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1 Introduction

The history of the world .... is an imperial history, the history of empires. Empires

were systems of influence or rule where ethnic, cultural or ecological boundaries

were overlapped or ignored. Their ubiquitous presence arose from the fact that

.... the endowments needed to build strong states were very unequally distributed.

Against the cultural attraction, or physical force, of an imperial state, resistance

was hard, unless reinforced by geographical remoteness or unusual cohesion. (Dar-

win [2007]; page 491)

A recurring theme in history is that the presence of small kingdoms is accompanied by

bloody conflict; rulers fight each other incessantly, small parcels of land are exchanged, trea-

sures are plundered, and capture of human beings is common. However, once a ruler acquires

a large advantage relative to his neighbours, he then quickly goes on to take them over, one

after the other, and to create an empire.1 This record of war and conquest leads us to ask:

What are the circumstances under which rulers will choose to fight? What is the optimal

timing of attack, now or later? When will the resource advantage of a ruler translate into

domination over neighbours? What are the limits to the size of the empire? The goal of this

paper is to develop a theoretical framework to address these questions.

We consider a set of ‘kingdoms’. Every kingdom is endowed with resources and controlled

by a ruler. Rulers desire to expand territory and acquire more resources. The ruler can wage

a war on neighboring kingdoms. The winner of a war takes control of the loser’s resources

and his kingdom; the loser is eliminated. The probability of winning a war depends on the

resources of the combatants and on the technology of war that is defined by a contest success

function.2 As the winning ruler expands his domain, he may be able to access and attack new

kingdoms. The neighborhood structure between kingdoms is reflected in a contiguity network.

We model the interaction between rulers as a dynamic game and study its (Markov Perfect)

equilibria.

We start by establishing that there exists a pure strategy Markov Perfect equilibrium

1Classical studies on the formation of empire include Polybius [2010], Tacitus [2009] and Khaldun [1989].
Starting with Gibbon [1776], there is a long tradition of modern work on empires, see e.g., Braudel [1995],
Darwin [2007], Elliott [2006], Lewis [2010], Morris and Scheidel [2009], and Thapar [1997, 2002]. Mathematical
models of the evolution of empire include Krainin and Wiseman [2016], Levine and Modica [2013], and Turchin
[2007].

2Classical writers on war and more recent research both point to the decisive role of the army size and
financial resources in securing victory, see e.g., Lewis [2010], Tzu [2008], Clausewitz [1993] and Howard [2009].
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and the equilibrium payoffs are unique. This sets the stage for a study of how the main

parameters—resources, the contiguity network, and the contest function—affect the dynamics

of war and peace.

Consider two rulers A and B, with resources xA and xB, and suppose xA > xB. When

they fight, the expected payoff of A is given by (xA + xB)p(xA, xB), where p(xA, xB) is the

contest success function that defines the probability of winning for ruler A. The contest success

function is said to be rich rewarding if fighting is profitable for A (and unprofitable for B),

i.e., (xA + xB)p(xA, xB) > xA. The technology is said to be poor rewarding, otherwise. The

technology shapes the optimal timing and the target of attack. When the technology is rich

rewarding, no-waiting is optimal: attacking the two rivals in sequence is preferable to attacking

the merged kingdom. In the poor rewarding setting, waiting is optimal: attacking the larger

kingdom formed after two rivals have fought is best. Moreover, with a rich (poor) rewarding

technology it is optimal for a ruler to attack opponents in increasing (decreasing) order of

resources. Equipped with these results, we turn to the study of equilibrium dynamics.

Theorem 1 shows that, with a rich rewarding technology, in any configuration with three

or more kingdoms, all rulers, even the poorest ones, find it optimal to attack a neighbour as

soon as possible. Thus, we are in a world with incessant warfare, the violence only stops when

all opposition is eliminated. When the network is connected, all opposition is eliminated only

with the hegemony of a single ruler.3 The arguments underlying this result are fairly general.

We start by defining a strong ruler: this is a ruler who has a ‘full attacking sequence’ (involving

all other opponents), such that at each point he is stronger than the opponent. Clearly, at any

point in time, the richest ruler is a strong ruler. It follows from the rich rewarding property

that, if everyone else is peaceful, then such a strong ruler has a strict incentive to fight every

other ruler. Next consider the case when other rulers may also wish to attack: does the strong

ruler still have an incentive to implement a fully attacking sequence? Given the no-waiting

property identified above, it then follows that the strong ruler has a dominant strategy: a full

attacking sequence. So, there is always at least one ruler who wishes to fight to the finish.

Anticipating this, and given the no-waiting property, every ruler, no matter how poor, has an

incentive to fight a neighbour. Thus in a connected network, in equilibrium, eventually there

will be only one ruler left. Remarkably, this result does not depend on the topology of the

network, as long as it is connected. Even very sparsely connected networks cannot prevent

conflict escalation.4

3A network is connected if there is a path between any two kingdoms.
4Earlier works of Krainin and Wiseman [2016] and Levine and Modica [2013] obtain the hegemony result
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Turning to the role of resources and networks in shaping the prospects of individual rulers,

firstly the network, via the neighborhood relation, determines access to weaker kingdoms and

threat from stronger ones. A ruler with relatively low resources my be strong because the

network enables him to accumulate resources by fighting weaker opponents. On the other

hand, a ruler with relatively high resources may be surrounded by stronger opponents and

have very limited opportunities to become a hegemon. This is the basic level on which

the distribution of resources, the topology of the network, and the position in the network

determines the probability of becoming a hegemon. For ease of exposition, consider the

well known Tullock Contest Function: the probability of ruler A winning is p(xA, xB) =

xγA/(x
γ
A + xγB), for some γ ∈ R+. It can be shown that the function is rich rewarding if γ > 1

and poor rewarding if γ < 1 (and rulers are indifferent between war and peace if γ = 1).

When γ is sufficiently large, the probability of a weak ruler becoming a hegemon becomes

negligible and the key factor affecting the probability of becoming a hegemon is whether the

rulers is strong or weak. Within the set of strong rulers, those who have ‘exclusive’ access to

weak kingdoms, have a significantly greater probability of becoming the hegemon (relative to

their strong rivals). We show that the dynamics of appropriation have powerful redistribution

effects: in particular, they tend to take resources away from the richest kingdoms and the

poorest kingdoms and toward the middle resource kingdoms.

We then take up poor rewarding contest success functions. Observe that, by definition, a

poor ruler gains from fighting a rich rival. However, in this setting, waiting is better: so the

poorer ruler would prefer to wait and allow for opponents to become large before engaging

in a fight. This gives rise to the prospect of peace. To make progress we divide the analysis

into two parts. To start, consider resource distributions with a single rich ruler: if this ruler

is sufficiently rich then his kingdom becomes an ‘irresistible’ prize; all other rulers have a

strict incentive to fight to acquire the rich kingdom. So peace cannot be sustained and the

outcome is hegemony. Next, consider the case where no ruler is very rich. Here we show

that perpetual peace and a phase of war followed by peace may be sustained in equilibrium.

The key to sustaining peace is the threat of imminent war. The equilibrium has the following

structure: no ruler wishes to fight a single fight because, once this fight is undertaken, all

rulers have an incentives to fight till the finish. It is this latter phase of war that makes

war today unattractive. These arguments are summarized in Proposition 4. We illustrate

through examples that the role of inequality is more general: across a range of networks and

in the setup where the neighborhood relation is complete and does not constrain the possible sequences of
fights.
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contest success functions, peace is more likely when resources are more similar. And, we

illustrate through examples, that the dynamics of appropriation in the poor rewarding setting

are ‘equalizing’. This is most clearly seen when Tullock paramter γ is close to 0: across a

range of networks, the equilibrium payoffs of all rulers are then more or less equal.

To summarize, the analysis suggests that in the baseline model, rich rewarding technology

creates powerful incentives for war: starting in a situation with multiple kingdoms, the dy-

namics are characterized by incessant fighting; the expansion of a kingdom and, consequently,

the size of the empire, is limited by the connectivity of the network. By contrast, if the tech-

nology is poor rewarding, the dynamics are considerably more complicated. War followed by

hegemony is possible, but peace with multiple kingdoms may also be a long run outcome.5

The interest turns next to other factors that would potentially act as restraints on war.

We study the possibility of rivals forming an alliance to resist the aggression of an active

ruler. When a ruler is picked to fight, the other rulers can form an alliance: this alliance

puts together resources of all members to defend attack against any of them. The study of

such defensive alliances delineates the circumstances under which a ‘balance of power’ can

help restrain aggression and limit hegemony. Next we turn to costs of war in terms of lost

resources. We consider a model in which rulers lose a proportion of resources in war. The

analysis shows that costs of war significantly alter the incentives of rulers to wage war. A

richer ruler will only wish to attack a poorer ruler if the resource differences are neither too

small nor too large. This creates the possibility of ‘buffer’ states: poor kingdoms that are

located in between large powerful neighbors and prevent the progression of conflict. Alliances

and costs of war thus highlight the ways in which the framework can be enriched in ways that

accommodate forces that limit the scope of hegemony.

We now place our paper in the context of the literature and clarify its contributions. Our

paper studies the dynamics of war and peace and the formation of empires; related work

includes Hirshleifer [1995], Jordan [2006], Krainin and Wiseman [2016], Levine and Modica

[2013, 2016], and Piccione and Rubinstein [2007]. In an early paper, Hirshleifer [1995] showed

that ‘anarchy’ or multiple opponents could be sustained in a dynamic setting only if the

technology satisfies γ < 1.6 We show that γ > 1 does indeed lead to the emergence of

5We have also considered a number of other factors: ties in a war, the guns vs butter trade-off, resurrection
of defeated rulers, and asymmetric contest success functions. The details of these extensions are available from
the authors.

6Fearon [1996] presents a result along similar lines: he considers a two-actor game in which states 1 and 2
bargain over a territory. Let xt ∈ [0, 1] be the territory 1 controls at time t. Suppose p(xt) is the probability
that 1 prevails if the states fight at time t. Drawing an analogy with the present paper, this technology is
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a hegemon, but our analysis goes beyond this insight along a number of dimensions: we

develop a non-cooperative and dynamic game with many far-sighted players; we consider

general contest functions, and there is a network structure which shapes the sequence of

attack strategies and the scale of empires. Our analysis introduces new concepts: rich/poor

rewarding contest success functions and strong/weak rulers. They enable us to address a

range of different questions, such as the timing and monotonicity of optimal attack strategies,

and how the prospects of individual rulers depend on the network and on the nature of the

contest success function.

The theoretical framework combines elements from the literature on contests, on resource

wars, and on networks. We now discuss the relationship between our paper and these litera-

tures.

There is a large literature on contests, for surveys see Konrad [2009] and Garfinkel and

Skaperdas [2012]. We consider a general model of multi-player contests inspired by the ax-

iomatic work of Skaperdas [1996].7 In recent work, Konrad and Kovenock [2009], Groh,

Moldovanu, Sela, and Sunde [2012], and Anbarcı, Cingiz, and Ismail [2018] study multi-player

sequential contests. In these papers the contest takes the form of an all-pay auction. The

interest is in how individual heterogeneity and the sequential contest structure determine ag-

gregate efforts and winning probabilities. By contrast, in our model, we abstract away from

effort so that we can study the dynamics of conflict with general contest success functions and

networks. To the best of our knowledge, the results on rich/poor rewarding contest success

functions and strong/weak rulers, and the mapping from these results to imperial history, are

novel in the context of this literature.8

The role of resources in shaping violent conflict is an active field of study, see e.g., Ace-

moglu, Golosov, Tsyvinski, and Yared [2012], Caselli, Morelli, and Rohner [2015], and Novta

[2016]. This literature provides evidence for appropriation of resources as a major motivation

for war. The theoretical work is mostly limited to two players or to symmetric models; for an

overview of the theory, see Baliga and Sjöström [2012]. Our paper contributes to this literature

by studying the cumulative dynamics of appropriation and the expansion of territory within

rich-rewarding if p(x) ¿ x when x > 1/2. Fearon [1996] shows that the distribution of territory converges to a
hegemon when p is rich-rewarding and to an even distribution of territory when p is poor-rewarding.

7For an early study of optimal strategy of attack in a three player game, see Shubik [1954]. Olszewski and
Siegel [2016] study static contests with a large numbers of players.

8In our model, a rich rewarding contest success function provides a rationale for waging a sequence of wars
due to the compounding of spoils of war. This bears some resemblance to the earlier work of Garfinkel and
Skaperdas [2000] and McBride and Skaperdas [2014] who study incentives for war in settings where rewards
extend through time. In their model, war today is attractive as it facilitates expansion tomorrow.
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a contiguity network, and by linking these dynamics to major episodes of world history.

Finally, our paper is a contribution to the recent literature on conflict and networks, see

e.g., Franke and Öztürk [2015], Hiller [2017], Kovenock and Roberson [2012], Huremović [2015],

Jackson and Nei [2015], and König, Rohner, Thoenig, and Zilibotti [2017]. For an overview see

Dziubiński, Goyal, and Vigier [2016]. Our paper advances this literature on two fronts: one,

the dynamics of appropriation in inter-connected conflict and two, how these dynamics are

decisively shaped by the contiguity network, the resources, and the contest success function.

The rest of the paper is organized as follows. Section 2 presents the basic model. Section 3

studies the incentives to fight and the optimal timing of attack. Section 4 presents the results

on equilibrium dynamics. Section 5 discusses two variants of a model: one where sequences

of attack are limited to a single fight and another one, where we allow for losses in war. We

conclude in Section 6. Proofs of all the results are moved to the Appendix.

2 The Model

We study a dynamic game in which rulers seek to maximize the resources they control by

waging war and capturing new territories. There are three building blocks in our model:

the interconnected ‘kingdoms’, the resource endowment for every kingdom, and the contest

success function.

Let V = {1, 2, . . . , n}, where n ≥ 2 is the set of vertices. Every vertex v ∈ V is endowed

with resources, rv ∈ R++. The vertices are connected in a network, represented by an undi-

rected graph G = 〈V,E〉, where E = {uv : u, v ∈ V, u 6= v} is the set of edges (or links)

in G. A network G is said to be connected if there is a path between any two vertices. For

expositional simplicity, we restrict attention to (undirected) connected networks. Our insights

extend in a natural way to directed networks.

A link between two vertices signifies ‘access’. Access may reflect physical contiguity. But,

in principle, it goes beyond geography: we do not restrict attention to planar graphs.9 So our

model allows for ‘virtual’ links, i.e., links made possible by advances in military and transport

technology.

