2.13) and is resisted by the creation of an austenite/ferrite interface and the

requirement to accommodate the transformation strain in the parent lattice.

2.2.1 Plastic accommodation of displacements

The formation of bainite causes a change in the shape of the transformed region,

consisting of a shear of approximately 0.22–0.26 [45, 68, 69]. At the temperature

at which bainite forms, the austenite is relatively weak and this large deformation

causes plastic relaxation in the adjacent parent austenite [70]. The resulting dis-

location debris accommodates [71] and hinders the progress of the transformation,

although the relaxation greatly reduces the overall stored strain energy due to the

displacements.

Continued transformation causes further deformation and an accumulation of

dislocation density in the parent austenite around the transforming region. Thus,

the parent austenite in the vicinity of the bainitic ferrite is work hardened and
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Figure 2.12: Micrographs showing bainite at different scales. (a) optical micro-

graph showing bainite packets. Optical microscopy cannot resolve individual ferrite

sub-units and retained austenite films. (b) transmission electron micrograph of the

interior of a bainite packet, showing retained austenite films and ferrite sub-units.

Both adapted from [67].
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Figure 2.13: Molar driving force for the transformation from austenite to ferrite

at a fixed composition, ∆Gγ→α as a function of temperature for Fe–0.1wt%C,

Fe–0.5wt%C and Fe–1.0wt%C [25, 26]
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eventually stifles the growth of the bainitic ferrite. The transformation continues

by the nucleation of new platelets at the tip of the stifled plate, where the carbon

enrichment is minimal due to the small volume of the adjacent ferrite and the

elastic strains favour the formation of a new platelet in the same orientation with

intervening films of austenite, forming a packet. If there is sufficient retained

austenite, the “films” are connected in three dimensions and are said to percolate.

2.2.2 Destination of carbon

Carbon is relatively mobile at the temperatures at which the bainite grows. The

carbon in the bainitic ferrite can either precipitate as carbides or partition into

the untransformed austenite and then precipitate. The latter occurs at relatively

high temperatures, leading to an upper bainitic microstructure and is given the

symbol αub (figure 2.14(b)). At lower temperatures, not all of the carbon is able

to escape the ferrite. The carbon that is able to leave the ferrite precipitates at

the austenite/ferrite boundaries, whereas that remaining in the ferrite precipitates

as fine cementite with a long axis approximately 60° to the main growth direction

of the ferrite sub-unit [11, 72, 73] (figure 2.14(a)). This is known as lower bainite

and is denoted as αlb. In the presence of sufficient quantities of elements that

are insoluble in cementite, especially silicon, no cementite precipitates and all the

carbon escapes to defects or into solid solution in the austenite. This is known as

carbide-free bainite. The formation of carbide-free bainite is shown schematically

in figure 2.15.

Bainitic ferrite ultimately contains less than the bulk content of carbon and

so carbon must have been redistributed within the timescale of the transforma-

tion — one point, at least, in which both the Zener and Hultgren models agree.

Bainitic ferrite is also usually found to be carbon-supersaturated after the transfor-

mation has stopped — i.e. it contains more than the maximum amount of carbon

permitted by equilibrium with cementite, as described by the maximum extent

ferrite phase field of the iron–carbon phase diagram (at room temperature, this is

approximately 0.02wt% [75]). The austenite that remains untransformed at any

stage is enriched in carbon, above the bulk carbon content. The austenite may be
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Figure 2.14: Transmission electron micrograph showing carbide precipitation in

(a) [74, adapted] upper and (b) lower bainite [69, adapted]
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Figure 2.15: Schematic depiction of the formation of carbide-free bainite. White

indicates no carbon content, black represents xT0 . (a) nucleation of the first ferrite

sub-unit. Ferrite inherits the carbon content of the parent austenite but then

carbon partitions back into austenite (b). (c) this localised carbon enrichment

together with work hardening stifles the sub-unit but more nucleate to (d) form a

packet. (e) the convergence of packets leads to the formation of blocky austenite.
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thermodynamically stable with respect to ferrite if a sufficiently high carbon con-

tent is reached. Indeed, austenite remains in the microstructure once the bainite

reaction stops and is said to be retained. The transformation products expected

at equilibrium are predicted by the iron–carbon phase diagram and under condi-

tions that produce bainite these are often ferrite and cementite. Since the bainite

transformation produces transformation products other than those predicted at

equilibrium, it is said to be an incomplete reaction [38, 43, 76, 77].

Since bainitic ferrite inherits the composition of the parent austenite, the

austenite should continue to transform and produce more bainitic ferrite at a

fixed temperature until it reaches the point at which its carbon content is high

enough for it to have the same free energy as ferrite of the same composition. The

locus of compositions and temperatures at which both austenite and ferrite of the

same composition have the same free energy is known as the T0 line and may be

plotted on the phase diagram. The temperature at which austenite and ferrite of

the same composition have the same free energy is termed the T0 temperature and

the carbon content required for austenite and ferrite of the same composition to

have the same free energy at a particular temperature is xT0 .

In practice, the conditions under which austenite and ferrite have the same

free energy do not define whether or not bainitic ferrite may form from austenite.

Instead, the conditions under which sufficient driving force exists to overcome the

stored energy of the bainite transformation define whether austenite will transform

to bainitic ferrite. The equivalent of the T0 line that accounts for this stored energy

is known as the T ′

0 line. The equivalent to xT0 that accounts for stored energy is

xT ′

0
. Since on the T ′

0 line the free energy of austenite is greater than that of ferrite

of the same composition, the T ′

0 line lies below the T0 line.

The T0 and T ′

0 lines in a Fe–xC–1.0Mn (wt%) steel are given in figure 2.16(a)

and the relationship between the T0 line and the equilibrium austenite and ferrite

phase fields is given in figure 2.16(b). Experimental observations have shown that

the carbon content of the retained austenite follows the T ′

0 line [11, figure 5.5b].
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Figure 2.16: (a) T0 and T ′

0 lines; (b) the T0 line in the equilibrium phase diagram

calculated using the modelling software MatCalc [78] for Fe–xC.

2.2.3 Mechanical properties of bainite

The two phase structure of bainite gives bainitic steel properties of both the con-

stituent phases: hardness and strength from ferrite and toughness and ductility

from austenite [11, page 303]. The presence of austenite allows carbon to partition

away from ferrite to occupy regular octahedral interstices. This leads only to an

isotropic volume expansion that interacts weakly with dislocations [79, 80]. For

this reason, bainite is generally found to be less hard than carbon-rich martensite.

Lower bainite, with a dispersion of fine cementite particles embedded within the

ferrite, has a higher hardness and tensile strength than upper and carbide-free

bainite. Upon heating, cementite also precipitates from the carbon-rich austenite,

which then transforms to martensite upon cooling. This helps to counteract the

coarsening of any carbides and any grain growth that occurs during tempering of

bainite, resulting in little change in hardness and yield strength during tempering.

The yield strength of bainite is also affected by the high dislocation density that

results from the shear transformation, which leads to work hardening and which

exists in both the austenite and ferrite constituents.

Austenite is also able to transform under applied stress to martensite in an

effect called transformation induced plasticity (TRIP) [81–84]. This resulting

plastic work is a mechanism for absorbing energy during failure, raising toughness

32



and elongation. Since bainite can contain a significant fraction of austenite, the

TRIP effect may be exploited to enhance toughness.

2.3 Enhancing the mechanical properties of bai-

nite

2.3.1 Strengthening mechanisms in steels

There is always a desire to produce steels which have a higher yield strength and

toughness. Stronger steel in principle allows the same function to be fulfilled with

less material. However, adequate toughness is required to avoid catastrophic brit-

tle fracture in service. Strength relies on hindering the motion of dislocations

which in turn limits ductility and, hence, toughness. Such mechanisms include

interstitial and substitutional solution strengthening, precipitate hardening, dis-

persion strengthening, order hardening and work hardening. These mechanisms

are summarised in Bhadeshia and Honeycombe [12, chapter 2].

Toughening steel requires that more energy is absorbed during fracture. One

way to do this is to increase the size of the plastic zone ahead of a crack tip, which

requires a lower yield strength. Clearly if there is a lower yield stress, there will

be a larger plastic zone ahead of a given crack tip under a given far-field stress.

It is therefore clear that strengthening mechanisms that rely solely on hindering

dislocation motion will necessarily diminish toughness. While it is possible to

increase toughness in composite materials using techniques such as crack bridging

or crack deflection, these materials are usually anisotropic and are susceptible

to fibre buckling under compressive loading. This makes such of materials less

desirable in those engineering applications where multiaxial and compressive stress

states are possible. Metallic materials perform well under compressive loading and

— with the exception of some highly-specialised applications such as single crystal

gas turbine blades and materials that possess crystallographic texture — exhibit

isotropic mechanical properties.

One mechanism that allows strength to be raised without compromising tough-
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ness is grain refinement [85]. Ordinary dislocations do not alter the crystal struc-

ture during slip as their Burgers vectors are also lattice vectors. Slip displacements

are therefore difficult to propagate across crystallographic discontinuities such as

grain boundaries. They must accommodate each other and annihalate or pile-up

ensues at obstacles [86]. The resulting stress field eventually triggers a disloca-

tion in an adjacent grain, thus propagating slip and causing macroscopic yielding.

The shear stress projected by a dislocation pile-up is inversely proportional to the

square root of the length of the pile-up [87, 88]. In small grains, the length of the

pile-up is constrained by the size of the grain, leading to the Hall-Petch relation-

ship, given as equation 2.11, where σy,0 is the yield stress in a large-grained sample

of the material and k is a material-dependent parameter [87, 89]. Although dislo-

cations are constrained at low stresses, general dislocation glide can occur at high

stresses once it becomes possible to form new dislocations across grain boundaries

and so ductility is not adversely affected. The resulting increase in work done

enhances toughness. Strength and toughness therefore increase simultaneously.

σy = σy,0 +
k√
d

(2.11)

In the Hall-Petch mechanism, dislocations are able to form with relative ease,

but are unable to glide beyond the confines of the grain in which they were created.

Once the grain size reaches a certain lower limit, dislocation formation itself is

limiting and leads to a yield strength given by equation 2.12, where k′ is 115Pam−1

and L̄ is the mean lineal intercept of the grains [90–92], which is equivalent to twice

the actual grain size for plate-shaped grains [93, table 4.1].

σy = σy,0 +
k′

L̄
(2.12)

Grain refinement can be achieved by rapid cooling [94] of small samples (i.e.

components are restricted to wires or thin plates). Extreme deformation can also

lead to refined grains. For example, equal channel angular extrusion induces large

plastic strains and redundant work, while maintaining the cross-section of the
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workpiece. This is achieved by forcing the steel through a die which contains

a large-angle vertex, as shown schematically in figure 2.17. The process can be

repeated multiple times to increase the total strain [95–97]. Clearly, to retain the

plastic strain, the work must be done cold to prevent recovery and the die must

be sufficiently robust to cope with the trauma. This, combined with the need to

develop sufficient pressures, makes equal channel angular extrusion an expensive

process, and limits the size of workpiece. A variant of this technique is to deform

austenite while hot to induce dynamic recrystallisation, promoting a grain size of

the order of a micrometre. This and other deformation techniques are outlined in

Beladi et al. [98, table 2]. Martensitic steel, when cold-rolled has a structure of

dislocation cells give a greater density of interfaces and improving the mechanical

properties accordingly, in a similar manner to equal channel angular extrusion

[99–102]. Of the techniques outlined in Beladi et al. [98], the cold working of

martensite was shown to achieve the finest grain size, as low as 200 nm. Such

cold-rolled martensitic steels, for example, those studied by Tsuji et al. [100], were

able to achieve an ultimate tensile strength of 1.5GPa and 8% uniform elongation,

significantly stronger than the as-quenched state (1100MPa) with little loss of

uniform elongation (10%, reduced to 8%), albeit with minimal uniform elongation.

Tempering the cold-rolled structure was able to significantly enhance ductility,

with up to 8% uniform elongation achieved, but at the cost of almost halving the

ultimate tensile strength.

Bainite, unlike the martensite/ferrite steels studied in references [99–102], has

ductile austenite together with the hard ferrite, and so should be able to exhibit

much better uniform ductility than nanostructured martensitic steels, while still

benefiting from the strengthening provided by grain refinement. During defor-

mation, the austenite gradually transforms to martensite via the TRIP effect.

Theoretically, ductility should continue until less than 10% by volume of austenite

remains, at which point, stress will focus on the more brittle ferrite — the so-called

percolation threshold [103–105].

The challenge of forming bainite with nanometre-scale grain size may be tackled

by considering the growth mechanism of bainite. As noted in section 2.2.1, the
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Figure 2.17: Schematic of equal-channel angular extrusion [after 97, figure 5]
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fact that bainite grows at temperatures above those of martensite, and at a much

slower rate allows plastic relaxation of the transformation strains. It should thus

be possible to control the size of individual ferrite sub-units by controlling the

available thermodynamic driving force and the yield stress of the parent austenite.

Once the work required to shear the parent austenite by the amount required

to allow an incremental growth of a given ferrite sub-unit exceeds the total free

energy released by that increment of transformation, the growth of that sub-unit

will cease, as described in section 2.2.

2.3.2 Bulk nanocrystalline steels

A recent development in steel metallurgy is a new class of steels called nanos-

tructured bainitic steels. Careful alloy design is used to control the austenite to

ferrite driving force to suppress the bainite transformation to temperatures lower

than those normally associated with bainite while simultaneously suppressing the

martensite transformation to even lower temperatures so that bainite is allowed to

form. So far, the bainite transformation has been allowed to proceed at tempera-

tures as low as 125℃ [47, 67, 106]. The result is a mixture of austenite and ferrite

with extremely fine effective grain size. Typically in nanocrystalline bainite, the

bainitic ferrite forms with a width of the order of 50 nm and retained austenite

films remain with width which is typically tens of nanometres wide [1, 67, 107, 108].

Blocks of retained austenite remain, albeit ∼ 1 µm wide. All of these dimensions

represent an order of magnitude decrease compared to the values typically ob-

served in regular bainite formed at temperatures more traditionally associated

with bainite formation.

In order to form bainite, there must be sufficient driving force for the diffusion-

less transformation of austenite to ferrite, but not sufficient to allow martensite to

form. This requires the addition of a significant quantity of austenite stabilisers,

such as manganese, nickel and carbon. The addition of carbon is crucial as it is

the post-transformation partitioning of carbon from ferrite to austenite that allows

some austenite to become thermodynamically stable. In order to form nanostruc-

tured bainite, the amount of carbon added is typically around 1wt% [67, 75, 107].

37



This suppresses the martensite transformation to below 200℃, allowing the bai-

nite transformation to proceed at temperatures at which it is not usually able to,

providing rapid work hardening and leading to grain refinement.

Although there are a large number of combinations of alloying additions that

may be used to form bulk nanocrystalline bainite, the alloys that are presented in

the literature generally contain 0.8–1wt% carbon, 1.5–2wt% silicon, and one or

more of: up to 2.5wt% manganese, up to 4wt% nickel, up to 1.5wt% chromium,

up to 0.2wt% vanadium and microalloying additions of niobium. There are also

instances of compositions falling outside these limits [57, 67, 107, 109–112].

2.3.3 Alloy design

The ultimate goal of bulk nanocrystalline bainite alloy design is to:

• stifle sub-unit growth to limit the size of the bainitic ferrite and retained

austenite to provide strength;

• retain sufficient austenite for the alloy to be ductile and provide toughness;

• allow the transformation to finish within a reasonable time period;

• avoid the need for rapid cooling;

• avoid increasing the cost of the alloy;

• produce an alloy which can withstand exposure to high temperatures.

If the bainite transformation temperature is reduced, dislocation glide is more

difficult and the dislocation density rises faster for a given amount of transforma-

tion [113]. Therefore, at lower bainite transformation temperatures, not only does

the parent austenite become inherently stronger [70], but the work hardening rate

will increase [113]. Both of these effects will raise the free energy change required

for the transformation front to advance.

The shear measured during the formation of nanostructured bainite has been

reported to be as high as 0.46 [114] similar to Widmanstätten ferrite [27], but
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greater than bainite formed at higher temperatures. This explains the slender

plates obtained since the strain energy scales proportionally to the plate aspect

ratio. The stored energy due to the shear deformation is approximately equal to

the product of the aspect ratio of the plate, the shear modulus and the square of

the magnitude of the total deformation. In their experiments, Peet and Bhadeshia

determined the stored energy due to shear to be approximately 340 Jmol−1 — very

similar to the total stored energy of regular bainite (400 Jmol−1) [115].

While dislocation density increases faster as temperature decreases, which leads

to an expected refinement of the ferrite sub-units, the magnitude of the transforma-

tion driving force also increases, as demonstrated in figure 2.13. This will lead to

larger ferrite grains, as more work may be done to deform the austenite before the

driving force is no longer sufficient to continue the deformation, however, experi-

mental findings indicate that grain size is refined as transformation temperature is

decreased. This implies that the stored energy of transformation increases faster

than the driving force for bainite formation as the transformation temperature is

reduced in this range.

2.3.4 Thermal Stability of Bulk Nanocrystalline Steel

It has been noted that the bainite reaction does not represent a thermodynamic

equilibrium, but occurs due to limited atomic mobility at low temperatures. There-

fore, with sufficient time, a bainitic material exposed to elevated temperatures may

undergo microstructural changes that compromise properties, in particular the pre-

cipitation of carbides from the carbon-enriched austenite [116]. Once carbides have

begun to form, carbon will leave solid solution to feed the growth of the precipi-

tates. The austenite then transforms to ferrite. This transformation may occur at

the tempering temperature or upon subsequent cooling to ambient temperature,

depending on the composition of the steel. The formation of crack-nucleating car-

bide particles and the loss of the ductile austenite from bainite renders it brittle

and weak.
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Tempering carbides

Cementite, in the absence of graphite, usually represents the equilibrium phase for

carbon in contact with ferrite. Its unit cell is shown in figure 2.18(a). Under certain

conditions, it is possible to identify other transition carbides that precipitate before

cementite, as they are easier to nucleate [117]. Transition carbides do not represent

the lowest energy species during tempering, and only form when atomic mobility is

sluggish enough to make nucleation difficult, regarded to be below 200℃. Above

this temperature, and in the absence of other effects that prevent it, cementite

precipitates.

Carbides rich in substitutional solutes may also form during tempering, such

as those containing niobium [118–124], tungsten [125], titanium [118, 126, 127],

molybdenum [128–130], vanadium [126, 131, 132] and chromium [118, 126, 133],

if the tempering temperature is sufficiently high for these substitutional solutes

to diffuse [12, table 1.4]. This limited supply of constituent atoms makes alloy

carbides fine, which means that they tend tend to form coherent interfaces. The

fine size also makes them unlikely to fracture during deformation, unlike relatively

coarse cementite particles. Since the growth of these carbides requires the long-

range diffusion of substitutional atoms, they will only extremely slowly coarsen,

making them suitable for the vast majority of combustion-type applications for

which steel is a potential candidate material. Various decomposition products in

martensitic steels are given in Saha Podder [134, table 2.1].

2.3.5 Mechanism of decomposition in bainite

Here, decomposition of the bainitic microstructure refers to the change of retained

austenite into cementite and ferrite. The bainite reaction may be summarised

by equations 2.13 and 2.14, where it should be remembered that αb is likely to

be supersaturated in carbon, with respect to cementite [52–54]. This carbon-

enriched austenite is denoted as γ’. Austenite that survives the transformation is

referred to as retained and is given the symbol γr. γr is richer in carbon than the

starting bulk composition and is also likely to contain more carbon than is stable
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Figure 2.18: Unit cells of tempering carbides. Left: cementite — black atoms are

carbon, grey atoms are iron. [135–138]; right: ε-carbide. Large, grey atoms are

iron; small, black atoms are carbon sites that are fully occupied and small, light

grey atoms are carbon sites with an average occupancy of 6.25% [139].

in solution when in contact with cementite. Some of the carbon-enriched austenite

may transform into martensite upon cooling from the transformation temperature.

γ → αb + γ′ (2.13)

→ αb + γr (2.14)

During low-temperature tempering of bainite, the predominant method of de-

composition is carbide precipitation in the bainitic ferrite where the driving force

for precipitation is largest [134]. In steels with a high dislocation density, more

carbon is accommodated in Cottrell atmospheres and is not available for initial

carbide precipitation [140, figure 8]. In this case, there is a lower driving force for

carbide precipitation and cementite is more likely to precipitate directly, as de-

scribed later by equations 2.15–2.16. Conversely, with only moderate dislocation

density, cementite precipitation occurs via the transition carbide, ε, a hexagonal

carbide identified by Jack [117, 141] with the formula Fe2.4C. The unit cell of

ε is given in figure 2.18(b). Cementite then nucleates either independently or

on the surface of ε particles and consumes ε as it grows, as described later in
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equations 2.17–2.18 and [19, 142, 143].

There is also a range of orthorhombic carbides that are able to form and have

been reported in tempered bainite. These are summarised in Saha Podder [134,

table 2.2]. One significant orthorhombic carbide is denoted at eta-carbide (η),

which was first isolated by Hirotsu and Nagakura [144]. η has the formula Fe2C

and has been found in retained austenite after tempering. This carbide was found

by Jha and Mishra [142] to act as a second transition carbide to allow epsilon to

be converted into cementite in low carbon steel. However, Kim et al. [145] have

shown that it is extremely difficult for η to form, due to it having a large positive

enthalpy of formation. Only specific conditions will allow η to form, for example,

there being very favourable interfacial conditions to allow the overall free energy

change from ε to be negative.

In retained austenite, the driving force for carbide precipitation is lower and

so cementite nucleates directly, but only at temperatures in excess of 200℃ [134,

table 2.1]. The precipitation of carbides within retained austenite depletes it of

carbon and it can undergo subsequent transformation to ferrite at the tempering

temperature or to martensite upon cooling to ambient temperature.

αb + γr → αb + θinαb + γr (2.15)

→ αb + θinαb + γ (2.16)

αb + γret → αb + εinαb + γr (2.17)

→ αb + θinαb + θbetween ferrite plates + α′ (2.18)

αb + γr → αb + θ+ γcarbon depleted (2.19)

→ αb + θ+ α (2.20)

The temperatures at which cementite nucleation can occur in ferrite are typi-

cally those that are used in the bainite transformation and this is the reason that

42



lower bainite can form. In the case of upper bainite, carbon diffuses to the austen-

ite/ferrite interface, where it can precipitates to form a cementite film. As noted in

section 2.2.2, the addition of silicon that suppresses or retards cementite formation

can stifle these decomposition processes and lead to the formation of carbide-free

bainite. Heating of the as-decomposed microstructure can lead to “stage two” of

tempering and cause cementite to precipitate in the austenite at temperatures in

the range 200℃–300℃ [134, table 2.1].

Andrews [19] noted that, if the Pitsch orientation relationship between austen-

ite and cementite is accepted, and any ferrite produced has the conventional

orientation relation with cementite, the ferrite and austenite necessarily have a

Kurdjumov-Sachs relation between them, as would normally be expected. Apart

from the widely-published Pitsch relation, [146], Thompson and Howell [147] ob-

served another orientation relation in a high-carbon alloy, similar to existing bulk

nanocrystalline bainitic alloys. During the early stages of tempering, carbides

have been observed in plate-like clusters, similar to the Guinier-Preston zones in

aluminium-copper alloys, [148]. Guinier-Preston zones provide a low activation-

energy route for the formation of Al2Cu precipitates in an aluminium matrix,

[149], and these carbon clusters may be performing the same rôle in the forma-

tion of Fe3C precipitates in steels. Speich & Leslie proposed a high-silicon carbide

as a transition state between ε-carbide and cementite, [150]. They named this

γ-carbide.

Although retained austenite films are rich in carbon (section 2.2.2), which

suggests that they are more prone to thermal decomposition, the decomposition of

blocky austenite is more problematic. This is because decomposed blocks represent

a large volume of brittle material and martensite plates are more likely to develop

in blocky austenite than in the restricted volume of an austenite film. One simple

way to mitigate this problem is to reduce the transformation temperature, as this

will increase the amount of carbon required to stabilise austenite with respect

to ferrite (increase xT0) and lead to a higher fraction of bainite forming. This

will subdivide existing austenite blocks as the later stages of the transformation

proceed [151, 152]. Unfortunately, as will be explained in section 2.3.7, there is a
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limit to the extent to which transformation temperatures may be lowered. Such a

method would also rob the steel of the ability to undergo TRIP during deformation.

There is an optimum carbon content to maximise the energy absorbed during

TRIP: too low and the transformation occurs readily, too high and little of the

austenite transforms [148]. A more suitable solution would be to ensure that no

decomposition occurs once bainite has formed.

Saha-Podder studied the tempering behaviour of austenite retained in bainite

[134, section 5]. He showed in his figure 5.4 that the austenite blocks show optical

signs of decomposition, whereas films do not and that this change is associated

with softening of the sample ([134, figure 6]). These observations were attributed

to the transformation of carbon-rich retained austenite to ferrite and cementite. In

a sample tempered and then subsequently cooled, untempered martensite formed

upon cooling. Transmission electron micrographs of film austenite showed evidence

of cementite precipitation, and, during in-situ TEM observations, the progressive

loss of austenite from the α/γ boundary during prolonged tempering. This de-

composition was followed by the onset of recovery, and occurred by movement of

the α/γ interface.

Saha-Podder’s dilatometric analysis [134] showed that the first process during

exposure to elevated temperatures was the tempering of martensite present in the

as-transformed microstructure, leading to an initial volume contraction. Subse-

quently, volumetric expansion occurred as the retained austenite decomposed to

cementite and martensite.

Saha-Podder also conducted synchrotron X-ray diffraction studies of bainite

with in-situ heating [134, chapter 7]. He showed that film austenite decomposes

faster than blocky austenite, supporting the contention that it is carbon precipita-

tion that dominates the decomposition process. Due to its higher carbon content,

film austenite is more stable with respect to ferrite (or martensite) than blocky

austenite, but less so with respect to a mixture of either cementite and austenite

or ε and austenite, as suggested in figure 2.19(a).

Such decomposition processes have been observed in bulk nanocrystalline bai-

nite, which would be expected to be vulnerable to tempering due to the high
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Figure 2.19: Driving force for decomposition of austenite to an equilibrium mixture

of austenite and cementite at 450℃ [25, 26]. (a) Fe–xC–3.0Mn–2.3 Si (wt%) as

investigated by Saha Podder [134]; (b) Fe–xC.

carbon contents used (see section 2.3.4). However, Caballero et al. [67] showed

that bulk nanocrystalline steels were surprisingly resistant to tempering, resisting

a change in hardness up to 550℃ when heated for one hour.

2.3.6 Effects of alloying additions on decomposition

The thermodynamic driving force for the decomposition of a metastable mixture

of bainitic ferrite and retained austenite will be affected by the presence of alloying

additions. This can be exploited to control the decomposition process.

Carbon

As may be seen in figure 2.19, the higher the carbon content, the greater the driving

force for the decomposition of austenite to an equilibrium mixture of cementite and

austenite. This suggests that reducing the carbon content of the retained austenite

— in practice, the T ′

0 composition — is likely to lead to an increase in thermal

stability. A reduction in carbon may only be achieved by the addition of elements

that reduce the driving force for the transformation of austenite to ferrite. This

must be done to avoid the martensitic transformation occurring at temperatures
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higher than those necessary for the formation of nanocrystalline bainite. Carbon

cannot be eliminated entirely [1] as it is required for the formation of bainite

— without it, martensite formation would occur directly once the temperature

was low enough for the diffusionless transformation to occur (section 2.3.7). Such

elements are shown, together with their effects on the driving force for the austenite

to ferrite transformation, in [12, figure 4.3b].

Nitrogen

An alternative to using carbon is to add nitrogen to the steel, also an austenite

stabiliser [12, figure 4.3b] and is an interstitial alloying element, that partitions

away from ferrite during transformation from austenite [153–155]. This may be

advantageous as the precipitation behaviour of iron nitrides is different to that of

iron carbides, however, the precipitate with the lowest nitrogen content, known as

γ′ and with the chemical formula Fe4N is hard and brittle [156] and is observed to

form along with ferrite when nitrogen-rich austenite decomposes [153, 154]. The

iron–nitrogen phase diagram is given in figure 2.20. Additionally, to introduce a

significant amount of nitrogen into steel, powder metallurgy must be used, with

associated cost implications.

Silicon

Of the elements used to suppress cementite, silicon is the one that has received

the most attention. It has been known to promote the formation of graphite in

preference to graphite in cast irons [13, 78, 158] by donating electron density to

iron atoms and preventing them from interacting with clusters of carbon atoms,

which then precipitate out as graphite [159, page 77].

The mechanism by which silicon suppresses the fraction of cementite has been

discussed [150, 160–164]. Owen [160] suggested that silicon may partition ahead

of a growing carbide which cannot accommodate it in its lattice, leading to an

accumulation of silicon ahead of the growth interface. Concurrently, silicon raises

the activity of carbon in austenite, which slows the diffusive flux of carbon towards

the carbide since diffusion occurs down gradients of chemical potential. In order for
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Figure 2.20: Iron–nitrogen equilibrium phase diagram [157]. Reproduced from [10]

with permission of ASM International.
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growth of the particle to continue, silicon must diffuse away from the interface so

that the slower silicon diffusion, rather than carbon diffusion, becomes the limiting

factor.

It is assumed that cementite initially forms under paraequilibrium conditions,

i.e. without the partitioning of substitutional alloying elements, including silicon

[165–167]. This has been observed independently by Babu et al. [168] and Ca-

ballero et al. [169] using atom probe tomography, where there was a similar silicon

content both inside and around a cementite precipitate (shown in [169, figure 8]).

Babu et al. [168] showed that prolonged tempering leads to a reduction of silicon

content in the cementite. The thermodynamic effects of incorporating silicon into

the cementite lattice were investigated by Bhadeshia et al. [170] and from first

principles by Jang et al. [171]. They found that replacing one iron atom with

silicon atom in the least unfavourable lattice site raised the enthalpy of formation

of cementite from approximately 20 kJmol−1 to 120 kJmol−1, giving a thermody-

namic basis for the suppression of cementite due to silicon, as the driving force for

cementite precipitation is greatly reduced [78]. Conversely, Jang et al. [172] calcu-

lated that silicon can stimulate precipitation of ε in place of silicon, but concluded

from ab-initio calculations that this effect was not thermodynamic in origin, but

leads to a contraction of the c lattice parameter of ε, increasing the coherency

with ferrite. Kim et al. [145] performed similar ab-initio calculations to Jang et al.

[171] and their results are summarised in table 2.1. This was supported by cal-

culation of the driving force of cementite precipitation and misfits by Kim et al.

