Oceanic residual depth measurements, the plate cooling model, and global dynamic topography

Mark J. Hoggard, Jeff Winterbourne, Karol Czarnota, and Nicky White

1 Department of Earth Sciences, Bullard Laboratories, Cambridge, UK, 2 BP Exploration Operating Co. Ltd, Middlesex, UK, 3 Geoscience Australia, Canberra, ACT, Australia

Abstract Convective circulation of the mantle causes deflections of the Earth's surface that vary as a function of space and time. Accurate measurements of this dynamic topography are complicated by the need to isolate and remove other sources of elevation, arising from flexure and lithospheric isostasy. The complex architecture of continental lithosphere means that measurement of present-day dynamic topography is more straightforward in the oceanic realm. Here we present an updated methodology for calculating oceanic residual bathymetry, which is a proxy for dynamic topography. Corrections are applied that account for the effects of sedimentary loading and compaction, for anomalous crustal thickness variations, for subsidence of oceanic lithosphere as a function of age and for non-hydrostatic geoid height variations. Errors are formally propagated to estimate measurement uncertainties. We apply this methodology to a global database of 1936 seismic surveys located on oceanic crust and generate 2297 spot measurements of residual topography, including 1161 with crustal corrections. The resultant anomalies have amplitudes of $\pm1$ km and wavelengths of $\sim1000$ km. Spectral analysis of our database using cross-validation demonstrates that spherical harmonics up to and including degree 30 (i.e., wavelengths down to 1300 km) are required to accurately represent these observations. Truncation of the expansion at a lower maximum degree erroneously increases the amplitude of inferred long-wavelength dynamic topography. There is a strong correlation between our observations and free-air gravity anomalies, magmatism, ridge seismicity, vertical motions of adjacent rifted margins, and global tomographic models. We infer that shorter wavelength components of the observed pattern of dynamic topography may be attributable to the presence of thermal anomalies within the shallow asthenospheric mantle.

1. Introduction

Elevation of the Earth's surface is principally maintained by thickness and density variations within the crust and lithospheric mantle [Pratt, 1855; Airy, 1855]. Thus, mountain ranges are isostatically supported by deep crustal roots, while thin crust underlies many depressed regions such as sedimentary basins. However, some component of topography and bathymetry is generated and maintained by the changing pattern of convective circulation within the underlying mantle [Pekeris, 1935]. Upwellings and downwellings elevate or depress the surface of the overlying lithosphere [Griggs, 1939]. This time-dependent dynamic topography has been defined in a range of different ways. Here we define dynamic topography as that component of vertical surface deflection which is generated by density variations and flow within the convecting mantle. The spatial and temporal distribution of this dynamic topography can be used to place constraints on the fluid dynamical properties of the convecting mantle.

Our understanding of convection within the Earth has developed substantially over the last 100 years. The Rayleigh number of the Earth is estimated to be $10^6$–$10^9$, which implies that the mantle convects vigorously with a time-dependent planform [Knopoff, 1964; Turcotte and Schubert, 2002]. Numerical experiments of mantle convection predict a wide range of features, including long-lived stationary plumes, transient sheets, and rolls as well as single or many layers of convective circulation [e.g., McKenzie et al., 1973; Yuen et al., 1994; Davies and Davies, 2009]. Consequently, dynamic topography can be expected to vary as a function of time and space. These variations ought to be manifest throughout the geological record—an important challenge is to identify and quantify these transient features.

Our knowledge of the present-day planform of mantle convection is limited by a paucity of observational databases. Mapping dynamic topographic anomalies is complicated by the need to correct for isostatic
elevation generated by thickness and density contrasts within the crust and lithospheric mantle [Flament et al., 2013]. Continental lithospheric architecture is heterogeneous as a result of protracted geological histories that give rise to a range of thermal and chemical changes [Jordan, 1975]. One particularly important issue is the variable degree of depletion of cratonic lithosphere caused by a cumulative history of previous melting events. Fortunately, oceanic lithosphere appears to be significantly simpler, providing a more secure setting within which dynamic topography can be unambiguously identified and accurately measured. Oceanic bathymetry is primarily characterized by increasing subsidence with age that is caused by cooling and thickening of the lithospheric plate [McKenzie, 1967]. This behavior is globally consistent and predictable, so that deviations from it provide useful insights into other potential mechanisms of bathymetric evolution.