Every vertex v ∈ V is owned by one ruler. At the beginning, there are N = {1, 2, . . . , n}
rulers. Let o : V → N denote the ownership function. The resources of ruler i ∈ N under o,

9A graph is planar if it can be embedded in a plane, i.e. drawn in a plane in such a way that the edges
intersect at their endpoints only. An example of a graph that is not planar is a clique with 5 nodes.
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are given by

Ri(o) =
∑

v∈o−1(i)

rv (1)

The network together with the ownership configuration induces a neighbor relation between

the rulers: two rulers i, j ∈ N are neighbors in network G = 〈V,E〉 if there exists u ∈ V ,

owned by i, and v ∈ V , owned by j, such that uv ∈ E. Figure 1 illustrates vertices, resource

endowments, and connections; vertices controlled by the same ruler share a common colour.

The light line between vertices represents the interconnections, the dotted lines encircling

vertices owned by the same ruler indicate the ownership configuration, and the thick lines

between vertices reflect the induced neighborhood relation between rulers.

Figure 1: Neighboring Rulers

When two rulers fight, the probability of winning is specified by a contest success function.

Following Skaperdas [1996], we consider symmetric contest success functions with no ties.

Given two rulers, A and B, with resources xA ∈ R++ and xB ∈ R++, respectively, p(xA, xB)

is the probability that A wins the conflict and p(xB, xA) is the probability that B wins the
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conflict.

The game takes place in discrete time: rounds are numbered t = 1, 2, 3 . . . . At the start of

a round, each of the rulers is picked with equal probability. The chosen ruler, (say) i, chooses

either to be peaceful or to attack one or more rulers, in a sequence, such that subsequent

opponents in the sequence are neighbours of the ruler when they are attacked. If a ruler

attacks a rival, he does so with all his current resources. If he chooses peace, one of the

remaining rulers is picked, again with equal probability, and asked to choose between war and

peace, and so forth, until one of the asked rulers chooses attack or all the ruler are asked

and choose peace. If no ruler chooses attack, the game ends. If the attacker loses one of the

attacks in the sequence or wins all the attacks in the sequence, the round ends.10 When two

rulers i and j fight, the winner takes over the entire kingdom of the loser (and also inherits the

boundaries, and hence the connections). This dynamic is illustrated in Figure 1: the orange

kingdom wins the war with the red kingdom and expands. This expansion brings it in contact

with new neighbors, the light and dark green kingdoms. The game ends when all rulers choose

to be peaceful (the case of a single surviving ruler is a special case, as there is no opponent

left to attack). Observe that, given these rules, the game ends after at most n− 1 rounds. It

may of course end earlier: this happens if all the rulers choose peace at a round.

The configuration of kingdoms and rulers – who is a neighbor of whom – is (potentially)

evolving over time. Given a set of vertices U ⊆ V , G[U ] = 〈U, {vu ∈ E : v, u ∈ U}〉 is the

subgraph of G restricted to vertices in U and links between them. The set of valid ownership

configurations, given graph G, is denoted by

O = {o ∈ NV : for all i ∈ N , G[o−1(i)] is connected}. (2)

As the graph is fixed, for simplicity, we omit it as an argument.

A state is a pair (o, P ), where P ⊆ N is the set of rulers who were picked prior to the

current mover and chose peace at o. Ruler i, picked at state (o, P ) ∈ O × 2N\{i}, chooses a

sequence of rulers to attack. A sequence σ is feasible at o in graph G if either σ is empty, or

if σ = j1, . . . , jk and for all 1 ≤ l < k, jl /∈ {i, j1, . . . , jl−1} and jl is a neighbor of one of the

rulers from {i, j1, . . . , jl−1} under o in G. A sequence σ is attacking if it is non-empty. Let

N∗ denote the set of all finite sequences over N (including the empty sequence). A strategy of

10De Jong, Ghiglino, and Goyal [2014] introduced a model of conflict with resources and a network: the
key difference is that conflict is imposed exogenously. Links are picked at random and rulers must fight. By
contrast, in the present paper, the choice of waging a war or being at peace is the central object of study.
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ruler i is a function si : O× 2N\{i} → N∗ such that for every ownership configuration, o ∈ O,

and every set of rulers, P ⊆ N \ {i}, si(o, P ) is feasible at o in G.11 Given ruler i ∈ N and

graph G, the set of strategies of i is denoted by Si; S =
∏

i∈N Si denotes the set of strategy

profiles.

The probability that ruler 1 with resources R1 wins a sequence of conflicts with rulers with

resources R2, . . . , Rm, accumulating the resources of the losing opponents at each step of the

sequence is

pseq(R1, . . . , Rm) =
m∏
k=2

p

(
k−1∑
j=1

Rj, Rk

)
. (3)

Given o, a set of rulers, P , and a strategy profile s = (s1, s2, . . . , sn) ∈ S, the probability

that the game ends at o
′, is given by F (o′ | s,o, P ). We shall sometimes refer to a final

ownership configuration as an outcome. An outcome is a hegemony if it involves a ruler who

owns all the nodes. The expected payoff to ruler i from strategy profile s ∈ S at state (o, P )

is:

Πi(s | o, P ) =
∑
o
′∈O

F (o′ | s,o, P )Ri(o
′). (4)

Every ruler seeks to maximize his expected payoff. The goals of rulers have been studied

extensively; for classical discussions see Hobbes [1651], Machiavelli [1992], and for more recent

work see Jackson and Morelli [2007].12

A strategy profile s ∈ S is a Markov perfect equilibrium of the game if and only if,

for every ruler i ∈ N , every strategy s′i ∈ Si, and every state, (o, P ) ∈ O × 2N\{i}, Πi(s |
o, P ) ≥ Πi((s

′
i, s−i) | o, P ). The game has finite horizon and there are no simultaneous moves.

Therefore an argument based on backward induction can be used to establish equilibrium

existence. In addition, all equilibria are payoff equivalent: expected utility at the beginning

of the game, for every player, is the same under every equilibrium. To see why, consider a

11Observe that the only feasible sequence for rulers who do not own any vertices, and for the ruler who owns
all vertices, is the empty sequence.

12We assume that ruler’s utility is linear in resources. Risk-averse and risk-loving preferences can easily
be accommodated. Suppose utility is given by u(x), with u(0) = 0, u′ > 0 and u′′ < 0. This means that
u(x+ y) < u(x) + u(y). Expected payoff to x vs y can be written as:

p(x, y)u(x+ y) = p(x, y)(u(x) + u(y))(1− d(x, y))

where d(x, y) = 1− u(x + y)/(u(x) + u(y)). So 0 < d(x, y) < 1: in other words, risk-aversion creates a ‘cost’
of conflict.
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state with only two active rulers, i and j. If i moves after j then i chooses between peace or

attacking j. The ruler is indifferent between these choice only if they are payoff equivalent.

Proceeding backwards, we can show that all equilibria yield the same expected payoff to all

players at all states.

Proposition 1. Fix a connected graph G. For any symmetric contest success function, p, and

any resource endowment, r ∈ RV
++, there exists an equilibrium and all equilibria are payoff

equivalent.

3 The Incentives to Fight

This section introduces a general class of contest success functions and presents general results

on incentives to fight for the two and three ruler setting. Understanding these basic setting

allow us to establish how incentives to fight are shaped by the properties of the contest success

function.

The notions of rich and poor rewarding contest success functions are introduced and a

characterization is presented in terms of standard properties such as increasing and decreasing

returns. The interest then turns to the timing and order of optimal attacks: conditions on the

contest success functions are obtained under which rulers prefer to wait/not wait to attack.

In general, a contest success function is function q : R2
++ → [0, 1]2. Following Skaperdas

[1996]), we consider three axioms for contest success functions, together with an additional,

fourth axioms, that substitutes independence of irrelevant alternatives axiom for the case of

bilateral contests.13

A1 For all (x1, x2) ∈ R2
++, q1(x1, x2) + q2(x1, x2) = 1,

A2 For all i ∈ {1, 2} and j ∈ {1, 2} \ {i}, qi(xi, xj) is increasing in xi and decreasing in xj,

A3 For all (x1, x2) ∈ R2
++, q1(x1, x2) = q2(x2, x1),

A4 For all i ∈ {1, 2} and (x1, x2, x3) ∈ R3, qi(x1, x2)qi(x2, x3)qi(x3, x1) = (1− qi(x1, x2))(1−
qi(x2, x3))(1− qi(x3, x1)).

13Skaperdas [1996] proposes five axioms for contest success functions, the first three of them correspond to
axioms A1-3, the fourth, consistency axiom, is always satisfied in the case of two bilateral contests, and the
fifth axiom, independence of irrelevant alternatives (IIR), applies to contests with at least three participants.
Our axiom A4 replaces IIR. It is equivalent to IIR in the case of three or more sided conflict and replaces it
in the case of two sided conflicts, where IIR has no bite.
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By axiom A3, the contest success function is symmetric and can be represented by function

p : R2
++ → [0, 1], where q1(x1, x2) = p(x1, x2) and q2(x1, x2) = p(x2, x1). Using the additional

axiom, A4, the proof of Skaperdas [1996] extends to show that a bilateral contest success

function satisfying axioms A1-4 necessarily takes the form

p(x, y) =
f(x)

f(x) + f(y)
. (5)

with an increasing, positive, function f : R++ → R++.14 The study of contests remains a very

active field of study; see Fu and Pan [2015] for a a recent contribution and for references to

the literature.

Recall that (x + y)p(x, y) is the expected payoff of a ruler with resources x who fights an

opponent with resources y. We shall say that the contest success function, p, is rich rewarding

if for all x, y ∈ R++ with x > y,

(x+ y)p(x, y) > x (6)

Similarly, we shall say that p is poor rewarding if for all x, y ∈ R++ with x < y,

(x+ y)p(x, y) > x (7)

A rich rewarding contest success function gives the richer side an incentive to fight, while

poor rewarding one gives the poorer side an incentive to fight. We characterize rich and poor

rewarding contest success functions in terms of standard properties of the function f . We also

examine the timing of optimal attack: whether to attack now or to wait and attack later. A

contest success function, p, is said to have the no-waiting property if for all x, y, z ∈ R++,

p(x, y)p(x+ y, z) > p(x, y + z). It is said to have the waiting property if for all x, y, z ∈ R++,

p(x, y)p(x+y, z) < p(x, y+z). With contest success functions having the no-waiting property,

it is profitable for a ruler to attack the other two rulers in a sequence rather than wait to fight

the merged kingdom. The converse is true in the case of contest success functions that exhibit

the waiting property. Rich/poor rewarding and the timing of attacks are intimately related.

Turning to the optimal order of attack, a contest success function has the poor-first property

if the expected payoffs of attacking the poor ruler followed by the rich ruler are larger, i.e., for

all x, y, z ∈ R++, with y < z, p(x, y)p(x+y, z) > p(x, z)p(x+ z, y). A contest success function

has the rich-first property if the converse holds. Define

14In addition, f is unique up to positive multiplicative transformations.
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h(s, t) =
f(t)f(s+ t)

f(s+ t)− f(s)− f(t)
.

Proposition 2. Consider a contest success function, p, that satisfies (5). The function p is

rich rewarding if and only if f exhibits increasing returns to scale; it is poor rewarding if and

only if f exhibits decreasing returns to scale. In addition:

1. Timing of attack: If p is rich rewarding then it has the no-waiting property, while if p

is poor rewarding then it has the waiting property.

2. Order of attack: p has the poor-first (rich-first) property if and only if h(s, t) is strictly

increasing (decreasing) in t ∈ R++, for all s ∈ R++.

The argument for the first part proceeds as follows. Suppose that x > y. If f exhibits

increasing returns15 then f(x)/(f(x)+f(y)) > x/(x+y). Multiplying both sides by x+y now

yields the desired implication. On the other hand, if the stronger side gains in expectation,

then it must be that (x + y)f(x)/(f(x) + f(y)) > x. Rewriting and rearranging this gives

us the inequality f(x)/(f(x) + f(y)) > x/(x + y), which requires that f exhibits increasing

returns. A similar line of reasoning applies to the poor rewarding case. The argument for the

second part proceeds as follows. In the case of timing of attack, we begin by showing that the

no-waiting property is equivalent to f being super-additive. The next step demonstrates that

super-additivity is a weaker property than increasing returns to scale, and that concludes the

proof. In the case of order of attack, rewriting of the poor-first property derives the required

expression.

We note that the optimal order of attack result can be generalized to cover n opponents: if

all opponents are neighbours, then the order of attack is monotonically increasing (decreasing)

in the resources of opponents if h(x, y) is increasing (decreasing) in y for all x (this result is

stated and proved in the Appendix).16

15Function f exhibits increasing returns to scale if and only if f(x)/x is increasing on its domain and it
exhibits decreasing returns to scale if and only if f(x)/x is decreasing on its domain.

16The qualification ‘if all opponents are neighbors’ is important. If some opponents are not neighbors then
it may be optimal to attack a richer neighbor in preference to a poor neighbor, so as to reach other poorer
opponents first. Here is an example. Suppose G is a line network with 4 rulers, a, b, c, and d, each controlling
one vertex (in that order). Suppose that resources of ruler a are x ∈ (0, 2). The resources of b, c and d are
respectively 2, 2.01 and 1. Assume Tullock contest success function with f(x) = x2. If x < 1.83 then the
optimal full attacking sequence of ruler b is (a, c, d): so it prescribes attacking the weakest neighbor first. On
the other hand, if x > 1.84 then the optimal full attacking sequence is (c, d, a): it is better to first attack a
stronger neighbor, c, to get access to weak d, and only then attack a.
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We illustrate the scope of these results through a consideration of the widely studied

Tullock contest success function.17

p(x, y) =
xγ

xγ + yγ
,

where γ > 0. Hence, f(x) = xγ. If γ > 1 then f has increasing returns to scale. From

Proposition 2 it follows that the contest success function is rich rewarding and has the no-

waiting property. On the other hand, if γ < 1, then f exhibits diminishing returns to scale.

It is therefore poor rewarding and the ruler would prefer to wait. Finally, observe that

(x + y)p(x, y) = x, for all x, y ∈ R++ if γ = 1. So the contest success function is reward

neutral ; it is also timing neutral (as for all x, y, z ∈ R++, p(x, y)p(x + y, z) = p(x + y, z)).

Lastly, in the case of γ > 1, h(s, t) is increasing in t for all s. Hence in this case the contest

success function has the poor first property. On the other hand, in the case of γ < 1, h(s, t) is

decreasing in t for all s and the contest success function has rich first property. Since h(s, t)

remains constant in t for all s, if γ = 1, so the contest success function is order neutral in this

case. To summarize:

Corollary 1. The Tullock contest success function is rich rewarding, has the no-waiting and

poor first properties if γ > 1; it is poor rewarding, has the waiting and rich first properties if

γ < 1. It is reward, timing, and order neutral if γ = 1.