[143]. This effect is specific to ferrite, since the orientation relationship will be

different in austenite. There is experimental evidence of ε forming in austenite

[142, 173, 174], although as Jang et al. [172] note, this appears to contradict ther-

modynamic calculations [175]. Overall, there is no definitive evidence that adding

silicon will result in increased ε precipitation.

Silicon is also an effective strengthener of ferrite [13, page 244] and austenite

[176]. However, adding silicon in excess of 4wt% is known to embrittle ferrite.

Silicon additions also reduce the density of steel, allowing a given component to

be made with a lower overall mass [177]. Silicon also promotes the formation of
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Carbide Fe,M / C
∆H /

kJ (atom-mole)−1

∆H with the
substitution by an
impurity atom

Zener-ordered
8 +5.80 —J-model Fe16C2

Zener-ordered
8 +5.78 —T-model Fe16C2

Zener-ordered
4 +24.18 —J-model Fe16C4

Zener-ordered
4 +23.98 —T-model Fe16C4

Cementite
θ -Fe3C

3 +5.38
+7.70 (Si)
+4.73 (Al)
+5.07 (Mn)

Hexagonal
3 +5.3 +11.38 (Si)

ϵ -Fe3C

Hägg carbide
2.5 +152.6 —

χ -Fe5C2

Hexagonal
ϵ -Fe2.4C

2.4 +6.23
+11.38 (Si)
+4.98 (Al)
4.40 (Mn)

Hexagonal
2 +7.00 +20.33 (Si)

ϵ -Fe2C

Orthorhombic
2 +126.1 —

η -Fe2C

Anti-Perovskite
κ-carbide

Al(Fe2Mn)C
4

−28.2
−27.9

—
—

Cubic
Cr23C6 carbide 3.83 (=23

6 )
−8.61 −10.43 (Fe)
−10.98 —
−8.75 −10.65 (Fe)

Table 2.1: Calculated formation enthalpy per atom-mole (∆H) in units of

kJ/atom-mole of the considered carbides. ∆H values with the substitution of

an impurity atom into an ‘M’ site are also given. After [145].
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red scale, a product of hot rolling formed from fine grains of haematite (Fe2O3).

During hot rolling, any FeO remaining on the steel surface oxidises to Fe2O3. FeO

is usually removed prior to rolling, but the presence of silicon forms a eutectic melt

between the FeO and Fe2SiO4 that penetrates grain boundaries near the surface

and greatly increases the adhesion of the FeO to the steel surface. This makes

descaling extremely difficult. At best this red scale is unsightly, at worst it may

be incorporated into the steel during rolling and act as an initiation site for failure

in service.

Aluminium

The rôle of aluminium in bulk nanocrystalline bainite is twofold. It accelerates the

formation of bainite by altering the relative thermodynamic stabilities of austenite

and ferrite [50, 92, 108, 178, 179]. There is, therefore, an increase in both Bs and

Ms. This can lead to the coarsening of the microstructure. Excessive amounts of

aluminium can also stabilise ferrite at all temperatures at which the material is

solid [177].

Like silicon, aluminium is also a potent cementite suppressor, [13, 116, 180–

182]. Leslie and Rauch [183] deduced that aluminium increases the energy of

formation of a cementite lattice when forced onto the iron sites, but, unlike silicon,

aluminium reduces the activity of carbon in austenite, so the diffusion of carbon

towards growing cementite particles is not slowed by the addition of aluminium.

Leslie and Rauch [183] also found that cementite can grow by paraequilibrium

in the presence of aluminium. This will reduce the driving force for cementite

formation and in some cases may suppress cementite entirely. When there is still a

driving force for cementite precipitation with aluminium in its lattice, the presence

of aluminium will slow the precipitation of cementite. At higher temperatures

aluminium can partition away from cementite and the slow diffusion of aluminium

will limit the rate of cementite formation.

Aluminium has a strong affinity for oxygen [13, page 242], and during casting,

alumina particles may block the nozzles – vacuum induction melting, vacuum

arc remelting and/or electro slag remelting can be used to avoid this, albeit at
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increased production cost.

Manganese

Manganese is usually added to steels in order to increase hardenability by delaying

reconstructive transformations [13, page 242], [12, figure 4.7] (originally published

in [184]) [179, 185–188]. It suppresses both Bs and Ms [13, page 243] — it is an

austenite stabiliser [12, figure 4.3b].

Manganese forms a carbide that is isostructural with cementite, Mn3C, which

favours cementite precipitation [13, page 242]; indeed Speich and Leslie [150] re-

ported that manganese was more soluble in cementite than in ferrite. Leslie and

Rauch [183] deduced that manganese reduces carbon activity both in ferrite and

in cementite and lowers the isothermal tempering temperature required to precip-

itate cementite from a supersaturated solid solution, consistent with manganese

increasing the thermodynamic stability of cementite and not partitioning away.

Conversely, Pacyna et al. [189] determined that during continuous heating of sam-

ples quenched from the austenitic state, manganese was reported to delay the

precipitation of cementite, and that cementite was the only carbide found. This

may be understood as manganese reducing the diffusivity of carbon in austenite,

consistent with the effect of manganese on austenitised alloys.

Manganese is also added to steels in small quantities to remove sulphur [188].

Sulphur — present as impurities in the coke used to produce iron in the blast

furnace — contributes to a eutectic (Fe/FeS) that forms at grain boundaries when

the steel is hot. This is termed hot shortening. and leads to decohesion of grains

during rolling, producing cracks [190]. During low temperature machining, man-

ganese sulphide improves machinability [13, page 242] [190]. Manganese is also

added to increase yield strength and ultimate tensile strength [191].

Nickel

Nickel improves hardenability [13, page 244] [134, 152, 192], suppresses Bs and

Ms [12, figure 4.3b] [134, 152, 188, 192, 193] and enhances toughness [194, 195],

although this has been disputed by Keehan et al. [196] and Caballero et al. [197]
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in the case of bainitic steels containing more than 1.5wt% manganese, but does

enhance solid solution strengthening [196, 198]. Nickel is generally not found in

large quantities in carbides [13, page 58] and may contribute to thermal stability,

although evidence from Saha Podder [134] suggests that nickel-containing steels

may be less resistant to cementite precipitation than manganese-containing equiv-

alents.

Thermodynamic modelling has shown that the ratio of iron atoms to solute

atoms in cementite in equilibrium with austenite is much higher for nickel than

the equivalent content of manganese (figure 2.21)
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Figure 2.21: Ratio of molar fractions of iron and substitutional alloying addition

in cementite under equilibrium conditions at 450℃ in (a) a manganese-containing

steel and (b) a steel containing nickel [26, 199]

Cobalt

Cobalt is used to accelerate the bainite transformation by increasing the driving

force for the transformation of austenite to ferrite [1, 50, 57, 75, 92, 104, 108, 110,

111, 179–181, 187, 192, 200–207]. It is an expensive solute [104, 180, 186, 205]

and so its use should be minimised as far as possible to maximise commercial

appeal. Although cobalt is not found enriched within carbides Bain and Paxton

[13, page 58], it has just as much affinity for carbon as iron [13, page 243] and so

will not contribute to thermal stability. Aluminium may be used in place of cobalt

to accelerate the bainite transformation at much lower cost and has the added

benefit of retarding cementite precipitation
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Chromium

Chromium enhances hardenability and, as would be expected, also suppresses both

Ms and Bs [107, 179, 182, 204, 207–209]. It is a well-known corrosion inhibitor,

even when present only in solid solution. Chromium has an affinity for carbon

and indeed it is the formation of carbides at grain boundaries that can lead to

sensitisation, that is, chromium depletion in the vicinity of grain boundary car-

bides, producing sites anodic relative to their surroundings. Chromium may enter

a range of iron and alloy carbides [210] including cementite [211] and is therefore

unlikely to suppress the decomposition of retained austenite during tempering.

Molybdenum

Molybdenum helps to tie up residual phosphorus and hence prevent temper em-

brittlement and provides strong hardenability when in solid solution [13, page 244].

Molybdenum has a strong affinity for carbon, although its carbides generally grow

extremely slowly, as they are limited by the availability of the comparatively slow-

diffusing molybdenum atom, rather than carbon. Molybdenum is also used, as

is boron, in small quantities to suppress allotriomorphic ferrite [12, page 148].

Molybdenum is found to significantly strengthen ferrite when in solid solution

[207, 212].

2.3.7 Transformation temperature and time

Whether or not a given phase is able to grow is dependent on there being sufficient

thermodynamic driving force to overcome all sources of stored energy, such that

the overall free energy change of transformation is negative. There must also be

sufficient driving force to allow nucleation of the product phase. It is possible to

define a universal nucleation function, GN [115], which describes the free energy

change required for a displacive transformation to nucleate at a detectable rate and

is a function of temperature alone. Since bainite nucleates via a paraequilibrium

mechanism, it is required that the free energy change for the paraequilibrium,

∆G
γ→α
para must exceed this universal nucleation function. These two conditions,
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represented by equations, which must be satisfied simultaneously for bainite to

grow, are:

∆Gγ→α < −|∆Gstored| (2.21)

∆Gγ→γ′+α
para < −|∆GN| (2.22)

It is crucial to suppress the martensite start temperature to below the temper-

ature required to form bainite. This may be achieved by reducing the austenite

to ferrite driving force at all temperatures to avoid the driving force exceeding

the stored energy of the martensite formation. There are several factors that

can control the magnitude of the stored energy of the martensite transformation:

austenite grain size [213–216], strength of the parent austenite [215] and carbon

content. The first of these controls both the availability of nucleation sites and the

maximum size of individual martensite plates — if this is to low, surface energy

and will make the martensite transformation unfavourable. The second factor in-

fluences how much work must be done to allow the transformation shear. The

carbon content is vital as carbon is trapped in the martensite, significantly raising

the energy of the system. It is, of course, possible to control the thermodynamic

driving force for the austenite to ferrite transformation by altering the composition

of the steel to raise or lower the Ms temperature.

Since the bainite transformation is similar to the martensite transformation,

the same factors influence it. Just as the martensite transformation must be

suppressed, the onset of the bainite transformation must be shifted to a lower

temperature to avoid the formation of bainite at high temperatures at which large

grains of bainitic ferrite will form. It is possible to suppress both the martensite

and bainite start temperatures using the same substitutional elements, notably

nickel and manganese [13, page 242], [12, figure 4.3b]. Unfortunately, use of large

quantities of these elements results in a convergence of martensite and bainite start

temperatures [1, figure 10a]. The only elements able to suppress both Ms and Bs

while maintaining a useful gap between the two are interstitial elements: carbon

(Bhadeshia [1, figure 10b]) and nitrogen [180]. This is because they reduce the
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driving force for the austenite to ferrite transformation (hence the suppression of

both Ms and Bs) and behave differently in the two transformations — they remain

trapped in ferrite in the martensitic case and partition after the formation of ferrite

in the bainite transformation.

One further complication is that while the nanostructured bainite system is

capable of forming grains whose size is of the order of 10 nm, the process can take

a significant amount of time, with the bainite evolving for several days before the

retained austenite is enriched to the T ′

0 composition. Adding large quantities of

elements capable of suppressing Ms and Bs will necessarily reduce the austenite

to ferrite driving force and, hence, make nucleation of bainite sub-units less likely.

Indeed, Bhadeshia [1] calculated that Fe–1.0C–2.0 Si–3.0Mn (wt%) would take

one year to begin to transform, based on earlier thermodynamic modelling [217].

The data in Bhadeshia [1, figure 10b] are reproduced here as figure 2.22.
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Figure 2.22: Calculated time required for bainite transformation to start in Fe–

1.0C–2.0 Si–3.0Mn (wt%). After [1, figure 10b].

Studies have found that introducing defects after austenitisation leads to the

bainite reaction speeding up. However, this effect is limited and the introduction

of too many defects resulted in the bainite reaction actually being stifled and

slowed [218, 219]. Gong et al. [219] also noted that deformation prior to the bainite

reaction reduced the number of variants of ferrite, which was theorised to be due to
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the preferential nucleation of certain variants, triggered by the action of particular

slip systems during the deformation and the associated change in the ability of

the austenite to shear in given directions. One further effect was the reduction in

elongation of the bainitic sheaves. The same authors have found that ausforming

only has an appreciable effect at low temperatures where planar dislocations form

on active slip planes and lead to strong variant selection [220], while quoting

Shirzadi et al. [221] that ausforming at higher temperatures does neither. Zhang

et al. [222] showed that ausforming was able to suppress Ms, reduce the incubation

time for bainite formation and refine the bainite laths. One consequence of the low

rate of the bainite reaction is that the release of latent heat will not lead to a rise

in temperature — so-called recalescence is avoided — and so the fine plate size

may be maintained throughout the transformation. By suppressing the bainite

transformation temperature, a higher amount of enrichment may occur before the

xT ′

0
carbon content is reached and so a greater fraction of the steel will transform

to ferrite, raising strength and hardness.

2.3.8 Mechanical properties of nanostructured bainite

The strength of steel may be estimated by considering the contributions to yield

stress provided by all mechanisms that inhibit dislocations. The most general

expression for strength is given in equation 2.23 [223, adapted], where σ0 is the

intrinsic yield strength of iron, approximately equal to the Peierls stress, ∆σss

is the contribution of solid solution strengthening to the yield stress, ∆σp is the

amount of strengthening provided by precipitates and dispersion particles, ∆σd

is the contribution of work hardening (dislocation density), ∆σsg is the effect of

sub-grain structures, ∆σt is the effect of texture and ∆σgr is the effect of grain

refinement.

σy ≈ σ0 + ∆σss + ∆σp + ∆σd + ∆σsg + ∆σt + ∆σgr (2.23)

Nanostructured bainite differs from regular carbide-free bainite only in the scale

of the transformed plates. Both the alternating austenitic and ferritic films and
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the untransformed austenite blocks are refined by an order of magnitude when the

transformation temperature is suppressed. Impressive combinations of strength

and toughness have been achieved simultaneously, summarised in table 2.2. These

compare favourably with other microstructures of steel, as is shown in figure 2.23,

especially when it is noted that the cost of bulk nanocrystalline steels is a little

over 1% of maraging steels of comparable mechanical properties [12, 109].
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Figure 2.23: Mechanical properties of nanostructured bainite and other types of

steel. Adapted, with author’s permission, from [104]; original data from [207, 227].

The strengthening effect of dislocation density in bulk nanocrystalline steel was

quoted by Garćıa-Mateo and Caballero [111] as being 7.34×10−6ρ0.5MPa, where ρ

is the dislocation density expressed in m−2. Takahashi and Bhadeshia [228] derived

that the dislocation density after the bainite transformation is a function of temper-

ature alone and is given by log (ρ /m−2) = (9.2840 + 6880.73T−1 − (1.780360× 106)T−2),

where T is the transformation temperature expressed in Kelvin [228]. The Lang-

ford model of grain refinement strengthening is given by 115L̄−1MPa where L̄ is

the mean lineal intercept of the grains in micrometres. These conditions, substi-
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σy /GPa σUTS /GPa KIC /MPam1/2 Charpy toughness / J Reference

1.68 2.00 4
[67, 75, 104]

1.53 1.93 6

1.4 2.2 32

[104, 111]

1.35 1.9 35

1.3 1.7 50

1.4 2.15 32

1.5 1.95 38

1.3 1.8 45

1.4 2.2 32

1.35 1.9 35

1.3 1.7 50

1.4 1.6 30.0* 2.3

[224]
1.6 1.8 32.3* 2.4

2.2 2.5 4.6

1.4 1.6 31*

1.4 2.2 24

[187]1.5 2.1 38

1.2 1.7 42

1.2 1.8 36

[197]

1.2 1.6 36

1.2 1.7 44

1.3 1.7 38

1.2 1.7 40

1.4 1.9 24

1.6 2.0 15

[225]
1.2 2.3 5

1.5 2.0 17

1.3 1.8 24

2.3 30 [226]

Table 2.2: Strength, fracture toughness and Charpy impact energy for bulk

nanocrystalline bainitic steels. KIC measurements marked with an asterisk (*)

did not meet validity specifications and are therefore KQ. Data are only included

from sources where strength and toughness or impact energy data were available

for the same material.
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tuted in to equation 2.23 along with the intrinsic yield stress of iron (∼ 40MPa)

[223, 229] result in equation 2.24 for the expected yield strength of nanostructured

bainite. Since nanostructured bainite is expected to have neither precipitates, tex-

ture, nor sub-grain structure, the terms ∆σp, ∆σt and ∆σsg are 0. In their studies,

Garćıa-Mateo and Caballero [111] deduced that the approximate strengthening

contribution from dislocations in their bulk nanocrystalline bainite is around 200–

300MPa. The contribution of solid solution strengthening has been assessed in

ferrite by Pickering [230] and is summarised in equation 2.25, where wi represents

the weight percentage of the element i in the alloy [230, 231]. It was found that

nickel and aluminium provide negligible strengthening effects and chromium ac-

tually weakens the ferrite. All other alloying additions investigated increased the

yield strength, with the strongest effect for small atoms that generate the strongest

strain fields when incorporated in the lattice, especially the interstitial-occupying

carbon and nitrogen.

σy ≈ 40 + 7.34× 10−6 × 10(4.642+3440T−1
−890180T−2) +

115

L̄
+ ∆σss MPa (2.24)

∆σss ≈ 5544 (wC + wN) + 678wP + 83wSi + 39Cu + 32wMn+

11wMo − 31wCr MPa
(2.25)

Equation 2.25 was derived by Pickering [230] for ferrite, but the principle of

equation 2.23 can be applied to any microstructure if correct data are used in each

individual term. Young and Bhadeshia [176] considered the individual terms and

extended the analysis to mixed microstructures of bainite embedded in a matrix

of martensite. While this situation differs from the alloys considered here, which

contain predominantly bainite mixed with retained austenite, the principle that

mixed microstructures may be modelled is still sound.

Singh and Bhadeshia [232] used neural network analysis to derive the expected

plate thickness as a function of input parameters including transformation tem-

perature, chemical driving force and austenite strength. The latter was found to

be the most significant in determining the thickness of individual sub-units (see

[232, figure 8]) and can be estimated using an empirical expression over a specified
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temperature range, given in equation 2.26 [232].

σγy = 15.4

×
(

1− 2.6× 10−3 (T − 25) + 4.7× 10−6 (T − 25)2 − 3.26× 10−8 (T − 25)3
)

× (4.4 + 23wC + 1.3wSi + 0.24wCr + 0.94wMo + 32wN) MPa

(2.26)

Taking a typical composition of bulk nanocrystalline bainite of Fe–0.8C–1.6 Si–

2Mn–0.25Mo–1Cr–1.5Co [111] gives a solid solution strengthening contribution

of ≈ 170MPa if carbon is neglected (a necessary approximation since the amount

of carbon in solid solution in the ferrite is likely to be somewhat less than the bulk

content and is very difficult to determine), a dislocation density of around 1016 m−2

forming after transformation at 250℃, giving a strengthening contribution from

dislocations of 700MPa and a grain size of 150 nm— equivalent to grain refinement

strengthening of 770MPa — gives an estimated strength of the ferrite of 1680MPa.

This is of the same order as was measured for the overall alloy in Garćıa-Mateo

and Caballero [111] and is indicative of the importance of grain size in determining

the strength of the final alloy.

2.3.9 Commercialisation of bulk nanocrystalline bainite

Despite being a recent innovation in steel metallurgy, bulk nanocrystalline bainite

has already been put into commercial production [1, 233, 234]. Its use has allowed

a high-performance armour to be produced with lower mass and cost than both

alumina or titanium alternatives.

Caballero and co-workers have been developing a commercial design concept

based on bulk nanocrystalline steel which they call NANOBAIN [109]. The first

generation of steels was focused solely on forming bainite at the lowest possible

temperature. The second generation was designed to transform more rapidly, to

make the material less expensive to process and increase the commercially attrac-

tiveness. A minimum hardenability was also imposed to allow large sections to
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be made where cooling rates are limited. It was imposed that a cooling rate of

1.5K s−1 was the maximum permitted to form any pearlite or ferrite.

2.4 Non-cubic bainitic ferrite

As noted in section 2.2, bainite forms via a displacive mechanism, with carbon par-

titioning from ferrite after transformation. Carbon occupies octahedral interstices

when dissolved in iron. In austenite there are twelve such interstices per unit cell,

as may be seen in figure 2.24, where there is one octahedron at the body centre and

one at each of the twelve edge centres. Each of the edge centres is shared between

four unit cells, making a total of four octahedra per unit cell, or one per iron atom

in the face-centred cubic crystal. By contrast, figure 2.25(a) shown that there is

one octahedron at each of the six face centres in the body-centred cubic crystal

and since each of these if shared between two unit cells, these sites contribute three

octahedra to each cell. In addition, there is another identical octahedron at each

edge centre, adding 12 × 1/4 = 3 octahedra to each unit cell, to give six overall.

There are only two atoms per unit cell in the body-centred cubic arrangement, so

there are three octahedra per iron atom. That is three times as many octahedra

per atom in ferrite than in austenite.

It is also important to note that while the octahedral interstices in a face-

centred crystal are regular (i.e. all atoms forming the octahedron are equidistant

to the centre of the interstice), those in a body-centred cubic crystal are irregular,

with two coordinating atoms a distance of a/2 from the centre of the interstice and

the other four being
√
2 times further away. The presence of carbon in any inter-

stice will create a local compressive strain field. In the case of a regular interstice,

the strain field will be isotropic and only consist of dilatational components. In

the case of an irregular interstice, the strain field is anisotropic and a significant

amount of tetragonal strain develops. Not only is this the reason that carbon is

able to strengthen ferrite significantly more than it does austenite [235] — the

shear components of the strain field around a filled irregular interstitial site are

able to interact with the shear components of all dislocations and pin them much
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more strongly than is possible if only dilatational strains are present to interact,

as is the case in austenite — it imparts a significant energy penalty on the system.

The overall energy may be relieved if the lattice expands parallel to one crystallo-

graphic axis, relative to the other two, to elongate the octahedra and make them

regular, such as is shown in figure 2.25(b). This reduces the symmetry of the lat-

tice, destroying the triads along the ⟨111⟩ directions. The crystal may no longer

be considered cubic. The highest symmetry element is a tetrad parallel to [001]

(where the z-axis is defined as that which has undergone the expansion relative

to the other two perpendicular directions. The crystal is therefore tetragonal and

still has a lattice point in the body centre, making it body-centred tetragonal, with

space group I 4/mmm. Ferrite has a space group of I 4 3 2.

Figure 2.24: Octahedral interstices in a face-centred cubic crystal. Left: at the

body centre and right: at the edge-centres. After Cohen [236, figure 7].

The presence of carbon in ferrite has long been known in martensite [236, fig-

ure 5] and studies of the effects of carbon on the lattice parameters of martensitic

ferrite have led to equation 2.27, where a and c are the tetragonal lattice param-

eters and wC is the amount of carbon in solid solution in the martensitic ferrite,

expressed in weight percent. The thermodynamic reasons for such a reduction in

symmetry were investigated by Jang et al. [237] and it was found that while the

maximum solubility of carbon in an equilibrium mixture of body-centred cubic

ferrite and austenite is from the iron–carbon phase diagram (see figure 2.1), this
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Figure 2.25: Octahedral interstices in a body-centred cubic crystal. Left: distorted

octahedra at the face-centres and right: regular octahedron in a distorted BCC

(equivalent to BCT) lattice. After Cohen [236, figure 8].

may be increased to 0.4wt% carbon at 450℃ if the ferrite is allowed to adopt a

body-centred tetragonal lattice, as this reduces the energy of the system. While

such a reduction in symmetry is commonly observed in steels, where there is a

significant amount of carbon present, it is by no means a necessity of the marten-

sitic transformation. Indeed, Fe–30wt%Ni undergoes a martensitic transformation

to form body centred cubic martensite, as can many other non-ferrous, or even

non-metallic, systems [238].

c

a
= 1 + 0.045wc (2.27)

It must be considered that the loss of symmetry in ferrite is dependent on

carbon being in solid solution and not at dislocation cores, grain boundaries, pores,

particle boundaries and any other sinks. According to the formula x ∼
√
Dt,

where x is diffusion distance, D is the diffusivity and t is a time, the time required

for carbon to diffuse far enough to escape a typical supersaturated ferrite plate

is ∼ 10 days, based on the a diffusivity of 10−20m2 s−1 at 200℃ [239, figure 9]

and a required diffusion distance of 100 nm. The bainite transformation at 200℃

typically requires 30 days to stop, yet despite there being ample time for carbon to

leave ferrite, carbon supersaturation has been detected directly using atom probe

tomography [47, 48, 52, 53, 56, 57, 76, 169, 240]. Although some of the ferrite

may be assigned to defects [47, 53], studies have confirmed that carbon does enter
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supersaturated solid solution far from defects [47, 52, 169] and should be expected

to promote tetragonality.
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Chapter 3

Design of novel alloys

3.1 Design tools

3.1.1 mucg83

“mucg83” is a powerful yet simple-to-use FORTRAN program [241]. The only

input is a composition as both thermodynamic data and algorithms are built into

the program. mucg83 predicts Ms, Ws and two values for Bs: one assuming that

nucleation is limiting and another that growth is limiting. Other thermodynamic

and kinetic parameters are calculated, such as the time required to detect the

onset of shear and diffusional transformations. Time-temperature transformation

(TTT) curves may therefore be estimated [77] as may T0 curves. Full details may

be found on the mucg83 page of Materials Algorithm Project website [241].

Predictions are made based on the driving force for the transformation from

austenite to ferrite as a function of temperature and composition. Zener order-

ing is taken into account [217]. The program uses polynomial equations fitted

to experimental thermodynamic data to calculate the interaction parameters of

carbon in ferrite and austenite. Chemical potentials are calculated, leading to a

variety of driving forces for transformation, depending on the mechanism involved
1 [38, 217, 242–246]. This allows mucg83 to perform all calculations internally,

1“mucg” is a portmanteau of mu (µ, chemical potential), C for carbon and G for gamma (γ,
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i.e. using numbers contained within the source code and not from any external

thermodynamic database or software. While this means that mucg83 can be run

on systems without access to commercial databases such as those used by MTData

[199], MatCalc [247] or ThermoCalc [248, 249], it does limit the calculations to

prescribed alloying elements and compositions, as given in table 3.1.

Element C Si Mn Ni Mo Cr V Co Cu Al W

Minimum/wt% 0.001 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Maximum/wt% 2.0 2.5 3.5 3.5 1.5 3.5 1.5 4.0 4.0 2.0 4.0

Table 3.1: Solutes considered in mucg83 and their composition limits [241]

mucg83 does not account for grain size, however similar related programs do.

Another variant, mucg46, does include a term accounting for grain size, but does

not include the effects of aluminium on the driving force. Since aluminium is used

in bulk nanocrystalline bainite to suppress cementite and accelerate the bainite

transformation, mucg83 is preferred in the current work. Existing bulk nanocrys-

talline bainitic alloys generally fall within the limits in table 3.1 and so confident

predictions of their transformation behaviour may be made using mucg83. There

are numerous examples of the successful use of the mucg range of programs in the

design of bulk nanocrystalline bainitic alloys [77, 104, 182, 205, 250–252]. Novel al-

loys, however, may have compositions outside the permitted range. Should mucg83

prove unsuitable, predictions may still be made using thermodynamic databases,

which are not as restricted in composition as mucg83.

During the initial stages of alloy design, a modification was made to mucg83

that called the program repeatedly with varying composition to examine the effect

of changing the concentration of a selected solute. Carbon is the strongest sup-

pressor of Bs, followed by manganese and then nickel [253, figure 2]. Conversely,

aluminium and silicon raise Bs, as they increase the driving force for the trans-

formation of austenite to ferrite [253, figure 2]. mucg83 predicts that chromium

will suppress the bainite transformation. This apparently contradicts Andrews

austenite). 83 is the version number.
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[253, figure 2] and the documented effects of chromium on the equilibrium sta-

bility of austenite, for example Bhadeshia and Honeycombe [12, figure 4.4b], but

agrees with published findings on the bainite transformation, where chromium is

added to increase hardenability [108, 111, 152, 179, 204]. This is because the ef-

fect of chromium on the transformation of austenite to an equilibrium mixture of

austenite and ferrite (γ→γ’+α) is different to the case where it does not partition

between product phases, such as in the bainite transformation.

An example of a T0 calculation using mucg83 is given in figure 3.2. Chromium

shifts the T0 line to lower carbon content, implying that the driving force for

displacive transformation diminishes as chromium is added. This is consistent

with the results in figure 3.1 that chromium suppresses the bainite transformation

to lower temperatures.

mucg83 contains two polynomial equations to determine the driving force for

the diffusionless transformation of austenite to ferrite in different temperature

ranges. The change from one equation to the other results in a discontinuity in the

calculated transformation time around 600℃ (e.g. figure 5.2). This is an artefact

of the calculation and does not represent a physical discontinuity in expected

transformation time.
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Figure 3.1: Transition temperatures for Fe–1.0C–1.25Mn–2.5 Si–1.0Al–0.1V

(wt%) calculated using mucg83 [241] with indicated solute incremented.
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Figure 3.2: T0 line for Fe–xC–1.25Mn–2.5 Si–1.0Al–0.1V–Cr (wt%) calculated

using mucg83 [241].
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3.1.2 Thermodynamic modelling software

MTData is a thermodynamic software simulation package written by the National

Physical Laboratory, Teddington, U.K. It is described in detail in Davies et al.

[199]. The version used here is version 4.73 for Linux. Various thermodynamic

databases were used in the current project and the database used is specified for

each result:

• National Physical Laboratory PLUS database, version 3.02 [254]

• Scientific Group Thermodynamic Europe (SGTE) database, version 4.2 [26]

• TCAB thermodynamic database for steels (TCFE), version 1.0 for MTData

(equivalent to version 5.0 for ThermoCalc) [255]

Although MTData was the thermodynamic software used most extensively,

ThermoCalc versions 3.0 with the TCFE thermodynamic database version 6.0

[248, 249] was made available during the project. An upgrade to version 2015a

for Mac with the TCFE database version 7.0 was obtained towards the end of the

project. MatCalc version 5.43 was also used for a limited number of calculations

to verify the findings of the other commercial software packages. The MatCalc Fe

database version 0.017 was used for all MatCalc calculations.

Many thermodynamic quantities may be predicted, including Gibbs energy

of phases or mixtures of phases, chemical potential, equilibrium compositions and

fractions of phases in material with a user-specified composition. Both composition

and temperature may be specified by the user and one quantity may be varied over

a range to see its effect on the thermodynamic quantities in question. It is also

possible to select which phases are to be considered and to specify constraints, such

as paraequilibrium of specific components to reflect particular physical processes.