Menard [1965] suggested that since mantle convection is transient, resultant vertical motions should continuously evolve through space and time. He identified prominent midplate rises, such as the Darwin Rise in the southwest Pacific Ocean, as important present-day surface expressions of this transient phenomenon [Menard, 1969]. Oceanic bathymetry can also be regionally modulated by isostatic responses to sedimentary loading, by crustal thickness variations, and by flexural effects adjacent to subduction zones and seamounts [Watts and Ribe, 1984]. Removal of these isostatic and flexural responses, as well as the age-depth trend, yields a distribution of residual "depth anomalies" that define the pattern of dynamic topography, a term first coined by Menard [1973]. It is important to note that, in practice, residual depth anomalies represent an upper limit for the amplitude of dynamic topography, since local variations in the thickness and density of the lithospheric mantle are not yet resolvable and so are neglected.

Classic residual depth studies focused on the central portions of substantial oceanic basins as a result of significant uncertainties in sediment thickness adjacent to continental margins. Corrections for sediment loading assumed Airy isostasy and constant sediment density, but a correction for anomalous crustal thickness was not applied. Depth anomalies of ±300 m within the East Pacific Ocean, which occur on length scales of 500–2000 km, were found to be more common than hotspot volcanism and showed a weak correlation with free-air gravity anomalies [Menard, 1973]. A global analysis by Cochran and Talwani [1977] confirmed these observations and noted positive anomalies >500 m within the North Atlantic Ocean, in the vicinity of Hawaii, and near the Rio Grande, Azorean, and Kerguelen rises. Depressions deeper than −500 m were mapped along the East Pacific Rise and at the Australia-Antarctic Discordance.

Isostatic corrections in regions with thicker sedimentary cover were subsequently addressed by accounting for differential compaction, which causes increases in density and acoustic velocity as a function of depth through the sedimentary pile [Le Douaran and Parsons, 1982; Tucholke et al., 1982; Crough, 1983a; Carlson et al., 1986]. Residual depths were later refined for the Pacific Ocean [Schroeder, 1984], the southeast Indian Ocean, and the South Atlantic Ocean [Hayes, 1988], culminating in a preliminary global analysis [Cazenave et al., 1988]. These studies confirmed the existence of ±1 km anomalies on length scales of 500–2500 km. Table 1 collates known oceanic residual depth studies.

A significant and enduring problem with the accuracy and interpretation of residual topographic anomalies concerns the general omission of the crustal correction [Cazenave et al., 1986; Lecroart et al., 1997; Flament et al., 2013]. For example, substantial positive anomalies were mapped in regions where large crustal thicknesses are now known to occur (e.g., Rio Grande Rise and Ontong Java Plateau). Since there is a relative paucity of well-resolved crustal thickness measurements within the oceanic realm, initial attempts to sidestep this problem were based on excising regions of anomalous crustal thickness with the aid of bathymetric databases and high-pass-filtered gravity anomalies [Hillier and Watts, 2005; Crosby et al., 2006; Zhong et al., 2007]. More recently, isostatic corrections have been used to account for anomalous crustal thicknesses at spot locations where seismic wide-angle and reflection imaging permits direct measurement [Winterbourne et al., 2009; Czarnota et al., 2013; Winterbourne et al., 2014].