The condition with regard to order of attack generalizes to larger sequences. Hence, in the

case of the Tullock Contest Function, it yields a clean implication: if γ > 1 then the optimal

attack strategy prescribes attacking rivals in increasing order of resources; the converse holds

if γ < 1. These results set the stage for the study of n ≥ 3 rulers located in a connected

network.18

We have not been able to locate clear empirical evidence on the nature of contest success

functions. The key of resources has been noted in the context of the formation of the first

Chinese Empire and the expansion of the Roman Empire (Lewis [2010], Polybius [2010]). For

more recent times, Clausewitz [1993], drawing inspiration from the Napoleonic wars in Europe,

argued that superiority in numbers was fundamental: an army twice as large as its opponent

almost never lost the battle (not even against a great general like Bonaparte). Howard [2009]

17In the Appendix we disucss Hirshleifer Difference Contest Function.
18The literature has tended to assume γ ≤ 1. This is because of concerns about the existence of an

equilibrium in models where resources are costly. In our setting, the ruler chooses whether to fight or not and
in this setting the existence of equilibrium does not depend on the value of γ.
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likewise argues that army size was critical factor in the victory of Germany over France in the

Franco-Prussian Wars. These observations are consistent with a probability of winning that

is responsive to army size and resources. In what follows, we therefore present equilibrium

analysis for both rich and poor rewarding contest success functions.19

4 Conquest and Empire

This section studies equilibrium dynamics of war and peace and the formation of empires.

For the rich rewarding case, we show that equilibrium is characterized by incessant warfare

and that the outcome is hegemony. The connectivity of the network defines the limits of

the hegemony. Depending on the resources and location in the network, the rulers can be

characterized as either weak or strong. This characterization plays a key role in the analysis.

The analysis of poor rewarding contest functions is more partial because the dynamics are

considerably more complicated: we show that perpetual peace, perpetual war (and hegemony),

and a phase of war followed by peace can all arise in equilibrium.

Given ownership configuration o, the set of active rulers at o is

Act(o) = {i ∈ N : ∅ ( o
−1(i) ( V }.

An ordering of the elements of the set Act(o) \ {i}, σ, such that the sequence σ is feasible

for i in G under o is called a full attacking sequence (or f.a.s). Figure 2 illustrates such a

sequence(for the orange kingdom).

We are now ready to state our first main result on equilibrium dynamics.

Theorem 1. Consider a rich rewarding contest success function that satisfies (5). Suppose

G is a connected network and let r ∈ RV
++ be a generic resource profile. In equilibrium, every

active ruler chooses to attack a neighbor if |Act(o)| ≥ 3, and at least one of the active rulers

attacks his opponent if |Act(o)| = 2. The outcome is hegemony and the probability of becoming

a hegemon is unique for every ruler.

The result offers an account of the dynamics of conflict in a rich rewarding setting when

rulers are driven by a desire to maximize resources under their control. It predicts incessant

19To get a sense of the numbers, consider the Tullock Contest Function and suppose one army is twice the
size of the other army. With an exponent γ = 2, the probability of winning for the larger army is 0.8, and
with an exponent γ = 4 it is (approx) 0.95. On the other hand, with γ = 0.5 the probability of winning is 0.6,
and with γ = 0 the probability is 0.5.
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Figure 2: Full Attacking Sequence

fighting, preemptive attacks, and long attacking sequences. In particular, at every round

with at least 3 active rulers, every ruler (even a weak one) chooses to attack a neighbour in

equilibrium. It is worth drawing attention to the generality of this result: it holds for all rich

rewarding contest functions, for any connected network, and for generic resources.

We discuss the arguments underlying the theorem. A ruler is said to be strong if he has

an attacking sequence σ = i1, . . . , ik, where for all l ∈ {1, . . . , k},

l−1∑
j=0

Rij(o) > Ril(o).

In other words, at every step in the attacking sequence, the ruler has more resources than

the next opponent. The set of strong rulers at ownership configuration o is

S(o) = {i ∈ Act(o) : i has a strong f.a.s. σ at o}.

A ruler who is not strong is said to be weak. Note that (generically) in any state, the ruler

with the most resources is strong, while the ruler with the least resources is weak. Thus both

sets are non-empty in every network and for (generic) resource profiles.

The first step is to show that, assuming that all other rulers choose peace in all states,

it is optimal for a strong ruler to choose a full attacking sequence. This is true because the

contest success function is rich rewarding and so a strong ruler has a full attacking sequence

that increases his resources in expectation, at every step, along the sequence. The second

step extends the argument to cover opponents who choose war. If opponents are active then
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the no-waiting property (from Proposition 2) tells us that it is even more attractive to not

give them an opportunity to move. For a strong ruler it is therefore a dominant strategy to

use an optimal full attacking sequence. The final step in the proof covers non-strong rulers

to establish that with 3 or more active rulers, it is optimal for every ruler to choose a full

attacking sequence. Observe that we have already shown that every non-strong ruler knows

that he will be facing an attack sooner or later. This means that waiting can only mean that

the opposition will become (larger and) richer. The no-waiting property then tells us that

every ruler must attack as soon as possible. If there are only two active rulers then the richer

ruler has a strict incentive to attack the poorer opponent (this follows from the definition of

the rich rewarding contest function).

We now examine the role of the contiguity network and resources more closely. For ex-

positional simplicity, we focus on the Tullock contest success function. Notice that, due to

timing and order neutrality, there are no interesting network effects when γ = 1: equilibrium

expected resources of any ruler remain equal to his initial resources. When γ is large it is

never optimal to attack a richer ruler if other options are available. The optimal strategy for a

strong ruler must involve attacking a poorer ruler at every stage in the attack sequence. Such

a sequence is clearly not available for a weak ruler: the probability of a weak ruler becoming

a hegemon converges to zero, as γ grows.

Given the initial ownership configuration o0, a γ, and resources r, let Probi(r, γ | o0) be

the equilibrium probability of ruler i becoming the hegemon. Define

Prob∗i (r | o0) = Probi(r, lim
γ→+∞

γ | o0).

Proposition 3. Suppose the contest success function is Tullock, the network G is connected,

and the resources r ∈ Rn
++ are generic. The probability of a weak player becoming a hegemon

becomes negligible as γ grows. Specifically,

Prob∗i (r | o0)

{
≥ 1
|Act(o)| , if i ∈ S(o0)

= 0, otherwise.

Whether a ruler is strong or weak depends both on the distribution of resources and on

the position of the ruler in the contiguity network. In Figure 3 we represent strong rulers in

red and weak rulers in yellow. It is helpful to define the boundary of a set of vertices U ⊆ V

in G is

BG(U) = {v ∈ V \ U : there exists u ∈ U s.t. uv ∈ E}
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A set of vertices, U , is weak if G[U ] is connected, BG(U) 6= ∅, and for all v ∈ BG(U),

rv >
∑

u∈U ru. A weak set of nodes is surrounded by a boundary, constituted of nodes, each

of whom is endowed with more resources than the sum of resources of vertices within the set.

Weak sets are illustrated in Figure 3. It is easy to see that, for any initial state o, a ruler is

weak if his vertex belongs to a weak set and, otherwise, the ruler is strong.

Figure 3: Weak rulers (surrounded by thick lines) and strong rulers

Proposition 3 covers the case of large γ. We now turn to examples to show that the

distinction between strong and weak rulers is central to the study of dynamics more generally,

across rich rewarding γ. Consider three networks with 10 nodes: the clique network (with 45

links), a connected network with 27 links and a tree network (with 9 links). The resources

endowments at the nodes are 2, 3, 6, 11, 13, 15, 16, 18, 21, and 23, respectively. The strong

rulers are presented in purple, while the weak rulers are presented in yellow. These networks

and resource endowments are presented in Figure 4. Observe that as we delete links from

clique to obtain the network with 27 links, the number of weak rulers increases strictly (from

2 to 3) and the same happens as we go move from network with 27 links to the network with

9 links (the number goes up from 3 to 4).

We compute the equilibrium payoffs in these examples;20 the results are summarized in

Figure 5.21 The key point to note is that, even for γ = 8, the long run prospects of a ruler are

20We would like to stress that all the computational examples in the paper are obtained by means of
numerical calculations of equilibrium strategies and payoffs and not by simulations. This allows us to obtain
much more accurate results.

21In the figures we present the relation between initial end expected equilibrium resources using scatter
diagrams and we present the distribution of resources using Lorenz curves. For any x ∈ [0, 100], a Lorenz
curve represents the fraction of the total resources owned by poorest x% of the rulers.
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essentially determined by whether he is strong or weak. Further study of examples that span

a range of different values of γ reveal that this pattern is reinforced when we increase γ.

Figure 4: Examples of Networks

Given the importance of strong and weak rulers, we briefly comment on how changes in

resources and links affect the set of strong and weak rulers. Given a resource profile, observe

that adding links to a network offers all rulers potentially more sequences of attack. This

means that a ruler who was weak may now have a strong sequence. Adding links (weakly)

therefore expands the set of strong rulers. The number of strong rulers is maximized in the

complete network and it is minimized when the strongest ruler is at the center of a star

network. Given a network and a resource configuration, an increase in resources of a ruler

either maintains his status or switches him from weak to strong. Observe that an increase in

resources of a ruler may well lead to another ruler becoming weak. From Proposition 3 we

can infer that additional resources for one ruler can make a big difference to his and others’

long term prospects.

The discussion so far has focused on the difference between strong and weak rulers. We

now argue that the network structure also shapes the relative prospects of different strong

rulers. Consider an example with two strong rulers. Suppose the two rulers are 1 and 2, and

they own vertices v1 and v2, respectively. The set of the remaining vertices, V \ {v1, v2}, can

be partitioned into three sets: the set of nodes reachable from v2 via v1 only, denoted by U1,

the set of nodes reachable from v1 via v2 only, denoted by U2, and the remaining nodes, U12

(c.f. Figure 6).

To see the effects of the networks structure easily, suppose that γ is large and that rv1 +

RU1 > rv2 + RU2 + RU12 . This ensures that ruler 1 remains strong as long as he is active.

Ruler 2, on the other hand, becomes weak if ruler 1 accumulates enough resources from the
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Figure 5: Equilibrium Payoffs and Lorenz Curves: γ = 8.

set U1. The probability of ruler 1 becoming a hegemon is approximately 1/2 + q, where q is

the probability that ruler 2 is picked to move before ruler 1 is picked to move and he is weak

when that happens. Thus q is the probability that 1 conquers sufficiently many nodes before

ruler 2 is picked to move. To fix ideas, suppose that 1 needs to acquire all the nodes in U1 to

become uniquely strong. Suppose |U1| = k. If G[U1] is a fully disconnected network then q

is approximately equal to k!/(k + 2)! = 1/((k + 1)(k + 2)). If, on the other hand, G[U1] is a

clique with k − 1 strong rulers then q is approximately equal to (k − 1)(k + 1)!/(2(k + 2)!) =

(k−1)/(2(k+2)). As k gets large, the probability that ruler 1 becomes the hegemon converges

to 1/2 in the former case, and to 1 in the latter case.

Figure 6: Partitioning of a Graph with Two Strong Rulers

4.1 Poor Rewarding Contest Success Functions

Recall that in the poor rewarding setting, every bilateral conflict is profitable to the poorer

of the two opponents. However, the poor rewarding property also implies that rulers have a

preference to wait before they fight. These two considerations suggest that the dynamics can

be complicated. We are especially interested in the possibility of peace.

19



We start by noting that in equilibrium, at every ownership configuration, there is either

peace or fight, regardless of the order in which the rulers are picked to move. Formally, given

a strategy profile, s, an ownership configuration o ∈ O is peaceful under s, if for all i ∈ N
and all P ∈ 2N\{i}, si(o, P ) is the empty sequence. An ownership configuration o ∈ O is

conflictual under s if for every sequence i1, . . . , in of rulers from N there exists k ∈ {1, . . . , n}
such that sik(o, {i1, . . . , ik−1}) is not empty. In other words, regardless of the order in which

the rulers are picked to move at o, one of the rulers chooses an attacking sequence.

By the observation above, the possibility of peace means that, in equilibrium, there exist

ownership configurations, with two or more active rulers, at which all the rulers prefer staying

peaceful to choosing fight. To make progress we divide the analysis into two parts: first, we

characterize situations where peace is impossible, and second, we turn to situations where

peace may be sustainable. We say that there is perpetual peace in a given strategy profile, if

the initial state is peaceful. We say that there is war followed by peace in a given strategy

profile if the initial state is not peaceful and no equilibrium outcome is hegemony.

Proposition 4. Consider a generic poor rewarding contest success function that satisfies (5).

1. For any connected network, G, and any generic resource endowment, r ∈ RV
++, every

ownership configuration o ∈ O is either peaceful or conflictual in equilibrium.

2. For any connected network, G, any node v ∈ V , and any resource endowment of the

other nodes, r−v, there exists a resource level r̃v such that for all rv > r̃v, there is fight

till hegemony in equilibrium under resource endowment (rv, r−v).

3. For any n ≥ 4, there exists a network and a generic resource profile such that there is

perpetual peace in equilibrium. Similarly, there exists a network and a generic resource

profile such that there is war followed by peace in equilibrium.

The result should be seen as a possibility result: it illustrates the rich range of outcomes

possible under the poor rewarding contest success function. A comparison of Theorem 1 with

Proposition 4 reveals contrasting optimal strategies (full attacking sequence versus no fighting)

and outcomes (hegemony versus multiple kingdoms) and highlights the key role of the contest

success function in shaping conflict dynamics. The hegemony result relies on quite different

arguments than the hegemony result under rich rewarding contest success function. In the

poor rewarding case, the existence of a sufficiently rich ruler motivates other rulers to fight.

However, due to the waiting property, these rulers may choose to fight only if others do not.
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This is in contrast to the rich rewarding case, where each ruler chooses fight whenever he is

given a chance. The peace and war followed by peace outcomes rely on the idea of fear of

conflict escalation. We propose a network and a (generic) resource profile for which, whenever

any ruler chooses to fight, there will be fight till hegemony in the following states and the ruler

who started the conflict will be involved in all the following conflicts. The resource endowments

are such that it is never profitable for any ruler to be involved in fight till hegemony starting

from the initial state. The main challenge is to show that such a resource endowment exists,

for general n.

We next examine how networks, resources, and the contest success function affect the

prospects of peace. We consider Tullock contest success function with two values of γ: 0.05

(low) and 0.8 (high) and networks with 10 nodes (as in the rich rewarding case). In addition we

consider eight ranges of resources: [45, 55], [40, 60], [35, 65], [30, 70], [25, 75], [20, 80], [15, 85],

[10, 90]. For each triple of γ, number of links, k, and resource range, [a, b], we pick 1000

random samples of connected networks of k links with resources drawn uniformly from the

set (of 10, 000 evenly spaced values from) [a, b]. Figure 7 presents the frequencies of samples

exhibiting peace in the first round as a function of the resource range. It suggests that peace

is more likely when resources are drawn from a smaller range: this is true for both high and

low values of γ and true also across a wide range of networks. Taking together, Proposition 4

and our examples show that resource equality is conducive for peace.
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Figure 7: Frequency of Peace: γ = 0.05 (left), γ = 0.8 (right).