It is possible to write programs that interact with MTData to perform large

numbers of calculations without user input. In this project, such programs are

written in Fortran 77.

All three software packages use similar databases and each varies the com-

positions and relative fractions of each phase to find the global minimum Gibbs
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energy of the system, subject to the constraints set by the user. MTData uses

an algorithm called Multiphase that uses the National Physical Laboratory (NPL)

Numerical Optimisation Subroutine Library (NOSL) to perform a nonlinear op-

timisation, subject to linear constraints set by the user, to find the Gibbs energy

minimum [199]. ThermoCalc uses a technique known as global minimisation, which

forms an array of conditions within the limits set by the user to find the approx-

imate energy minimum and then uses standard function minimisation algorithms

to find the minimum accurately [256, sections 8.1 and 8.4.9]. MatCalc utilises the

well-known concept of Lagrange multipliers to find the Gibbs energy minimum,

subject to the constraints defined by the user [257].

3.1.3 MTTTData

MTTTData is a FORTRAN program similar to mucg83, but which uses MTData

to provide thermodynamic data which is used to find Ms, Bs, Ws and kinetic data

for the transformation of austenite to ferrite to overcome the compositional limita-

tions of mucg83. The methodology of MTTTData is schematically represented in

figure 3.3. The National Physical Laboratory’s “PLUS” database, version 3.02 is

used. Yang and Bhadeshia [258] also used MTTTData to help design low carbon

bulk nanocrystalline bainite. Thermodynamic data are retrieved from a thermo-

dynamic database and kinetic predictions are made according to [217].

In this study, the resistance of alloys to thermal decomposition into carbides,

especially cementite, is of particular interest. It is therefore desirable to calculate

the equilibrium between retained austenite and cementite, which corresponds to

the γ / (γ+ θ) phase boundary. A slight adaptation of the source code provided

on the Materials Algorithm Project website2 allows MTTTData to calculate the

driving force for the decomposition of retained austenite and an equilibrium mix-

ture of austenite and cementite. During trials of this modification, it was found

that those elements noted for being insoluble in cementite — silicon, aluminium

and copper — were never present in cementite. Many thermodynamic databases

do not allow these elements to exist in cementite. Any attempt to force these

2http://www.msm.cam.ac.uk/map/steel/programs/MTTTDATA.html
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Figure 3.3: Flowchart of MTTTData functionality
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elements to exist in cementite, for example by specifying paraequilibrium or by

calculating the thermodynamic properties of cementite alone, caused the thermo-

dynamic simulations to fail as there are no appropriate data for the modelling

software to assess [145]. The latest thermodynamic databases, for example TCFE

version 7 do include the effects of silicon on cementite, although there is not yet

any independent assessment of the accuracy. An example of the kinetic predictions

of MTTTData is given in figure 3.4. While the effects of chromium and nickel have

been correctly predicted, there is a discrepancy for Fe–0.3wt%C curve, where the

transformation start time is predicted to be shorter for the diffusional transforma-

tion than the shear transformation at Bs.
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Figure 3.4: TTT curves for Fe–0.3wt%C with 5 wt% of the labelled solute calcu-

lated using MTTTData [199, 254, 259].

MTTTData is able to predict the effects of nickel on the T0 and T ′

0 lines,

as shown in figure 3.5. Both lines are suppressed to lower temperatures, as is ex-

pected. It has also been possible to calculate the equilibrium line between retained

austenite and the equilibrium mixture of austenite and cementite. An alloy that

is thermodynamically stable with respect to cementite precipitation in retained

austenite will have xT ′

0
to the left of the γ / (γ+ θ) equilibrium line. It is therefore

desirable to move the γ / (γ+ θ) equilibrium line to higher carbon contents and

to shift the T ′

0 line to lower carbon contents.
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Figure 3.5: T0, T ′

0 and cementite stability data for Fe–1.0C–1.25Mn–xNi–1.0Al–

4.5 Si–0.1V (wt%) with (a) x = 0 and (b) x = 4, calculated using MTTTData

[199, 254, 259].

MTTTData was also adapted to select one element which could have its com-

position altered between two user-specified limits. The predictions of bainite start

temperature as a function of composition is given in figure 3.6.

3.1.4 Genetic algorithm

In order to obtain an optimum composition, a systematic exploration of compo-

sition space is necessary. However, the number of calculations required makes

this impractical. For example, a ten solute system with 50 possible concentra-

tions of each solute would require ∼ 1017 sets of calculations. The bainite and

martensite start temperatures must be calculated, in addition to an assessment

of thermal stability via the driving force for retained austenite to precipitate ce-

mentite. Supposing that each composition needs fifty calculations to assess its

suitability, ∼ 5 × 1018 calculations must be performed. Assuming one million

calculations may be performed every second, the requires calculations would take

approximately 160 years.

Genetic algorithms have therefore been utilised [177, 188, 260–262]. Initial

compositions are either specified or selected randomly as the first generation, as-
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Figure 3.6: Bs temperatures for Fe–1.0C–1.25Mn–1.0Al–4.5 Si–0.1V (wt%) with

the concentration of labelled solute given by the x-axis, calculated using MTTT-

Data [199, 254, 259].

sessed for suitability using an algebraic expression to derive a measure of suitability

for each phenotype. This is known as a fitness factor. Figure 3.7 shows the cal-

culation sequence used to derive the fitness factor for a given phenotype. Each

individual composition is known as a phenotype. Parents are then chosen from the

current generation, with the probability of selection proportional to each pheno-

type’s fitness factor. The information from a set of parents is stored as a series

of binary numbers and is combined in a process known as crossover to produce

daughter phenotypes, with the total number of phenotypes equal in each gener-

ation. Each daughter composition is then allowed to mutate: the composition is

given the opportunity to change randomly (figure 3.8). Each phenotype of the new

generation is then assessed for fitness and the cycle repeats. Since the likelihood

of each individual phenotype passing its genetic information to the next genera-

tion is based on its suitability, the overall suitability of the phenotypes increases

with each successive generation and the possibility of mutation prevents the model

becoming stuck at a local maximum. Once the best fitness factor stops increas-

ing, the algorithm stops. Figure 3.9 shows the overall methodology of the genetic

algorithm developed here.
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In the current study, the first generation was randomly assigned. In order

to increase the randomness of the generated numbers, a shuffle procedure [263,

page 272] is used: one hundred pseudorandom numbers are produced and one

of these is selected for use and then replaced in the pool of available numbers.

Crossover was performed using the three-parent method whereby three parents

are selected at random and whichever of 0 or 1 is the majority in each binary digit

is passed to the daughter (table 3.2).

Phenotype Binary Digit Decimal

Parent 1 1 1 1 1 0 0 0 0 240

Parent 2 1 1 0 0 1 0 1 0 202

Parent 3 1 0 1 0 1 1 0 0 172

Daughter 1 1 1 0 1 0 0 0 232

Table 3.2: All possible outcomes of three-parent crossover

The probability of mutation must be set high enough to prevent the algorithm

becoming stuck at a local maximum but not so high as to prevent the algorithm

running indefinitely. Over many generations, several instances of the same com-

position occur, so that mutation often leaves at least one of these unchanged and

the others regain their former composition during crossover to the next generation,

allowing the algorithm to stop.

Changing the fitness factor may lead to a different solution, and randomness

implies different results even if the same fitness factor is used. The fitness factor,

ffit (equation 3.1) is chosen subjectively to promote:

• a large temperature range between Bs and Ms

• Ms ≤ 200℃ (473.15K)

• the γ /γ+θ equilibrium line at a specified temperature to be at least 3wt%

carbon and as large as possible
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ffit =
(Bs −Ms)

3 ×
(

cγ/(γ+θ) − 0.03
)3

(

1 + (Ms − 473.15)2
)−

1
4

(3.1)

The form of ffit is largely determined by the goals set for the algorithm. The

exact values used in the expression of the fitness factor are subjective and may be

adjusted to promote one characteristic over another. For example, in equation 3.1,

the difference between Bs and Ms has been cubed to increase in importance of this

quantity. It was decided that any negative fitness factors are set to 1. This greatly

reduces the chances of such a parent producing daughters, but does not make it

impossible.

After extensive trials, it was decided that genetic algorithms could not be

used in this project. The lack of data available at the time of the trials meant

that was not possible to assess the thermodynamic effects of silicon, aluminium

and copper on the precipitation of cementite. In addition, it was not possible to

avoid the model becoming stuck in a loop whereby successive generations failed

to improve. It may be possible to overcome both these deficiencies with different

thermodynamic databases and further optimisation of the algorithm. However,

this was not considered practical in the timescale of this project.

3.1.5 Artificial neural network

Artificial neural networks permit the estimation of an output as a function of

input variables using non-linear regression. No explicit knowledge is required of

the mechanisms involved, and under the Bayesian framework used, there is no a

priori need to specify the number of data required. The method allows interac-

tions between inputs. The method developed by MacKay [264–266] used Bayesian

statistics to handle noise and modelling uncertainties. If two models are similarly

able to make predictions, the simplest one is favoured, as is explained in Peet [267].

Each neural network model captures the accuracy of its predictions based on the

distribution of the input data. Where there are large numbers of closely-grouped
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Figure 3.7: Flowchart for the calculations involved in the genetic algorithm
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Figure 3.8: Flowchart for the production of a new generation in the genetic algo-

rithm
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Figure 3.9: Flowchart for the genetic algorithm written as part of this study
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inputs, the quantified errors tend to be small and where data are few and diverse

the quantified error is large.

For each set of inputs, each variable, xj, is weighted by some factor, wij, and the

sum of all input variables is found. A constant, θi is then added and the hyperbolic

tangent of the results found, as specified in equations 3.2. This generates an hidden

unit. All hidden units are weighted by some new factor, wi and summed to give

the output, y, as in equation 3.3. To simplify the refinement of the weights, inputs

may be normalised using equation 3.4 [267]. This was done in the present study.

It is possible to use multiple hidden layers to form a more complex model, where

each hidden unit acts as an input for the next group, but this was not considered

in the present study as the available software (Neuromat ModelManager [268]) did

not have this capability. It is also possible to combine several different models into

a committee to reduce the uncertainty in any predictions. This was used in the

current study where a committee was predicted to reduce uncertainty over a single

model.

hi = tanh

(

∑

j

wijxj + θi

)

(3.2)

y =
∑

i

wihi + θ (3.3)

xj =
x−min

xmax − xmin
− 0.5 (3.4)

The neural network used in this study was designed to find Ms for candidate

alloys and is based on an available Ms database [269].

Artificial neural networks have been used successfully to predict phase fractions

[261], Ms [270] and Bs [271] temperatures, the onset of austenite formation during

heating [272], transformation kinetics [192, 209], σUTS [192, 273], Charpy transi-

tion temperatures [274], Vickers hardness [275], fracture toughness [276], lattice

parameters [277] and many other properties. As long as sufficient data may be

accumulated and the relationship between inputs and outputs are represented by

a continuous, non-periodic mathematical function, there is no restriction on what

may be modelled using a neural network. While a database has been published
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for martensite start temperatures, that for Bs [271] has not been made publicly

available.
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Chapter 4

The first thermally-stabilised bulk

nanocrystalline steel

Initial work on the design of a thermally-stable bulk nanocrystalline bainitic alloy

(table 4.1) was conducted by Dr Mathew Peet. Alloy 1 was designed to demon-

strate that a large quantity of silicon is effective at suppressing cementite precipi-

tation from austenite.

C Mn Al Si Mo

Alloy 1 1.037 1.97 1.43 3.89 0.24

Table 4.1: Composition of Alloy 1 (wt%)

The equilibrium calculation in figure 4.1, performed on the thermodynamic

modelling software “MTData” [199, 254] indicates that Alloy 1 should never be

fully austenitic. All thermodynamic databases were found to produce similar re-

sults. This is contradicted by experimental observations that Alloy 1 heated to

1050℃ forms homogeneous microstructures, which could only form from a fully

austenitic alloy [278]. 1050℃ is therefore chosen as the austenitisation tempera-

ture. Retrospective thermodynamic modelling using the modelling software “Ther-

moCalc” [248, 249] predicted that Alloy 1 will fully austenitise (figure 4.2). Ther-

moCalc was not available during the design of Alloy 1. Cementite is predicted to
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be absent under equilibrium above 1020℃.
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Figure 4.1: Phase fractions in Alloy 1 calculated using the thermodynamic mod-

elling software MTData [199] using the SGTE thermodynamic database, version

4.2 [26].

Apart from its high silicon content, Alloy 1 lies within the composition limits of

the thermodynamic and kinetic modelling program “mucg83” [241] (cf. table 3.1).

However, other modelling suggests that silicon only has a weak effect on the ther-

modynamics of the austenite to ferrite transformation, as is shown in figures 4.3,

3.1(a), 3.1(b), 3.6 and Andrews [253, figure 2]. mucg83 may therefore be used to

make thermodynamic predictions. The predicted T0, T ′

0 and TTT curves for Alloy

1 are given in figures 4.4(a) and 4.4(b), respectively. The equivalent predictions

made using “MTTTData” are given in figure 4.5 [199, 254, 259].

mucg83 predicts that Ms of Alloy 8 is (75℃). MTTTData is unable to predict

a martensite-start temperature for Alloy 1, although the program only considers

temperatures of ≥ 100℃, so is reasonable to conclude that Ms is likely to be

lower than this. An artificial neural network [268, 269] was used to derive a final

prediction of Ms, which was 140± 100℃. The significant uncertainty in the data

reflects the extreme composition being modelled: out of 1100 alloys assessed in

Sourmail and Garćıa-Mateo [269] only four have more aluminium than Alloy 1 and
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Figure 4.2: Phase fractions in Alloy 1, calculated using (a) ThermoCalc [248] and

(b) MatCalc [247]. The two pieces of software give very similar results so there

may be reasonable confidence that they are correct, despite their disagreement

with MTData (cf. figure 4.1)
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Figure 4.3: Austenite to ferrite driving force, ∆Gγ→α, in a Fe–1.0C–2.0Mn–x Si–

1.4Al–0.25Mo (wt%) steel.
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Figure 4.4: (a) T0 and T ′

0 line and (b) TTT curve of Alloy 1 calculated using

mucg83 [241].
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Figure 4.5: (a) T0 and T ′

0 line and (b) TTT curve of Alloy 1 calculated using

MTTTData [199, 254, 259]
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none has as much silicon. This lack of data leads to a large uncertainty under the

Bayesian framework (section 3.1.5). To date, no experiments have been performed

to measure the Ms of Alloy 1 and there was insufficient material available to make

such a measurement here.

MTTTData predicts Bs to be 350℃, which is ideal for bulk nanocrystalline

bainite as no coarse bainite will form at higher temperatures, but it is possible to

form nanostructured bainite above Ms. MTTTData calculates that Bs is 300℃.

The predicted transformation kinetics (figure 4.4(b) and 4.5(b)) show that Al-

loy 1 exhibits sufficient hardenability for easy processing in bulk, with a pearlite

nose at approximately 700℃ and 30 s. The bainite transformation is predicted to

start after 3min at 300℃ and 10 h at 200℃. mucg83 makes remarkably similar

predictions: 2.5min and 9.2 h, respectively.

Using a mass-balance of carbon and assuming austenite has the T ′

0 carbon

content and ferrite contains no carbon, bainite formed at at 250℃ contains 82wt%

ferrite. The equivalent prediction made by mucg is for 80wt% bainitic ferrite.

This is, of course, a lower bound estimate, as carbon can precipitate as carbides

or sink to defects in either phase rather than enter solid solution in the austenite.

Furthermore, ferrite is not necessarily carbon-free. This will be explored in detail

in section 10.

Given the excellent agreement between mucg83 and MTTTData, heat treat-

ments may be designed with high confidence to produce bulk nanocrystalline bai-

nite in Alloy 1.

4.1 Initial transformation experiments

An initial set of experiments was performed to assess the transformation of Alloy

1 to bainite. These results were then used to produce material for synchrotron

X-ray diffraction experiments.

Rods 3mm in diameter and approximately 30mm in length were prepared and

sealed in quartz ampoules that were filled with argon to prevent oxidation and

decarburisation. Samples were austenitised at 1050℃ for 30min and were then
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transferred to a pre-calibrated, high-precision oven capable of maintaining tem-

perature to ±0.1℃ [279], verified using an independent, calibrated thermocouple.

Following austenitisation, samples were removed from their ampoule to accelerate

cooling and avoid reconstructive transformations and were left to transform to bai-

nite according to table 4.2. After transformation, samples were water-quenched to

ambient temperature. A typical heat treatment for transformation is illustrated

in figure 4.6.

Temperature /℃ 200 250 300

Time / h 240 72 24

Table 4.2: Initial transformation conditions for Alloy 1.
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Figure 4.6: Schematic heat treatment of Alloy 1, transformation at 250℃.

Samples of the as-transformed material were sectioned using an abrasive cutting

wheel and were hot-mounted in phenolic mounting resin at 180℃ for 8min. They

were then ground using silicon carbide paper and polished using first 6µm and then

1 µm diamond paste with a water-based lubricant. After polishing, the samples

were etched using a 2 vol.% nital (nitric acid in methanol) solution, for optical

microscopy.
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Samples that were examined using scanning electron microscopy (SEM) were

prepared as for optical microscopy and examined using a JEOL-6340F cold field-

emission scanning electron microscope in secondary electron mode with a 20 keV

accelerating voltage. The image analysis software “ImageJ” [280] was used to

optimise contrast and brightness.

For transmission electron microscopy (TEM) using a JEOL 200CX microscope,

discs 500 µm thick were stuck onto an aluminium stub using thermoplastic resin

and ground on fine silicon carbide paper to a thickness of ≈ 100 µm. After washing

in acetone they were then ground by hand to a thickness of 50 µm using 2500 grit

silicon carbide paper. They were then electropolished using a Struers Tenupol-5

twin-jet electropolisher set to a potential of 20V and a solution consisting of 5 vol%

perchloric acid, 20 vol% glycerol and 75 vol% ethanol.

Samples of Alloy 1 transformed at 250℃ exhibited bulk nanocrystalline bainite

and it was thus established that 3 d was sufficient for the final microstructure to

develop (figures 4.7). Quenching the sample directly form 1050℃ to ambient

temperature in water resulted in a mixture of martensite and a small amount of

retained austenite, with a hardness of 660 ± 30HV2. Allowing the material to

transform to bainite reduces its hardness to 500± 12HV2.

It is evident from figure 4.7 that Alloy 1 forms a homogeneous microstructure,

rather than a mixture of δ-ferrite and bainite. This proves that the sample is

fully austenitic at 1050℃, despite the results of thermodynamic modelling using

MTData (figure 4.1. Subsequent modelling using alternative commercial software

(ThermoCalc [248] and MatCalc) indicated that Alloy 1 should be fully austenitic

at 1050℃ (figure 4.2). The reasons for the erroneous results in MTData were not

investigated, and all subsequent heat treatments used an austenitisation temper-

ature of 1050℃.

4.2 Initial tempering experiments

Samples of Alloy 1, transformed to bainite at 250℃, were exposed to temperatures

of 400℃, 450℃ and 500℃ for a variety of times to assess the thermal stability
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c) 10 d
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Figure 4.7: Alloy 1 transformed for the times indicated. It is evident that 3 d is

sufficient to form the maximum possible fraction of bainite.
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of the nanocrystalline bainite. The findings were then used to inform synchrotron

X-ray diffraction experiments.

4.2.1 Tempering at 400℃

Exposure at 400℃ had little visible effect when observed using optical microscopy,

even after 30 d, as is shown in figures 4.8(a) and 4.8(b). However, microhardness

increased from 470± 40HV2 to 550± 30HV2 (figure 4.9). This implies that some

change has occurred, however, no change could be detected using optical or scan-

ning electron microscopy. Samples were prepared for TEM, but no informative

images were obtained. There was insufficient material to repeat the TEM exper-

iments, but decomposition was investigated thoroughly using synchrotron X-ray

diffraction (section 4.3).

a

γr

αb

10µm

b

γr

αb

20µm

Figure 4.8: Alloy 1 tempered at 400℃ for (a) 10 d and (b) 30 d. Tempering for

has little visible effect on the structure.

One possible explanation of the observations is the precipitation of very fine

carbides that have not depleted the austenite of carbon sufficiently to cause it to

transform to ferrite. It is also possible that tempering has allowed carbon to sink

to dislocations, which will form Cottrell atmospheres and strengthen the steel.

However, comparing a reported value for carbon diffusivity in austenite at 250℃

([12, table 1.4]) and the expected separation of dislocations [49] (5× 10−15 cm2 s−1

and 100 nm, respectively), it is evident that there is ample time during the bai-

nite transformation for carbon to sink to dislocations. Decomposition of retained
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Figure 4.9: Microhardness of Alloy 1 subjected to tempering at 400℃ for the times

indicated. Exposure for 4× 105 s (5 d) is sufficient to cause a significant change in

hardness, presumably due to a change in structure.

austenite will lead to an expansion of the bainitic ferrite grains, which have been

shown to be ≈ 30% stronger and harder than the retained austenite [281, ta-

ble 6]. The decomposition of austenite to ferrite will therefore inevitably lead to

an increase in hardness.

The large time necessary for significant hardening during tempering at 400℃

prohibits investigation during synchrotron experiments, which are limited to 4 d.

4.2.2 Tempering at 450℃

Increasing the tempering temperature to 450℃ for 24 h has little effect on the

optical micrographs of Alloy 1 (figures 4.10(a)–4.11(a)), but there is a significant

change after 72 h of tempering. The slender packets visible in figure 4.11(a) have

disappeared. Only the large retained austenite blocks have survived. This is consis-

tent with the mechanism of decomposition deduced by Saha Podder [134]. Blocky

retained austenite has a lower carbon content than the films, making them less

susceptible to thermal decomposition. After 24 h, the hardness peaks (figure 4.12),

after which no further change occurs.

Since hardness peaks within 24 h during tempering at 450℃, this is a suitable
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γr (film)

1µm

Figure 4.10: Alloy 1 tempered at 450℃ for 6 h. Austenite films have survived the

tempering.
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20µm
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γr

20µm

Figure 4.11: Alloy 1 tempered at 450℃ for (a) 1 d and (b) 3 d. After 3 d there is

a visible change in structure, presumably due to thermal decomposition.
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Figure 4.12: Alloy 1 tempered at 450℃.

temperature for investigation during synchrotron experiments.

4.2.3 Tempering at 500℃

Tempering at 500℃ for 24 h appears to have caused film austenite to decompose,

leaving only blocky austenite intact (figure 4.13(a) cf. figure 4.11(b)). SEM (fig-

ure 4.13(b)) shows that the films break into smaller austenitic regions while the

austenite blocks are apparently intact. The increase in hardness (figure 4.14) is

consistent with the loss of austenite and the production of carbides, which pin dis-

locations and ferrite. This is consistent with other work on bulk nanocrystalline

steel [116, 134, 282].

Increasing the tempering temperature from 400℃ to 500℃ changes the self-

diffusivity of iron in austenite from 10−22 m2s−1 to 10−19 m2s−1 [283] and, hence,

the random walk diffusion distance in 24 h increases from from 7nm to 160 nm,

sufficient to allow precipitation. These distances are similar for all substitutional

elements.
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Figure 4.13: Alloy 1 tempered at 500℃ for 24 h. The structure is radically

changed, with austenite films breaking up.
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Figure 4.14: Alloy 1 tempered at 500℃.
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4.3 Synchrotron study of Alloy 1 stability

Experiments were conducted on beamline P02.1 at the Deutsches Elektronen-

Synchrotron (DESY) in Hamburg, Germany on Alloy 1 transformed at 200℃,

250℃ and 300℃. Samples were machined to 2mm diameter rods that were held

in the X-ray beam using a bespoke holder. Machining can potentially induce the

transformation of retained austenite, but no deformed layer was detected beyond a

depth of 5µm from the surface. Since the synchrotron X-rays used here penetrate

2mm of steel, any deformation in this surface layer will produce negligible effects.

The X-ray wavelength was 0.2069 Å, monochromated using diffraction from

diamond and silicon {111} planes. Data were gathered in a transmission geom-

etry using a flat-plate PerkinElmer XRD1621 2D area detector with a pixel size

of 200 µm × 200 µm and a total of 2048 × 2048 pixels (≡ 40.96 cm × 40.96 cm).

The detector was placed normal to the incident beam, which was collimated to

a size of 1.2mm × 1.0mm. The distance from the centre of the sample to the

detector was set to a nominal 1300mm, calculated to permit the detection of

three complete diffraction rings (figure 4.15), sufficient for Rietveld analysis. The

sample-to-detector distance was later derived to be approximately 1323mm. Data

were recorded at 1Hz and every 30 datasets were binned to give an effective tem-

poral resolution of 2min−1. Heating was performed using a hot gas blower that

was fed with nitrogen, with sample temperatures measured using a thermocouple

spot-welded onto the sample surface close to the region that was exposed to the

X-rays. The hot air blower setpoint was adjusted manually to achieve the desired

temperatures. Isothermal treatment temperatures are detailed in table 4.3. An

equipment schematic is given in figure 4.16.

The detector had 16 bit dynamic range, allowing any detection count rate be-

tween 0 s−1 and 65535 s−1. Data were recorded as TIFF files and were investigated

using the software known as MAUD (Materials Analysis Using Diffraction) [284].

The sample-detector distance, beam centre and detector tilts were refined and

fixed using silicon and ceria NIST reference powders. The background signal, inci-

dent X-ray intensity, beam centre, detector tilts, austenite volume fraction and the

lattice parameters, crystallite sizes and isotropic microstrains of both phases were
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2θ = 0°

2θ = 8.1°

2θ = 12.8°

Figure 4.15: Example of data recorded during stability experiments on Alloy 1

at DESY. The data are for an as-transformed carbide-free bainitic sample. The

image is approximately 40 cm square at the X-ray detector.

Alloy
Austenitisation Transformation

Temp / ℃ Time / h Temp / ℃ Time / h

Alloy 1 1050

0.5

250 72

200 240

250 72

300 24

Alloy 2 1200 0.5 215 240

Table 4.3: Heat treatments of all samples used in synchrotron experiments
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Figure 4.16: Experimental geometry for experiments at DESY
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refined using the Rietveld method [285] using the guidelines set out by McCusker

et al. [286] to achieve the best possible fit. The volume fraction of ferrite was

dependent on that of austenite and is therefore not a refined variable.

Analysis was conducted using scripts written in Python at each stage to allow

the hundreds of images captured during each experiment to be analysed efficiently.

The images were first integrated using the image analysis software Fit2D to pro-

duce Fit2D “spreadsheet” format files. These files were then converted into the

native file format of MAUD. Rietveld refinement was performed using the “Quan-

titative Analysis” wizard in MAUD. For each dataset, the first file was analysed

manually to provide the best possible fit. This was the starting point for the

automated analysis of all subsequent files from that experiment.

A previously-designed bulk nanocrystalline alloy was also investigated to pro-

vide a reference for the performance of Alloy 1. This alloy (Alloy 2) has the

composition given in table 4.4. Alloy 2 was not designed to resist thermal de-

composition, so it was expected that it will decompose more readily than Alloy

1.

C Mn Al Si Mo Co Cr others

Alloy 2 0.84 2.26 0.25 1.78 0.044 1.55 1.47 0.11Cu, 0.11V, 0.021Nb

Table 4.4: Composition of Alloy 2 (wt%)

4.3.1 Continuous heating experiments

One sample of each of Alloy 1 transformed at 250℃ and Alloy 2, transformed at

240℃ (previously shown to form bulk nanocrystalline bainite [278]) was heated

at 5℃ s−1 from ambient temperature to 650℃. Results of Rietveld refinement

are given in figure 4.17. The data show that the austenite in Alloy 2 begins

to decompose at around 400℃, consistent with continuous heating dilatometry

experiments on conventional bulk nanocrystalline bainitic alloys [287]. Alloy 1

survives with no detectable change in phase fraction until the material reaches

600℃. Figure 4.19 reveals that the minimum observed diffraction angle of the
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austenite 111 peak, corresponding to the maximum observed lattice parameter,

occurs at 520℃ in Alloy 1 and at 400℃ in Alloy 2. The significance of this is that

the lattice parameter will expand due to thermal expansion as the alloy is heated,

but will contract if carbon is lost from solid solution. The fact that Alloy 1 is

able to retain its carbon to a higher temperature is consistent with its enhanced

thermal stability.

The increased stability of austenite in Alloy 1 is due its large silicon and alu-

minium contents. The carbon and manganese contents of the two alloys are similar.

The presence of cobalt in Alloy 2 is not likely to affect carbide precipitation (fig-

ure 4.18). The presence of chromium, vanadium and niobium in Alloy 2 is also

unlikely to lead to a significant amount of carbide formation at 400℃ since the

growth of such carbides is limited by the diffusivity of the substitutional solute,

which is extremely slow at the temperatures stated. It is considered that such alloy

carbides do not form significant quantities below 500℃. Thus, the design philos-

ophy of Alloy 1 is validated. Adding alloying elements insoluble in cementite can

delay the decomposition of austenite in bulk nanocrystalline bainite.

After the austenite volume fraction begins to decrease, each sample developed

many new, small diffraction peaks. It was then generally not possible to get a

stable fit during Rietveld refinement, as they are small compared to those from

ferrite and overlap the tail of the 110α peak. Since there are no cementite-insoluble

solutes in Alloy 2, the new peaks are likely to be cementite. detailed study on the

phase(s) responsible for the new peaks revealed that cementite matched almost all

the peaks that were not attributable to ferrite or austenite (figure 4.20). Of those

peaks remaining, most could be attributed to haematite, Fe2O3. The samples were

visibly oxidised after the heat treatment, with a well-adhered, gold-coloured layer,

consistent with haematite.

Several strong cementite peaks overlap the austenite 111γ peak (figure 4.20).

This led to erroneous results, as the emergence of the 211θ and 102θ peaks is

interpreted by the software as an increase in austenite content. For this reason,

only the initial decomposition stage of the experiments was examined, as the 111γ

peak is still more intense than the cementite peaks and the volume fraction may
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Figure 4.17: Synchrotron X-ray diffractometry results for Alloy 1 and Alloy 2 dur-

ing continuous heating at 5℃ s−1. The austenite in Alloy 1, which is designed to

resist thermal decomposition, survives to higher temperatures than the conven-

tional Alloy 2.
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Figure 4.18: Driving force for the equilibrium decomposition of austenite in Fe–

4.0C–xCo (wt%) to carbon-depleted austenite and cementite [26, 199]. The ad-

dition of cobalt has a negligible effect.