This section concludes with an observation on equilibrium payoffs. We take up the same

three networks as in the rich rewarding case (from Figure 4) and we fix the Tullock parameter

γ to be equal to 0.05. Figure 8 presents the equilibrium payoffs and the Lorenz curves for the

three networks and the initial resources. It is clear that, when γ is very small, the equilibrium
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dynamics are powerfully equalizing. A comparison with Figure 5 also reveals the big difference

between the rich and poor rewarding setting: the poorer kingdoms gain significantly in the

latter setting, and this is reflected at the aggregate level via the Lorenz curves.
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Figure 8: Equilibrium Payoffs and Lorenz Curves: γ = 0.05.

5 Extensions

In this section we consider two extensions of the benchmark model. Firstly, we consider a

variant where the attack sequence chosen by the rulers at each round consist of only one

opponent. This allows the rulers to react quicker to others moving. Second, we study the

potential of alliances to block the spread of a kingdom. Thirdly, we consider a variant where

each fight results on losses to resources. This reduces incentives of the rulers to choose war

and, if the losses in war are sufficiently large, allows for peace to emerge.

5.1 Short Attack Sequences

In the basic model, a ruler is allowed to choose a full attacking sequence of attacks. In

particular, all other rivals remain passive, while this ruler executes this sequence. In this

extension, we allow for rivals to have more opportunity to react and the goal of this section

is to examine if our results are robust to this generalization.

We consider a variant of our model where rulers, when picked to move, can either choose

peace or choose a sequence of attack of length 1 only, and then a new mover is drawn. A

strategy of a ruler i is a function si : O × 2N\{i} → N ∪ {ε} such that for every ownership

configuration, o ∈ O, and every set of rulers, P ⊆ N \ {i}, si(o, P ) is feasible at o in G, that
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is either si(o, P ) is empty or si(o, P ) consists of a neighbor of i under o in G. As the problem

is especially relevant under the no-waiting property, in this discussion, we restrict attention

to rich rewarding contest success functions. Notice that the proof of Proposition 1 can be

adjusted in a straightforward way and so Proposition 1 is valid for the short-attack variant

of the model. In particular, equilibrium existence and payoff equivalence of equilibria hold in

this model as well.

First, we take up the setting with a unique strong ruler. This situation arises naturally

if one ruler controls more than half of the resources. But the condition is significantly more

general. Given any network, G, recall that a maximal set of nodes such that any two distinct

nodes in the set are reachable from each other by a path in G is called a component in G.

The set of all components of G is denoted by C(G). In addition, given a set of nodes, U ⊆ V ,

G−U = G[V \U ] denotes the graph obtained by removing the nodes in U and all their links

from G. A connected graph G with resource endowment r has a unique strong node if and

only if there exists a node v ∈ V such that for every component C ∈ C(G− {v}), rv > RC .

Proposition 5. Consider a rich rewarding contest success function that satisfies (5). Suppose

the network G is connected and a (generic) resource profile r ∈ Rn
++ is such that there is exactly

one strong node. In equilibrium, at every ownership configuration, o, at least one ruler attacks

his neighbor. So the outcome is hegemony and the probability of becoming a hegemon is unique

for every ruler.

The proof is presented in the Appendix. The first observation is that if there is a unique

strong ruler under some ownership configuration, then in every ownership configuration that

follows in the course of the game, there is also a unique strong ruler. This is because no

weak ruler can become strong, unless he fights and beats a strong ruler (in which case he

becomes the unique strong ruler). Given this observation, we now show that at any state,

for any strategy profile of the other rulers, the unique strong ruler increases his resources in

expectation using the ‘optimal attacking’ strategy. We proceed by induction. For two rulers,

which is the base step, the claim clearly holds. Assume now that the claim holds for k rulers.

We show that the result holds for k+1 active rulers. This is because, due to the rich-rewarding

contest success function, any fight between the strong ruler and any other ruler increases his

resources in expectation and then, by the induction hypothesis, the expected resources at

the end of the game are even higher. If any other two rulers fight, then the resources of the

strong ruler remain unchanged in any following state and then, by the induction hypothesis,

they increase. Thus, in any equilibrium there cannot be peace, because, at any ownership
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configuration, the strong ruler prefers to attack one of his neighbours over remaining peaceful.
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Figure 9: Equilibrium Outcomes γ = 8: short attacks model (top) and basic model (bottom).

We now examine the case of multiple strong rulers, with the help of examples. Consider

the same three networks (with corresponding resources) as in the basic model (c.f. Figure 4)

and assume that γ = 8. Equilibrium payoffs and Lorenz curves for the results are presented

in Figure 9. By way of illustration, the figure contains also the corresponding outcomes for

the basic model. In all the examples every ruler chooses to fight in every state and so the

outcome is hegemony. As in the case of the basic model, the expected resources of the weak

rulers are close to 0. There is, however, much greater variation across the strong rulers.

Their equilibrium payoffs are more affected by the initial resource distribution, as compared

to the basic model. The ‘richest’ ruler gains most from the dynamics and has much higher

expected payoffs. The Lorenz curves confirm this point: the one-step dynamics lead to greater

inequality than the dynamics in the basic model.

Next, we study the frequency of peace. Suppose again that n = 10 nodes. We run
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numerical calculations for γ ∈ {2, 4, 8, 16, 32}, number of links, k ∈ {9, 18, 27, 36, 45}, and

resource ranges [45, 55], [40, 60], [35, 65], [30, 70], [25, 75], [20, 80], [15, 85], and [10, 90]. For

each combination of the three parameters we have drawn 1000 random samples, ensuring that

there are at least two strong rulers. In each case we observe that there is fight till hegemony

in equilibrium. Moreover, at every state (on and off the equilibrium path) all rulers chose

fight. Taken together, Proposition 5 and these examples suggest that incessant warfare and

the emergence of hegemony are robust features of the dynamics of appropriation in the rich

rewarding setting.

5.2 Alliances

In the basic model an individual ruler chooses to attack a sequence of other rulers, one at a

time. The background assumption is that the rulers that are being attacked must confront

the attacker on their own. In the face of a powerful attacker, it would be reasonable for a

ruler to form an alliance with other rulers who may eventually have to also face the same

attacker. Starting with the classical account of Thucydides, alliances are a recurring theme

in the history of warfare and empires. They have also been the subject of recent work, see

Bloch [2012], König et al. [2017] and Jackson and Nei [2015]. An analysis of alliances is

important but it is outside the scope of the present paper. In this section, our goal is more

limited: we wish to elaborate on some considerations – relating to resources and networks

– that arise when rulers can form such defensive alliances. We leave a more systematic and

general analysis to future work.

We consider the following slight variation on our model: in a round, once a ruler has been

picked, all the other active rulers have an opportunity to create alliances. The function of an

alliance is limited: it puts together the resources of all its members and these resources can be

deployed to defend any member of the alliance against an attack. To develop some intuition

for how this can affect the dynamics of war suppose that the contest function is Tullock and

that γ is large. It follows then that a ruler i will not want to attack a neighbor j who is part

of an alliance that has more resources.

An important question that arises at this point is who can form alliances with whom.

In the simplest case, suppose there is no restriction. In other words, if i is picked all other

active rulers can contemplate an alliance. In this case a ruler i will attack only if he has

more resources than the sum of all the resources of the other rulers. This leads to our first

observation: when alliances are unrestricted, hegemony will arise if and only if there is a ruler
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who controls more than half of all resources.

Next, we consider a simple restriction on alliance membership: suppose that members of an

alliance must constitute a connected sub-graph of the residual contiguity network involving all

rulers other than the ruler currently picked. Observe that in the case of a complete network

all alliances are feasible and this formulation then corresponds to the simpler unrestricted

setting considered above. However, in more general networks, even a relatively poor ruler can

attack neighbors and become a hegemon. As an example consider a line network with an odd

number of rulers: the central node has (n + 1)/2 units of resources, while each of the other

n − 1 nodes has exactly 1 unit of resources. The central node controls roughly one third of

all resources but there is no defensive alliance that can successfully protect the neighbors of

the central node. For γ large, it is optimal for the central node to implement a fully attacking

sequence. To rule out such situations we develop a sufficient condition for absence of war (and

consequently the lack of hegemony). Consider an ownership configuration with three or more

active rulers. There is no war in this configuration if for every ruler, i, it is the case that each

of his neighbors is part of an alliance whose resources add up to more than the resources of

ruler i.

These observations provide a theoretical basis for the notion of ‘balance of power’; for an

early discussion of this concept, see Hume [2006]; for more recent explorations of the idea, see

Kissinger [2015] and Betts [2013]. ‘Balance of power’ offers an alternative foundation to order

and stands in contrast to a theory in which order arises out of hegemony.

5.3 Losses in War

In the basic model, the winner retains all his resources and captures the entire resources of the

loser. Wars entail destruction of infrastructure and loss of lives; these losses can be especially

high in case the rivals use nuclear bombs. When losses are small, our earlier arguments

continue to hold, while if losses are very large then no ruler has an incentive to fight. The

interesting case is therefore one where the losses take on an intermediate value. We will show

that this intermediate range can give rise to the phenomenon of buffer states.22

Let p be a rich rewarding contest success function. Suppose that a conflict between two

rulers entails a loss of a fixed fraction δ ∈ (0, 1) of total resources. The expected payoff to a

22In our basic model, for simplicity, we assumed that kingdoms have no trade ties. Such ties may have a
bearing on losses from a war. But the relation between trade and incentives to fight is not straightforward;
for recent work on this question, see Jackson and Nei [2015] and Martin et al. [2008].
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ruler with x resources from a conflict with a ruler with y resources is:

Π(x, y) = p(x, y)(x+ y)(1− δ).

We start by noting that the arguments in the proof of Proposition 1 can be extended to

establish equilibrium existence and uniqueness of equilibrium payoffs.

When δ = 0, there are no losses in war: this is the benchmark model. More generally,

regardless of the value of δ, with a rich rewarding contest success function, expected resources

of the poorer ruler are always smaller than his initial resources. Similarly, with a poor re-

warding contest success function, expected resources of the richer ruler are always smaller

than his initial resources. The principal impact of losses in war is to discourage war: so, in

what follows, we focus on the rich rewarding case, as this is the case where all rulers have an

incentive to fight at all points in the basic model.

If δ > 1/2 then each ruler loses half of his resources in war: so it is clearly not profitable

for the richer ruler to fight. Hence we restrict attention to the case where δ < 1/2. Losses

in war have an interesting implication for the incentives to fight. To see this suppose x > y.

If (1 − δ)y < δx then the potential gain from the war is smaller than the loss to the richer

ruler, and so attacking very small opponents is not profitable for the rich ruler. On the other

hand, for a given δ < 1/2, the richer ruler has no incentive to attack the poorer ruler if y

is sufficiently close to x: the total resources from such an attack are less than 2x while the

probability of winning is less than 1/(2(1 − δ)) if y is sufficiently close to x. Thus losses in

war create an interesting structure of incentives: the richer ruler wishes to attack the poorer

ruler only if the ruler is neither too poor not too rich.

This structure of incentives gives rise to the possibility of buffer states. A buffer state is

a ruler, lying between greater powers, and preventing them from attacking each other. The

following example brings out this possibility.

Example 1 (Buffer State). Consider a line with three vertices (and rulers): a, b and c (in

that order). Suppose that Ra = 10 and Rc = 9, γ = 16 and the cost of conflict is δ = 0.2. Let

us look at incentives to wage war as we vary the resources of ruler b. If Rb ∈ (0, 1.79), ruler a

does not find it profitable to attack b and then c, nor attack b only. Similarly, c does not find

attacking b or attacking b and then a profitable. Therefore peace in the initial state is the

equilibrium outcome. Next consider Rb ∈ (1.79, 10): one of the rulers now has an incentive

to attack, and the outcome is either two rulers or a single hegemon. Finally, observe that if

there was a link between a and c, then ruler a would definitely attack c. So the poor kingdom
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must offer the only path between the two large rulers. 4

More generally, a ruler i is a buffer state at ownership configuration o, if G−o−1(i) is not

connected and for any neighbour of i, Ri(o) < Rj(o). In other words, the vertices owned by

i fragment the network and the resources of the buffer state are smaller than the resources of

each of the surrounding rulers. The key step is to show that attacking a small ruler becomes

unprofitable not only in bilateral fights but also in longer sequences of fights. We show this

under a mild assumption that f ′(0) = 0. With this assumption the expected payoff from

a sequence of fights is increasing in resources of an intermediate opponent in the sequence

when these resources are sufficiently small and so, decreasing resource in this range decreases

the payoffs which, with sufficiently large losses in war, makes including the poor ruler in the

sequence unprofitable. These observations are formally stated in the proposition below.

Proposition 6. Fix a connected network G, resource endowment r ∈ RV
++, and a rich reward-

ing contest success function, p, satisfying (5) with continuous and continuously differentiable

function f . Then there exist threshold values of the losses in war 0 < δ1 < δ2 ≤ 1/2 such that

1. If δ < δ1 then Theorem 1 holds.

2. If δ > δ2 then the equilibrium outcome is perpetual peace.

3. If f ′(0) = 0 then buffer states can help prevent a hegemony.

We conclude by noting that losses in war are a different force driving peace as compared to

the purely strategic considerations that arise under poor rewarding contest success function.

These two forces may, in fact, work against each other. Higher losses in war may prevent

conflict escalation and this may encourage rulers to attack their neighbors. An example

illustrating this idea is given in the Appendix.

6 Concluding Remarks

This paper develops a theoretical framework for the study of the incentives to wage war to

conquer territory and resources. Our innovation is that we locate the dynamics of appropria-

tion within a contiguity network. The analysis develops a number of results on the interplay

between the technology of war, the resources of rulers, costs of war, alliances, and contiguity,

that illuminate the process of the formation of empires.
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Appendix: Proofs

Equilibrium existence and payoff uniqueness

Proof of Proposition 1. We start with introducing a natural partial order of precedence on the

set of ownership configurations, O, and on the set of states, O×2N . Given any two ownership

configurations, o ∈ O and o
′ ∈ O, o v o

′ if and only if for all v ∈ V , either o(v) = o
′(v)

or o(v) 6= o
′(u), for all u ∈ V . Informally, if o and o

′ are ownership configurations such

that o′ is obtained from o by some rulers expanding their territories, then o v o
′. Given

any two states, (o, P ) ∈ O× 2N and (o′, P ′) ∈ O× 2N , (o, P ) � (o′, P ′) if and only if either

o v o
′ or o = o

′ and P ⊆ P ′. Informally, if state (o, P ) precedes state (o′, P ′) in the course

of the game, then (o, P ) � (o′, P ′). We will also use @ and ≺ to denote the strict orders

associated with the respective partial orders, defined above. Given an ownership configuration,

o ∈ O, let Succ(o) = {o′ ∈ O : o @ o
′)} be the set of all ownership configurations that o

precedes. Let Succ(o) = Succ(o) ∪ {o}. Similarly, given a state (o, P ) ∈ O × 2N , let

Succ(o, P ) = {(o′, P ′) ∈ O × 2N : (o, P ) ≺ (o′, P ′)} be the set of all states that (o, P )

precedes, and let Succ(o, P ) = Succ(own, P ) ∪ {(own, P )}.
Since O and O×2N are finite, there exist maximal elements of v and �. Take any strategy

profile, s, defined recursively on O×2N starting from the maximal elements of � as follows. If

(o, P ) is such that o is maximal according to v (i.e. there is only one active ruler at o) then,

for all i ∈ N , si(o, P ) = ε (the unique feasible sequence of i at o). Otherwise, let si(o, P ) be

any sequence that maximises i’s expected payoff given the continuation payoff determined by

s defined on the states in Succ(o, P ). Clearly any such strategy profile is well defined and is a

Markov perfect equilibrium of the game. Moreover, given the Markov perfection requirement

and since at each state there are no simultaneous moves (only one player is picked to make a

choice), every Markov equilibrium is a strategy profile of the form defined above.