101



Figure 4.19: Diffraction data during in-situ heating of Alloy 1 and Alloy 2. Arrows

indicate temperature at the time of minimum detected diffraction angle (maximum

lattice parameter) of the austenite 111 peak. Reproduced with permission of El-

sevier B. V.
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Figure 4.20: Diffractogram of thermally-exposed Alloy 2 recorded at DESY with

calculated cementite peaks overlaid. The observed peaks are well-matched by a

theoretical cementite pattern. The heights of the calculated peaks are relative to

the most intense peak.
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be derived reliably. The first stages of decomposition also represent the time of

most interest of the experiments — once the austenite begins to decompose, the

mechanical properties of the sample are expected to deteriorate.

The small peaks that emerge in Alloy 1 do not match with cementite (fig-

ure 4.21). This is consistent with the large contents of silicon and aluminium. No

satisfactory match could be made between the observed data and predicted car-

bide peaks. The carbides investigated were: cementite, ε, κ, Hägg (M5C2), M23C6,

Mo2C, M7C3, M6C and SiC. Predicted peaks for graphite, diamond and carbon

clusters were also tested. All crystallographic data were retrieved from the Crys-

tallographic Open Database [136, 137] and the lattice parameters of each phase

were varied in an attempt to match the observed peaks. Electron diffraction was

performed, but was not successful and insufficient material was available to make

new attempts. The identification of the phase(s) responsible for the peaks would

provide valuable information for the future improvement of this class of alloys and

should be a priority in future work.

Further study of Alloy 1

A subsequent experiment was conducted on a sample of Alloy 1, subjected to XRD

with in-situ heating at 5℃ s−1to 670℃, where it was held for approximately half an

hour and then cooled in air. Figure 4.22 shows that the austenite lattice parameter

initially increases, due to thermal expansion (the thermal expansion coefficient is

≈ 3 × 10−5K−1, close to values reported in literature [116, 181, 288–290]). After

6200 s the lattice parameter of austenite suddenly decreases and ∼ 100 seconds

later, its volume fraction of austenite reduces. Beyond 8000 s, the refinement

becomes unstable, but the overall trend is the continued decrease in austenite

volume fraction down from around 50 vol.% to below 20 vol.%. These unstable

refinements show an apparent increase in austenite volume fraction. Subsequent

examination of the raw data revealed this was due to the overlap of carbide peaks

with the austenite 111 peak described in figure 4.20. Austenite volume fraction

decreases with prolonged tempering, as expected.

Ferrite exhibits an expansivity of≈ 2×10−5K−1, consistent with literature [116,
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Figure 4.21: XRD data of Alloy 1 transformed at 300℃ and tempered at 500℃.

A calculated cementite pattern does not match the observed diffraction peaks,

suggesting that cementite is not the carbide that forms during tempering.
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181, 290]. The lattice parameter then decreases slightly as soon as the austenite

begins to decompose, which may be confirmed using figure 4.22(c). The lattice

parameter remains almost constant during the hold at 670℃ and then contracts

upon cooling.

These findings support the earlier work on low-strength bainite Saha Podder

and Bhadeshia [116] that carbide precipitation and corresponding depletion of

carbon in austenite is the initiating stage of retained austenite decomposition.

The loss of carbon leads to the contraction in lattice parameter and it is soon after

precipitation that the measured austenite volume fraction decreases.

4.3.2 Isothermal experiments

Samples of Alloy 1 were isothermally transformed at 200℃, 250℃ or 300℃ and

tempered at either 450℃ or 500℃ in order to assess the stability of retained

austenite. A lower transformation temperature is associated with a higher carbon

content in the retained austenite, increasing susceptibility to carbide precipitation.

Holding at 500℃

Samples transformed at 200℃, 250℃ and 300℃ were heated as rapidly as was

possible to 500℃ which represents an extreme operating temperature in some

aeronautical engineering applications or during processes such as galvanisation

[291, 292].

Figure 4.23 shows that transformation at 200℃ both has the least retained

austenite than the other samples and decomposes more rapidly, due to the greater

driving force for carbide precipitation. The relative thermal stability of the austen-

ite is also in the order expected, however, the sample transformed at 250℃ appears

to start with an austenite lattice parameter larger than both other samples. This

is because there was a delay in collecting data from that experiment, also indi-

cated by the short time between the start of the experiment and the peak lattice

parameter. Austenite eventually decomposes completely from all three samples.
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Figure 4.22: Lattice parameters and volume fraction of austenite and ferrite in

Alloy 1 transformed to bainite at 300℃ and subjected to synchrotron XRD dur-

ing continuous heating at 5℃ s−1, assessed using Rietveld refinement. Austenite

eventually decomposes and transforms to ferrite. Grey lines represent the assessed

values ± one standard error. When errors are extremely small, the grey lines over-

lie the data. When one or more variables in the refinement could not be assessed,

no error could be derived.
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Å

V
γ

Time / ks

Figure 4.23: Lattice parameters and volume fraction of austenite and ferrite in

Alloy 1 transformed to bainite at the temperature indicated and subjected to

synchrotron XRD during isothermal tempering at 500℃, assessed using Rietveld

refinement.
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Figure 4.24: Synchrotron XRD data recorded from Alloy 1 transformed at the

temperatures indicated during in-situ tempering at 500℃. The square root of the
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Holding at 450℃

Samples originally transformed at 250℃ and 300℃ were then tempered at 450℃,

where the decomposition of retained austenite is expected to be slower. This is

clearly shown by comparing figures 4.23 and 4.25: reducing the tempering temper-

ature by 50℃ leads to the decomposition becoming ten times slower. In the case

of the sample transformed at 300℃, decomposition barely begins in the six hours

of the experiment. Due to restrictions on the available beamtime, data acquisition

had to be terminated before the decomposition was complete.

As at 500℃ the austenite in the sample transformed at 250℃ decomposed

more rapidly and had larger initial lattice parameters, consistent with a higher

carbon content.

The results of the experiments involving tempering at 450℃ are presented in

figure 4.26. It is noticeable that the austenite peaks persist to the end of the

data collection, unlike the data in figure 4.24. There are also no visible peaks

corresponding to precipitate phases, also unlike the 500℃ tempering experiments

(section 4.3.2). This is consistent with the fact that decomposition had not reached

an advanced stage during tempering at 450℃.

4.4 Conclusions

Incorporation of elements that are insoluble in cementite, namely silicon and alu-

minium has been shown to retard the precipitation of cementite during the tem-

pering of bulk nanocrystalline steel. Alloy design that incorporates a greater con-

tent of these elements stabilises the microstructure of bulk nanocrystalline steel

during exposure to elevated temperatures. The presence of cementite-insoluble el-

ements appears to lead to the precipitation of phases that are not readily identified

from the XRD. Some work is needed to identify the new phase(s) and would be

highly valuable to understand the decomposition mechanism in Alloy 1. Further

refinement of the alloy composition has the potential to further improve thermal

stability.
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Chapter 5

Improving thermal stability

Following the success of Alloy 1 in delaying the thermal decomposition of nanocrys-

talline bainite to higher temperatures than those previously observed, further al-

loys were designed to attempt to further improve thermal stability. This chapter

documents the design process of five new alloys and the microstructures obtained

from experimental melts made to those compositions. The design concepts of

the novel alloys are summarised in table 5.1 and are discussed in more depth in

section 5.1. The resulting microstructures are then given and discussed in sec-

tion 5.2.3.

Designation Design concept

Alloy 3 Variant of Alloy 1 that includes nickel in place of manganese.

Alloy 4 Variant of Alloy 3 with an increased level of aluminium.

Alloy 5 Variant of Alloy 4 with an even higher aluminium content.

Alloy 6 Variant of Alloy 4 incorporating copper.

Alloy 7 Variant of Alloy 5 incorporating copper.

Table 5.1: Summary of design concepts for the new generation of alloys. All the

concepts are discussed in section 5.1
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5.1 Alloy design concepts

In this section general design concepts for the current generation of alloys are

explained and then each alloy is discussed in turn. The composition of each alloy

is given in the relevant section and all the designed compositions are summarised

in table 5.2.

It was decided to reduce the carbon content of the new alloys. This is expected

to reduce the driving force for the precipitation of cementite (figure 5.1). Some

carbon is, however, essential to avoid the convergence of Bs and Ms (section 2.3.7

and [1, figure 10a]). It was also considered desirable to include as many atoms

as possible that are detrimental to cementite precipitation. It was noted both in

literature (section 2.3.6) and during calculations performed during the design of

the current alloys that silicon, aluminium and copper exhibit very limited solubil-

ity in cementite. Alloy 1 already includes a high level of silicon, so it was decided

to investigate the possibility of increasing the amount of aluminium and copper

in the new alloys. Manganese is also considered to be favourable for cementite

precipitation as a mixed (Fe,Mn)3 C carbide is able to form (section 2.3.6). The

manganese is included as an austenite stabiliser to both suppress the transforma-

tions to ferrite to low temperatures to allow nanostructured bainite to form and to

provide hardenability and avoid reconstructive transformations. After carbon and

manganese, nickel is the most powerful austenite stabiliser [12, figure 4.3] and has

no affinity for carbide formation [13, page 244]. Nickel is also expected to provide

hardenability to the alloy (figure 5.2).

The decrease in carbon content and the replacement of manganese with nickel

are expected to lead to a reduction in solution strengthening (equation 2.26 [232]

and equation 2.25). This inherent strength of both austenite and ferrite will di-

minish in the new alloys and allow larger bainite sub-units to form during trans-

formation (section 2.2.1). The new alloys are therefore expected to be weaker than

those produced previously, but this can be tolerated in order to gain greater ther-

mal stability. Small amounts of manganese (0.2wt% and molybdenum 0.3wt%

were added to tie up sulphur and phosphorus impurities, respectively. To simplify

design, it was decided that these levels of manganese and sulphur would be kept
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Figure 5.1: Driving force for the precipitation of cementite in austenite in Fe–

xwt%C at 400℃ calculated using MatCalc thermodynamic modelling software

[247, 293]. Decreasing the carbon content is calculated [116] to reduce the driving

force for the nucleation of cementite in austenite, which is the limiting step in

thermal decomposition of nanocrystalline steels [116, 134].
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Figure 5.2: TTT curves calculated using mucg83 [241] for Fe–0.7C–4.0 Si–1.4Al–

0.2Mo–yNi (wt%). The nickel content is indicated on each curve. It is possible to

derive sufficient hardenability to avoid reconstructive transformations using nickel.
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constant for all the current generation of alloys.

In order to form the correct structure, there are several criteria that must be

satisfied and which were considered during the design procedure:

• it must be possible to fully austenitise the alloy;

• the martensite-start temperature should be below 200℃ to allow the forma-

tion of low-temperature bainite;

• the bainite start temperature should be above 300℃ to ensure that a sub-

stantial amount of bainitic ferrite may be formed in a practicable time.

Ms predictions for each alloy were made using a purpose-built artificial neural

network (section 3.1.5) and by the program “mucg83” [241]. TTT curves, includ-

ing an assessment of Bs, were calculated using a bespoke version of the program

“MTTTData” [199, 254, 259]. MTTTData also provided a prediction of the T0

and T ′

0 lines. At this preliminary stage of the alloy design process no attempt was

made to verify either the exact value of Ms or the transformation kinetics of any

of the alloys. Equilibrium phase fractions were calculated over a range of temper-

atures using the commercial thermodynamic modelling software “Thermo-Calc”

[248, 249].

5.1.1 Alloy 3

The first alloy produced was a variant of Alloy 1, with nickel substituted for

manganese and a corresponding reduction in carbon content to maintain constant

martensite- and bainite-start temperatures. The hardenability is expected to be

reduced without manganese [13, page 242], but may be compensated by nickel

(figure 5.2). Aluminium is retained in order to accelerate the bainite transfor-

mation at approximately the same level as in Alloy 1 at 1.4wt%. Several trial

iterations of compositions resulted in a carbon content of 0.7wt% and a nickel

content of 3.3wt%. Figure 5.3 shows that the alloy has sufficient hardenability to

avoid reconstructive transformations.
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Figure 5.3: Calculated TTT diagram for Alloy 3 [199, 254, 259]. The results

suggest that reconstructive transformations could be avoided using the designed

composition.

TheMs predicted by the ANN is appropriate at 40±60℃. MTTTData predicts

a value of 150℃. However, mucg predicts that Ms = 266℃. The alloy falls within

the specified limits of applicability for mucg (table 3.1) and no reason could be

found for this discrepancy. The Ms is therefore best determined experimentally,

as described in section 7.2.1.

The alloy is expected to be fully austenitised between 900℃ and 1275℃ (fig-

ure 5.4). It generally is desirable to minimise the austenite grain size to help

accelerate the bainite transformation [51, 115]. To minimise grain growth, austeni-

tisation was initially carried out at 900℃, the lowest temperature at which the

alloy is calculated to be fully austenitised.

5.1.2 Alloy 4

Another derivative of Alloy 1 containing a higher concentration of aluminium while

maintaining a temperature range over which the alloy may be fully austenitised

(figure 5.6). The tendency for aluminium to stabilise ferrite (figure 5.5) can be
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Figure 5.4: Calculated equilibrium phase fractions for Alloy 3 calculated using

Thermo-Calc software [248, 249]. The alloy is predicted to be completely austenitic

over a practicable temperature range and is expected to exhibit sufficient harden-

ability to avoid reconstructive transformations.

countered with solutes such as nickel [12, page 74]. The carbon content of Alloy

3 was retained to provide a large window between Bs and Ms. The manganese

and molybdenum concentrations are too low to affect phase transformations and

were kept constant. The increased aluminium content is intended to suppress the

formation of cementite. After several iterations of modelling, a composition of

0.7C–4.5Ni–2.0Al–2.0 Si–0.25Mo–0.3Mn (wt%) was derived.

Modelling using Thermo-Calc indicated that Alloy 4 is fully austenite between

800℃ and 1320℃ (figure 5.6) and the predicted Bs of 300℃ (from MTTTData)

and Ms of 110± 40℃ (predicted using ANN) also meet the design goals.

5.1.3 Alloy 5

The concept of increasing the aluminium concentration to 2wt% to improve the

thermal stability of nanostructured bainite was extended to produce Alloy 5. The

aluminium content was increased to 3wt% and it was calculated using Thermo-
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Figure 5.5: Phase fraction of austenite in the system Fe–1.0C–10.0Ni–xAl [26,

199].
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Figure 5.6: Calculated equilibrium phase fractions for Alloy 4 calculated using

Thermo-Calc software [248, 249]. The alloy is predicted to be completely austenitic

between 790℃ and 1300℃.
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Calc that the nickel content would then need to be raised to 7.5wt% to retain the

ability to fully austenitise the alloy over a similar temperature range to Alloy 4.

The contents of all other elements were left unchanged.

Calculations made using Thermo-Calc [248, 249] show that Alloy 5 may be

transformed completely to austenite between 740℃ and 1320℃, as required (fig-

ure 5.7). Ms, predicted using an ANN is also appropriate to meet the design goals

at −60± 70℃.
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Figure 5.7: Calculated equilibrium phase fractions for Alloy 5 calculated using

Thermo-Calc software [248, 249]. The alloy is predicted to be completely austenitic

between 740℃ and 1320℃.

5.1.4 Alloy 6 and Alloy 7

There is a lack of available thermodynamic data for copper in cementite. Wasynczuk

et al. [294] found that in Fe–1.49C–4.90Cu (wt%), cementite contained ε copper

precipitates, but no such precipitates were present in the martensite next to the

cementite. The copper in a given cementite grain nearly all precipitates with

in identical crystallographic orientation to the parent austenite from which the

cementite formed, indicating precipitation of copper from cementite at the cemen-
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tite/austenite interface. This, in turn, suggests that copper left solution before

cementite formed and was never incorporated into the cementite lattice. It is

possible therefore that if copper is unable to partition, it can suppress cementite.

Copper is also an austenite stabiliser [12, figure 4.3b] and suppresses Bs and

Ms when in solution in austenite. Copper has a relatively low solubility in ferrite,

so may in contribute to precipitation hardening [295]. Copper may also cause

hot shortening, in which its segregation to grain boundaries may lead to localised

melting and cracking. Nickel ameliorates this problem, provided there is at least

half as much nickel as copper [296]. Calculations indicate that with 2wt% copper,

the nickel concentration may be reduced by 0.5wt% to maintain values of Bs and

Ms in an otherwise identical alloy. Predictions of temperatures over which the alloy

may be fully austenitised, Bs, Ms and transformation kinetics are only affected

slightly by the substitution of 0.5wt% Ni with 2.0wt% Cu (tables 5.2 and 5.3).

Making this substitution in Alloy 4 leads to Alloy 6 and doing so in Alloy 5 leads to

Alloy 7. The concentrations of other elements were left unchanged. The predicted

equilibrium phase fractions indicate a suitable temperature range over which both

Alloy 6 and Alloy 7 are fully austenitic (figures 5.8 and 5.9).

5.1.5 Summary of novel alloy designs

The designed compositions of all five current alloys are given in table 5.2.

5.2 Experimental casts

60 g casts (ellipsoidal cross section, 14mm × 9mm and 100mm long) were made

by arc melting of powders under vacuum and heat treated to verify austenitisation

and their suitability to transform to bainite. A cast of nominally pure titanium

was melted before each batch of alloys to getter any residual oxygen.
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Figure 5.8: Calculated equilibrium phase fractions for Alloy 6 calculated using

Thermo-Calc software [248, 249]. The alloy is predicted to be completely austenitic

between 790℃ and 1320℃.
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Figure 5.9: Calculated equilibrium phase fractions for Alloy 7 calculated using

Thermo-Calc software [248, 249]. The alloy is predicted to be completely austenitic

between 760℃ and 1330℃.
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Alloy C Ni Al Si Mo Mn Cu Bs /℃ Ms /℃

Alloy 3 0.7 3.3 1.4 4.0 0.25 0.2 0.00 350 160± 50

Alloy 4 0.7 4.5 2.0 2.0 0.25 0.2 0.00 300 110± 40

Alloy 5 0.7 7.5 3.0 2.0 0.25 0.2 0.00 40 −60± 70

Alloy 6 0.7 4.0 2.0 2.0 0.25 0.2 2.00 250 130± 50

Alloy 7 0.7 7.0 3.0 2.0 0.25 0.2 2.00 0 −50± 80

Table 5.2: Design compositions of new generation of alloys, Bs modelled using

MTTTData [199, 254, 259] and Ms predicted by an artificial neural network [268,

269].

Alloy Ms /℃ Bs /℃
Austenitisation temp. /℃ Pearlite nose

Min Max time / ks Temp. /℃

Alloy 3 40± 60 350 900 1275 1.7 580

Alloy 4 110± 40 300 790 1300 14 530

Alloy 5 −60± 70 100 740 1320 7.8× 104 420

Alloy 6 130± 50 230 790 1330 30 530

Alloy 7 −50± 80 100 760 1320 2.5× 105 410

Table 5.3: Calculated properties of new alloys: Ms, calculated using an artifi-

cial neural network (ANN), austenitisation temperature range calculated using

Thermo-Calc [248, 249], Bs and transformation kinetics calculated using the pro-

gram MTTTData [199, 254, 259]. All alloys may be fully austenitised over a wide

temperature range and are predicted to be thermodynamically capable of produc-

ing bainite. All alloys are calculated to exhibit sufficient hardenability to avoid

reconstructive transformations.
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5.2.1 Measured composition

A sample of each alloy was sent to Inspiratech 2000 Ltd. (Rugby, U. K.) to de-

termine the composition. Carbon was measured using combustion and gas chro-

matography. Other elements were identified and measured using X-ray fluores-

cence spectroscopy. However, the aluminium content of the current alloys could

not be measured by Inspiratech, so energy dispersive X-ray spectroscopy (EDX)

on a FEI Nova NanoSEM scanning electron microscope was used to estimate its

concentration (table 5.4).

All alloys contain less carbon than was specified in the design. Due to an

oversight during production no sample other than Alloy 3 contained more than

trace amounts of molybdenum.

C Ni Al Si Mo Cu

Alloy 3 0.622 3.98± 0.12 1.20± 0.07 3.34± 0.15 0.32± 0.02 not detected

Alloy 4 0.544 4.30± 0.14 1.67± 0.10 1.50± 0.09 not detected not detected

Alloy 5 0.522 7.47± 0.23 2.24± 0.13 1.26± 0.08 0.05± 0.03 not detected

Alloy 6 0.572 4.71± 0.13 1.65± 0.09 1.45± 0.07 0.05± 0.03 2.45± 0.08

Alloy 7 0.420 6.74± 0.21 2.31± 0.13 1.47± 0.09 0.05± 0.03 2.18± 0.09

Table 5.4: Experimentally measured composition (wt%) of new generation of al-

loys. The measurements of carbon and tungsten were assessed by Inspiratech 2000

Ltd. (Rugby, U.K.); all other elements assessed using EDX.

5.2.2 Homogenisation of novel alloys

After sealing in glass ampoules filled with argon to prevent oxidation and decar-

burisation, each sample was homogenised at 1250℃, close to the highest temper-

ature consistent with complete austenitisation across all the alloys, for 72 h. The

present heat treatment parameters were based on the expected time for diffusion

to occur over the length of an austenite grain [297].
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Sections of each cast were protected in ampoules and separately austenitised at

the temperatures listed in table 5.5. The lowest possible austenitisation tempera-

ture was chosen according to phase fraction modelling to ensure the finest possible

austenite grain size. Samples were then transferred to an oven set at 250 ± 1℃.

The ampoules were then broken to allow the samples to cool rapidly.

Alloy 3 Alloy 4 Alloy 6 Alloy 5 Alloy 7

Austenitisation temp./℃ 950 1150 1150 1100 1050

Table 5.5: Austenitisation temperatures for novel alloys, chosen to be the lowest

temperature at which the alloy is calculated to be fully austenitic using Thermo-

Calc [248, 249].

Figure 5.10 indicates that, following the homogenisation treatment, all the

alloys have uniform microstructures.

5.2.3 Phase transformations of novel alloys

Alloy 3 transformed at 250℃ for 3 d did not lead to the expected bainitic structure

(figure 5.11). Instead, it appears that the sample has not been fully austenitised.

Large regions of ferrite have formed along with regions of bainitic ferrite that

developed from the austenite.

The phase fractions of Alloy 3 were recalculated as a function of temperature us-

ing MTData [199, 255] than figure 5.4. The new results are given in figure 5.12(a).

Austenitisation is not predicted to occur until the sample is heated above 1050℃,

compared to the 950℃ calculated during design of Alloy 3. Austenitisation at

1100℃ and isothermal transformation at 250℃ for 3 d produced a predominantly

bainitic structure (figure 5.12(b)).

Calculations were also repeated for Alloy 4–Alloy 7 using MTData and there

were no significant differences to the results obtained from Thermo-Calc.

After austenitisation at 1150℃ and transformation at 250℃, Alloy 4 forms

a small amount of allotriomorphic ferrite (figure 5.13(a)), although the majority
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Figure 5.10: Optical micrographs of novel alloys after homogenisation treatment

at 1250℃ for 72 hours. Microstructures appear homogeneous, consistent with the

homogenisation heat treatment.
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Figure 5.11: Alloy 3 after austenitisation at 950℃ and isothermal holding at 250℃

for 3 days. The microstructure consists of both fine bainite and large grains of

ferrite, suggesting that the sample was not fully austenitised before transformation.
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Figure 5.12: (a) Phase fractions as a function of temperature in Alloy 3, calculated

using MTData version 4.73 with the TCFE version 1.0 database (equivalent to

version 5.0 for Thermo-Calc). The temperature range over which the alloy is

calculated to be fully austenitic is significantly smaller and at higher temperature

than when calculated using Thermo-Calc. (b) repeating the austenitisation and

bainite transformation using the new temperatures gives a predominantly bainitic

structure.
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phase is clearly bainite (figure 5.13(b)). This may indicate a lack of sufficient

hardenability, in spite of calculations (table 5.3).

a

α

αb

200µm

b

20µm

Figure 5.13: Optical micrographs of Alloy 4 after heat treatment at 250℃ for

3 days.

Alloy 6 was successfully austenitised,with no allotriomorphic ferrite (figure 5.14),

though large lenticular martensite has formed. This indicates that Ms was greater

than the isothermal transformation temperature used, 250℃ as martensite clearly

formed before bainite upon cooling to 250℃. This renders Alloy 6 unsuitable for

the generation of nanocrystalline bainite, as a high temperature is required to al-

low the bainite transformation to proceed. High transformation temperatures are

associated with coarse bainite plate size. Measurement of the lineal intercept of

bainite sub-unit width from optical and scanning electron microscopy resulted in

a value of 640± 70 nm.

After austenitisation at 1100℃ for 30min and isothermal holding at 250℃ for

3 d, Alloy 5 and Alloy 7 do not exhibit ferrite (figure 5.15 and 5.16). Isothermal

transformation at 250℃ results in bainite interspersed amongst large lenticular

martensite plates, again indicating Ms ≥ 250℃ and rendering both alloys unsuit-

able for the formation of nanocrystalline bainite.
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Figure 5.14: Optical micrographs of Alloy 6 after heat treatment at 250℃ for

3 days. The structure consists of large martensite plates with fine bainite in be-

tween.
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Figure 5.15: Optical micrographs of Alloy 5 after heat treatment at 250℃ for

3 days. The structure consists of large martensite plates with fine bainite in be-

tween.
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Figure 5.16: Optical micrographs of Alloy 7 after heat treatment at 250℃ for

3 days. The structure consists of large martensite plates with fine bainite in be-

tween. (c) prior austenite grain boundaries highlighted. Martensite plates extend

up to the prior austenite grain boundaries, so they almost certainly formed before

bainite.
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5.3 Hardness of novel alloys

The experimental casts produced are not large enough to allow comprehensive

mechanical tests to be performed, but the hardness of each heat-treated alloy may

be tested. Hardnesses were measured using a calibrated Vickers hardness testing

machine set to exert the load of 30 kgf. The results quoted in table 5.6 are an

average of at least five data.

Alloy 3 Alloy 4 Alloy 6 Alloy 5 Alloy 7

Vickers Hardness /HV50 402± 4 551± 6 538± 3 490± 4 514± 6

Table 5.6: Measured Vickers hardnesses for the novel alloys investigated.

The hardnesses are consistent with the observed microstructures. Alloy 3 is the

softest due to the large fraction of ferrite. When heat treated to avoid the ferrite,

the hardness of Alloy 3 increased to 520±20HV50. Alloy 4 is the hardest, despite

the fact that Alloys 5–7 form martensite, due to the fine bainite it contains Both

Alloys 3 and 4 are therefore viable candidates for future nanostructured bainitic

alloys.

5.4 Conclusions

Only Alloys 3 and 4 were able to form bainite following transformation at 250℃,

while avoiding coarse ferrite, but the allotriomorphs observed in Alloy 4 suggest

that it has insufficient hardenability.

Alloy 3 has been demonstrated to produce the desired microstructure under

identical processing conditions to the others and to transform into a hard structure

making it the best candidate for engineering applications.
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Chapter 6

Alloys optimised for thermal

stability

Based on alloys studied previously, two new alloys were designed and cast with

the aim of further improving the resistance to thermal decomposition. One alloy,

Alloy 8, is an optimised derivative of Alloy 4, incorporating more of silicon, alu-

minium and nickel to provide favourable transformation kinetics and resistance to

cementite precipitation. Alloy 9 is based on the different concept that carbides

will precipitate during prolonged holding at 500℃ but that retained austenite may

be stabilised to survive the loss of carbon associated with this precipitation. The

surviving austenite could then continue to provide toughness and ductility.

6.1 Alloy design

6.1.1 Alloy 8

Alloy 1 demonstrated that incorporating large quantities of silicon and aluminium

can improve thermal stability of bainite (figure 4.17) and Alloy 4 showed that that

nanocrystalline bainite can be produced when nickel is used in place of manganese.

Alloy 4 is now optimised for large-scale production. A small amount of manganese

is introduced to combine with sulphur (section 2.3.6) and molybdenum to mitigate
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any phosphor embrittlement.

Manganese aids the precipitation of cementite [183], so the minimum required

to remove the sulphur was added. The sulphur level in the cast was not expected

to exceed 0.01wt% and so 0.02wt% manganese was added (figure 6.1). The com-

position is given in table 6.1).

0.00

0.05

0.10

0.15

0.0 0.1 0.2 0.3

w
t%

M
n
S

wt% Mn

0.01wt%S

0.02wt%S

0.03wt%S

0.04wt%S

0.05wt%S

Figure 6.1: Calculated amount of manganese sulphide (MnS) as a function of

manganese content for various sulphur contents [199, 254].

C Ni Al Si Mn Mo

0.7 3.3 1.4 4.0 0.02 0.25

Table 6.1: Designed composition of Alloy 8. All quantities in wt% and balance is

Fe.
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6.1.2 Alloy 9

The alloys designed thus far are designed to preserve austenite during tempering,

although its decomposition must occur eventually (section 4.3), as demanded by

equilibrium. The decomposition of austenite is preceded by cementite precipita-

tion. The question then arises: can cementite be allowed to precipitate while the

carbon-depleted austenite is stabilised through some mechanism other than carbon

in solid solution?

Substitutional solutes such as manganese, copper and nickel stabilise austen-

ite [12, page 148]. While manganese is the most powerful common substitutional

austenite stabiliser it both promotes the precipitation of cementite and greatly

increases the time required to form bainite, both of which make it undesirable in

large quantities. Upon the advice of the expected level of sulphur in the cast from

the steel producer, 0.3wt% manganese was added to remove sulphur while min-

imising its ability to promote cementite. Copper stabilises austenite [12, page 148]

and is insoluble in cementite, thus contributing to its thermal stability by sup-

pressing precipitation. However, precipitation of ε copper reduces its ability to

prevent cementite precipitation. Nickel has little effect on carbide precipitation

and stabilises austenite.

Aluminium is necessary to accelerate transformation and suppress cementite

but raises the possibility of nickel aluminides (NiAl, Ni3Al) forming during tem-

pering [298–301]. Cobalt also accelerates transformation [110, 181, 302], does not

form carbides, but is expensive. It must be used in this case to reduce the bainite

transformation to practicable times, since the amount of aluminium that may be

added is limited in order to avoid Al2O3 during casting.

The overall design philosophy is illustrated by figure 6.2.

Thermal stability

The response to thermal exposure was modelled for the composition of retained

austenite associated with the bainite transformation at 200℃. This retained austen-

ite was allowed to form an equilibrium mixture of austenite, ferrite and cementite

at 600℃, corresponding to the conditions used in experiments described in sec-
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dross during castingReduce carbon content
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Adjust to form nanocrystalline bainite
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Ms < 200℃, Bs > 300℃

Fe C

Figure 6.2: Design philosophy for Alloy 9.

tion 8.1.2. This depletes the austenite of carbon, thus increasing the driving force

for the martensite transformation on cooling to ambient temperature. The Ms of

the carbon-depleted austenite was predicted by the neural network (section 3.1.5)

to be 300± 30℃. The driving force for martensite formation at ambient temper-

ature is around -2 kJmol−1, less than half that for a conventional nanocrystalline

bainite. Thus, the equilibrium austenite is more likely to survive the heat treat-

ment and subsequent cooling to ambient temperature.