We now turn to showing payoff equivalence of equilibria. Take any two Markov perfect

equilibria of the game, s and s′, and suppose that they are not payoff equivalent. Let (o, P ) ∈
O × 2N be a maximal state, according to �, such that there exists a ruler i ∈ N \ P with

Πi(s | o, P ) 6= Πi(s
′ | o, P ). Suppose that Πi(s | o, P ) > Πi(s

′ | o, P ) (the arguments for the

inverse inequality are symmetric and omitted). Then i could strictly improve his payoff under

s′ by choosing a strategy s′′i different to s′i at state (o, P ) only: s′′i (o, P ) = si(o, P ). Since

(o, P ) is a maximal state, according to �, for which Πi(s | o, P ) 6= Πi(s
′ | o, P ), so for all

states in Succ(o, P ), s and s′ yield the same payoff to i and the payoff to i at (o, P ) depends
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on his resources at (o, P ) and on his payoff at these states only. Thus Πi((s
′
−i, s

′′
i ) | o, P ) =

Πi(s | o, P ) > Πi(s
′ | o, P ), a contradiction with the assumption that s′ is a Markov perfect

equilibrium of the game. Hence for all i ∈ N and (o, P ) ∈ O× 2N\{i}, s and s′ must yield the

same payoff to i.

Incentives to fight

Proof of Proposition 2. We start with the rich rewarding case. The proof for the poor reward-

ing case is similar and omitted. Let p be a contest success function satisfying (5). Suppose

that p is rich rewarding and take any x, y ∈ R++ such that x > y. Rewriting (x+y)p(x, y) > x,

it is equivalent to 1

1+
f(y)
f(x)

> 1
1+ y

x
. Further, this is equivalent to f(x)/x > f(y)/y. Hence rich

rewarding property is equivalent to f(x)/x being strictly on R++, that is to f exhibiting

increasing returns to scale.

We next turn to the timing results and consider the no-waiting case. The proof for the waiting

case is similar and omitted. Let p be a contest success function satisfying (5). Suppose that

p has the no-waiting property. Then, for any x, y, z ∈ R++,

f(x)

f(x) + f(y)

f(x+ y)

f(x+ y) + f(z)
>

f(x)

f(x) + f(y + z)
.

In particular, the inequality holds for z = x so

f(x)

f(x) + f(y)

f(x+ y)

f(x+ y) + f(x)
>

f(x)

f(x) + f(x+ y)
.

holds for any x, y ∈ R++. Dividing both sides by f(x) and multiplying them by the denomi-

nators we get

f(x+ y)(f(x) + f(x+ y)) > (f(x) + f(y))(f(x+ y) + f(x)).

Dividing both sides by f(x) + f(x+ y) yields

f(x+ y) > f(x) + f(y).

Thus f is super-additive.
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Next suppose that f is super-additive. Then, for any y, z ∈ R++,

f(y + z) > f(y) + f(z).

Multiplying both sides of the inequality above by f(x+ y), for any x, y, z ∈ R++,

f(x+ y)f(y + z) > f(x+ y)(f(y) + f(z)).

Moreover,

f(x+ y)f(y + z) > f(x+ y)f(y) + f(x+ y)f(z) > f(x+ y)f(y) + (f(x) + f(y))f(z).

Adding f(x)f(x+ y) to both sides we get

f(x+ y) (f(x) + f(y + z)) > (f(x) + f(y)) (f(x+ y) + f(z)) .

This can be rewritten as

1

f(x) + f(y)

f(x+ y)

f(x+ y) + f(z)
>

1

f(x) + f(y + z)
.

Multiplying both sides by f(x) we get

f(x)

f(x) + f(y)

f(x+ y)

f(x+ y) + f(z)
>

f(x)

f(x) + f(y + z)
.

To complete the argument, we show that increasing returns to scale imply super-additivity

and that decreasing returns to scale imply sub-additivity. Suppose that f has increasing

returns to scale. So f(x)/x is strictly increasing on R++. For any x, y ∈ R++,

xf(x+ y) > (x+ y)f(x) and yf(x+ y) > (x+ y)f(y).

Adding the two inequalities and dividing both sides by x+ y we get f(x+ y) > f(x) + f(y),

that is f is strictly super-additive. The arguments for decreasing returns are similar and

omitted.

By what was shown above, rich rewarding property of p implies that f exhibits increasing

returns to scale which, in turn, implies that f is super-additive and, further, that p has
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the no-waiting property. By similar argument, poor rewarding property implies the waiting

property.

Finally we turn to the order of attack result. We provide the proof for the poor-first case.

The arguments for the rich-first case are similar and omitted. Let x, y, z ∈ R++ with y > z

and suppose that p(x, y)p(x+ y, z) > p(x, z)p(x+ z, y). This may be rewritten as:

f(x)

f(x) + f(y)

f(x+ y)

f(x+ y) + f(z)
>

f(x)

f(x) + f(z)

f(x+ z)

f(x+ z) + f(y)

Dividing both sides by f(x) and multiplying them by the denominators, we get

f(x+ y)(f(x) + f(z))(f(x+ z) + f(y)) > f(x+ z)(f(x) + f(y))(f(x+ y) + f(z))

This is equivalent to

f(y)f(x+ y)(f(x) + f(z)) + f(x)f(x+ z)f(x+ y) + f(z)f(x+ z)f(x+ y) >

f(z)f(x+ z)(f(x) + f(y)) + f(x)f(x+ y)f(x+ z) + f(y)f(x+ y)f(x+ z)

Subtracting f(x)f(x+ z)f(x+ y) + f(z)f(x+ z)f(x+ y) + f(y)f(x+ y)f(x+ z) from both

sides this is equivalent to

f(y)f(x+ y)(f(x) + f(z))− f(y)f(x+ y)f(x+ z) >

f(z)f(x+ z)(f(x) + f(y))− f(z)f(x+ z)f(x+ y)

Reorganizing and multiplying both sides by −1, this is equivalent to

f(z)f(x+ z)(f(x+ y)− (f(x) + f(y))) > f(y)f(x+ y)(f(x+ z)− (f(x) + f(z))).

Dividing both sides by (f(x+ y)− (f(x) + f(y)))(f(x+ z)− (f(x) + f(z))), this is equivalent

to
f(z)f(x+ z)

f(x+ z)− f(x)− f(z)
>

f(y)f(x+ y)

f(x+ y)− f(x)− f(y)
.

This completes the proof.

The timing part of Proposition 2 can be generalized to arbitrary sequences of fights: with

poor-first property attacking opponents in increasing order with respect to their resources is
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optimal, while with rich-first property attacking them in the reversed order is optimal. This

is stated in the corollary below.

Corollary 2. Let m ≥ 3 and x0, x1, . . . , xm ∈ R++, be such that x1 < . . . < xm. Then, for

any permutation π : {1, . . . ,m} → {1, . . . ,m},

pseq
(
x0, xπ(1), . . . , xπ(m)

)
≤

{
pseq(x0, x1, . . . , xm), if p has poor-first property,

pseq(x0, xm, . . . , x1), if p has rich-first property.

with equality only if the permutations on both sides are the same.

Proof. We provide the proof for the poor-first property. The proof for the rich-first property is

similar and omitted. Assume p has poor-first property. Let π : {1, . . . ,m} → {1, . . . ,m} be a

permutation of {1, . . . ,m}. A pair of indices (i, j) ∈ {1, . . . ,m} such that i < j and π(i) > π(j)

is called an inverse of π. We will show that for any permutation π of {1, . . . ,m} with at least

one inverse there exists a permutation π′ of {1, . . . ,m} with less inverses that yields higher

pseq: pseq(x0, xπ(1), . . . , xπ(m)) < pseq(x0, xπ′(1), . . . , xπ′(m)). Since the identity is the unique

permutation of {1, . . . ,m} with no inverses, this implies the proposition. Throughout the

proof, given a permutation π and j ∈ {1, . . . ,m} we will use Xπ(j) to denote
∑j

l=1 xπ(l).

So take any permutation π on {1, . . . ,m} with at least one inverse, (i, j). Then there exists

i ≤ k < j such that (k, k + 1) is also an inverse of π. Let π′ be a permutation of {1, . . . ,m}
obtained from π by exchanging π(k) and π(k + 1), i.e. π′(k) = π(k + 1), π′(k + 1) = π(k),

and π′(l) = π(l) for l ∈ {1, . . . ,m} \ {k, k + 1}. There is at least one inverse less in π′ than

in π. Moreover, pseq
(
x0, xπ′(1), . . . , xπ′(m)

)
= pseq

(
x0, xπ′(1), . . . , xπ′(k−1)

)
· p
(
Xπ′(k−1), xπ′(k)

)
·

p
(
Xπ′(k), xπ′(k+1)

)
·pseq

(
Xπ′(k+1), xπ′(k+2), . . . , xπ′(m)

)
= pseq

(
x0, xπ(1), . . . , xπ(k−1)

)
·p
(
xπ′(k−1), xπ′(k)

)
·

p
(
Xπ′(k), xπ′(k+1)

)
·pseq

(
xπ(k+1), xπ(k+2), . . . , xπ(m)

)
. By poor-first property, this is greater than

pseq
(
x0, xπ(1), . . . , xπ(k−1)

)
·p
(
xπ(k−1), xπ(k)

)
·p
(
Xπ(k), xπ(k+1)

)
·pseq

(
Xπ(k+1), xπ(k+2), . . . , xπ(m)

)
=

pseq
(
x0, xπ(1), . . . , xπ(m)

)
. This completes the proof.

Conquest and empire

We start by noting that the waiting and no-waiting properties extend to sequences of arbitrary

length. Formally, let m ≥ 3, x1, . . . , xm ∈ R++, and 1 ≤ i < j ≤ m such that i 6= 1 or j 6= m.
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If p has the no-waiting property, then

pseq(x1, . . . , xi−1, xi, . . . , xj, xj+1, . . . , xm) > pseq

(
x1, . . . , xi−1,

j∑
l=i

xl, xj+1, . . . , xm

)
(8)

Proof of Theorem 1. The proof proceeds in three steps.

Step 1: Fix some state o with |Act(o)| ≥ 2. For a strong ruler i, the optimal full attacking

sequence maximizes his payoffs across all attacking sequences. Moreover, in generic case, it is

a unique maximizer.

Let o be a state with |Act(o)| = m ≥ 2. Take an active ruler j0 ∈ Act(o) with maximal

amount of resources Rj0(o). For generic resource values, such a ruler is unique. Pick a full

attacking sequence j1, . . . , jm−1 consisting of rulers in Act(o) \ {j0} that is feasible for j0 in

G under o (clearly such a sequence exists because G is connected). Since j0 has maximal

amount of resources so, for all 1 ≤ k ≤ m− 1, we have

k−1∑
l=0

Rjl(o) ≥ Rjk(o). (9)

The expected payoff to ruler j0 from the attacking sequence is

πj0(o | j1, . . . , jm−1) =

(
m−1∑
l=0

Rjl(o)

)
m−1∏
k=1

p

(
k−1∑
l=0

Rjl(o), Rjk(o)

)

= Rj0(o)
m−1∏
k=1

p

(
k−1∑
l=0

Rjl(o), Rjk(o)

)(∑k
l=0Rjl(o)∑k−1
l=0 Rjl(o)

)
. (10)

Since p is rich rewarding, so

p

(
k−1∑
l=0

Rjl(o), Rjk(o)

)(∑k
l=0Rjl(o)∑k−1
l=0 Rjl(o)

)
≥ 1, (11)

with equality only if k = 1 and Rj0(o) = Rj1(o).

At every step in the sequence, the expected resources are growing. So, for generic resource

values, there is a full attacking sequence that dominates any partial attacking sequence. By

definition, the optimal full attacking sequence maximizes payoffs across all attack sequences.

The first step has a powerful implication: in any state with 2 or more active rulers there

is at least one ruler who has a strict incentive to attack, given that other rulers do not attack.
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Hence, in equilibrium, there must exist a hegemon.

In the dynamic game, in principle, a strong ruler may prefer to wait and allow others to

move and then attack later. The next step shows that an optimal full attacking sequence

dominates all such waiting strategies.

Step 2: Fix some state o with |Act(o)| ≥ 2 and a set or rulers, P . For any ruler i ∈ N \ P
strong at o, an optimal full attacking sequence is a dominant choice at (o, P ). Moreover, the

choice is strictly dominant if |Act(o)| ≥ 3.

Fix some state o. Let σi(o) be the optimal sequence of ruler i at o, assuming that the

game ends after i executes the sequence (successfully or not). In other words, σi(o) is the

myopic optimal sequence of ruler i at o. Notice that this sequence is independent of the set of

rulers who chose peace prior to i’s move at a round at the state o. Let π̄i(o) = πi(o | σi(o))

denote the optimal myopic payoff ruler i can attain at o.

Claim. The optimal myopic payoff is the highest that ruler i can hope to attain, i.e., for any

state, o, and any set of rulers, P ⊆ N \ {i}, π̄i(o) ≥ Πi(s | o, P ) for any feasible strategy

profile s. Moreover, if i is strong and there are at least three active rulers, then the inequality

is strict.

The proof is by induction on the number of active rulers. For the induction basis, we show

that the claim holds for 2 active rulers. If i is the richer ruler then, from the rich rewarding

property, his myopic optimal strategy is to attack. It is also clear that attacking yields strictly

higher payoffs if the other ruler does not attack, and weakly higher payoffs if the other ruler

does attack. If i is the poorer ruler then not attacking is the optimal myopic strategy. In case

the richer ruler attacks, the expected payoff to i is less due to the rich rewarding property.

That completes the argument for 2 active rulers.