Composition

Thermodynamic modelling indicated a carbon content ! 0.4wt% to maintain the

gap between Bs and Ms. The temperature range over which the alloy is fully

austenitic is at least 100℃ (figure 5.5). Cobalt was set to " 4wt%, to avoid

excessive alloying costs. Concentrations of manganese and molybdenum were set

as discussed previously.

The final composition thus derived is Fe–0.4C–13.0Ni–2.5Al–4.0Co–0.15Mo–
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0.3Mn (wt%). The alloy is fully austenitic at temperatures between 900℃ and

1200℃ (figure 6.3(a)). The predicted Bs andMs were 370℃ and 90℃, respectively

[259]. The corresponding T0 and T ′

0 lines are depicted in figure 6.3(b). The selected

composition lies outside the range of mucg83 [241], predictions were nevertheless

made: Bs = 340℃ and Ms = 263℃ with the predicted TTT curve given in fig-

ure 6.3(c). An artificial neural network (section 3.1.5) predicted Ms = 160± 30℃.

Although the carbon concentration is lower than in conventional nanocrystalline

bainitic steel, but the greatest strengthening is expected from the fine scale of the

structure (equation 2.25).

6.2 Cast production

6.2.1 As-cast Alloy 8

A total of 54 kg of Alloy 8 was supplied by ATI Allvac of Monroe, North Carolina,

U. S. A. as two bars, cast using a vacuum induction melting – vacuum arc remelting

(VIM/VAR) process and then forged with a 7:1 reduction ratio to produce bars

with a cross-section 57mm×83mm. Compositions, taken at both the top and the

bottom of the cast are given in table 6.2.

C Si Ni Al Mo Mn others (top and bottom)

Top 0.72 3.88 3.39 1.37 0.20 0.02
Co, Cr, W < 0.01

P < 0.003

Bottom 0.71 3.87 3.40 1.39 0.21 0.02
B < 90 ppm

S < 30 ppm, N 2ppm

Table 6.2: Measured composition of Alloy 8. Unless otherwise specified, values are

in wt%.

The calculated transformation behaviour of Alloy 8, calculated using the av-

erage of the measured compositions of the top and bottom of the cast are given
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Figure 6.3: (a) calculated equilibrium phase fractions calculated using MTData

[26, 199]; (b) T0 and T ′

0 lines calculated using MTTTData [199, 254, 259]; and TTT

diagrams, calculated using (c) mucg83 [241] and (d) MTTTData for the designed

composition of Alloy 9.
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in figure 6.4. MTTTData predicts that Alloy 8 is ideal for forming nanostruc-

tured bainite, with sufficient hardenability and appropriate Bs and Ms. mucg83.

however, predicts that martensite will form below 242℃ and the artificial neural

network predicts Ms = 40 ± 60℃. There is no apparent explanation for this dis-

crepancy and Alloy 8 lies within the composition limits of mucg83 (table 3.1 and

there is no reason to be more confident in any one model over the others. Ms will

be determined experimentally.

The material was supplied with a microstructure that is a mixture of pearlite

and allotriomorphic ferrite (figure 6.5). Sections in various orientations in the

as-received bar revealed the microstructure to be visually isotropic. The coarse

regions of pearlite probably formed at the early stages of cooling, followed by

fine pearlite at lower temperatures. The hardness, averaged over ten points, was

453± 5HV30.

6.2.2 As-cast Alloy 9

A vacuum induction melted alloy was produced by TATA Steel U. K. and was

supplied as both plates (120mm×20mm×600mm) and rods (≈ 25mm diameter,

600mm length), the composition determined at the foundry after production is

given in table 6.3. The calculated equilibrium phase fractions for the measured

composition, including an ordered BCC phase to represent NiAl, are given in

figure 6.6(a). The calculated transformation properties of the composition of the

cast are given in figure 6.6(b) and 6.6(c).

C Mn Ni Al Mo Co N Others > 0.01wt%

0.45 0.15 13.20 2.63 0.3 3.99 23 ppm 0.06Cu, 0.03 Si

Table 6.3: Composition of Alloy 9. Unless stated, values are wt%.

The as-received microstructure is martensitic (figure 6.7). EDX performed us-

ing a FEI Nova NanoSEM with an accelerating voltage of 20 keV revealed that the

bright regions were solute enriched (table 6.4). The solute-deficient dark regions

probably formed first during casting, rejecting solute into the remaining melt. The
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solute-rich region has a predicted Ms 50℃ lower than the solute-deficient regions

[265, 269], thus giving a retained austenite content of 83 vol.%, according to the

Koistinen-Marburger relation [303]. The solute-deplete regions are calculated to

possess 70 vol.% retained austenite. The hardness, measured using an ATM Qness

30+ automatic indenter and averaged over five indents in each type of region, was

measured to be in the 677 ± 7HV1 dark areas and 663 ± 8HV1 in the bright,

consistent with a higher fraction of martensite in the former.

Al Co Ni Ms /℃

Bulk 2.63 13.20 3.99

Bright 2.70± 0.16 4.59± 0.16 13.5± 0.4 130± 40℃

Dark 2.43± 0.14 4.69± 0.15 11.8± 0.3 180± 30℃

Table 6.4: Compositions (wt%) of bright-etching and dark-etching (observed by

optical microscopy) regions in as-received Alloy 9. All solutes are enriched in the

bright-etching regions, but nickel is significantly more enriched than aluminium

and cobalt. This suppresses Ms and results in larger retained austenite grains,

giving the brighter appearance.
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Figure 6.4: Calculated transformation properties for the composition of as-received

Alloy 8 cast: (a) TTT and (b) T0 curves calculated using MTTTData [199, 254,

259] — the calculations predict that bainite will form in the desired range of 200℃

– 300℃ and that bainite will form without the need for rapid cooling. (c) TTT

and (d) T0 curves calculated using mucg83 [241] — he calculations predict that

martensite will form below 242℃ and that reconstructive transformations could

begin after ∼ 10 s.
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coarse pearlite

20µm

Figure 6.5: Alloy 8 in the as-received condition. The bright areas are allotri-

omorphic ferrite, which presumably formed first during final cooling, followed by

pearlite.
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Figure 6.6: (a) equilibrium phase fractions calculated using MatCalc [247, 293];

(b) T0 and T ′

0 lines and (c) TTT curve calculated using MTTTData [199, 254, 259]

for the experimentally-measured composition of the Alloy 9 cast.

143
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Figure 6.7: Optical micrograph of Alloy 9 in the as-received condition. The struc-

ture is fully martensitic but displays two distinct types of region, one dark and

one bright.
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Chapter 7

Phase transformations of

optimised alloys

Experiments were performed to assess the transformation characteristics of Alloys

8 and 9.

7.1 Initial experiments

Samples measuring approximately 70mm× 30mm× 8mm were separately heated

to 1000℃ for 30min in a tube furnace containing an argon atmosphere. Following

austenitisation, the samples were isothermally transformed at 300℃, predicted

to lead to bainite formation. Three different cooling rates to the transformation

temperature were investigated:

• Samples wrapped in stainless steel foil (“foil cooled”);

• Bare samples (“free-air cooled”);

• Bare samples agitated in air (“force cooled”).

The resulting cooling profiles are given in figure 7.1. Examination of the

foil-wrapped samples revealed a mixture of allotriomorphic ferrite and pearlite
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(figure 7.2) whereas the free-cooled sample showed a predominantly bainitic mi-

crostructure with a small amount of allotriomorphic ferrite (figure 7.3. There was

no significant difference between free air-cooled and force-cooled samples, consis-

tent with the similar cooing rates (figure 7.1).
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Figure 7.1: Comparison of cooling rates achieved in Alloy 8 using different cooling

methods. The cooling rate is very similar in both the “free air cooled” and “force

cooled” samples but is orders of magnitude slower in the foil-wrapped sample.

Comparison of the measured cooling curves with the calculated TTT curves for

Alloy 8 suggests that mucg83 provides more accurate predictions than MTTTData

(figure 7.41). The calculations of mucg83 suggest that the cooling curve for a

wrapped sample intersects the upper C-curve of the TTT diagram, whereas that

for a free cooled sample does not. MTTTData, however, incorrectly indicates that

cooling in foil could form bainite.

Alloy 9 should have a greater hardenability than Alloy 8 (figure 6.6(c) cf.

figure 6.4(a)), consistent with the observation that a wrapped sample of the for-

mer did not exhibit reconstructive transformation products (figure 7.5). The mi-

crostructure after transformation at 200℃ for 10 d consists of large regions of

1 Superposition of the measured cooling curves onto TTT curves is an approximation. Strictly,

the cooling data should be overlaid onto CCT curves.
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α

pearlite

pearlite
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Figure 7.2: Mixture of allotriomorphic ferrite and pearlite formed by cooling Alloy

8 from 1000℃ in stainless steel foil.

αa
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50µm

αa

50µm

b

Figure 7.3: Microstructures of Alloy 8 after austenitisation at 1000℃ and (a)

“free-air cooling” and (b) “force cooling” to an isothermal hold at 300℃. Both

exhibit a largely bainitic microstructure with a small amount of allotriomorphic

ferrite (αa) at prior austenite grain boundaries.
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Figure 7.4: Comparison of measured cooling curves and TTT-diagrams calculated

by (a) MTTTData and (b) mucg83.

bainite with small regions of martensite in between, formed from the untrans-

formed blocky austenite (figure 7.5) it is evident that martensite forms in between

the bainite plates, in what was blocky austenite during the isothermal hold. Thus,

Ms in Alloy 9 is below 200℃.

The instability of the austenite blocks to martensite formation indicates that

little carbon enrichment has occurred. This is consistent with the large nickel con-

tent of Alloy 9 and is reflected in the predicted xT ′

0
: ≈ 2wt% at 200℃ (figure 6.6).

For comparison, the same quantity in Alloy 8 is ≈ 5wt%.

7.1.1 Ms temperature

An experiment in which Alloy 8 was austenitised and force cooled to ambient

temperature revealed a change in gradient of the temperature profile at around

240℃ (figure 7.6), corresponding to the martensitic transformation (figure 7.7).

This is in excellent agreement with the predicted Ms = 242℃ using mucg83.

7.1.2 Transformation kinetics of Alloy 8

Samples of Alloy 8 were austenitised at 1000℃ for 30min, cooled in air and trans-

formed at 300℃, 250℃ or 200℃ for various times and exhibited the hardness
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Figure 7.5: Bainitic structure formed in a wrapped sample of Alloy 9 after austeni-

tisation and isothermal holding at 200℃ for 10 d. Highlighted regions contain

martensite plates.
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Figure 7.6: Temperature-time profile for sample cooled in air after austenitisation,

showing a sudden change in gradient at approximately 240℃.
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300µm 30µm

Figure 7.7: Martensitic structure formed in Alloy 8 cooled in air from 1000℃ to

ambient temperature.

presented in figure 7.8. The hardness becomes constant after no more than 1 d at

all temperatures, implying that the microstructure stops evolving. Lower trans-

formation temperatures lead to higher hardness, consistent with a finer bainitic

structure.

The samples transformed at 250℃ and 300℃ exhibited the expected mixture

of bainitic ferrite and retained austenite (figure 7.9). The samples transformed at

200℃, however, consisted of a mixture of large martensite plates and bainite. The

martensite plates are much larger than the bainite and have formed in classical self-

accommodating zig-zag arrangements (figure 7.10). Many martensite plates extend

to the prior austenite grain boundaries, implying that they formed first upon

cooling from the austenitising temperature and that bainite subsequently grew

between them. 200℃ must therefore be below Ms. Repeating this transformation

yielded identical results. Therefore 200℃ < Ms < 250℃, consistent with the

recalescence observed during cooling (figure 7.6) and the predictions of mucg83

(figure 6.4(c)).
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Figure 7.8: Hardness evolution in Alloy 8 after austenitisation at 1000℃ for 30min

and cooling in air without foil or agitation.
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Figure 7.9: Microstructures in Alloy 8 after austenitisation at 1000℃ for 30min

and forced cooling to isothermal holding for 24 h at (a) 250℃ and (b) 300℃. Both

temperatures result in bainitic microstructures.
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50µm

Figure 7.10: Microstructure in ALLVAC after austenitisation at 1000℃ for 30min

and forced cooling to isothermal holding at 200℃ for 24 h. There are large marten-

site plates with bainite between. The martensite plates clearly form first.

7.2 Dilatometric study of phase transformations

A thorough study of the phase transformations in both Alloy 8 and Alloy 9 was

performed in a Thermecmastor-Z thermomechanical simulator, using cylindrical

samples of 8mm diameter and 12mm length. Any surface oxide was removed

using silicon carbide paper. Specimens were heated under vacuum and the tem-

perature was measured using a R-type thermocouple spot-welded onto the sample

surface. The sample diameter was continuously measured using a laser accurate

to approximately ±5 µm.

All samples were identically heated at 10℃ s−1 to 1000℃ where they were held

for 30min. This was followed by either isothermal transformation or continuous

cooling to ambient temperature, as listed in table 7.1. Based on figure 7.8, isother-

mal transformations were assumed to finish within 24 h. This was ultimately found

to be correct. Cooling was achieved using (>99.9%) helium gas.
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Alloy 8

Temperature /℃ 800 750 700 650 600 650 600 550

Hold time / h 4.5 3.0 3.0 5.0 5.5 6.5 5.25 6.5

Temperature /℃ 500 450 400 350 320 300 275 250

Hold time / h 3.5 12.0 12.0 12.0 4.0 12.0 6.0 12.0

Temperature /℃ 20 20 20 20

Cooling rate /℃ s−1 20 10 5 2

Alloy 9

Temperature /℃ 600 450 350 300 250 250

Hold time / h 10.0 14.0 18.5 18.0 18.0 120

Temperature /℃ 20

Cooling rate /℃ s−1 10

Table 7.1: Transformation conditions implemented in dilatometry experiments.
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7.2.1 Experimental determination of martensite start tem-

perature

An experiment using a Linseis DIL805A/D dilatometer with cryogenically-cooled

helium as a quenching medium in which Alloy 8 was austenitised and then cooled

to determine, using the offset method [288], Ms = 246℃ for cooling at both 10℃ s1

and 50℃ s1. This is in good agreement of the prediction of mucg83. Due to the

noise in subsequent measurements taken using the Thermecmastor-Z thermome-

chanical simulator, a volume fraction of 0.05 was used to identify the onset of

non-martensitic phase changes in Alloy 8 (section 7.3). For consistency with these

data, the Ms was also derived assuming this detection limit and is 233℃. Cooling

at 10 144℃ s−1 results in the formation of martensite only while cooling at lower

cooling rates also leads to the formation of allotriomorphic ferrite. (figure 7.12).
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Figure 7.11: Dilatational strain in Alloy 8 cooled at 10℃ s−1 in a TA Instruments

DIL805A/D dilatometer withMs according to the offset method with 5 vol.% trans-

formation [288].

Austenitising Alloy 9 and cooling at 10℃ s−1 avoids reconstructive transfor-

mations and leads to Ms = 144℃ using the offset method (figure 7.13).
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Figure 7.12: Martensitic structure formed in Alloy 8 cooled to ambient temperature

at (a) 10℃ s−1, (b) 5℃ s−1 and (c) 2℃ s−1. Cooling at 10℃ s−1 results in no visible

allotriomorphic ferrite. Allotriomorphic ferrite does form at the lower cooling rates.

155



100µm

-0.4

0.0

0.4

0.8

1.2

0 200 400 600 800 1000

MS ≈ 144℃

D
il
at
at
io
n
al

S
tr
ai
n
(%

)

Temperature /℃

Figure 7.13: (a) microstructure and (b) dilatational strain profile of Alloy 9

austenitised and then cooled at 10℃ s−1 to ambient temperature. Reconstruc-

tive transformations are avoided and the structure is martensitic.

7.3 Dilatometric assessment of transformation ki-

netics

Samples were heated in the Thermecmastor-Z thermomechanical simulator at

10℃ s−1 to 1000℃ for 30min, cooled at 10℃ s−1 to a target temperature and

allowed to isothermally transform, according to the conditions in table 7.1. Fig-

ures 7.12(a) and 7.13(a) show that reconstructive transformations are avoided

under these conditions.

To determine a transformation start time, the dilatational strain of each sam-

ple was analysed and the transformation was taken to start when the strain had

increased by 5% of the net change during the isothermal hold (figure 7.14). This

time represents the onset of transformation on the TTT diagram. The time is set

to zero when the isothermal transformation temperature is reached.

The derived transformation start times for Alloy 8 are given in figure 7.15.

Transformations measured in Alloy 8 are rapid: an order of magnitude shorter

than previous bulk nanocrystalline bainitic steels [e.g. 1, 107, 108]. This is due to

the lack of manganese, which reduces transformation driving force. Figure 7.16(a)

shows that mucg83 predicts a shorter transformation time than is measured exper-

156



0

1

2

3

4

4 8 12 16 20

a

D
il
at
at
io
n
×
10
0

Time / ks

0

1

2

3

4

4 8 12 16 20

b

D
il
at
at
io
n
×
10
0

Time / ks

Figure 7.14: Alloy 8 cooled to 250℃ after austenitisation. (a) horizontal lines

are fitted to the beginning and end of the dataset and (b) intersection of the 5%

horizontal lines with the data allow the transformation start time to be estimated

to reasonable accuracy.

imentally. MTTTData predicts transformation times many orders of magnitude

longer than are measured.

Alloy 9 was found to have slower transformation kinetics than Alloy 8, consis-

tent with calculations (figure 6.6 cf. figure 7.15). Due to the slower kinetics and the

narrower temperature range over which transformations were predicted to occur

(figure 6.3(a)), fewer isothermal transformation temperatures were investigated.

Comparisons of measured data with a TTT diagram calculated using MTTTData

is given in figure 7.16(b).

7.4 Transformation microstructures

7.4.1 Alloy 8

Experimental assessments of the transformation products in Alloy 8 are presented

in figure 7.17, 7.19 and table 7.2.

X-ray diffraction samples were prepared as optical microscopy samples, but

after initial polishing to 1µm were etched lightly in nital and then repolished with
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Figure 7.15: Assessed TTT diagram for Alloy 8 based on the times required for

the transformation at each temperature to proceed to 5% of maximum.

1 µm diamond paste. This etch-and-polish was repeated three times with pro-

gressively gentler polishing and etching. This minimises any strain present in the

surface layer. This is vital as X-rays from a copper target (Kα transitions, photon

energy ≈ 8 keV) penetrate less than 10 µm into the surface of steel (figure 7.20).

X-ray diffraction experiments used a Bruker DaVinci D9 diffractometer equipped

with a variable-width slit to ensure illumination across 10mm of the sample sur-

face throughout the entire experiment. The sample was rotated at 30 rpm about

an axis normal to its surface. The diffracted X-rays were measured using a Lynx-

Eye position-sensitive detector with 192 channels covering a range of 3.4° in 2θ.

The detector was scanned through a range of 35° < 2θ < 130° with a step size of

0.01° and a dwell time of 0.5 s. An energy discriminator was used to select only

X-rays of energy 0.210 ≤ E / eV ≤ 0.226. This greatly reduces the signal of X-

ray fluorescence from iron and nickel atoms and substantially reduces background

noise.

The data were converted to simulate a fixed beam size using Bruker DIFFRAC.SUITE

EVA software. Fixed sample illumination ensures that the same area is measured

at all angles, but necessarily results in a larger total flux of X-rays being incident on

the sample at higher angles than if the beam has constant size. As a consequence,
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Figure 7.16: Comparison of experimentally-measured transformation start times

(points) and those calculated (lines) for (a) Alloy 8 compared to predictions of

mucg83 and (b) Alloy 9 compared to the predictions of MTTTData. No Bs is

predicted for Alloy 9, so both reconstructive and shear curves are shown for all

temperatures for comparison to the measured data.
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both background and diffraction peaks are stronger at higher angles. Rietveld

analysis was performed, as described in section 4.3. Instrument broadening was

calibrated using a NIST 660 LaB6 standard [304].
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Figure 7.17: Hardness and assessed microstructure for isothermal transformation

of Alloy 8. The points in the “martensite” region were from samples that had been

quenched in water to room temperature.
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Temperature /℃
Transformation

Microstructure
Hardness

Start Time / s HV30

800 1280 Ferrite, graphite, martensite 297± 13

750 475 Ferrite, graphite 289± 4

700 300 Ferrite, graphite 272± 55

650 250 Ferrite, cementite 429± 2

600 300 Ferrite, cementite 464± 8

550 755 Ferrite, cementite, ε 481± 2

500 1600 Bainite, austenite, cementite, ε 414± 11

450 1845 Bainite, austenite, cementite, ε 508± 42

400 940 Bainite, retained austenite 420.8± 1.9

350 635 Bainite, retained austenite 476± 2

325 680 Bainite, retained austenite 504.6± 1.5

300 1030 Bainite, retained austenite 537± 5

275 1530 Bainite, retained austenite 552± 5

250 2625 Bainite, retained austenite 582± 3

2℃ s−1 N/A Martensite, allotriomorphic ferrite 720± 93

5℃ s−1 N/A Martensite, allotriomorphic ferrite 700± 10

10℃ s−1 N/A Martensite 720± 15

20℃ s−1 N/A Martensite 741± 2

Table 7.2: Overall microstructures formed in Alloy 8 and associated hardness data. The microstructure was assessed

using a combination of optical and electron microscopy and X-ray diffractometry. All hardness data are the average

of five points and the standard deviation in the hardness data are quoted a the uncertainties.
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400µm

Figure 7.18: Surface cracks around indent during Vickers hardness testing with

30 kg applied load. This led to the exclusion of these data from the analysis of the

microstructure and the hardness measured by applying 10 kg, which did not cause

cracking, was used instead.

800℃

Figures 7.21(a) and 7.21(b) show large equiaxed ferrite grains, together with (dark)

spheroidal graphite and martensite. The latter forms from the austenite which is

stable at equilibrium with the ferrite and graphite at 800℃. The large X-ray

peaks in figure 7.22(a) are due to both CuKα1 and CuKα2 X-rays, the peaks at

40°, 58°, 73° to CuKβ radiation. Rietveld analysis indicates (84± 6) vol.% fer-

rite and (16± 6) vol.% martensite. This is consistent with the thermodynamic

equilibrium calculations that suggest 76 at.% ferrite, 21 at.% austenite and 3 at.%

graphite. It was not possible to detect graphite using X-ray diffractometry, but

the microstructural appearance is consistent with graphite observed in cast iron

(figure 7.22(b)).

750℃ and 700℃

Transformation at either 750℃ and 700℃ produced ferrite grains containing a

small amount of graphite (figure 7.23(a)), along with pearlite near the edges of
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Figure 7.19: X-ray diffractograms of Alloy 8 after isothermal transformation. For

clarity, austenite and other peaks are not labelled, but may be seen in figure 7.28.

Figure 7.20: Calculated distance for the intensity of X-rays to fall by a factor of e

(attenuation length.) in common metals [305].
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Figure 7.21: Alloy 8 after isothermal transformation at 800℃ for 4.5 h. (a) and

(b) optical micrographs. (c) scanning electron micrograph of martensite plates in

ferrite and (d) a graphite nodule.
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Figure 7.22: (a) XRD data for Alloy 8 transformed at 800℃, with peaks due to

CuKα1, CuKα2 and CuKβ radiation. (b) graphite in Fe–2.4C–1.1 Si–1.1Mn held

at 900℃ for several days to grow graphite nodules [14, micrograph 368].

the sample (figures 7.23(c) and 7.23). Thermodynamic modelling using MTData

predicts that cementite can form at temperatures up to 850℃ (figure 5.4), how-

ever when graphite is permitted to exist, the calculations predict 3 at.% [26, 199]

graphite and cementite is eliminated as a stable phase.

650℃

Transformation at 650℃ leads to a mixture of pearlite with a small quantity of

allotriomorphic ferrite (figure 7.24). If graphite is not included in the calcula-

tions, the only phases predicted from thermodynamic modelling are 88 at.% fer-

rite, 12 at.% cementite and 0.15 at.% molybdenum carbide, Mo2C. The latter was

not detected by XRD or during microscopy, however, it may be that the precip-

itates are too fine to be readily observed. The diffusion of molybdenum is much

slower than carbon and so Mo2C is unlikely to form during this heat treatment.

XRD indicated 11.2± 0.3 vol.% cementite with a residue of ferrite, consistent with

calculations.
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Figure 7.23: Grains near the edge of Alloy 8 isothermally transformed for 3 h

at (a) 700℃ and (b) 750℃. The grain interiors contain pearlite while the grain

boundaries are decorated with allotriomorphic ferrite. (c) typical grain near the

centre of the samples containing graphite and ferrite. This is presumably due to

the slower cooling in the sample interior.
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Figure 7.24: Alloy 8 after isothermal transformation at 650℃ for 5 h. The mi-

crostructure consists predominantly of pearlite with Widmanstätten ferrite at prior

austenite grain boundaries.

600℃ and 550℃

A dramatic change occurs when the transformation temperature is reduced to

600℃ (figures 7.25(a) and (b)) or 550℃ (figures 7.25(c) and (d)). Thermody-

namic calculations indicate that a small amount of austenite should remain un-

transformed at both 600℃ and 550℃, but this is not detected using XRD.

The samples transformed at 600℃ and 550℃ both exhibit similarities to

martensite, consisting of spheroidised cementite in ferrite [306]. The ferrite grows

from austenite grain boundaries, untransformed austenite transforms to marten-

site upon cooling from the transformation temperature (figure 7.26). Retained

austenite is not expected following holding at either 550℃ or 600℃. In addition,

the phase fractions of cementite and ferrite following Rietveld analysis of XRD

data are consistent with those calculated in figure 5.4 with around 88 vol.% ferrite

in both cases 4. The dilatational strain does not become constant before the end of

the isothermal hold (figure 7.27(a)), consistent with a transformation in progress.

Subsequent isothermal transformation of Alloy 8 at 600℃ for 10 h resulted in a

4In this measurement, “ferrite” is the combined fraction of ferrite and martensite, as marten-

site peaks will coincide with ferrite due to the very similar lattice parameters and crystal struc-

ture.
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Figure 7.25: Alloy 8 transformed at (a) and (b) 600℃ for 5.5 h; (c) and (d)

550℃ for 6.5 h. The microstructure consists of large ferrite grains formed on prior

austenite grain boundaries interspersed with regions of martensite and smaller

dark regions of cementite or possibly pearlite.
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pearlitic structure with allotriomorphic ferrite at prior austenite grain boundaries

(figure 7.27(b)).

10µm

Figure 7.26: Fe–0.78C–2.02Mn–1.01Cr–3.87Co–1.37Al–1.6 Si (wt%) tempered at

753℃ for 20 d[307, figure 4c]. The morphology of ferrite and martensite grains is

similar to that observed in Alloy 8 isothermally heat treated at 550℃ and 600℃.

500℃ – 400℃

Transformation between 500℃ and 400℃ produces plate-shaped ferrite consistent

with displacive transformation (figure 7.29). Cementite precipitation is inhibited

as the transformation temperature is reduced due to the presence of silicon and

aluminium that are increasingly unable to partition [e.g. 78, 162, 171, 308]. Carbon

rejected from the transforming austenite is therefore dissolved in untransformed

austenite, stabilising it with respect to ferrite. Some austenite is then retained to

ambient temperature (figure 7.28). This effect is complete below 450℃.
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Figure 7.27: (a) dilatational strain measured during isothermal holding of Alloy

8 at 600℃ for 5.5 h— the strain does not become horizontal before the end of

the isothermal hold,consistent with a transformation in progress at the time of

quenching; (b) microstructure formed after 24 h at 600℃. The dilatational strain

was found to become horizontal before the end the isothermal hold, suggesting the

transformation had ceased before quenching, consistent with a mixture of ferrite

and pearlitic
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Figure 7.28: XRD peaks in Alloy 8 after isothermal transformation at and below

600℃. The peaks attributable to retained austenite increases in height as trans-

formation temperature decreases, while carbide peaks become smaller and then

disappear for transformation at or below 400℃.
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Figure 7.29: Alloy 8 transformed at the temperatures indicated. The dark regions

in (c) are artefacts — the microstructure may be seen to continue unchanged

through the dark regions. Lenticular shapes may be observed in ferrite, highlighted

in figure 7.29(b), indicative of displacive transformation.
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Below 400℃

Isothermal transformations < 400℃, leads to ferrite plates separated by films or

blocks of retained austenite (figures 7.30–7.32). The absence of any other phases

was confirmed by XRD (figure 7.28). The amount of retained austenite remains

constant as the transformation temperature is reduced from 400℃ to 325℃, but

then decreases for lower transformation temperatures (figure 7.33). The concept

of xT ′

0
predicts that retained austenite can be more enriched in carbon at lower

transformation temperatures (figure 6.4(b)), consistent with the austenite lattice

parameter measured using XRD. This is expected to lead a greater proportion of

the austenite transforming before the bainite reaction stops. Dilatometry indicates

that all reactions had ceased in all cases, so there is no apparent explanation for

the observed constant retained austenite volume fractions, but the most likely

explanation is artefacts in Rietveld analysis. In all cases the volume fraction of

retained austenite is consistent with good mechanical properties [92, 103, 104, 181,

192, 282, 309, 310].

blocky austenite

bainite packet

a

50µm

γr

αb

b

5µm

Figure 7.30: Alloy 8 transformed at 350℃ for 3 h. The microstructure consists of

packets of alternating films of ferrite and retained austenite with larger regions of

blocky austenite.

Reducing the transformation temperature results in grain refinement (figure 7.34).

The controlling length scale is the bainite plate widths (i.e. normal to the sub-unit

growth direction). Using calibrated scanning electron micrographs, the grain width

173



a

blocky austenite

50µm

γr

αb

b

5µm

Figure 7.31: Alloy 8 transformed at 300℃ for 3 h. Although finer, the microstruc-

ture is very similar to that formed by transformation at 350℃ (figure 7.30)
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Figure 7.32: Alloy 8 transformed at 250℃ for 5 h. No blocks of retained austenite

are visible using optical microscopy, consistent with the greater extent of trans-

formation at the lower transformation temperature, although fine austenite blocks

are visible using scanning electron microscopy (b).