For the induction step, suppose that the claim holds for all y ≤ X, where X ≥ 2, active

rulers: we will show that it also holds for X + 1 active rulers. Given state o
′, set of rulers,

P ′, and strategy profile, s′, we will use Atck(s′,o′, P ′) to denote the set of rulers choosing

attack at (o′, P ′) under s′, i.e. Atck(s′,o′, P ′) = {j ∈ N \ P ′ : s′j(o
′, P ′) 6= ε}.23 Fix some

state o with X + 1 active rulers and a set of rulers, P such that Act(o) \ P 6= ∅. Take an

active ruler i ∈ Act(o) \ P and any strategy profile s. If for all P ′ ⊆ N such that P ⊆ P ′,

Atck(s,o, P ′) = ∅, i.e. all players choose peace following P at o, then the claim follows,

23Throughout the proofs we use the standard notation, ε, to denote empty sequences.
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because σi(o) is at least as good as the empty sequence at o:

π̄i(o) ≥ πi (o | σi(o)) ≥ πi (o | ε) = Πi(s | o, P ). (12)

Moreover, by Step 1, the inequality is strict if i is strong.

For the remaining part of the argument assume that there exists P ′ ⊆ N with P ⊆ P ′ such

that Atck(s,o, P ′) 6= ∅. We will establish that π̄i(o) ≥ Πi(s | o, P ). Given a set of rulers P ′

and ruler j0 ∈ N \ P ′ such that sj0(o, P
′) 6= ε , let Πi(s | o, P ′, j0) denote the expected payoff

to ruler i from strategy profile s conditional on ruler j0 being selected to move at (o, P ′) and

q(j0, P
′ | o, s) denote the probability that j0 is picked after P ′ at o under s. Then

Πi(s | o, P ) =
∑

P ′⊆N s.t. P⊆P ′

∑
j0∈Atck(s,o,P ′)

q(j0, P
′ | o, s)Πi (s | o, P ′, j0) +1−

∑
P ′⊆N s.t. P⊆P ′

∑
j0∈Atck(s,o,P ′)

q(j0, P
′ | o, s)

 πi (o | ε) (13)

As we established above, π̄i(o) ≥ πi(o | ε), with strict inequality if i is strong. Thus to show

the claim, it is enough to show that

π̄i(o) ≥ Πi (s | o, P ′, j0) , (14)

for each P ′ ⊆ N with P ⊆ P ′ and each attacking ruler j0 ∈ Atck(s,o, P ′), with strict

inequality for at least one P ′ and j0 ∈ Atck(s,o, P ′) in the case of i being strong.

So take any set of rulers, P ′ ⊆ N with P ⊆ P ′ and any ruler j0 ∈ Atck(s,o, P ′). Three

cases are possible:

(i). j0 6= i and i is not in the attacking sequence sj0(o) of j0,

(ii). j0 6= i and i is in the attacking sequence sj0(o) of j0,

(iii). j0 = i.

Case (i). Ruler j0 is different to i and does not have i in his attacking sequence sj0(o). Let

F (o′ | s,o, P ′, j0) be the probability of reaching ownership state o
′ in the next round from

state o under strategy profile s when j0 is selected to move after P ′ (and executes attacking
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sequence sj0(o, P
′)). Then

Πi (s | o, P ′, j0) =
∑
o
′∈O

F (o′ | s,o, P ′, j0) Πi(s | o′). (15)

To show (14) it is enough to show that

π̄i(o) ≥ Πi(s | o′) = Πi(s | o′,∅), (16)

for each state o′ that can be reached in the next round with positive probability from o when

j0 plays the attacking sequence sj0(o, P
′) after P ′ at o. We will show that the inequality is

strict when i is strong.

Ownership state o′ is reached after at least one fight and so has at most X active rulers.

Hence, by the induction hypothesis, π̄i(o
′) ≥ Πi(s | o′,∅), and so to show (16) it is enough

to show that

π̄i(o) ≥ π̄i(o
′). (17)

Take an optimal myopic sequence, σi(o
′), of i at o′. There are two sub-cases to be considered.

(a) Sequence σi(o
′) does not contain the rulers in the sequence of fights that leads to o

′.

This means, in particular, that σi(o
′) is not a full attacking sequence. Hence, by Step 1, i is

not strong.

Since σi(o
′) does not contain the rulers in the sequence of fights that leads to o′, it can be

executed at state o. By optimality of σi(o) at o

π̄i(o) = πi (o | σi(o)) ≥ πi (o | σi(o′)) = πi (o
′ | σi(o′)) = π̄i(o

′). (18)

(b) Sequence σi(o
′) contains at least one ruler in the sequence of fights that leads to o

′.

This is true, in particular, when i is strong because, by Step 1, σi(o
′) must be a full attacking

sequence then.

Since σi(o
′) contains at least one ruler in the sequence of fights that leads to o′, so σi(o

′) =

σ1
i (o
′), k, σ2

i (o
′), where k is the ruler who won the sequence of fights leading to o

′. We can

construct a sequence σ′ = σ1
i τσ

2
i that is feasible for i at o, with τ being a sequence of rulers

involved in the sequence of fights leading to o
′. By point 1 of Proposition 2 p has the no-

waiting property. As we observed prior to the proof of the theorem, the no-waiting property

extends to sequences of fights of arbitrary length – (8). Given this observation, σ′ yields a

strictly higher payoff than σi(o
′). By construction, σi(o) is an optimal myopic strategy for i
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at o and so payoff dominates σ′ at o. Hence

π̄i(o) = πi (o | σi(o)) ≥ πi(o | σ′) > πi (o
′ | σi(o′)) = π̄i(o

′). (19)

Hence (17) and, consequently, (16) hold with strict inequality.

Case (ii). Ruler j0 is different to i and has i in his attacking sequence sj0(o). Let sj0(o) =

j1, . . . , jm be the sequence selected by j0 at o under strategy sj0 . Then i = jk for some

1 ≤ k ≤ m. Given l ∈ {1, . . . ,m}, let ol be the state reached after j0 looses the l’th fight in

the sequence. The expected payoff to i from s at o given that j0 is selected to move after set

P ′ or rulers is equal to

Πi (s | o, P ′, j0) =
k−1∑
l=1

F
(
o
l | s,o, P ′, j0

)
Πi

(
s | ol

)
+(

1−
k−1∑
l=1

F
(
o
l | s,o, P ′, j0

))
p

(
ri(o),

k−1∑
l=0

rjl(o)

)
Πi

(
s | ok

)
, (20)

where j1, . . . , jk−1 are the rulers attacked by j0 prior to attacking i.

Hence to show (14) it is enough to show that (16) holds for all o′ = o
l, l ∈ {1, . . . , k− 1},

reachable after a sequence of fights of j0 in which j0 looses before facing i, and that

π̄i(o) ≥ p

(
ri(o),

k−1∑
l=0

rjl(o)

)
Πi

(
s | ok

)
. (21)

holds for ok, reachable by a sequence of fights of j0 in which i is attacked by j0 and wins. (16)

is shown by the same arguments as in point (ii) above. In particular, the inequality in (16)

is strict when i is strong. For (21), let τ be a sequence of rulers {j0, . . . , jk−1} feasible to i

at o (clearly such a sequence exists). Then sequence σ′ = τσi(o
k), consisting of τ and an

optimal myopic sequence of i at ok, is feasible for i at o. By the no-waiting property and its

generalization, (8), τ yields at least the same payoff to i as the sequence of fights that leads

to o′ (the inequality is strict, unless k = 1). Combining this with the induction hypothesis we
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get

π̄i(o) ≥ πi(o | τσi(ok)) ≥ p

(
Ri(o),

k−1∑
l=0

Rjl(o)

)
πi
(
o
k | σi

(
o
k
))

≥ p

(
Ri(o),

k−1∑
l=0

Rjl(o)

)
Πi

(
s | ok

)
, (22)

with strict inequality, unless k = 1.

Case (iii). Ruler i is picked to move at o after P ′. The strategy chosen by i under strategy

profile s at (o, P ′) is si(o, P
′). Let o′ be the state that is reached if i wins all the attacks in

sequence si(o, P
′). Then sequence σ′ = si(o, P

′)σi(o
′), consisting of si(o, P

′) and an optimal

myopic sequence of i at o′, is feasible for i at o. State o′ is reached after at least one fight and

has at most X active rulers. By the induction hypothesis, π̄i(o
′) ≥ Πi(s | o′) and it follows

that

π̄i(o) ≥ πi (o | si(o)σi(o
′)) ≥ πi (o

′ | σi(o′)) = π̄i(o
′) ≥ Πi(s | o′). (23)

The inequality is strict unless the sequence si(o)σi(o
′) is the same as the optimal myopic

sequence of i at o.

To complete the proof of the claim, we argue that π̄i(o) > Πi(s | o, P ) if i is strong and

there are at least 3 active rulers at o. As we established above, if i is strong then (14) holds

with equality in two cases only: j0 = i and si(o, P ) is the optimal myopic sequence of i at o,

or j0 = j 6= i, j0 attacks i first under sj0(o, P ) and j0 is the first ruler to be attacked by i

under his optimal myopic sequence of attacks. Generically the second case is possible for at

most one ruler other then i. Hence with at least three active rulers there is at least one for

which the inequality in (14) is strict. This completes the proof of the claim.

From Step 1, we know that in any state o, there exists a strong ruler for whom the full

attacking sequence is the optimal stand alone strategy and it is optimal for him to choose it

after any set of rulers P at o. It now follows from the claim above that for this strong ruler

the optimal full attacking sequence dominates all other strategies, and the domination is strict

if there are at least three active rulers at o. The final step in the proof takes up non-strong

rulers. We show that faced with rulers such that at every state at least one of them attacks,

every ruler will find it profitable to choose an optimal full attacking sequence.

Step 3: Let i ∈ N be a ruler, s̃ be a strategy profile such that for every state o and

for every permutation of N , j1, . . . , jn, there exists k ∈ {1, . . . , n} such that jk 6= i and
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s̃jk(o, {j1, . . . , jk−1}) 6= ε. Let si be a best response of i to s̃−i. Then for every state o

such that i ∈ Act(o) and |Act(o)| ≥ 3, and for every set of rulers, P ⊆ N \ {i} such that

Atck(s̃,o, P ) \ {i} 6= ∅, si(o, P ) is an optimal full attacking sequence of i at o.

Let i ∈ N be a ruler and let s̃−i be a strategy profile of the other rulers, as stated above.

The assumption means that at every state o, for any draw of rulers, with probability 1 a ruler

other than i would choose attack if i would not. Let si be a strategy such that at every state

o where ruler i is active and there are at least three active rulers, and for every P ⊆ N \ {i}
with Atck(s̃,o, P ) \ {i} 6= ∅, si(o, P ) is an optimal full attacking sequence for i. We show

that for any other strategy, s′i, of ruler i, every state o ∈ O with |Act(o)| ≥ 2, and every set

of rulers P ⊆ N \ {i} such that Atck(s̃,o, P ) \ {i} 6= ∅,

Πi ((si, s̃−i) | o, P ) ≥ Πi((s
′
i, s̃−i) | o, P )), (24)

with strict inequality when |Act(o)| ≥ 3. Notice that, by Step 2, the claim holds if i is strong

at o. For the remaining part of the proof we will consider rulers who are not strong at the

given states.

The argument is by induction on the number of active rulers. As it proceeds along lines

similar to Step 2, it is omitted.

Proof of Proposition 3. A sequence σ ∈ R∗ is strong if either σ = ε or σ = x0, . . . , xm and for

all k ∈ {1, . . . ,m},
∑k−1

j=0 xj > xk. A sequence σ ∈ R∗ is weak if it is not strong.

Let p(x, y | γ) = xγ

xγ+yγ
. Since

∂p

∂γ
=

(
xγyγ

xγ + yγ

)
(ln(x)− ln(y))

and

lim
γ→+∞

xγ

xγ + yγ
= lim

γ→+∞

1

1 +
(
y
x

)γ =

{
1, if x > y

0, if x < y.

so for x > y, p(x, y | γ) is increasing and converges to 1 when γ → +∞, and for x < y, p(x, y |
γ) is decreasing and converges to 0 when γ → +∞. In addition, for any strong sequence σ,

pseq(σ | γ) is increasing when γ is increasing. This is because for all k ∈ {1, . . . ,m},
∑k−1

j=0 xj >

xk, and so limγ→+∞
∏m

k=1 p
(∑k−1

j=0 xj, xk

∣∣∣ γ) = 1 and
∏m

k=1 p
(∑k−1

j=0 xj, xk

∣∣∣ γ) is increasing

when γ is increasing. On the other hand, for any weak σ = x0, . . . , xm, limγ→+∞ pseq(σ | γ) = 0.
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This is because there exists k ∈ {1, . . . ,m} such that
∑k−1

j=0 xj < xk and for any such k,

limγ→+∞ p
(∑k−1

j=0 xj, xk

∣∣∣ γ) = 0. Since for all other k ∈ {1, . . . ,m}, p
(∑k−1

j=0 xj, xk

∣∣∣ γ) ≤ 1

so limγ→+∞
∏m

k=1 p
(∑k−1

j=0 xj, xk

∣∣∣ γ) = 0. Consequently, for any non-empty sequence σ =

x0, . . . , xm,

lim
γ→+∞

pseq(σ | γ) =

{
1, if σ is strong

0, if σ is weak.

The claim on probability of hegemony for strong rulers now follows.

Proof of Proposition 4. Part 1: The argument presented here is true for general contest

functions. Take any ownership configuration, o ∈ O, and any active ruler, i ∈ Act(o). Given

a state (o, P ) ∈ O × 2N\{i}, an attacking sequence, σ, is an optimal attacking sequence if

it maximises the payoff of i at (o, P ) across all attacking sequences that are feasible to i at

o and given the continuation payoffs determined by s on the states in Succ(o, P ). Notice

that if a sequence is an optimal attacking sequence for i at (o, P ), then it is an optimal

attacking sequence of i at (o, P ′), for any P ′ ⊆ N . Thus its optimality depends on the

ownership configuration and the expected payoff determined by s on ownership configurations

o
′ ∈ Succ(o), only. Clearly, at every state (o, P ) ∈ O× 2N\{i} an expected payoff maximising

ruler chooses between the empty sequence (peace) and an optimal attacking sequence at o.

Given ownership configuration o, let E(s,o) be the set of rulers, active at o, for whom an

optimal attacking sequence at o yields higher payoff than the empty sequence. It is easy to see

that if E(s,o) = ∅ and s is an equilibrium, then si(o, P ) = ε, for all i ∈ N and P ∈ 2N\{i}.

On the other hand, suppose that E(s,o) 6= ∅ and take any sequence i1, . . . , in of rulers from

N . Let ik be the last ruler from E(s,o) in the sequence. Generically, no ruler is indifferent

between peace and an optimal attacking sequence. Hence, if s is an equilibrium then, for

every l > k, sil({i1, . . . , il−1}) is the empty sequence and, consequently, sik({i1, . . . , ik−1}) is

an optimal attacking sequence of ik at o under the continuation of s. Hence if E(s,o) 6= ∅
then o is conflictual under s.