174



0

0.1

0.2

0.3

250 300 350 400 450 500 550

A
u
st
en
it
e
vo
lu
m
e
fr
ac
ti
on

Isothermal transformation temperature /℃

Figure 7.33: Retained austenite volume fraction assessed using Rietveld refinement

of XRD data. The volume fraction of retained austenite increases as the transfor-

mation temperature decreases below 550℃, due to the increased suppression of

cementite by the presence of silicon and aluminium. Carbon therefore remains in

solution and stabilises austenite.
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(distance perpendicular to the long axis of the films) was measured (figure 7.34).

The hardness of the bainitic microstructure increases as the inverse of the mea-

sured grain width (figure 7.35), as predicted by Langford and Cohen [90, 91] for

very fine grains where the expansion of dislocation loops is limiting. The hardness

of the material is found to follow (426± 15)+(6.8± 1.0) L̄γ
−1

HV with respect to

the austenite, where L̄γ is the mean lineal intercept grain size of retained austenite

in micrometres. The austenite grain size is used for comparison since austenite is

the more ductile phase and will deform before ferrite.
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Figure 7.34: Stereologically-corrected [93] mean lineal intercept grain width (per-

pendicular to long axis of films) of film austenite and bainitic ferrite in Alloy 8

after isothermal transformation. Error bars taken as one standard deviation over

at least ten values.

7.4.2 Alloy 9

600℃ and 450℃

There was no detectable dilatation during isothermal holding at at 600℃, even

after 10 h. This is consistent with predictions that austenite is stable with respect

to ferrite at 600℃. However, grain boundaries were decorated with pearlite (fig-

ure 7.36). The structure was otherwise martensitic. Austenitisation and isothermal

holding at 450℃ leads to a similar structure, although austenite grain boundaries
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Figure 7.35: Grain refinement strengthening in Alloy 8 is found to be inversely

proportional to the mean lineal intercept grain width, consistent with the findings

of Langford and Cohen [90].

do not contain any transformation products (figure 7.36(c)).

350℃

Isothermal transformation of Alloy 9 at 350℃ for 18.5 h produces a microstruc-

ture consisting of a mixture of fine bainite plates, large regions of martensite and

smaller regions of retained austenite (figure 7.37). Dilatation indicates that the

transformation started after 2 × 104 s and was ongoing at the end of the isother-

mal transformation period, consistent with the microstructure. The larger of these

austenite blocks will be less enriched with carbon and then transform to martensite

upon cooling. Smaller austenite blocky are both stabilised with respect to marten-

site by their small size [216] and can retained to ambient temperature. Samples

transformed at 350℃ for 24 h contain much smaller austenite blocks (figure 7.37(c)

as the bainite transformation had more time to occur and thus more bainite was

formed, subdividing the austenite blocks.
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Figure 7.36: In Alloy 9 transformed at 600℃ for 10 h: (a) austenite grain bound-

aries appear to be decorated with a dark-etching phase and (b) lamellae at dark-

etching features, which are presumably pearlite. (c) Alloy 9 transformed at 450℃

for 14 h, consists of large martensite plates spanning prior austenite grains and no

dark-etching features at prior austenite grain boundaries.
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Figure 7.37: Alloy 9 austenitised and held at 350℃ for: (a) and (b) 18.5 h. The

microstructure consists of regions of fine platelets and larger regions of martensite

and retained austenite; (c) 24 h. The bainite reaction has proceeded further than

in (a), as demonstrated by the absence of large regions of martensite and the

presence of retained austenite.
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300℃

Transformation at 300℃ for 18.5 h showed similar results to transformation at

350℃ with an incubation period of approximately 3×104 s and the transformation

still in progress at the end of the isothermal treatment, with remaining large blocks

of austenite transform to martensite upon cooling. The bainitic microstructure is

finer than after transformation at 350℃ (figure 7.38(a) cf. 7.37(b)). This is to be

expected since a lower temperature requires the plastic deformation of stronger

parent austenite and more rapid work hardening, stifling the bainitic sub-units

earlier. It was found during synchrotron XRD experiments (section 8.1.1) that 3 d

at 300℃ is sufficient to allow the bainite transformation to proceed to the extent

that no martensite forms during subsequent cooling to room temperature.

bainite packets

α′

a

300µm

αb

γr

b

5µm

Figure 7.38: Alloy 9 after austenitisation and isothermal holding at 300℃ for

18.5 h. The microstructure consists of regions of fine platelets and large regions of

martensite. The platelets are finer than those formed during isothermal transfor-

mation at 350℃.

250℃

Two samples were transformed at 200℃: one for 18.5 h and another for 120 h.

Figure 7.39 shows that only after 120 h is the transformation close to terminating.

After 18 h (0.65× 105 s), transformation has barely started.
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Figure 7.39: Dilatational strain Alloy 9 held at 250℃. The initial strain is negative,

consistent with the change from (as-received) martensite to austenite. After 18.5 h

(0.65×105 s), the dilatational strain has hardly changed from the initial value and

after 120 h, the transformation appears to be stopping.

After 18.5 h, the microstructure exhibits predominantly martensite, with only

a small number of regions at austenite grain boundaries showing the early stages

of bainite formation (figure 7.40(a)), consistent wit the measured dilatation.

After 120 h, the sample is predominantly a mixture of bainitic ferrite and re-

tained austenite (figure 7.41(a)). The packets are finer than those formed in Alloy

9 transformed at higher temperatures. The austenite blocks are ∼ 10 µm in size,

several times larger than those formed after similar transformation in Alloy 8 (c.f.

figure 7.32(a)), but are smaller than those that form in Alloy 9 following isother-

mal transformation at higher temperatures. These observations are consistent with

calculations (section 6.1.2).
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Figure 7.40: Alloy 9 after austenitisation and isothermal holding at 250℃ for 18 h.

The features in the middle of each micrograph are situated at prior austenite grain

boundaries and are presumably the first products of the bainite reaction.
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Figure 7.41: Alloy 9 after austenitisation and isothermal holding at 250℃ for 120 h.

(a)fine platelets and small regions of retained austenite. (b) the film morphology

in a bainite packet.
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Chapter 8

Thermal stability in optimised

alloys: synchrotron X-ray and

neutron diffraction

8.1 Synchrotron XRD experimental method

The thermal stability of both Alloy 8 and Alloy 9 were assessed using time-resolved

synchrotron XRD with in-situ heating, as in section 4.3. Experiments were per-

formed at beamline I12 at Diamond Light Source, Didcot, U. K. 3mm diameter

rods were sealed into glass ampoules filled with argon. They were austenitised at

1000℃ for 30min and transformed to bainite at 250℃, 300℃ or 350℃. Alloy 8

samples were transformed for 24 h and those of Alloy 9 for the times indicated in

table 8.1.

In-situ tempering was performed using a bespoke furnace with X-ray transpar-

ent windows (figure 8.1). The temperature was controlled using a thermocouple on

the surface of the sample close to the X-ray beam. The windows for the diffracted

beam had a diameter of 10mm and were approximately 100mm from the centre

of the sample. X-rays that did not pass through the windows were heavily atten-

uated. 2θ was thus limited to ≈ 5.7°. A beam energy of 120 keV was therefore

chosen to ensure enough peaks were detected to allow Rietveld refinement to be
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performed. Furthermore, 120 keV photons are able to penetrate 3mm of steel.

thermocouple
monitoring

steel wire

windows≈ 10mm diameter sample, 3mm diameter

incident X-rays
incoming X-rays

thermocouple
control

detector

Figure 8.1: Experimental setup for experiments at Diamond Light Source.

X-ray detection was by a Thales Pixium RF4343 large-area 2D detector with

pixels 148 µm × 148 µm positioned perpendicular to the X-ray beam. It was de-

termined that a sample-detector distance of 1500mm allowed the largest possible

diffraction ring (2θ = 5.7°) to fill all available space on the detector (figure 8.2)

and was used for all experiments.

The X-ray beam size was optimised to 0.5mm× 0.5mm. This gives sufficient

angular resolution to resolve all peaks while maintaining the maximum possible

detected intensity, so allowing data to be recorded every 4 s. The X-ray beam

incident on the sample is shown in figure 8.3.

Samples were heated from ambient temperature to 500℃ at 10℃min−1. The

temperature was maintained until it was deemed that no further change in diffrac-

tion rings was likely. The samples were then allowed to cool in air to ambient

temperature at 10℃ s−1.

The line broadening behaviour of the beamline was calibrated using a ceria

standard. Calibrations were performed at both the beginning and end of the

experiment after Hart et al. [311].

184



a b

Figure 8.2: Diffraction rings observed during the experiments at Diamond Light

Source in a sample of Alloy 8 transformed at 250℃ (a) before and (b) after heat-

ing. White indicates no detected X-rays; black indicates the maximum number of

detected X-rays in each given frame. Each image is approximately 43 cm square

at the detector.

1mm

thermocouple wires

1mm

Figure 8.3: X-ray photograph of Alloy 8 in the synchrotron beamline. Left: sample

with thermocouple on both edges and stainless steel wire wrapped around the top

of the sample; right: the site 2mm lower used for data collection.
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8.1.1 Synchrotron XRD assessment of Alloy 8 thermal sta-

bility

Figures 8.4 and 8.5 show that all peaks initially shift to lower diffraction angle,

consistent with thermal expansion. Austenite peaks then shift to higher diffraction

angles before disappearing suddenly while ferrite peaks become correspondingly

more intense, consistent with carbide precipitation and transformation to ferrite

(section 4.3 and [116]).
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Figure 8.4: Time-resolved plot of synchrotron X-ray diffraction data for Alloy 8

transformed at 250℃, with austenite and ferrite peaks labelled.
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Figure 8.5: Time-resolved synchrotron X-ray diffraction results for Alloy 8 trans-

formed at (a) 300℃ and (b) 350℃.
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Figures 8.4–8.5 indicate that austenite retained after transformation at higher

temperatures is more thermally stable: the retained austenite peaks in figure 8.4

disappear abruptly at around 3.5 ks, but those in figure 8.5(b) persist up to 7 ks

despite the identical heat treatments. The calculated carbon content in retained

austenite is given by the T ′

0 line in figure 6.4(b) which shows that the expected

carbon content of retained austenite in Alloy 8 is ≈ 4wt% for transformation

at 250℃ and ≈ 2.5wt% at 350℃. This increased carbon content renders the

retained austenite more susceptible to the precipitation of carbides and subsequent

transformation to ferrite.

Figures 8.6(a)–8.8(a) show that the loss of austenite is almost simultaneous

with the reduction in austenite lattice parameter. This is in contrast with the

equivalent decomposition in Alloy 1 (figure 4.23), which shows a delay of several

minutes between the lattice contraction and the loss of austenite. This confirms the

findings of Saha Podder [134, page 161] that retained austenite decomposition in

nickel-containing steels is faster than in an equivalent manganese-containing steel.

Since previous synchrotron experiments used a tempering temperature of 450℃

or 500℃ (section 4.3) and the current tempering was done at 600℃ (necessary

to accelerate decomposition and allow all experiments to be completed during

the allocated beamtime), no direct comparison may be made between the relative

stabilities of Alloy 1 and Alloy 8. However, the fact that Alloy 8 decomposes while

being held at 600℃ for less than 3 h suggests that it is not sufficiently thermally

stable for long-term use at elevated temperatures.

Figures 8.6(b), 8.7(b) and 8.8(b) show that, just as in Alloy 1, there was no

change in ferrite lattice parameter during the isothermal hold, save for a slight

initial contraction at the same time as the austenite lattice parameter contracts.

Within ferrite, carbon is either trapped at defects or is otherwise reluctant to

leave solid solution. This phenomenon has been noted previously [53, 76, 169,

226, 312, 313] and will be explored in detail in chapter 10, where the possibility

of non-cubic symmetry in ferrite will be presented. To simplify the analysis of

the thermal stability, all ferrite will be assumed to be body-centred cubic in the

current chapter.
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Figure 8.6: Rietveld refinement results for Alloy 8 transformed at 250℃ and in-

vestigated using synchrotron XRD with in-situ heating. Grey lines represent ±
the standard error for each measurement.
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Figure 8.7: Rietveld refinement results for Alloy 8 transformed at 300℃ and in-

vestigated using synchrotron XRD with in-situ heating. Grey lines represent ±
the standard error for each measurement.
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Figure 8.8: Rietveld refinement results for Alloy 8 transformed at 350℃ and in-

vestigated using synchrotron XRD with in-situ heating. Grey lines represent ±
the standard error for each measurement.

191



Examination of the microstructures of Alloy 8 before and after thermal ex-

posure at Diamond Light Source shows that the austenite films are completely

destroyed (figure 8.9).

The hardness of Alloy 8 transformed at 250℃ was found to reduce from

586±2HV10 to 530±15HV30 after the heat treatment. The loss of the strength-

ening contributions of grain refinement due to the austenite films and carbon in

solid solution outweigh the strengthening due to the precipitates, consistent with

the vast majority of studies into the tempering of martensite and nanocrystalline

bainite, [e.g. 75, 134, 143, 150, 226, 307].

5µm

a

5µm

b

3µm

c

Figure 8.9: Scanning electron micrographs of Alloy 8, transformed at 250℃ (a)

before and (b) and (c) after tempering experiment at Diamond Light Source. The

mottled appearance is consistent with the carbide precipitation implied by the

appearance of additional XRD peaks, transformation of austenite to ferrite and

contraction of lattice parameters observed after tempering.
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8.1.2 Synchrotron XRD assessment of Alloy 9 thermal sta-

bility

The thermal stability of Alloy 9 samples transformed according to table 8.1 was

assessed using the same set-up as in section 8.1.1. Due to time constraints, all

experiments involving Alloy 9 used a final cooling rate of 20℃min−1 and the

samples transformed at 275℃ and 300℃ were heated at 20℃min−1. This is not

expected to significantly affect thermal stability.

Transformation temperature /℃ 225 250 275 300

Transformation Time / d 21 14 10 5

Table 8.1: Transformation conditions for Alloy 9 studied using synchrotron X-ray

diffraction with in-situ heating following austenitisation at 1000℃ for 30min prior

to transformation.

Figure 8.10 shows that austenite persists throughout the entire heat treatment.

Figures 8.11(a)–8.14(a) show that although there is a partial loss of austenite at

500℃ concurrent with a contraction in the austenite lattice parameter, the volume

fraction stabilises and subsequently survives cooling to ambient temperature.

8.1.3 Tempering precipitates

The contraction in the austenite lattice parameter at 600℃ suggests depletion

of carbon in austenite and thus precipitation of carbides. Calculated cementite

peaks have excellent correspondence to measured XRD data (figure 8.15(a)) and

all peaks bar one can be identified using austenite, ferrite and cementite. The

formation of cementite is consistent with the lack of silicon in Alloy 9 and the

persistence of austenite at a constant volume fraction after cementite formation

vindicates the design philosophy in section 6.1.2.

Figure 8.15(a) contains an unidentified peak at around 2θ = 2° that is not

explained by cementite. This is in the position of a notional 100 peak for ferrite and

is consistent with β-NiAl, which has a primitive cubic CsCl crystal structure with
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Figure 8.10: Time-resolved synchrotron X-ray diffraction results for Alloy 9 trans-

formed at the temperature indicated on each figure.
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Figure 8.11: Rietveld analysis results for time-resolved synchrotron X-ray diffrac-

tion with in-situ tempering of Alloy 9 transformed at 225℃. Grey lines represent

± one standard error. Arrows indicate the the relevant axis for each dataset.
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Figure 8.12: Rietveld refinement results for tempering Alloy 9 transformed at

250℃. Grey lines represent ± one standard error. Arrows indicate the the relevant

axis for each dataset.
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Å

Experiment time / ks

70

75

80

0 2 4 6 8 10

2.87

2.88

V
α

(%
)

a α
b
/
Å
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Figure 8.13: Rietveld analysis results for time-resolved synchrotron X-ray diffrac-

tion with in-situ tempering of Alloy 9 transformed at 275℃. Grey lines represent
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Figure 8.14: Rietveld refinement results for tempering Alloy 9 transformed at

300℃. Grey lines represent ± one standard error. Arrows indicate the the relevant

axis for each dataset.
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a lattice parameter of 2.881 Å [314]. With a large amount of nickel and aluminium

present, it is reasonable that β-NiAl could form at 600℃ (figure 6.6(a)). This

result is entirely consistent with that of Teng et al., made using neutron diffraction

of Fe–13.0Ni–18.9Al.9.8Cr–1.8Mo (at.%), however, no micrographic evidence of

β-NiAl could be found.
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Figure 8.15: Synchrotron X-ray diffraction data of Alloy 9 after tempering at

600℃ for ≈ 1 h overlaid with calculated peaks for (a) cementite and (b) β-NiAl.

Figure 8.16 shows microstructural features of Alloy 9 that was transformed at

225℃ and tempered at 600℃ for ≈ 1 h. The microstructure appears virtually

identical to the as-transformed condition, apart form the presence of martensite

plates in some retained austneite films (figure 8.16(a) cf. figure 7.41). Before

tempering, the as-transformed microstructure of a sample of Alloy 9 transformed

at 250℃ was measured to be 613 ± 3HV10 and after exposure was found to be

580±6HV10. This is consistent with the retention of ductile austenite and the loss

of carbon from solid solution, which is not fully compensated for by precipitation

of cementite and β-NiAl.

These results were confirmed by neutron diffraction experiments conducted on

Alloy 9 at the HRPD beamline at ISIS neutron diffraction facility, Didcot, U. .K.

Austenite persists after a tempering treatment at 600℃ (figure 8.17(a) (note that

the order of the peaks is reversed relative to synchrotron X-ray diffraction results).

As expected, an identical experiment on a conventional nanocrystalline bainite, Al-

loy 10 (composition in table 8.2), which has not been designed to improve thermal
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Figure 8.16: Film structure of Alloy 9 after transformation at 225℃ and tempering

at 600℃ for 1 h. The microstructure is largely unaffected by tempering, apart from

the development of martensite plates in the retained austenite films.
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stability shows that austenite does not survive tempering (figure 8.17(b)).

C Mn Si Cr Co Al Mo

0.78 1.95 1.49 0.97 1.60 0.99 0.24

Table 8.2: Composition of Alloy 10 used in neutron diffraction experiments (wt%).
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Figure 8.17: Results of neutron diffraction experiments on samples transformed at

200℃ and tempered at 600℃.
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Chapter 9

Mechanical properties of

optimised alloys

Alloy 8 and Alloy 9 were subjected to tensile, fracture toughness, fatigue and

creep tests at both ambient temperature and at 450℃. No creep data has ever

been published for nanocrystalline steels and very little fatigue data is available,

with the exceptions of [201, 225, 315–317]. The data in this chapter therefore

represent a significant addition to literature.

Tests were performed on samples in the as-transformed condition and after

additional tempering (table 9.1) by Incotest Ltd., Hereford, U. K. and Westmore-

land Mechanical Research and Testing Ltd., Banbury, U. K, respectively. The

tempering treatment is expected to simulate the worst-case scenario for thermal

exposure during the service life of aeronautic gas turbine engine components that

may utilise nanocrystalline steels [318]. Each testpiece was transformed and, if

necessary, tempered as a blank that was larger than the mechanical testpiece di-

mension and one testpiece was machined from the centre of each blank. This

prevents decarburisation in the final testpieces.
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Austenitisation Transformation Tempering

Temperature /℃ 1000 250 480

Time 30min
24 h (Alloy 8)

8 d
5 d (Alloy 9)

Table 9.1: Transformation conditions for mechanical testpiece blanks.

9.1 Tensile tests

Tensile tests were conducted on cylindrical samples according to ASTM E21-09

and following industry standards of geometry (figure 9.1) and test conditions. A

constant crosshead speed of 0.006min−1 was used and all tests were run to failure.

extensometer attachment

25.3± 0.1mm

32.3± 0.2mm

61.5± 0.4mm

Ø=3/8”
screw thread

Ø=5.87–5.90mm

points Ø=8.0–8.1mm

Figure 9.1: Sample geometry for tensile tests. All testpieces were machined from

blanks after heat treatment to a maximum surface roughness of 3mm in the gauge

volume and 5µm elsewhere.

Results are are given in table 9.2. Alloy 8 consistently exhibits a higher strength

than Alloy 9 exposed to the same heat treatment, consistent with its higher car-
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bon content and smaller grain size. Tempering also increases the 0.2% proof stress

and ultimate tensile strength of both alloys, consistent with the transformation of

austenite to the less-ductile ferrite and the precipitation of cementite. The mea-

sured ambient temperature proof stress and ultimate tensile strength of Alloy 8

are consistent with other nanocrystalline steels reported in literature (table 2.2),

as is the elongation at failure compared to a nanostructured steel with 3wt%

silicon [106]. The alloy design of Alloy 8 to improve thermal stability has, there-

fore, not compromised mechanical properties. Alloy 9 has lower strength than the

nanocrystalline steels reported in table 2.2, consistent with its lower carbon con-

tent. The reduction of area to failure is, however, greater than that reported by

Garćıa-Mateo et al. [106] in a conventional nanocrystalline steel, consistent with

the higher retained austenite content of Alloy 9, which accommodates deformation,

by allowing dislocation motion and potentially by the TRIP effect. Garćıa-Mateo

et al. noted that 15% retained austenite remained close to the fracture surface

following tensile tests. This is above the percolation threshold (approximately

10% [92, 103–106, 192, 261, 282, 309, 310]), implying that failure occurred before

austenite percolation was lost. The same study also found that raising the trans-

formation temperature from 200℃ to 250℃ increases in the reduction of area at

failure from 7% to 32%. The authors surmised that this was because the sample

transformed at 250℃ had less carbon in the austenite and a wider distribution of

blocky austenite grain sizes and carbon contents, leading to a wider distribution

of austenite strengths and carbon contents. In the current experiments, this is

analogous to the move from Alloy 8 to Alloy 9.

Fractographs of both alloys tested in the as-received condition showed exten-

sive ductile cleavage. The appearance of both alloys was very similar to that in

Hull [319, figure 8.18] depicting ductile cleavage in Fe–0.2C–1.4M (wt%). Alloy 8

showed ductile cleavage across almost all the fracture surface, which was predom-

inantly flat. By contrast, only the central region of Alloy 9 showed cleavage, with

a large proportion of the surface lying at 45°to the tensile axis in a classic cup-

and-cone fracture (c.f. [319, figure 8.17]). This is consistent with the higher σUTS

of Alloy 8, delaying final fracture until cracks had consumed a large proportion of

207



Alloy Temper
Test 0.2% proof σUTS Failure Red./ of

temp. stress /MPa /MPa elong. (%) area (%)

Alloy 8 × ambient
1432 1737 6.7 19.5

1540 1838 6.6 21.2

Alloy 8 × 450℃
972 1139 27.5 88.1

1035 1170 27.5 84.6

Alloy 9 × ambient

1015 1435 10.5 34.9

1006 1429 11.9 42.6

990 1446 12.5 45.4

996 1437 12.1 43.8

Alloy 9 × 450℃
791 894 23.5 81.9

766 859 29.2 85.3

Alloy 8 # ambient
1767 1795 0.4 1.8

N/A 1717 0.4 1.6

Alloy 9 # ambient
1615 1941 1.4 3.0

1591 1893 1.2 3.0

Table 9.2: Tensile test results for Alloy 8 and Alloy 9 in as-transformed and

tempered conditions. All tests performed at a constant crosshead speed of

0.002mmmin−1.
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the cross sectional area while comparatively small proportion of the cross-sectional

area had to be cracked to obtain failure of Alloy 9.

a

1mm

b fracture at 45°
to loading axis

1mm

Figure 9.2: Fracture surfaces of (a) Alloy 8 and (b) Alloy 9 after tensile testing

in the as-transformed condition. The region labelled as lying at 45° is involved in

cup-and-cone failure.

Tempering at 480℃ for 8 d results in both alloys becoming stronger and less

ductile. Stress-strain curves for each alloy are given in figure 9.3. This is consistent

with the decomposition of austenite to cementite and ferrite [104, 226]. The loss of

carbon from solid solution does not lead to a loss of strength as the high density of

interfaces dominates the strength in the as-transformed steel. The loss of ductility

in Alloy 9 is surprising, given that ≥ 20 vol.% austenite persists after tempering,

but is consistent with the perceived change in failure mode to quasi cleavage (fig-

ure 9.4(b)). No evidence was found of martensite at or below the fracture surface

at any stage of the current study. However, it was found that the austenite lat-

tice parameter decreased due to tempering (figures 8.11–8.14). This implies that

carbon had left solid solution and precipitated as cementite (figure 8.15(a)). This

cementite could restrict ductility and reduce strength, and it is noticeable that

the fracture surface contains a significant amount of intergranular cleavage (fig-

ure 9.4(b)), which is indicative of reduced strength and toughness compared to a

fracture surface that exhibits entirely ductile cleavage (c.f figure 9.2(b)).
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Figure 9.3: Stress-strain curves measured during tensile tests of two samples each

of Alloy 8 and Alloy 9 after tempering at 480℃ for 8 d.

a

1mm

b

intergranular failure
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Figure 9.4: Fracture surfaces of (a) Alloy 8 and (b) Alloy 9 tempered at 480℃ for

8 d after tensile testing. The failure in Alloy 8 appears to have initiated very close

to the centre of the sample. Tempering appears to have changed the failure mode

of Alloy 9 from ductile cleavage to to quasi-cleavage.
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9.2 Fracture toughness

Fracture toughness was measured using crack-tip opening displacement (CTOD)

according to standard ASTM E399-12E3 and using the sample geometry in fig-

ure 9.5. Load was applied with a ratio of minimum stress to maximum stress,

R = 0.1. Following Dieter [320, page 358], the following dimensions apply to the

samples tested here: a = 10.5mm, W = 26mm and B = 13mm, (figure 9.5).

Failure was deemed to have occurred when the crack-tip opening displacement

crossed the 95% secant of the initial linear region of the data (figure 9.6). To

form a valid measurement of KIc, conditions must be satisfied as described in the

standard ASTM E399-12E3, to ensure plane strain at the crack tip during failure.

If these conditions are not met, the measured toughness is designated KQ and is

not a material property, but does allow comparison between samples.

KQ =
PQ

W 1/2B

[

29.6
( a

W

)1/2

− 185.8
( a

W

)3/2

+ 655.7
( a

W

)5/2

−

1017.0
( a

W

)7/2

+ 638.9
( a

W

)9/2
] (9.1)

All measured fracture toughness values are given in table 9.3. Alloy 8 exhibits

a toughness significantly higher than previously-reported values of bulk nanocrys-

talline bainitic steels of similar strength (cf. table 2.2). It is clear that the large

quantity of silicon in Alloy 8 has not led to embrittlement. This may be ex-

plained by the lower carbon content of Alloy 8 compared to the alloys listed in

table 2.2, which all contained ≥ 0.78wt% carbon. The austenite in Alloy 8 is there-

fore able to deform more readily and extensively as dislocations are less pinned

by Cottrell atmospheres. This increase in high-stress deformation represents an

energy-absorbing mechanism and will contribute to toughness.

It is also evident that as-transformed Alloy 9 is extremely tough. No valid mea-

surements of KIc were possible due to the unexpectedly-high toughness. Budget

constraints prevented retesting with larger testpieces. However, the comparison

with the KQ measurement of Alloy 8 suggests that Alloy 9 is significantly tougher,

as is expected given the lower bulk carbon content, much higher level of nickel and
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a = 10.5mm
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Figure 9.5: Schematic drawing of a compact tension testpiece tested under a stress,

P . The labels a, B and W refer to the measurements used in Dieter [320, equa-

tions 11-19].

CTOD

Load initial
tangent 95% secant

failure

Figure 9.6: Schematic CTOD test data for Alloy 8, showing 95% secant and point

of failure.
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higher content of retained austenite. Should Alloy 9 meet strength requirements

for a given application, its improved thermal stability and impressive toughness

make it a very good candidate material.

Alloy Tempered Test temperature /℃ KQ /MPam
1
2 KIc /MPam

1
2

Alloy 8 × ambient
60.2

69.0

Alloy 9 × ambient
105.6

101.9

Alloy 8 × 150
106.0

126.0

Alloy 9 # ambient 19.8

Table 9.3: Compact tension results for Alloy 8 and Alloy 9. Tempering was at

480℃ for 8 d. Alloy 8 tested after tempering and Alloy 9 tested at 150℃ failed

during pre-cracking and so no data may be presented.

Two samples each of both Alloy 8 and Alloy 9 tempered at 480℃ for 8 d were

sent for fracture toughness testing. All but one sample failed during pre-cracking.

It was not possible to repeat the tests due to budget constraints. It was therefore

decided to perform Charpy V-notch tests to gauge the toughness of the tempered

alloys as a cost-effective alternative that was likely to produce results. The single

fracture toughness measurement obtained for tempered Alloy 9 of 19MPam
1
2
f ,

is close to the fracture toughness of conventional nanocrystalline steels in the as-

transformed condition (cf. table 2.2), demonstrating the excellent potential of Alloy

9 for high-temperature applications. The residual toughness of Alloy 9 is likely

due to the persistence of ductile austenite and the presence of nickel within that

austenite, which raises the stacking fault energy. This allows easier dislocation

glide and therefore mechanically stabilises the austenite [251, 321, 322].
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9.3 Charpy impact

Charpy tests were performed on tempered samples of both Alloy 8 and Alloy 9

with the geometry given in figure 9.7. The results are summarised in table 9.4.

55mm
10mm

10mm

45° notch, 2mm deep
radius of curvature 0.25mm

Figure 9.7: Schematic drawing of sample geometry for Charpy impact tests per-

formed on tempered Alloy 8 and Alloy 9.

Alloy Impact energy / J−2

Alloy 8
11.5

11.5

Alloy 9
46.8

49.5

Table 9.4: Ambient temperature Charpy impact results for Alloy 8 and Alloy 9

tested after tempering at 480℃ for 8 d.

There are several equations that may be used to compare Charpy V-notch

impact test results to fracture toughness data [323]. Of these, the Rolfe-Novak-

Barsom equation (equation 9.2, where CV is the Charpy V-notch impact energy in

Joules and other symbols have their usual meanings) provides a straightforward

and well-tested conversion [324–327]. It is only possible to convert from Charpy

impact energy to fracture toughness above the ductile-brittle transition tempera-
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ture (DBTT). This is because fracture toughness tests are performed such that the

sample fails with plane strain and in a ductile manner. If impact testing measures

the absorbed energy for brittle failure, different processes occur during failure and

there is no correspondence between the tests. For ductile failures during impact

testing, both tests are causing similar fractures to occur and so a conversion is pos-

sible. There are further restrictions on the use of the Barsom-Rolfe-Novak equation

that the yield stress of the material satisfies 270 < σy /MPa < 1700 and the mea-

sured Charpy V-notch impact energy must lie in the range 4 < CVN / J < 82 [323].