Part 2: Let p be a poor rewarding contest success function satisfying (5). Then p(x, y) =

f(x)/(f(x) + f(y)) and, by Propoistion 2, f(x)/x is decreasing. Since f(x)/x is decreasing

and positive on R++ so limx→+∞ f(x)/x exists and is finite. Let limx→+∞ f(x)/x = L.

Consider a sequence of fights where a ruler with x ∈ R++ resources first fights a ruler with

y ∈ R++ resources and then fights with m ≥ 1 rulers with resources z1, . . . , zm ∈ R++. The
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expected payoff to the rulers with x resources from such a sequence of fights is is equal to

π(x, y, z1, . . . , zm) = pseq(x, y, z1, . . . , zm)(x+ y + z1 + . . .+ zm)

= x · f(x)

f(x) + f(y)
· x+ y

x
·
m∏
i=1

 f
(
x+ y +

∑i−1
j=1 zj

)
f
(
x+ y +

∑i−1
j=1 zj

)
+ f(zi)

·
x+ y +

∑i
j=1 zj

x+ y +
∑i−1

j=1 zj

 .

We will show that for sufficiently large y, π(x, y, z1, . . . , zm) > x. We consider two cases

separately: L > 0 and L = 0.

Suppose first that L > 0. Notice that

lim
y→+∞

f(x)

f(x) + f(y)

x+ y

x
= lim

y→+∞

f(x)
x

f(x)
y

+ f(y)
y

(
x

y
+ 1

)
=

f(x)
x

L
> 1.

Similarly

lim
y→+∞

f
(
x+ y +

∑i−1
j=1 zj

)
f
(
x+ y +

∑i−1
j=1 zj

)
+ f(zi)

·
x+ y +

∑i
j=1 zj

x+ y +
∑i−1

j=1 zj
=
L

L
= 1.

Hence limy→+∞ π(x, y, z1, . . . , zm) = t > x and so for sufficiently large y, π(x, y, z1, . . . , zm) >

x.

Second, suppose that L = 0. After winning the conflict with the ruler with y resources,

in every subsequent conflict in the sequence the starting ruler has higher resources than his

opponent. Hence the probability of winning each of these conflicts is more than 1/2. In the

event of winning all the conflicts in the sequence, the starting ruler owns at least x+y+
∑m

j=1 zj

resources. By these observations π(x, y, z1, . . . , zm) ≥
(

1
2m

) ( f(x)
f(x)+f(y)

)
(x + y). On the other

hand, since L = 0 so, for sufficiently large y,

f(y)

y
+

(
1− 1

2m

)
f(x)

y
<

1

2m
f(x)

x
.

Multiplying both sides by y/f(x) and reorganizing, this is equivalent to

f(y)

f(x)
+ 1 <

1

2m

(
1 +

y

x

)
.

Taking the inverses of both sides and then multiplying both sides by (x + y)/2m, this is
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equivalent to (
1

2m

)(
f(x)

f(x) + f(y)

)
(x+ y) > x.

Hence, for sufficiently large y, π(x, y, z1, . . . , zm) > x.

Now, let G be a connected network over the set of nodes, V , and let r ∈ R++ be a resource

endowment. Fix any vertex v ∈ V . Take any ownership configuration o ∈ O. If there is a

ruler who owns all the vertices under o then we are done. Assume otherwise. There are at

least two active rulers under o, |Act(o)| ≥ 2. Let i be the ruler owning vertex v, o(v) = i, and

let j ∈ Act(o) be any active neighbor of i under o. Let σ be a permutation of Act(o) \ {j}
starting with i. Sequence σ is a full attacking sequence of j at o. By what we have shown

above, if rv is sufficiently large, then Π(j,o;σ) > Rj(o) and so by choosing σ ruler j strictly

increases his expected payoff. Since at every ownership configuration o with at least two

active rulers there exists a ruler who can increase his expected resources by choosing attack,

so every equilibrium outcome is hegemony.

Part 3: Let v ∈ V be a vertex and let G be a star network with centre v. Let p be a Tullock

contest success function with γ ∈ (0, 1). Take any y > 0. Let the resource vector r be such

that ru = y, for each spoke u ∈ V \ {v}, and rv = x, for the centre. We will show that there

exists (a range of values of) x such that there is an equilibrium where each ruler chooses peace

in the initial ownership configuration. Similarly, we will show that there exists (a range of

values of) x such that there is an equilibrium where each ruler at a spoke chooses a sequence

of fights that leads to a ownership configuration with peace (so we have war followed by peace

in equilibrium).

The expected payoff from a full attacking sequence of m fights to a ruler owning a spoke

in a star over at least m + 1 vertices, when each spoke is endowed with y resources and the

centre is endowed with x resources, is

ϕ(x, y,m) = (x+my)p(y, x)
m−1∏
i=1

p(x+ iy, y) = (x+my)

(
yγ

xγ + yγ

)m−1∏
i=1

(
(x+ iy)γ

(x+ iy)γ + yγ

)

The key to the constructions of resource endowments enabling equilibria described above is

the following claim:

Claim. For all m ≥ 2, γ ∈ [0, 1), and y > 0, there exists a unique x∗m = x∗m(y, γ) > y, such
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that

ϕ(x, y,m)


< y if x ∈ (y, x∗m),

= y if x = x∗m,

> y if x > x∗m.

(25)

Moreover, x∗m+1(y, γ) > x∗m(y, γ).

Before proving the claim, we provide the construction of resource endowments. Taking

any x ∈ (max(y, x∗n−2 − y), x∗n−1) guarantees that no ruler has incentives to engage in a full

attacking sequence (and the interval is non-empty, as x∗n−2 > y, for n ≥ 4). Moreover, after at

least one fight, every ruler at a spoke has incentives to fight if no other ruler fights, as a full

attacking sequence yields him expected payoff higher than y. Thus any ruler deviating from

peaceful strategy profile leads to fight till hegemony, which is not profitable for the deviating

ruler. Therefore there is an equilibrium where all rulers choose peace in the initial ownership

configuration. Similarly, taking any x ∈ (max(0, x∗n−3−2y), x∗n−2−y) guarantees that after one

fight by a spoke, an ownership configuration with resources at the centre as described above

is reached. Moreover, at such a state, no ruler has incentives to engage in a full attacking

sequence. Thus there is an equilibrium where (1) in the initial state each ruler owning a spoke

chooses to attack the centre and the ruler owning the centre chooses peace, (2) in the state

with n − 1 vertices every vertex chooses peace, and (3) in any state with at most n − 2 at

least one vertex chooses attack. In this equilibrium there is one conflict followed by peace.

Notice that the two constructions given above are generic: analogous argument could be

conducted if spokes were endowed with resource sufficiently close to each other and the centre

was endowed with resources within a range close to the range given in the construction above.

We now provide the proof of the claim. To this end, we establish four properties of function

ϕ, from which the claim follows. Fix any γ ∈ [0, 1).

First, we show that, for all x, y ∈ R++ and m ≥ 3, ϕ(x, y,m) < ϕ(x, y,m−1). Notice that,

y1−γ ≤ (x+(m−1)y)1−γ. Multiplying both sides by yγ(x+(m−1)y)γ we get y(x+(m−1)y)γ <

yγ(x + (m − 1)y). Reorganizing, we obtain (x + my)(x + (m − 1)y)γ < ((x + (m − 1)y)γ +

yγ)(x+ (m− 1)y). Dividing both sides by the RHS we get
(

x+my
x+(m−1)y

)(
(x+(m−1)y)γ

(x+(m−1)y)γ+yγ

)
< 1.

This, together with the fact that ϕ(x, y,m) = ϕ(x, y,m − 1)
(

(x+(m−1)y)γ
(x+(m−1)y)γ+yγ

)(
(x+my)

(x+(m−1)y)

)
yields ϕ(x, y,m) < ϕ(x, y,m− 1).

Second, we show that ϕ is strictly increasing in x for x > y. First derivative of ϕ with
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respect to x is

∂ϕ

∂x
=

(
γyγ

xγ + yγ

)
(x+my)

m−1∏
i=1

(
(x+ iy)γ

(x+ iy)γ + yγ

)
((

1

γ(x+my)

)
−
(

xγ−1

xγ + yγ

)
+

m−1∑
j=1

yγ

(x+ jy)((x+ jy)γ + yγ)

)
. (26)

Since γ ∈ [0, 1) so (1− γ)(x + y) > 0. Reorganizing we get x + y + (m− 1)γy > γ(x + my).

Dividing both sides by γ(x+ y)(x+my) we get 1
γ(x+my)

+ (m−1)y
(x+y)(x+my)

> 1
x+y

Since x > y and

γ ∈ [0, 1) so (x/y)1−γ > 1 and so 1
x+y

> 1

x+y(xy )
1−γ = xγ−1

xγ+yγ
. Hence

1

γ(x+my)
+

(m− 1)y

(x+ y)(x+my)
>

xγ−1

xγ + yγ
. (27)

Notice that

(m− 1)y

(x+ y)(x+my)
=

(
1

x+ y

)
−
(

1

x+my

)
=

m−1∑
i=1

(
1

x+ iy

)
−

m∑
i=2

(
1

x+ iy

)

=
m−1∑
i=1

((
1

x+ iy

)
−
(

1

x+ (i+ 1)y

))
=

m−1∑
i=1

(
y

(x+ iy)((x+ iy) + y)

)

Moreover, for γ ∈ [0, 1), x > y, and i ≥ 1,

y

(x+ iy)((x+ iy) + y)
=

1

(x+ iy)
((

x
y

+ i
)

+ 1
) < 1

(x+ iy)
((

x
y

+ i
)γ

+ 1
)

=
yγ

(x+ iy)((x+ iy)γ + yγ)

Thus
(m− 1)y

(x+ y)(x+my)
<

m−1∑
i=1

(
yγ

(x+ iy)((x+ iy)γ + yγ)

)
which, together with (27), implies

1

γ(x+my)
+

m−1∑
i=1

(
yγ

(x+ iy)((x+ iy)γ + yγ)

)
>

xγ−1

xγ + yγ
.
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Therefore, by that and (26), ∂ϕ/∂x > 0 for all x > y and so ϕ is increasing in x on (y,+∞).

Third, we show that for all y ∈ R++ and m ≥ 3, limx→+∞ ϕ(x, y,m) = +∞. To see that no-

tice that limx→+∞
∏m−1

i=1 p(x+iy, y) = 1 and limx→+∞ p(y, x)(x+my) =

(
yγ

1+( yx)
γ

)(
x1−γ +m

(
y
xγ

))
=

+∞, and so the property follows.

Fourth, we show that ϕ(y, y,m) < y. To see that we start with

ϕ(y, y,m) =

(
1

2

)
(m+ 1)y

m−1∏
i=1

(
(i+ 1)γ

(i+ 1)γ + 1

)
=

(
1

2

)
(m+ 1)y

m∏
i=2

(
iγ

iγ + 1

)
.

Since iγ

iγ+1
= 1−

(
1

iγ+1

)
, γ ∈ [0, 1), i ≥ 1, so iγ/(iγ + 1) is increasing in γ. Hence ϕ(y, y, n) <(

1
2

)
(m+ 1)y

∏m
i=2

(
i
i+1

)
=
(
1
2

)
y
(
n!
n!

)
2 = y.

By the four properties of ϕ, established above, for all m ≥ 2, γ ∈ [0, 1), and y > 0,

there exists a unique x∗m = x∗m(y, γ) > y, such that (25) holds. Moreover, since for all

x, y ∈ R++ and m ≥ 3, ϕ(x, y,m) < ϕ(x, y,m − 1), and since ϕ is increasing in x for x > y,

x∗m+1(y, γ) > x∗m(y, γ). This completes the proof.

Short attack sequences

Proof of Proposition 5. Throughout the proof we use the precedence relations on ownership

configurations and states, as well as the sets Succ and Succ introduced in proof of Proposi-

tion 1.

Notice that if i ∈ Act(o) is the unique strong ruler at o, then for all o′ ∈ Succ(o) there

is exactly one strong ruler in Act(o′) and if i ∈ Act(o′) then i is strong. This is because no

weak ruler has a strong full attacking sequence and therefore no such ruler can become strong,

unless he wins a conflict with a strong ruler (in which case he replaces the unique strong ruler

in the subsequent state).

Given a ruler i ∈ N and an ownership configuration, o, a strategy si of i is an attacking

strategy at o if, for every ownership configuration o
′ ∈ Succ(o) such that i ∈ Act(o) and

|Act(o)| ≥ 2, and every set of rulers P ∈ 2N\{i}, si(o
′, P ) 6= ε. Thus, at state o and at any

state following o in the course of the game, i never chooses to stay peaceful under si, unless

he is not active or is the unique active ruler.

Given a ruler i ∈ N , an ownership configuration, o, and a strategy profile of the other

ruler, s−i, we define an attacking strategy si that is a best attacking response of i to s−i at o.

The strategy is defined recursively on the set of states Succ(o,∅), starting from the maximal
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elements under �. If (o′, P ) is such that o′ is maximal according to v in Succ(o) then, for

all i ∈ N , si(o
′, P ) = ε (the unique feasible choice of i at o). Otherwise, let si(o, P ) be any

neighboring ruler attacking whom maximises i’s expected payoff across all neighbors of i at

o, given the continuation payoff determined by s = (si, s−i) defined on states in Succ(o, P ).

Notice that if j is such a ruler at (o, P ) then, for any P ∈ 2N\{i}, attacking j maximises i’s

expected payoff across all neighbors of i. Moreover, generically, such a neighbor is unique.

Now we are ready to give main part of the proof. First we show, for any strategy profile,

s, any ownership configuration, o ∈ O, any ruler i ∈ N , and any set of rulers P ⊆ N \ {i},
that if i is the unique strong ruler at o then any best attacking response, s∗i , of i to s−i at o

yields i an expected payoff greater than Ri(o).

The proof is by induction on the number of active rulers at o. For the induction basis,

suppose that |Act(o)| = 2 and that i is the single strong ruler at o. Let j be the other active

ruler. Since p is rich rewarding and i is strong, the other active ruler is weak and attacking

him increases i’s payoff in expectation. Thus the claim holds.

For the induction step, take any 2 < m ≤ n suppose that the claim holds for any ownership

configuration o with |Act(o)| < m active rulers. Take any ownership configuration, o ∈ O,

with a unique strong ruler, i ∈ Act(o). Notice that since s∗i is an attacking strategy, so

s∗i (o, P ) 6= ε, for all P ∈ 2N\{i}. Hence, with probability 1, a ruler choosing attack will be

selected at o. Thus the strategy profile s̃ = (s∗i , s) determines a probability distribution

Q(· | s̃,o) on the set A(o) = {(j, k) ∈ Act(o) × Act(o) : j 6= k} where, given (j, k) ∈ A(o),

Q(j, k | s̃,o) is the probability that ruler j attacks ruler k at o. Given two rulers, j, k ∈ Act(o),

active at o let o[j → k] denote the ownership configuration resulting from j wining a conflict

with k. The expected payoff to i at o, Πi(s̃ | o), is equal to

Πi(s̃ | o) =
∑

(j,k)∈A(o)
j 6=i,k 6=i

Q(j, k | s̃,o)
(
p(Rj(o), Rk(o))Πi(s̃ | o[j → k]) +

p(Rk(o), Rj(o))Πi(s̃ | o[k → j])
)

+∑
(j,i)∈A(o)

Q(j, i | s̃,o)p(Ri(o), Rj(o))Πi(s̃ | o[i→ j]) +

Q(i, s∗i (o, P ) | s̃,o)p(Ri(o), Rs∗i (o,P )(o))Πi(s̃ | o[i→ s∗i (o, P )])

By the observation at the beginning of the proof, i remains a unique strong ruler at each
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ownership configuration o[j, k] with (j, k) ∈ A(o) such that j 6= i and k 6= i. Similarly, i

remains a unique strong ruler at each ownership configuration o[i, j] with j ∈ A(o). Thus, by

the induction hypothesis, for all (j, k) ∈ A(o), Πi(s̃ | o[j → k]) > Ri(o[j → k]). In the case of

j 6= i and k 6= i, Ri(o[j → k]) = Ri(o). In the case of k = i, p(Ri(o), Rj(o))Πi(s̃ | o[i→ j]) >

p(Ri(o), Rj(o))Ri(o[j → k]) = p(Ri(o), Rj(o))(Ri(o) + Rj(o)) > Ri(o), as Ri(o) > Rj(o)

and i is rich rewarding. Hence Πi(s̃ | o) > Ri(o).

Now, suppose that there is a unique strong node in G under resource endowment r. Then

there is a unique strong ruler at the ownership configuration. Take any equilibrium s of the

game. By the observation above, there is a unique strong ruler at every ownership configura-

tion o ∈ O. In addition, point 1 of Proposition 4 extends immediately to the short sequence of

attack (the proof does not make any assumptions about the sequences that the rulers choose).

Hence in the short sequence model, like in the basic model, every ownership configuration is

either peaceful or conflictful under s. Take any peaceful ownership configuration o. It must

be that there is a unique active ruler at o as otherwise, by what was shown above, if no

other active ruler attacks his neighbor, the unique strong ruler attacks one of his neighbors.

Hence there is fight till hegemony under s. By generic uniqueness of equilibrium payoffs, the

probability of becoming a hegemon is generically unique.

Losses in war

Proof of Proposition 6. Given set of vertices U ⊆ V and resource endowment r let rU =∑
v∈U rv. Also, given a resource endowment r over a set of vertices V let Z(r) = {(rU , rU ′) :

U,U ′ ∈ 2V \ {∅}, U ∩ U ′ = ∅}.
Point 1: Fix the set of vertices V and resource endowment r. Assume first that p is rich

rewarding. Take any x, y ∈ R++. Since p(x, y)(x+ y) > x so δ1x,y = 1− x/((x+ y)p(x, y)) > 0

and for any δ ∈ (0, δ1x,y), p(x, y)(1 − δ)(x + y) > x. Next, assume that p has the no-waiting

property. Take any x, y, z ∈ R++. By monotonicity and continuity of p, p(x, y)p((1− δ)(x +

y), z)((1 − δ)(x + y) + z) is continuous and decreasing in δ. Moreover, by the no-waiting

property, p(x, y)p(x + y, z)(x + y + z) > p(x, y + z)(x + y + z). Thus δ2x,y = sup{0 < δ ≤ 1 :

p(x, y)p((1−δ)(x+y), z)((1−δ)(x+y)+z) > p(x, y+z)(x+y+z)} is well defined and for all

δ ∈ (0, δ2x,y), p(x, y)p((1− δ)(x+y), z)(1− δ)((1− δ)(x+y)+ z) > p(x, y+z)(1− δ)(x+y+z).

Let δ1(r) = minx,y∈Z(r) δ
1
x,y, δ

2(r) = minx,y∈Z(r) δ
2
x,y, and δ(r) = min(δ1(r), δ2(r)). Since Z(r)

is finite and non-empty so δ(r) is well defined and positive. For any δ ∈ (0, δ(r)) and amounts

of resources from Z(r), expected payoff from attacking a poorer side is higher then current
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resource holding and expected payoff from attacking two opponents in a sequence is higher

than payoff from letting them fight and attacking them afterwards. Hence the argument in

proof of Theorem 1 works. This proves point 1.

Point 2: Let Zi = (1 − δ)ix0 +
∑i

j=1(1 − δ)i−j+1xj. The expected payoff to a ruler with x0

resources from a sequence of conflicts with m rulers with resources x1, . . . , xm is given by

Πseq(x0, x1, . . . , xm) = Zm

m∏
i=1

p (Zi−1, xi) = x0

m∏
i=1

p (Zi−1, xi)
Zi
Zi−1

.

Recall that if δ ≥ 1/2 then, for any x, y ∈ R++, (x+y)(1−δ)p(x, y) < x. Hence p(Zi−1, xi)Zi/Zi−1 =

p(Zi−1, xi)(1−δ)(Zi−1+xi)/Zi−1 < 1, for all i ∈ {1, . . . ,m} and, consequently, Πseq(x0, x1, . . . , xm) <

x0. Hence no non-empty sequence of fights is profitable if δ ≥ 1/2 and so there is peace in

equilibrium on any network and for any resource endowment r ∈ RV
++. This completes the

proof of point 2.

Point 3: To prove the point, we will show first that with sufficiently large value of δ any

sequence of fights containing a fight with sufficiently small ruler yields lower expected payoff

than some of its subsequences ending before the fight with the small ruler. This observation

allows us to support the idea of buffer states in network settings.

Take any vector of resources (x0, . . . , xm) ∈ Rm
+ and fix some k ∈ {0, . . . ,m}. Assume

that xi > 0, for all i 6= k. We will compare the expected payoffs from the sequence of fights

involving the sequence of resources x0, . . . , xm with sequences of fight involving the sequence

of resources x0, . . . , xl, for l ∈ {0, . . . , k − 1}.
The inequality Πseq(x0, . . . , xm) < Πseq(x0, . . . , xl) is equivalent to

Zm

m∏
i=l+1

p (Zi−1, xi) < Zl. (28)

We will show first, that the inequality (28) is satisfied if δ is sufficiently close to 1/2. Notice

that LHS = Πseq(Zl−1, xl, . . . , xm) and, by what we observed earlier, this is less than Zl−1,

if δ ≥ 1/2. Since the expected payoff is continuous in δ so, for any l ∈ {0, . . . , k − 1} and

xk ∈ R+, there exists δ̄(l, xk) ∈ [0, 1/2) such that (28) is satisfied for all δ ∈ [0, δ̄(l, xk)). Let

δ∗(xk) = minl∈{0,...,k−1} δ(l, xk). For any δ ∈ (δ∗(xk), 1/2) there exists l ∈ {0, . . . , k − 1} such

that the sequence of fights with resources x0, . . . , xl yields higher expected payoff than the

sequence of fights x0, . . . , xm.

Second, we show that the LHS is strictly increasing in xk on the interval (0, x) whith x
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sufficiently close to 0. Notice that

∂LHS

∂xk
= (1− δ)−l

(
m∏

i=l+1

p (Zi−1, xi)

)(
(1− δ)m−k+1

− Zm

(
f ′(xk)

f(xk)
p(xk, Zk−1)−

m∑
i=k+1

f ′(Zi−1)

f(Zi−1)
p(xi, Zi−1)(1− δ)i−k

))
.

Since f ′(0) = 0 so

f ′(xk)

f(xk)
p(xk, Zk−1)

∣∣∣∣
xk=0

=
f ′(xk)

f(xk) + f(Zk−1)

∣∣∣∣
xk=0

= 0, while

m∑
i=k+1

f ′(Zi−1)

f(Zi−1)
p(xi, Zi−1)(1− δ)i−k

∣∣∣∣∣
xk=0

> 0.

Since f ′ is continuous around 0 so, for any δ ∈ [0, 1), there exists x̄(δ) > 0 such that ∂LHS
∂xk

> 0

on (0, x̄(δ)) and, consequently, LHS is increasing in xk on (0, x̄(δ)). Let x∗ = infδ∈[0,1/2) x̄(δ):

for any δ ∈ [0, 1/2), LHS is increasing in xk on (0, x∗).

The two observations above allow us to conclude the following: any sequence of fights,

x1, . . . , xm with k ∈ {0, . . . ,m} yields lower expected payoff than one of its sequences, that

ends after l ≤ k − 1 fights if xk ∈ (0, x∗) and δ ∈ (δ∗(x∗), 1/2). Moreover, if δ∗ > 0, then

the sequence of length m yields weakly higher payoff than any of its subsequences of length

l ≤ k − 1 and yields exactly the same payoff as at least one of these subsequences. In this

case, increasing xk within the interval (0, x∗) will make the sequence of length m yield strictly

higher payoff than any of the subsequences of length l ≤ k − 1.

Now suppose that G has a node, v such that G− {v} is disconnected. By the conclusion

above, there exists a range (δ∗∗, 1/2) of losses in war and a range (0, x∗∗) of amounts of

resources such that in equilibrium no sequence of fights involves a fight with the ruler owning

v if resources at v, rv ∈ (0, x∗∗). It is important to note that the requirement on the resources

at v is necessary. With δ = 0, for any value of rv ∈ R++, there exists at least one strong ruler

whose full attacking sequence is better than any other sequence. By the analysis above, there

exists δ and r such that this sequence (or a subsequence of it) involves v, if rv > r and does

not involve v if rv < r.

This implies that buffer states prevent spread of conflict, if their resources are sufficiently

low and losses in war are sufficiently high.
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Additional results

Hirshleifer’s constest success function

Another widely used contest success function, along the Tullock contest success function, is

the so called difference form proposed by Hirshleifer [1989]:

p(x, y) =
exp(γx)

exp(γx) + exp(γy)
, (29)

where γ > 0. Thus f(x) = exp(γx) and it is easy to check that f(x)/x is increasing on interval

(0, 1/γ) and decreasing on (1/γ,+∞). Thus the function maintains the poor rewarding and,

consequently, the waiting properties on the interval (0, 1/γ) and maintains the rich rewarding

and, consequently, the no-waiting properties on the interval (1/γ,+∞). Hence if the minimal

resources in the network at the initial ownership configuration are greater than 1/γ, all the

results obtained for the rich rewarding case would hold for this contest success function as well

and if the total resources in the network are less than 1/γ, the results for the poor rewarding

case apply.

For the order of fights properties of Hirshleifer’s contest success function, notice that

h(s, t) =
exp(γt) exp(γ(s+ t))

exp(γ(s+ t)− exp(γs)− exp(γt))
=

1

exp(−γt)− exp(−2γt)− exp(−γ(s+ t))
.

Taking the derivative with respect to t and comparing it to 0 we can see that h(s, t) is

decreasing in t when exp(−γt) < 1/2− exp(−γs)/2 and is increasing in t when the inequality

is reversed. The LHS of the inequality is decreasing in t while the RHS is increasing in s.

Moreover, the functions exp(−γx) and 1/2 − exp(−γx)/2 intersect at x = ln(3)/γ > 1/γ.

Thus on the interval (0, 1/γ) the contest success function maintains the poor rewarding and

the rich first properties and on interval (ln(3)/γ,+∞) it maintains the rich rewarding and the

poor first property.24

Greater losses lead to more war

Consider a star network over 4 vertices, as presented in Figure 10. Assume γ = 0.5. Every

spoke is endowed with y resources and the centre is endowed with x resources. Let y = 1.0

24Notice that on the interval (1/γ, ln(3)/γ) the contest success function is rich rewarding, but does not
have the poor first property: for any s ∈ (1/γ, ln(3)/γ), h(s, t) is first decreasing and then increasing in t on
(1/γ, ln(3)/γ).
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Figure 10: Network where increasing cost of conflict leads to war.

and x ∈ (2.1, 2.9).

Suppose that cost of conflict δ = 0. The expected payoff to a spoke ruler with 1.0 resources

from executing an attacking sequence of length m ≤ 2 when the centre ruler has z ∈ (3.1, 3.9)

resources is ϕ(z, 1.0,m) ≥ ϕ(z, 1.0, 2) ∈ (1.23, 1.37) (recall function ϕ as defined in proof of

Proposition 4). Hence after any spoke ruler attacks the centre at the initial ownership config-

uration, there will be fight till hegemony in any equilibrium. Payoff to the spoke ruler from

executing an attacking sequence of length 3 at the initial state is ϕ(x, 1.0, 3) ∈ (0.889, 0.999).

Thus it is not profitable for a spoke ruler to attack the centre at the initial state. Since γ < 1

and x < y so it is not profitable for the centre ruler to attack as well. Hence there is an

equilibrium with peace at the initial state.

Suppose now that cost of conflict δ = 0.2. The expected payoff to a spoke ruler with

y resources from executing an attacking sequence of length m when the centre ruler has x

resources is

ψ(x, y,m | δ) =(
x(1− δ)m +

m∑
j=1

(1− δ)jy

)
p(y, x)

m−1∏
i=1

p

(
(1− δ)ix+

i∑
j=1

(1− δ)jy), y

)
. (30)

Consider the ownership configuration resulting from two attacks by spoke on a centre: there

are two active rulers, one with 1.0 resources and another one with z = 0.8(0.8(1.0+x)+1.0) ∈
(2.784, 3.296) resources. Expected payoff to the poorer ruler from attacking the richer ruler is

ψ(z, 1.0, 1 | 2.0) ∈ (1.13, 1.23). Hence the poorer ruler finds it profitable to attack the richer

one. Consider now the ownership configuration resulting from one attack by a spoke ruler on

the centre. There are two spokes, each endowed with 1.0 resources and the centre endowed

with z = 0.8(1.0 + x) ∈ (2.48, 3.12) resources. Any attacker anticipates two fights after an
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attack. Expected payoff to a spoke from two fights is ψ(z, 1.0, 2 | 2.0) ∈ (0.73, 0.81). Thus

a spoke ruler does not want to attack and (with γ < 1 and z > y) the centre ruler does

not want to attack as well. Lastly, consider the initial ownership configuration. Payoff to a

spoke from attacking the centre is ψ(x, 1.0, 1 | 2.0) ∈ (1.01, 1.16). This leads to an ownership

configuration with peace. Hence every spoke finds it profitable to attack the centre and so

there is no peace at the initial ownership configuration. The increase in the cost of conflict

prevents conflict escalation at states with less than four rulers. This in turn raises incentives

for rulers to attack in the initial state.
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