Both of these conditions are met for both alloys so a comparison with the fracture

toughnesses of the as-transformed specimens is possible. An alternative relation-

ship is Robert’s lower bound (equation 9.3), which provides a more conservative

estimate of KIc. The calculated fracture toughness values are given in table 9.5,

using Young’s moduli calculated from the elastic loading of samples prior to creep

tests. Both conversions predict that the toughness has decreased significantly after

tempering, consistent with the loss of austenite.

KIc =
(

0.228EC
3
2

V

)

1
2

(9.2)

KIc = 8.47C0.63
V (9.3)

(9.4)

9.4 Fatigue

Fatigue tests were conducted on as-transformed samples in accordance with ASTM

E466-07. Due to budget constraints, tests were limited to six per alloy, each to

a maximum of 50,000 cycles. The sample geometry is given in figure 9.8 and the

schematic stress cycle is shown in figure 9.9. Test were performed at both ambient

temperature and 450℃ for both alloys. The number of cycles to failure are plotted

against peak applied stress in figures 9.10 and 9.13. Also plotted are the measured

ultimate tensile strengths (σUTS) in the as-transformed condition (table 9.2) and

curves fitted to the modified Basquin equation (equation 9.5, where σmax is the
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Alloy CV / J E /GPa
KIc /MPam

1
2 KIc /MPam

1
2

(Rolfe-Novak-Barsom) (Robert’s lower bound)

Alloy 8
8.5 190 33 29

8.5 190 33 29

Alloy 9
34.5 170 89 58

36.5 170 92 60

Table 9.5: Fracture toughness estimates based on Charpy V-notch impact energies

and converted using the Rolfe-Novak-Barsom equation and Robert’s lower bound.

Young’s moduli were derived from the elastic loading of samples at the beginning

of creep tests.

peak stress, N is the number of cycles to failure and a and b are fitted constants)

[328, 329, equation 7.1] using Marquardt-Leverberg linear regression. The fitting

parameters for each condition are given in table 9.6. It was assumed that when

the peak stress exceeded σUTS, the failure would not be due to fatigue and the

effective number of cycles to failure would be 1.

σmax = a (2N)−b (9.5)

The results of fatigue tests on Alloy 8 are shown in figure 9.10. No fatigue

limit was detected, although Peet et al. [201] recorded a fatigue limit of 855MPa

in a similar nanocrystalline steel using the same waveform and ratio of peak to

minimum stress, R and further tests at lower peak applied stresses may detect

such a limit in the current alloys. The peak stresses used here were those that

were considered most relevant to potential engineering applications.

The consistency in the number of cycles to failure between each pair of Alloy

8 samples suggests that failure was not being initiated at occasional large flaws,

which would cause variations in fatigue life, but rather flaws which are consistent

within the microstructure. This is expected for the (VIM/VAR) processing route,

which results in a very clean steel with few defects. The subsequent hot-rolling
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11.5± 0.1mm

12.0± 0.1mm

53.3± 0.1mm

Ø=1/2”
screw thread

Ø=4.50
Ø=10.5–10.6mm±0.05mm

Figure 9.8: Schematic drawing of a fatigue specimen used in the current study.

The screw threads of each sample were shot peened to prevent failure outside the

gauge length.

Rσmax

σmax

0 1 2 3 4

R = 0.1

S
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σ
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Figure 9.9: Waveform of one stress cycle for all fatigue tests performed in this

study. This waveform is commonly referred to as a “1-1-1-1 trapezoid”.
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Figure 9.10: Fatigue results for Alloy 8 showing data at ambient temperature

(“RT”, +) and 450℃ (×). The horizontal lines are the measured σUTS at the

relevant temperature (section 9.1 and the curves are fitted to the data according

to the modified Basquin equation (equation 9.5).

with a reduction ratio of 7:1 will remove any pores. The less clean processing

route for Alloy 9 is one possible explanation for the greater difference in measured

fatigue lives for a given stress in Alloy 9 (figure 9.13).

In most cases, examination of the fracture surfaces revealed no obvious initi-

ation site. Where a likely initiation site could be identified, no sample exhibited

obvious flaws such as pores, inclusions or precipitates visible at or near the site,

although it is always possible that particular flaws did initiate fatigue failures and

these particles dropped out during failure. The fracture surface (figure 9.11) of

a sample of Alloy 8 tested at 450℃ shows predominantly ductile cleavage, with

regions at the edges that are typical of fast fracture, the surfaces of which lie at

approximately 45°to the rest of the fracture surface. These regions were the last

to fail during testing. The region immediately around the initiation site shows no

evidence of striations or beach marks and is ≈ 100 µm wide, consistent with the

observations of Peet et al. (see [table 1 201]). Samples tested at ambient tempera-

ture with lower other peak stresses showed similar ductile cleavage, consistent with

the work of Garćıa-Mateo et al., but none of them showed discernable initiation
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sites.

initiation site

fast fracture

fast fracture

300µm

Figure 9.11: Fractograph of failed sample of Alloy 8 after fatigue testing at 450℃

with a peak stress of 900MPa. The initiation site is surrounded by a dark, flat

region. Outside this, the fracture surface is mottled, consistent with ductile rup-

ture. The regions labelled “fast fracture” are brighter than the ductile region to

the naked eye and the surface is at 45°to the rest of the fracture surface.

The rapid failure of the samples of Alloy 8 tested at 450℃ with a peak stress of

1000MPa is not surprising as the peak stress exceeds the yield stress (cf. table 9.2)

and hence leads to rapid damage accumulation. The resistance to fatigue failure

at 450℃ with a peak stress of 800MPa suggests that little damage is being accu-

mulated. Since the test is performed with peak stresses close to the yield stress,

it is likely that dislocations are being created. However, since the homologous

temperature is ≈ 0.4, recovery is likely to occur, which will reduce the rate of net

damage accumulation and hence extend fatigue life.

It was not possible to achieve a fatigue failure in Alloy 9 at 450℃ within the

limit of 50000 cycles. The peak stress used, 800MPa, was close to the ultimate

tensile strength which was assessed to be as low as 859MPa at 450℃ (table 9.2)

and so it was not possible to raise the peak stress to induce failure without the

risk of exceeding σUTS. Failure in this case would be tensile rather than fatigue.
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1mm

Figure 9.12: Fractograph of Alloy 8subjected to fatigue testing at ambient tem-

perature with a peak stress of 1400MPa. No initiation site could be observed

anywhere on the fracture surface of either half of the failed sample.
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Figure 9.13: Fatigue test results for Alloy 9. Data are shown for tests performed

at both ambient (+) and unit[450]℃ (×). Tests marked with an arrow did not

fail with in the 50,000 cycle limit. No S–N curve is shown for tests conducted at

450℃ as no test resulted in a fatigue failure.
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The fracture surface of a fatigue sample of Alloy 9 shows largely ductile cleav-

age (figure 9.14(a)), with some areas of fast fracture that failed last, as in Alloy

8. It was not possible to identify initiation sites in all samples, also similar to

Alloy 8. In this fractograph, river lines are discernable radiating out across the

zone immediately around the initiation site, which is around 200 µm across. The

initiation site contains a string of pores extending from the surface to a depth of

approximately 100µm (figure 9.14(b)). At the end of these pores a particle, about

10 µm, which was identified as silica using EDX. The fracture surfaces of samples

tested at 450MPa and with other peak stresses were not significantly different to

that shown in figure 9.14 and initiation sites were only found on a small number

of samples.

Alloy Test temperature /℃ a /MPa b

Alloy 8
ambient 5280 0.138

450℃ 12210 0.028

Alloy 9 ambient 3696 0.178

Table 9.6: Parameters of the modified Basquin equation (equation 9.5) fitted to

fatigue life data. Tests where the samples did not fail were not included in the

fitting.

Zhang et al. [317] examined low-cycle (i.e. strain-controlled) fatigue of bainitic

steels and found that nanocrystalline bainite (called “low temperature bainite” in

Zhang et al. [317]) exhibited slower fatigue crack growth than lower and upper

bainite formed in the same alloy, which was attributed to a finer grain size and

larger misorientation between adjacent grains, measured by EBSD. These factors

lead to more rapid blunting of fatigue cracks and slower crack growth.

Peet et al. [201] obtained a longer fatigue life than either of the current alloys

(figure 9.15), consistent with a higher σUTS [201, 225]. Both of the current alloys

exhibited large-scale ductile rupture, as was noted by Garćıa-Mateo et al. [225]

in high-carbon steel. The consensus in literature is that the fatigue properties

of nanostructured steel are promising and the current study has found that the
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a
initiation site

fast fracture

1mm

SiO2

b

50µm

Figure 9.14: Fracture surface of a sample of Alloy 9 subjected to fatigue testing at

ambient temperature with a peak stress of 1100MPa. The fracture surface consists

mostly of ductile cleavage with an initiation site and some areas of fast fracture

that failed at the very final stages of testing. The initiation site contains a string

of pores extending in from the surface. A silica particle lies at the end of this

string of pores.
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fatigue lives of the current alloys are consistent with those previously reported.

400

800

1200

1600

2000

2400

0 1 2 3 4 5 6

P
ea
k
st
re
ss
,
σ
m
a
x
/
M
P
a

log(Number of cycles to failure, N)

Peet et al. 2011
Alloy 9
Alloy 8

Figure 9.15: Assessed fatigue lives for Alloy 8, Alloy 9 and the alloy studied by Peet

et al. [201]. The data are fitted with the modified Basquin relation (equation 9.5)

and are limited to the reported σUTS. The fatigue lives of samples studied by Peet

et al. were greater than the current alloys, consistent with the higher σUTS of the

former. Open symbols represent samples that ran out without failure.

9.5 Creep

There are no reported creep results for nanocrystalline bainitic steels. This is

because they were not originally intended for elevated temperature service. It is

only with the production of more thermally-stable alloys such as Alloy 9 that creep

data may be usefully assessed.

Creep tests were performed using the samples schematically drawn in fig-

ure 9.16, tested in accordance with ASTM 139-11 at 450℃ under 700MPa constant

stress. Both alloys showed good creep resistance.
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Figure 9.16: Schematic drawing of creep specimen.

Creep data for both the current alloys is given in figure 9.17. Two tests were

carried out for each alloy, giving similar results in both cases. Alloy 8 exhibits

better resistance to creep deformation than Alloy 9, although both alloys com-

pare favourably to existing steels. For example, Jitsukawa et al. [330] collated an

extensive database of 9Cr–1Mo (wt%) steels and reduced-activation martensitic

steels for nuclear pressure vessels and found that stress levels of approximately

400MPa corresponded to a creep life consistent with a Larson-Miller parameter of

20.5 (evaluated as 0.001T (26.4 + log tr) where T is the test temperature in Kelvin

and tr is the creep rupture time). The current alloys exhibit the same Larson-

Miller parameter at a stress level of 700MPa (figure 9.18). The ASM handbook

on heat-resistant materials lists common classes of steel and selected other mate-

rials (figure 9.19) [331]. The current alloys survive approximately 100 h at 450℃

(823K) under a constant stress of 700MPa. This is competitive with 12wt% Cr

steels and is only outperformed by nickel alloys and maraging steels. Both of these

alloy systems are orders of magnitude more expensive than nanocrystalline bainitic

steel [12, 109, 332]

The form of figure 9.17 suggests that both Alloy 8 and Alloy 9 undergo primary
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Figure 9.17: Measured creep data for two samples each of Alloy 8 and Alloy 9 under

700MPa constant stress at 450℃. The creep curve shows that creep is extensive

in both time and strain after the minimum strain rate occurs.

current alloys

Figure 9.18: Comparison of current alloys to data for 9Cr–1Mo (wt%) (small

crosses) and reduced-activation martensitic steel (triangles) collated by Jitsukawa

et al. [330]. The current alloys outperform those studied by Jitsukawa et al. Figure

reproduced with permission of Elsevier B. V.

225



0

200

400

600

800

1000

1200

1400

600 800 1000 1200 1400

Al alloys

Austenitic steel

Carbon steels

Co alloys

Fe-Cr-Ni alloys

Maraging steel

Ni alloys

Refractory
metal alloys

Current alloys

12% Cr steel

Ti alloys

C
re
ep

ru
p
tu
re

st
re
n
gt
h
(1
00

h
)
/

℃

Temperature /K

Figure 9.19: Comparison of typical creep performance of various steel grades and

selected other materials [after 331] and comparison with the current alloys. Only

maraging steels and nickel alloys outperform Alloy 8 and Alloy 9.
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creep which is complete within 10 h of the start of the test. Shortly after this,

both alloys exhibit the minimum creep strain rates: at approximately 20 h in

Alloy 9 and 30 h in Alloy 8. However, the time between the minimum creep rate

and failure is markedly prolonged in both alloys, consistent with creep-resistant

martensitic steels [333]. Nabarro and de Villiers [334] describe primary creep as

consisting of grain boundary sliding and/or plastic deformation of grains with

high Schmidt factors, resulting in work hardening and a redistribution of load

to other less-favourably oriented grains. In this case, the vast majority of the

grain boundaries are between bainitic ferrite and untransformed parent austenite,

which are semi-coherent. The atomic correspondence across the interface makes

grain boundary sliding extremely unlikely. It may, however, be possible for the

incoherent interfaces at prior austenite grain boundaries to slide. At the test

temperature (450℃), the applied stress (700MPa) is approximately 70% of the

0.2% proof stress of Alloy 8 and 90% of that for Alloy 9 (table 9.2). This suggests

that the favourably-oriented grains could plastically deform, but since this initial

deformation is likely to be confined to the ductile austenite, and the grain size is

small, strain will be localised and work hardening is liable to be rapid.

Nabarro and de Villiers note that fine grain sizes are detrimental to both grain

boundary sliding and diffusional creep [334, section 8.5.6]. However, in nanostruc-

tured bainite, the vast majority of grain boundaries are between retained austen-

ite films and bainitic ferrite. These are semi-coherent boundaries and contain a

well-ordered array of misfit dislocations. These boundaries will not act as efficient

sources or sinks of vacancies as is the case for incoherent boundaries. Prior austen-

ite grain boundaries are incoherent and can contribute to creep, but these are found

infrequently in the structure, at a density associated with conventional grain sizes.

Thus it is possible to obtain the strengthening from a fine grain structure without

the penalties associated with short diffusion paths and easy grain boundary sliding.

While the temperature and stress used in the current tests make it very likely that

dislocation creep will be the dominant mechanism, vacancy flux is still required to

allow the dislocations to overcome obstacles and mediate deformation. The use of

semi coherent and coherent boundaries to pin dislocations in creep-resistant “co-

227



herent hierarchical precipitate” strengthened ferritic steels was reported by Song

et al. [335] and is discussed in the case of TiAl/Ti3Al by Nabarro and de Villiers

[334, page 359–361], who note that semi-coherent boundaries contain networks of

dislocations. These misfit dislocations could act as sources and sinks for vacancies

due to climb of their edge components, but this is only significant for the late

stages of deformation, with the dislocations anchored at the interfaces during the

initial stages of creep to maintain the semi-coherent nature of the boundary. This

gives rise to one possible explanation for the extensive creep life after the minimum

strain rate occurs: the creep strain rate gradually increases as deformation occurs

and progressively more misfit dislocations begin to undergo climb.

The appearance of a section of failed creep testpieces of both Alloy 9 and Alloy

8 contains severely elongated grain structure near the fracture surface, together

with large numbers of voids. The voids in Alloy 9 lie predominantly perpendicular

to the tensile axis and follow prior austenite grain boundaries (figures 9.20(a)

and 9.20(b)). The voids in figure 9.20(c) do not obviously follow grain boundaries,

as is seen in Alloy 9, but are otherwise typical of creep failure [e.g. 334, figure 8.22].
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Figure 9.20: Voids formed during creep testing under 700MPa at 450℃ of (a)

immediately below the fracture surface of Alloy 9, appearing to follow austenite

grain boundaries; (b) ≈ 1 cm below the fracture surface of Alloy 9 with austenite

grain boundaries highlighted, creep applied in the vertical direction; (c) Alloy 8.
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Chapter 10

Tetragonal bainitic ferrite

Cohen [236] determined that the crystal structure of martensite is body-centred

cubic (BCC) when carbon is absent, but body-centred tetragonal (BCT) otherwise.

The degree of tetragonality is indicated by the ratio of the lattice parameters c

and a and is related to the dissolved carbon content by equation 10.1 where wC is

the carbon content in wt%. The phenomenon is discussed in detail in section 2.4

and also in Cohen [236] for martensite and Jang et al. [237] for bainite. Before

the current study, the loss of lattice symmetry due to the presence of carbon

had never before been observed in bainite. In non-nanostructured bainite, the

transformation temperature is sufficiently high to ensure that carbon is able to

partition immediately following transformation. However, the lower temperatures

used in the formation of bulk nanocrystalline bainitic steels leads to retention of

carbon in the bainitic ferrite. This is possible despite there being sufficient time for

carbon to diffuse and escape from the bainitic ferrite. The reduction in symmetry

from BCC to BCT provides lower energy regular interstitial sites in bainitic ferrite,

greatly increasing the solubility of carbon in the bainitic ferrite [237].

c

a
= 1 + 0.045wC (10.1)

The data collected in this project using high-resolution diffraction techniques

was examined to investigate the symmetry of the bainitic ferrite in bulk nanocrys-

talline steels. Initial investigations involved the sample of Alloy 2 investigated at
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DESY during the experiments detailed in section 4.3. The sample was heated using

the same hot gas blower detailed in section 4.3 and the XRD data were recorded

using the same method and similar parameters to those detailed in section 4.3.

These data were compared to laboratory X-ray diffraction results. Subsequent

neutron diffraction investigations were performed on samples of Alloy 9 and an-

other conventional bulk nanocrystalline bainite, Alloy 10.

10.1 Weighted profile R factor

Rietveld refinement was used to derive physical properties from the X-ray diffrac-

tion data. The goodness-of-fit may be quantified in various ways, the simplest

useful method being the weighted sum of the squares of the errors, S, as outlined

in equation 10.2, where n is the total number of data points, xi is the observed

number of X-ray counts, yi is the number of counts expected for a given set of

physical properties and σi is the standard uncertainty in the ith datapoint. The

physical properties are refined, the expected diffractogram calculated and com-

pared to the measured data. Since the detection of diffracted X-rays involves a

number of discrete events in a given time, Poisson statistics apply and σi =
√
xi

[336, 337]. Equation 10.2 may therefore be rewritten as equation 10.3 [285, 338].

S =
n
∑

i=1

(

xi − yi
σ [yi]

)2

(10.2)

=
n
∑

i=1

(xi − yi)
2

xi
(10.3)

The sum of squares of errors is not independent of the absolute value of the

measurements, since the numerator of equation 10.3 will increase as the square of

the measured values whereas the denominator will increase in linear proportion.

To remove the effect of the magnitude of the measurements, the weighted profile

R-factor, Rwp is commonly used to assess the goodness-of-fit of Rietveld refine-

ments [336, 339]. The weighted sum of squared errors is divided by the weighted

square of the observed number of counts (equation 10.4). The weighting factor is
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the inverse of the uncertainty, which is equal to the observed number of counts

according to Poisson statistics (equation 10.6). This provides a meaningful, rela-

tive measurement of the discrepancy between calculated and measured intensities,

independent of the absolute scale of the measurements.

Rwp =

(

∑n
i=1wi (xi − yi)

2

∑n
i=1 wix2

i

)1/2

(10.4)

wi =
1

σ2 [xi]
(10.5)

=
1

xi
(10.6)

If a model is a perfect physical description of the material being investigated,

discrepancy is expected to be due solely to statistical deviations (i.e. noise), so

(xi − yi)
2 = σ2

i . In this case, the best achievable value of wi (xi − yi)
2 is 1 and the

contribution to Rwp from each data point is approximately (wix2
i )

−1 = (xi)
−1. For

N degrees of freedom (defined as the difference between the number of data points

and the number of refined parameters), the corresponding value of Rwp is known

as the expected R-factor, Rexp [339], and is given as follows:

Rexp =
N

∑N
i=1 xi

(10.7)

Given the large number of datapoints, the change in the number of refined

parameters has only a negligible effect on Rexp and so the fit to a dataset is

only expected to improve if fitting more parameters is a more accurate physical

description of the sample.

10.2 Cubic and tetragonal ferrite in Alloy 2

During the Rietveld analysis conducted in earlier chapters to determine lattice pa-

rameters and phase fractions, ferrite is assumed to have a BCC structure given by

space group Im3̄m. An alternative space group may be used to describe BCT fer-

rite: I 4
m
mm. Assuming a body-centred tetragonal crystal structure for ferrite will
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lead to one more refined variable: the c lattice parameter. In order to investigate

whether any further loss of symmetry was possible, a body-centred orthorhombic

(BCO) crystal structure was also tested, with the space group I222. There is no

mechanism for the formation of orthorhombic ferrite directly from austenite, but

there is evidence that a lattice with orthorhombic characteristics may form if a

proportion of the carbon atoms are shuffled into different sites via slip or twin-

ning [340]. The space group initially used for austenite was Fm3̄m (FCC), but

a face-centred orthorhombic crystal structure (space group F222) was also tested

to check whether this led to any significant improvement in the fit. To simplify

analysis, all carbide peaks were ignored and samples were assumed to consist only

of austenite and ferrite. This is not expected to significantly affect results since

carbide peaks are much weaker than those of austenite and ferrite.

A sample of Alloy 2 transformed 215℃ for 10 d was heated at 5℃ s−1 and the

resulting data were analysed assuming each of cubic, tetragonal and orthorhombic

ferrite. Figure 10.1(a) shows that reducing the symmetry of the ferrite from cubic

to tetragonal causes a large drop in Rwp, suggesting that a body-centred tetragonal

crystal is a better physical description of the ferrite than body-centred cubic.

Allowing the ferrite to be body-centred orthogonal provides a slight reduction in

Rwp, but the difference is substantially less than between the cubic and tetragonal

cases.

The reduction in ct/at during tempering (figure 10.1(b)) is indicative of carbon

leaving the ferrite. Prolonged heating is required for any change to be observed,

as Jang et al. [237] predicted for carbon in the regular octahedra in body-centred

tetragonal ferrite. Comparison of figures 10.1(b) and 10.1(d) shows that the rapid

loss of austenite coincides with the rapid reduction in ferrite asymmetry after

approximately 5500 s. The initial ct/at ratio measured was 1.0086. Using this value

in equation 10.1 suggests a solid solution carbon content in the ferrite of 0.19wt%,

which is consistent with results obtained using atom probe tomography on steels of

similar composition and thermal history [54, 56]. The same convergence of lattice

parameters is observed in the case of orthorhombic ferrite (figure 10.1(c)).

To ensure any measured asymmetry was not an artefact of the flat-plate de-

234



8

10

12

4 8

a
BCC

BCT

BCO

R
w
p
(%

)

Time / ks

2.91

2.92

2.93

2.94

4 8
1.004

1.006

1.008

1.010
b

aα

cα

cα
aα

L
at
ti
ce

p
ar
am

et
er
/
Å
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Figure 10.1: (a) Rwp, (b) lattice parameters in body-centred tetragonal ferrite,

(c) lattice parameters in body-centred orthorhombic ferrite, (d) austenite volume

fraction and lattice parameter for Alloy 2 during heating at 5℃ s−1. The results

are all consistent with a starting crystal structure of BCT in ferrite, which is lost

during prolonged tempering. Error bars on the points represent one standard

error.
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tector geometry, the diffractometer was calibrated using a NIST silicon standard.

After this calibration, the detector data were taken for a (cubic) ceria standard and

were found to be well-matched to a predicted pattern. In addition, the austenite

in the sample is well-fitted using a face-centred cubic space group. As may be seen

in figure 10.2, there is almost no difference between the fits obtained for austenite

assuming either FCC or face-centred orthorhombic space groups.

To confirm the findings from the synchrotron, experiments were repeated using

laboratory-based XRD using a Phillips PW1820 diffractometer to give the results

in table 10.1. The diffractometer produces CuKα radiation and utilises a graphite

monochromator, a divergence slit of 10mm width, a 0.2° receiving slit and a 0.5°

anti-scatter slit. The diffractometer was calibrated using a NIST silicon standard.

The results are similar to those obtained using synchrotron XRD, but do not agree

to within the fitting errors of the Rietveld refinements.

Cubic Tetragonal Orthorhombic

Rwp 23.05 22.08 20.98

Vγ 26.5± 0.3 28.0± 0.2 27.7± 0.2

aγ /Å 3.6143± 0.0002 3.6146± 0.0002 3.6145± 0.0002

aα /Å 2.86343± 0.00009 2.8560± 0.0002 2.8449± 0.0003

bα /Å — — 2.86910± 0.00010

cα /Å — 2.8769± 0.0005 2.8747± 0.00011

cα/aα — 1.0073± 0.0002 1.0101± 0.0004

bα/aα — — 1.0085± 0.0004

Table 10.1: Results obtained from laboratory-based X-ray diffraction of Alloy

2. The results are very similar to those obtained using synchrotron XRD (cf.

figure 10.1) but do not agree within one standard error.
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Figure 10.2: Peak profiles calculated in MAUD for the 200α and 211α peaks and

austenite 200γ and 220γ peaks using cubic, tetragonal and orthorhombic space

groups. Austenite is equally well-fitted by a face-centred cubic or a face-centred

orthorhombic lattice. There is a significant improvement in the fit of ferrite from a

body-centred cubic lattice to body-centred tetragonal. Reproduced with permis-

sion of Elsevier B. V.
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10.3 Ferrite symmetry in Alloy 1

In order to test whether the findings of non-cubic symmetry in ferrite were specific

to Alloy 2, another experiment was conducted using laboratory XRD on Alloy

1 transformed at 250℃. The experiment was identical to that described in sec-

tion 10.2. The full findings are listed in table 10.2 and show that tetragonality

may be measured in bainitic ferrite. The dissolved carbon content was derived to

be 0.16wt%. This is lower than that found in Alloy 2, consistent with the higher

transformation temperature used for this sample of Alloy 1.

Cubic Tetragonal Orthorhombic

Rwp 20.18 19.96 19.62

vγ 0.214± 0.007 0.218± 0.008 0.2298± 0.0005

aγ /Å 3.6346± 0.00013 3.64403± 0.00013 3.63712± 0.00012

aα /Å 2.86465± 0.00010 2.8586± 0.0003 2.8478± 0.0005

bα /Å — — 2.872± 0.0003

cα /Å — 2.876± 0.00076 2.874± 0.003

cα /aα — 1.0063± 0.0003 1.0093± 0.0011

bα /aα — — 1.0085± 0.0011

Table 10.2: Results obtained from laboratory-based X-ray diffraction of Alloy 1.

The ratio of cα/aα is consistent with tetragonal ferrite with a lower carbon content

than was measured in Alloy 2.

The data collected from Alloy 1 in section 4.3 transformed at 200℃ and 300℃

were also analysed using the same procedure as in section 10.2.

Figures 10.3(b) and 10.4(b) show that transformation at 200℃ causes more

tetragonality than that at 300℃. The as-transformed carbon contents inferred

from the data are 0.221 ± 0.005wt% and 0.192 ± 0.007wt%. In both samples,

the fitting error, Rwp is smaller in the body-centred tetragonal case than if body-

centred cubic symmetry is used.
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Figure 10.3: Lattice parameter and volume fraction of (a) austenite, (b) ferrite

and (c) Rwp in Alloy 1 transformed at 200℃. The results are entirely consistent

with tetragonal bainitic ferrite. The thin dashed lines represent the data ± one

standard error.
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Figure 10.4: Lattice parameter and volume fraction of (a) austenite, (b) ferrite

and (c) Rwp in Alloy 1 transformed at 300℃. The results are entirely consistent

with tetragonal bainitic ferrite and the lower initial value of cαb / aαb than is

seen in figure 10.4 suggests a lower dissolved carbon content than is seen following

transformation at 200℃. Thin dashed lines represent ± one standard error.
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10.4 Ferrite symmetry in Alloy 9 and Alloy 10

Samples of Alloy 9 and another conventional nanostructured steel, Alloy 10 (com-

positon given in table 10.3), transformed according to table 10.4 to produce nanocrys-

talline bainite. The samples were then investigated at the High Resolution Powder

Diffraction (HRPD) beamline at the ISIS neutron diffraction facility, Didcot, U. K.

This beamline uses a long (∼ 100m) flight path to allow excellent plane spacing

resolution [341]. Heating was performed using a vacuum furnace with neutron-

transparent vanadium windows. Data were recorded using the detector banks at

2θ = 90° to the incident beam.

C Mn Ni Al Si Mo Cu Co Cr

0.78 1.95 0.00 0.99 1.49 0.24 0.00 1.61 0.97

Table 10.3: Composition of Alloy 10 (wt%).

200℃ 250℃ 300℃

Alloy 9 10 d 5 d 3 d

Alloy 10 10 d 3 d 1 d

Table 10.4: Transformation conditions for samples used in neutron diffraction

experiments. All samples were austenitised at 1000℃ for 30min before isothermal

holding.

The numbers of detected counts were recorded as a function of plane spacing.

The instrument parameters are well-calibrated and freely available online 1 as

files that are compatible with the program “General Structure Analysis Software”

(GSAS) [342]. A background profile was fitted using a Chebyschev polynomial of

the first kind with 16 refined coefficients [342, page 129]. The incident neutron

intensity, phase fractions, thermal broadening factors and lattice parameters and

1http://www.isis.stfc.ac.uk/instruments/hrpd/data-analysis/hrpd-data-analysis4442.html
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parameters related to microstrain and crystallite size of each phase were refined.

Full Rietveld refinement results are given in Appendix B.

a, Alloy 9

40µm

b, Alloy 10

40µm

Figure 10.5: Optical micrographs of Alloy 9 and Alloy 10 as transformed at 250℃.

There is no evidence of either allotriomorphs or non-metallic precipitates. Both

images are consistent with the micrographs in section 7.

It is expected that the degree of asymmetry will increase as transformation

temperature decreases, as demonstrated in Caballero et al. [56] and that the degree

of tetragonality will be higher in Alloy 10 than in Alloy 9, due to the lower bulk

carbon content and the high level of nickel in Alloy 9, which will limit the degree

of carbon enrichment in the austenite before the bainite transformation ceases, i.e.

reduce xT ′

0
.

As expected Alloy 10 exhibits greater asymmetry than Alloy 9. However, the

tetragonality does not show a strong temperature dependence in either alloy (fig-

ure 10.6). It is not immediately obvious why this is the case, especially since no

evidence of carbides has been found in any microscopic study on as-transformed

samples of either alloy. Garćıa-Mateo et al. [187] detected that both the car-

bon content of bainitic ferrite and the dislocation density increase with decreasing

transformation temperature and postulated that this led to more carbon being

trapped at dislocation cores as the transformation temperature is reduced. Al-

though it has never been explicitly shown, it is possible that the concentration of

carbon in solid solution in ferrite in a nanostructured bainitic steel is approximately
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constant and the additional carbon in ferrite transformed at lower temperature is

accommodated in dislocation cores.

During tempering at 600℃, the measured tetragonality of Alloy 10 decreases to

the point at which the predicted carbon content is below that expected at full equi-

librium at 600℃ (figure 10.7 cf. figure 2.1). Upon cooling to room temperature,

the measured tetragonality increases (figure 10.7). Saha Podder and Bhadeshia

[116] suggested that this is due to the transformation of small amounts of austen-

ite to martensite upon cooling, although no such transformation was observed in

micrographs of either alloy taken after the heat treatment.
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Figure 10.7: ct/at in Alloy 9 and Alloy 10 transformed at 200℃, measured using

neutron diffraction
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10.5 Conclusions

It has been shown using synchrotron X-ray, laboratory and neutron diffraction that

nanocrystalline bainitic ferrite exhibits a body-centred tetragonal crystal structure.

This is consistent with a diffusionless transformation mechanism for bainite and

literature concerning the carbon content of nanostructure bainitic ferrite. The

amount of carbon suggested to be in solid solution by the tetragonality results is

consistent with atom probe tomography measurements of similar steels [47, 52–

54, 169]. Although the evidence amassed in this project is encouraging, and has

been supported by other contemporary work considering anisotropic thermal ex-

pansivity of textured bainitic steels [343] and high resolution transmission elec-

tron microscopy [47], further data are required to prove the existence of tetragonal

bainitic ferrite beyond reasonable doubt. These data could include more results

based on X-ray and neutron diffraction for a wider range of carbon contents and

transformation temperatures. These results would be pivotal if they could show

non-cubic bainitic ferrite forming in real time during the bainite transformation.

Other potential sources of information could be atomic resolution TEM, similar

to that undertaken by Caballero et al. [47]. Again, if corroborating evidence could

be obtained using high resolution TEM during the bainite transformation, the

evidence would be definitive.
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General Conclusions & Future

Work

“I confess that I have been blind as a mole, but it is better to learn wisdom late than

never to learn it at all.”

Sherlock Holmes in The Man with the Twisted Lip by Sir Arthur Conan Doyle

The main goal of this work was to develop alloys that form a nanocrystalline

bainitic structure and are resistant to thermal decomposition. An alloy developed

before the start of the project was assessed using synchrotron X-ray diffractome-

try with in-situ heating to track the changes in phase fraction and was found to

outlast a conventional nanocrystalline steel tested in identical conditions at 500℃.

Refinements were made to this alloy using theoretical calculations to ensure the

correct structure was formed while incorporating alloying additions likely to post-

pone thermal decomposition. Two alloys were selected and approximately 50 kg of

each was cast. One of these alloys featured a high concentration of silicon (Alloy

8) and the other a very large nickel content, high aluminium content and a lower

carbon content than existing nanocrystalline steels (Alloy 9). These new alloys

were investigated using synchrotron X-ray diffractometry and neutron diffractom-

etry. The former was found to decompose during tempering at 600℃ while the

latter was observed to precipitate cementite while austenite consistently persisted

throughout the experiments, even down to room temperature. This represents the

first ever nanocrystalline steel that is able to withstand prolonged heating with-

out the complete loss of austenite. This material has the potential to be used in

high-temperature applications and to be subjected to high-temperature processing
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such as galvanising.

Both optimised alloys showed an impressive combination of strength and tough-

ness at ambient temperature. The thermally stabilised alloy showed exceptionally

high fracture toughness (KQ ≈ 100MPam−
1
2 ) and good strength (σ0.2%proof ≈

1000MPa, σUTS ≈ 1400MPa). The high-silicon alloy showed an impressive com-

bination of strength and toughness (σ0.2%proof ≈ 1500MPa, σUTS ≈ 1800MPa,

KIC ≈ 69MPam
1
2 ). All of these properties, as well as the measured fatigue life

in both alloys, are consistent with previous nanocrystalline bainitic alloys. This

proves that thermal stability has been achieved without compromising mechani-

cal properties to an unacceptable degree. While the strengths of both alloys was

found to decrease after thermal exposure at 480℃ for 8 d, both show good ambient

temperature impact toughness — a property not often found in nanocrystalline

bainite. Bearing in mind the persistence of austenite during heat treatment, the

mechanical tests show the high-nickel alloy (Alloy 9) as a potential candidate for

future high-temperature engineering applications.

The first ever creep data of nanocrystalline steel have been recorded. Both

alloys were subjected to 700MPa constant stress at 450℃. The alloys have superior

creep lives to common engineering alloys with the exception of maraging steels

and nickel superalloys. These excellent creep properties are likely to be related

to the low number density of incoherent interfaces, which only occur at prior

austenite grain boundaries. The semi-coherent boundaries between bainitic ferrite

and retained austenite are not able to contribute to creep as they contain misfit

dislocations strongly fixed in place and unable to undergo climb to absorb or emit

vacancies.

Throughout this project, investigations using high-resolution diffractometry at

both synchrotron and neutron sources allowed the symmetry of the bainitic ferrite

lattice to be investigated. It was found that the diffraction data were routinely

described better by a body-centred tetragonal lattice. This is consistent with

the diffusionless theory of the bainite transformation, previously-observed carbon

contents of bainite ferrite and related ab-initio calculations.
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Future work

While the alloys and theories summarised in this thesis represent a major advance

in the capabilities of nanocrystalline steels, a far greater body of work is required

before these alloys may be used for high-temperature engineering applications:

• Further refinements to the composition may yield nanostructured steels with

superior thermal stability. For example, the inclusion of silicon into Alloy 9,

in which austenite survives heat treatment, may further minimise cementite

precipitation and thereby lead to improved thermal stability.

• Further assessments of thermally stability over a range of temperatures

should be conducted, preferably using in-situ methods. The effects of re-

peated heating and cooling should also be established.

• Further mechanical tests should be performed on all alloys, especially to

establish fatigue and creep data over a wider range of temperatures and

stresses. Toughness measurements should be made from ambient temper-

ature to any candidate service temperature to establish whether a ductile-

brittle transition occurs and its effect on properties.

• During any future mechanical tests, evidence of TRIP should be searched

for to establish whether or not this effect is significant in the current alloys

and to establish its consequences for toughness. Although searched for, no

evidence for TRIP was found in the current study.

• More thorough investigation of ferrite lattice symmetries of high-carbon

bainitic alloys should be performed to confirm and quantify tetragonality.

High resolution transmission electron microscopy may be used to comple-

ment the diffraction data already accrued and any arising from future exper-

iments.
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Appendix A

Alloy compositions

Alloy C Mn Ni Al Si Mo Cu Bs /℃ Ms /℃

Alloy 3 0.7 0.0 3.30 1.4 4.0 0.25 0.00 350 160± 50

Alloy 4 0.7 0.0 4.50 2.0 2.0 0.25 0.00 300 110± 40

Alloy 5 0.7 0.0 7.50 3.0 2.0 0.25 0.00 100 —

Alloy 6 0.7 0.0 4.00 2.0 2.0 0.25 2.00 230 130± 50

Alloy 7 0.7 0.0 7.00 3.0 2.0 0.25 2.00 100 —

Alloy 8 Made to the composition of Alloy 3 — —

Alloy 9 0.4 0.3 13.0 2.5 0.0 0.15 0.0 370 90

Table A.1: Compositions of new alloys, as determined by thermodynamic mod-

elling and predicted bainite and martensite start temperatures. Bs predicted by

MTTTData and Ms predicted by artificial neural network. Alloys used for com-

parison purposes and not designed in this project are not included in this table.
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Alloy C Mn Ni Al Si Mo Cu > 0.01

Alloy 1 1.037 1.97 0.00 1.43 3.89 0.24 0.00 —

Alloy 2 0.84 2.26 0.04 0.04 1.78 0.25 0.10 1.55Co, 1.47Cr

Alloy 3 0.622 0.00 3.35 1.29 3.40 0.27 < 0.01 0.016W

Alloy 4 0.572 0.00 4.55 4.3 1.70 0.03 < 0.01 0.019W

Alloy 5 0.522 0.00 7.64 7.5 1.55 0.03 < 0.01 —

Alloy 6 0.544 0.00 4.10 4.7 1.68 0.03 2.01 0.030W

Alloy 7 0.420 0.00 7.27 6.7 1.58 0.04 2.04 0.116W

Alloy 8 0.72 0.02 3.40 1.38 3.88 0.20 0.00 —

Alloy 9 0.45 0.15 13.20 2.63 0.03 0.30 0.06 3.99Co

Alloy 10 0.78 1.95 0.00 0.99 1.49 0.24 0.00 1.61Co, 0.97Cr

Table A.2: Experimentally measured composition of alloys studied. All measure-

ments are from commercial testing houses except for the aluminium contents of

Alloy 3–Alloy 7 which are measured using EDX. Uncertainties are omitted from

this table for clarity, but are given where available when the composition of each

alloy is discussed in the main body of this document.
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Appendix B

Rietveld analysis of neutron

diffraction data

The following tables detail the full results obtained from Rietveld refinement of

data collected during neutron diffraction experiments at the High Resolution Pow-

der Diffraction (HRPD) beamline at the ISIS pulsed neutron source at the Ruther-

ford Appleton Laboratory near Didcot, Oxfordshire, U.K. Data were analysed

using the General Structure Analysis Software (GSAS) [342, 344] using freely-

available calibration data for the beamline 1. During analysis, the “Peak-shape

function #4” calibration data were used, consistent with the incident intensity

function “ITYP 4” in GSAS and the background signal was well-fitted to a Chebyschev

Polynomial of the first kind (background function #1 in GSAS).

1http://www.isis.stfc.ac.uk/instruments/hrpd/data-analysis/hrpd-data-analysis4442.html
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Trans. 200
225 250 275

300

Temp /℃ before at temperature after before at temperature after

fγfilm 0.185± 0.018 0.235± 0.003 0.224± 0.005 0.248± 0.011 0.241± 0.007 0.181± 0.006 0.169± 0.011 0.240± 0.003 0.228± 0.005

fγblocky 0.083± 0.017 N/A N/A 0.044± 0.019 0.099± 0.006 0.111± 0.005 0.151± 0.011 N/A N/A

fαb
0.732± 0.018 0.7651± 0.0024 0.776± 0.005 0.708± 0.011 0.660± 0.006 0.708± 0.005 0.679± 0.010 759± 0.003 0.772± 0.005

wγfilm 0.184± 0.014 0.2349± 0.0019 0.225± 0.004 0.247± 0.008 0.222± 0.005 0.181± 0.004 0.169± 0.009 0.2392± 0.0020 228± 0.004

wγblocky 0.083± 0.016 N/A N/A 0.044± 0.011 0.092± 0.005 0.113± 0.005 0.153± 0.009 N/A N/A

wαb
0.732± 0.021 0.7651± 0.019 0.7749± 0.0041 0.708± 0.013 0.685± 0.007 0.706± 0.007 0.677± 0.013 0.7608± 0.0020 0.772± 0.004

aγfilm / Å 3.6251± 0.0013 3.64666± 0.00003 3.6166± 0.00008 3.6260± 0.0009 3.6195± 0.0004 3.6141± 0.0006 3.6147± 0.0011 3.64410± 0.00004 3.61466± 0.00008

aγblocky / Å 3.6066± 0.0011 N/A N/A 3.6059± 0.0003 3.59921± 0.00016 3.59557± 0.00006 3.5981± 0.0001 N/A N/A

aαb
/ Å 2.869957± 0.000013 2.888897± 0.000007 2.870758± 0.000017 2.873499± 0.000009 2.869114± 0.000010 2.868843± 0.000006 2.870058± 0.000016 2.887912± 0.000008 2.870248± 0.000018

dγfilm / nm 47± 32 120± 60 100± 10 483± 24 272± 10 22± 7 21± 10 110± 570 85± 7

dγblocky / nm 260± 180 N/A N/A 350± 570 72± 37 170± 40 140± 40 N/A N/A

dαb
/ nm 117± 3 129± 19 108± 3 149± 4 108.4± 2.2 95.3± 1.6 104.2± 3.2 121.7± 1.8 96.7± 2.5

Rwp 2.43 2.1 4.91 2.56 2.78 2.33 2.3 2.24 4.67

Rp 3.13 2.85 7.03 3.31 3.52 3.22 3.01 3.06 7.31

Rwp no bg 1.69 1.4 3.7 1.75 1.97 1.45 1.57 1.52 3.11

Rp no bg 2.73 2.36 6.04 2.69 3.01 2.41 2.45 2.48 5.64

Table B.1: Overall results for HS3 with cubic bainitic ferrite
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Trans. 200 225 250 275 300

Temp /℃ before at temperature after before at temperature after

fγfilm 0.133± 0.016 0.257± 0.004 0.241± 0.005 0.273± 0.014 0.217± 0.006 0.194± 0.020 0.182± 0.010 0.251± 0.003 0.247± 0.005

fγblocky 0.050± 0.006 N/A N/A 0.0108± 0.0006 0.02713± 0.0008 0.033± 0.003 0.051± 0.003 N/A N/A

fαb
0.82± 0.10 0.743± 0.012 0.759± 0.016 0.72± 0.04 0.756± 0.021 0.77± 0.08 0.76± 0.04 0.749± 0.009 0.753± 0.015

wγfilm 0.160± 0.009 0.2559± 0.0027 0.241± 0.004 0.264± 0.010 0.201± 0.005 0.177± 0.007 0.161± 0.007 0.2504± 0.0022 0.247± 0.004

wγblocky 0.160± 0.011 N/A N/A 0.038± 0.013 0.092± 0.005 0.110± 0.016 163± 0.007 N/A N/A

wαb
0.723± 0.016 0.744± 0.003 0.758± 0.004 0.696± 0.016 0.706± 0.007 0.713± 0.021 0.676± 0.011 0.7496± 0.022 0.7529± 0.0038

aγfilm / Å 3.6305± 0.0010 3.64664± 0.00005 3.61661± 0.00009 3.6255± 0.0010 3.6200± 0.0004 3.6264pm0.0012 3.6159± 0.0009 3.64403± 0.00004 3.61453± 0.00009

aγblocky / Å 3.6120± 0.0009 N/A N/A 3.6059± 0.0005 3.5992± 0.0001 3.6079± 0.0011 3.59815± 0.00008 N/A N/A

aαb
/ Å 2.86919± 0.00007 2.88864± 0.00004 2.87017± 0.00006 2.87290± 0.00006 2.86845± 0.00005 2.869183± 0.00007 2.86882± 0.00008 2.8861± 0.0003 2.8673± 0.0003

cαb
/ Å 2.8719± 0.00016 2.8897± 0.00011 2.872445± 0.00015 2.8750± 0.0013 2.87079± 0.00012 2.87190± 0.00018 2.87312± 0.00019 2.8919± 0.0006 2.8766± 0.0006

c
a 1.00093± 0.00006 1.00036± 0.00004 1.00080± 0.00006 1.0007± 0.0004 1.00082± 0.00005 1.00094± 0.00006 1.00150± 0.00007 1.0020± 0.0002 1.00322± 0.00022

wC /wt% 0.0207± 0.0014 0.0081± 0.0008 0.0177± 0.0012 0.015± 0.010 0.0181± 0.0010 0.0210± 0.0015 0.0333± 0.0016 0.045± 0.005 0.071± 0.005

dγfilm / nm 35± 3 97± 5 81± 7 49.7± 2.4 28.0± 1.0 43± 3 22.0± 0.9 87± 4 57± 3

dγblocky / nm 260± 110 N/A N/A N/A 67± 13 160± 60 170± 40 N/A N/A

dαb
/ nm 174± 9 390± 30 228± 14 233± 8 159± 6 200± 12 153± 8 118± 3 88.5± 2.4

Rwp 2.18 2.93 4.08 2.51 2.52 2.44 1.95 2.58 4.47

Rp 2.91 3.58 6.56 3.27 3.26 3.05 2.68 3.52 7.33

Rwp no bg 1.45 2.11 2.61 1.71 1.73 1.68 1.11 1.29 2.51

Rp no bg 2.39 3.36 5.06 2.59 2.62 2.6 1.85 2.4 5.23

Table B.2: Overall results for HS3 with tetragonal bainitic ferrite
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Trans. 200
225

250

Temp /℃ before at temperature after before at temeprature after

fγ 0.240± 0.006 0 0 0.2749± 0.0027 0.2481± 0.0029 0 0

fαb
0.760± 0.006 1 1 0.7251± 0.0027 0.2481± 0.0029 1 1

wγ 0.239± 0.005 0 0 0.2726± 0.0019 0.2463± 0.0022 0 0

wαb
0.761± 0.005 1 1 0.7274± 0.019 0.7537± 0.0022 1 1

aγ / Å 3.62344± 0.00018 N/A N/A 3.62719± 0.00006 3.62227± 0.00008 N/A N/A

aαb
/ Å 2.87052± 0.00003 2.887559± 0.000006 2.870135± 0.000011 2.867715± 0.000013 2.865609± 0.000014 2.887439± 0.000004 2.866227± 0.000007

dγ / nm 19.1± 0.7 N/A N/A 28.8± 0.6 24.2± 0.5 N/A N/A

dαb
/ nm 92± 4 147± 20 140± 40 95.5± 2.1 81.5± 1.7 139.8± 1.1 126.5± 1.6

Rwp 3.63 1.77 3.37 3.02 3.37 2.04 3.66

Rp 5 3.28 6.99 3.97 4.12 3.49 7.24

Rwp no bg 2.57 1.09 2.25 2.25 2.67 1.54 2.83

Rp no bg 3.76 2.11 4.76 3.54 3.85 2.71 5.43

Trans.
275

300

Temp /℃ before at temperature after

fγ 0.241± 0.005 0.227± 0.005 0 0

fαb
0.7589± 0.0023 0.7727± 0.0023 1 1

wγ 0.240± 0.004 0.227± 0.004 0 0

wαb
0.760± 0.004 0.773± 0.004 1 1

aγ / Å 3.62629± 0.00014 3.61194± 0.00017 N/A N/A

aαb
/ Å 2.870443± 0.000022 2.867092± 0.000019 2.887219± 0.000006 2.867275± 0.000012

dγ / nm 18.9± 0.5 19.7± 0.9 N/A N/A

dαb
/ nm 90± 3 82.8± 2.5 140± 190 139± 4

Rwp 2.84 2.18 1.7 3.3

Rp 3.55 2.91 2.98 6.53

Rwp no bg 2.3 1.6 1.16 2.27

Rp no bg 3.12 2.36 1.94 4.33

Table B.3: Overall results for SP10 with cubic bainitic ferrite
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Trans. 200
225

250

Temp /℃ before at temperature after before at temeprature after

fγ 0.22± 0.11 0 0 0.27± 0.05 0.28± 0.11 0 0

fαb
0.78± 0.11 1 1 0.72± 0.05 0.72± 0.12 1 1

wγ 0.221± 0.004 0 0 0.2751± 0.0016 0.280± 0.004

wαb
0.778± 0.004 1 1 0.7249± 0.0016 0.720± 0.004 1 1

aγ / Å 3.62389± 0.00017 N/A N/A 3.62714± 0.00005 3.61774± 0.00010 N/A N/A

aαb
/ Å 2.86638± 0.00027 2.88624± 0.00017 2.86801± 0.00017

cαb
/ Å 2.8803± 0.0008 2.8904± 0.0003 2.8748± 0.0003 2.87298± 0.00016 2.8806± 0.0005 2.88868± 0.00006 2.86817± 0.00008

c
a 1.0048± 0.0003 1.00144± 0.00013 1.00236± 0.00013 1.00259± 0.00006 1.00548± 0.00022 1.000560± 0.000020 1.00091± 0.000029

wC /wt% 0.108± 0.006 0.031± 0.003 0.052± 0.003 0.0577± 0.0013 0.122± 0.005 0.0124± 0.0004 0.0202± 0.0006

dγ / nm 23.2± 1.3 N/A N/A 31.0± 1.2 57.4± 2.1 N/A N/A

dαb
/ nm 99± 5 151± 23 136± 3 143± 5 88± 3 N/A 390± 200

Rwp 2.96 1.6 3.11 2.42 3.38 3.19 3.85

Rp 4.51 3.1 6.68 3.35 4.27 5.17 7.67

Rwp no bg 1.65 0.87 1.98 1.56 1.88 2.22 3.02

Rp no bg 2.9 1.77 4.33 2.49 3.21 4.11 5.91

Trans.
275

300

Temp /℃ before at temperature after

fγ 0.22± 0.09 0.22± 0.11 0 0

fαb
0.77± 0.09 0.78± 0.11 1 1

wγ 0 0 0.228± 0.003 0.223± 0.004

wαb
0.772± 0.003 0.777± 0.004 1 1

aγ / Å 3.62345± 0.00012 3.61234± 0.00015 N/A N/A

aαb
/ Å 2.8663± 0.0003 2.8627± 0.0004 2.88617± 0.00009 2.8666± 0.0003

cαb
/ Å 2.8804± 0.0006 2.8774± 0.0009 2.88921± 0.00018 2.8694± 0.0005

c
a 1.00493± 0.00022 1.0051± 0.0003± 1.00105± 0.00007 1.00098± 0.00020

wC 0.109± 0.005 0.114± 0.008 0.0234± 0.0015 0.022± 0.005

dγ / nm 22.1± 0.1 19.4± 0.9 N/A N/A

dαb
/ nm 97± 5 84± 4 139± 19 125± 3

Rwp 2.68 2.74 1.63 2.94

Rp 3.05 3.06 2.92 6.01

Rwp no bg 1.96 1.97 1.1 1.94

Rp no bg 2.45 2.41 1.88 3.91

Table B.4: Overall results for SP10 with tetragonal bainitic ferritexxvii
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[55] C. Garćıa-Mateo, F. G. Caballero, M. K. Miller, and J. A. Jimenez. On

measurement of carbon content in retained austenite in a nanostructured

bainitic steel. Journal of Materials Science (full set), 47:1004–1010, 2012.

[56] F. G. Caballero, M. K. Miller, C. Garćıa-Mateo, J. Cornide, and M. J.
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scale observations of bainite transformation in a high carbon high silicon

steel. Acta Materialia, 55:381–390, 2007.

[170] H. K. D. H. Bhadeshia, M. Lord, L. E. Svensson, P. Street, and C. Cb.

Silicon Rich Bainitic Steel Welds. 2003.

xlv



[171] J. H. Jang, I. G. Kim, and H. K. D. H. Bhadeshia. Substitutional solution

of silicon in cementite: A first-principles study. Computational Materials

Science, 44:1319–1326, 2009.

[172] J. H. Jang, I. G. Kim, and H. K. D. H. Bhadeshia. ϵ-carbide in Alloy Steels

: First-principles Assessment. Scripta Materialia, 63:121–123, 2010.

[173] D.-H. Huang and G. Thomas. Structure and Mechanical Properties of Tem-

pered Martensite and Lower Bainite in Fe-Ni-Mn-C Steels. Metallurgical

Transactions, 2:1587–1598, 1971.

[174] J. Liu and C. P. Luo. Precipitation behavior of the lower bainitic carbide

in a medium-carbon steel containing Si, Mn and Mo. Materials Science and

Engineering A, 438-440:153–157, 2006.

[175] W. Song, J. von Appen, P.-P. Choi, R. Dronskowski, D. Raabe, and

W. Bleck. Atomic-scale investigation of ϵ and θ precipitates in bainite in

100Cr6 bearing steel by atom probe tomography and ab initio calculations.

Acta Materialia, 61:7582–7590, 2013.

[176] C. H. Young and H. K. D. H. Bhadeshia. Strength of mixtures of bainite

and martensite. Materials Science and Technology, 10:209–214, 1994.

[177] H. K. D. H. Bhadeshia. Computational design of advanced steels. Scripta

Materialia, 70:12–17, 2014.

[178] H. I. Aaronson and H. A. Domian. Partitioning of Alloying Elements Be-

tween Austenite and Proeutectoid Ferrite or Bainite. Transactions Of The

Metallurgical Society Of AIME, 237:781–796, 1966.

[179] M. Soliman and H. Palkowski. Ultra-fine Bainite Structure in Hypo-eutectoid

Steels. ISIJ International, 47:1703–1710, 2007.

[180] I. Lonardelli, L. Girardini, L. Maines, C. Menapace, A. Molinari, and H. K.

D. H. Bhadeshia. Nanostructured bainitic steel obtained by powder metal-

xlvi



lurgy approach: structure, transformation kinetics and mechanical proper-

ties. Powder Metallurgy, 55:256–259, 2012.

[181] I. Lonardelli, M. Bortolotti, W. van Beek, L. Girardini, M. Zadra, and

H. K. D. H. Bhadeshia. Powder metallurgical nanostructured medium car-

bon bainitic steel : Kinetics , structure , and in situ thermal stability studies.

Materials Science and Engineering A, 555:139–147, 2012.

[182] H. Huang, M. Sherif, and P. E. J. Rivera-Dı́az-del Castillo. Combinatorial

optimization of carbide-free bainitic nanostructures. Acta Materialia, 61:

1639–1647, 2013.

[183] W. C. Leslie and G. C. Rauch. Precipitation of Carbides in Low-Carbon

Fe-Al-C Alloys. Metallurgical Transactions A, 9A:343–349, 1978.

[184] K. R. Kinsman and H. I. Aaronson. Effect of manganese and molybdenum

on the kinetics of the ferrite reaction. In Transformation and hardenability in

Steels: symposium, Climax Molybdenum Co., page 39, Ann-Arbor, Michigan,

U. S. A., 1967.

[185] J. M. Oblak and R. F. Hehemann. Structure and Growth of Widmanstatten

Ferrite and Bainite. In Hardenability of Alloy Steels: symposium: Climax

Molybdenum Co., pages 15–38, Ann-Arbor, Michigan, U. S. A., 1967.

[186] S. J. Paynter. Effects On The Hardness Of Super Bainite Through Isothermal

Heat-Treatment. PhD thesis, University of Wolverhampton, 2005.
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Study of Reaustenitisation of High Silicon Bainitic Steels: Decomposition of

Retained Austenite. Materials Transactions, 46:581–586, 2005.

[288] H. S. Yang and H. K. D. H. Bhadeshia. Uncertainties in dilatometric deter-

mination of martensite start temperature. Materials Science and Technology,

23:556–560, 2007.

[289] P. Kolmskog, A. Borgenstam, M. Hillert, P. Hedström, S. S. Babu,

H. Terasaki, and Y. I. Komizo. Direct observation that bainite can grow

below MS. Metallurgical and Materials Transactions A: Physical Metallurgy

and Materials Science, 43:4984–4988, 2012.

[290] H. K. D. H. Bhadeshia, S. A. David, J. M. Vitek, and R. W. Reed. Stress

induced transformation to bainite in pressure vessel steel. Materials Science

and Technology, 7:686–698, 1991.

[291] J. Sun and H. Yu. Microstructure development and mechanical properties of

quenching and partitioning (Q&P) steel and an incorporation of hot-dipping

galvanization during Q&P process. Materials Science and Engineering A,

586:100–107, 2013.

[292] A. R. Marder. Metallurgy of zinc-coated steel. Progress in Materials Science,

45:191–271, 2000.

[293] E. Povoden-Karadeniz. MATCALC thermodynamic database for iron

v2.021. Technical report, 2014.

[294] J. A. Wasynczuk, R. M. Fisher, and G. Thomas. Effects of copper on proeu-

tectoid cementite precipitation. Metallurgical Transactions A, 17:2163–2173,

1986.

lviii



[295] R. A. Ricks. A comparative study of precipitation at interphase boundaries

in Fe-Cu-Ni and Fe-Au-Ni alloys. Journal of Materials Science, 16:3006–

3012, 1981.

[296] I. Kirman. United States Patent 4043807, 1977.

[297] J. Fridberg, L. E. Torndahl, and M. Hillert. Diffusion in Iron. Jernkont.

Ann., 153:263–276, 1969.

[298] C. Stallybrass, A. Schneider, and G. Sauthoff. The strengthening effect of

(Ni,Fe)Al precipitates on the mechanical properties at high temperatures of

ferritic Fe-Al-Ni-Cr alloys. Intermetallics, 13:1263–1268, 2005.

[299] Z. K. Teng, G. Ghosh, M. K. Miller, S. Huang, B. Clausen, D. W. Brown, and

P. K. Liaw. Neutron-diffraction study and modeling of the lattice parameters

of a NiAl-precipitate-strengthened Fe-based alloy. Acta Materialia, 60:5362–

5369, 2012.

[300] Z. Teng, M. Miller, G. Ghosh, C. Liu, S. Huang, K. Russell, M. Fine, and

P. Liaw. Characterization of nanoscale NiAl-type precipitates in a ferritic

steel by electron microscopy and atom probe tomography. Scripta Materi-

alia, 63:61–64, 2010.

[301] S. Zhu, S. Tjong, and J. Lai. Creep behavior of a β(NiAl) precipitation

strengthened ferritic FeCrNiAl alloy. Acta Materialia, 46:2969–2976, 1998.

[302] H. I. Aaronson, H. A. Domian, and G. M. Pound. Thermodynamics of the

Austenite → Proeutectoid Ferrite Transformation part 2 Fe-C-X alloys. The

American Institute of Mechanical Engineers Metal Society Transactions, 236:

768–781, 1966.

[303] D. Koistinen and R. Marburger. A general equation prescribing the extent of

the austenite-martensite transformation in pure iron-carbon alloys and plain

carbon steels. Acta Metallurgica, 7:59–60, 1959.

lix



[304] NIST. Certificate of Analysis for Standard Refer-

ence Material 660 (lanthanum hexaboride), avilable from

https://www-s.nist.gov/srmors/certificates/archive/660.pdf.

Technical report, NIST, 1989.

[305] M. Drakopoulos. Diamond Light Source - I12 - JEEP: Joint

Engineering, Environmental and Processing. Available from

http://www.diamond.ac.uk/Home/Beamlines/I12.html, 2013.

[306] H. K. D. H. Bhadeshia. Tempered Marten-

site. Available from http://www.msm.cam.ac.uk/phase-

trans/2004/Tempered.Martensite/severe.gif, 2004.

[307] H. S. Hasan, M. J. Peet, and H. K. D. H. Bhadeshia. Severe tempering of

bainite generated at low transformation temperatures. International Journal

of Materials Research, 103:1319–1324, 2012.

[308] P. J. Jacques, E. Girault, T. Catlin, N. Geerlofs, T. Kop, S. van der Zwaag,

and F. Delannay. Bainite transformation of low carbon MnSi TRIP-assisted

multiphase steels: influence of silicon content on cementite precipitation and

austenite retention. Materials Science and Engineering A, 273-275:475–479,

1999.
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