In this contribution, our aims are threefold. First, we present an updated methodology that includes a comprehensive treatment of error propagation associated with each correction. Second, an augmented global database of 2297 residual depth measurements relative to a revised plate model is presented. Previously, many of these measurements were utilized as the basis of a spectral analysis of dynamic topography [Hoggard et al., 2016]. Since this study, our digital database has been significantly updated and, where necessary, corrected. We subsequently describe a series of regional examples which illustrate how residual depth measurements can be corroborated with independent and disparate geological and geophysical observations.
Table 1. Summary of Locations, Methodologies, and Corrections for Oceanic Residual Depth Studies

<table>
<thead>
<tr>
<th>Reference</th>
<th>Location</th>
<th>Age-Depth Model</th>
<th>Sediment Correction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Menard [1973]</td>
<td>East Pacific</td>
<td>Plate</td>
<td>Constant density</td>
</tr>
<tr>
<td>Cochran and Talwani [1977]</td>
<td>Global (basin centers)</td>
<td>Plate-like</td>
<td>Constant density</td>
</tr>
<tr>
<td>Heestand and Crough [1981]</td>
<td>North Atlantic</td>
<td>Half-space</td>
<td>Constant density</td>
</tr>
<tr>
<td>Crough and Jarrard [1981]</td>
<td>Central Pacific</td>
<td>Plate</td>
<td>Compaction</td>
</tr>
<tr>
<td>Crough [1983b]</td>
<td>Global (basin centers)</td>
<td>Plate</td>
<td>Compaction</td>
</tr>
<tr>
<td>Schroeder [1984]</td>
<td>Pacific</td>
<td>Plate</td>
<td>Compaction</td>
</tr>
<tr>
<td>Watts et al. [1985a]</td>
<td>Pacific</td>
<td>Plate</td>
<td>Not applied</td>
</tr>
<tr>
<td>Cazenave et al. [1986]</td>
<td>Global</td>
<td>Plate</td>
<td>Not applied</td>
</tr>
<tr>
<td>McNutt and Fischer [1987]</td>
<td>South Pacific</td>
<td>Plate</td>
<td>Compaction</td>
</tr>
<tr>
<td>Hayes [1988]</td>
<td>SE Indian and South Atlantic</td>
<td>Half-space</td>
<td>Compaction</td>
</tr>
<tr>
<td>Cazenave et al. [1988]</td>
<td>Global</td>
<td>Plate</td>
<td>Compaction</td>
</tr>
<tr>
<td>Colin and Fleitout [1990]</td>
<td>Global</td>
<td>Plate-like</td>
<td>Compaction</td>
</tr>
<tr>
<td>Johnson and Carlson [1992]</td>
<td>Global DSDP and ODP sites</td>
<td>Plate</td>
<td>Compaction</td>
</tr>
<tr>
<td>Forte et al. [1993]</td>
<td>Global</td>
<td>Not applied</td>
<td>Not applied</td>
</tr>
<tr>
<td>Davies and Pribac [1993]</td>
<td>Pacific</td>
<td>Half-space</td>
<td>Compaction</td>
</tr>
<tr>
<td>Kido and Seno [1994]</td>
<td>Global</td>
<td>Plate-like</td>
<td>Compaction</td>
</tr>
<tr>
<td>Nyblade and Robinson [1994]</td>
<td>Africa</td>
<td>Plate and half-space</td>
<td>Compaction</td>
</tr>
<tr>
<td>Le Stunff and Ricard [1995]</td>
<td>Global</td>
<td>Plate-like</td>
<td>Constant density</td>
</tr>
<tr>
<td>Lithgow-Bertelloni and Silver [1998]</td>
<td>South Atlantic</td>
<td>Half-space</td>
<td>Not Applied</td>
</tr>
<tr>
<td>Pari and Peltier [2000]</td>
<td>Global</td>
<td>Not applied</td>
<td>Crust 5.1 densities</td>
</tr>
<tr>
<td>Panasyuk and Hager [2000]</td>
<td>Global</td>
<td>Plate and half-space</td>
<td>Not applied</td>
</tr>
<tr>
<td>Pari [2001]</td>
<td>Global</td>
<td>Not applied</td>
<td>Crust 5.1 densities</td>
</tr>
<tr>
<td>Steinberger et al. [2001]</td>
<td>Global</td>
<td>Plate-like</td>
<td>Crust 5.1 densities</td>
</tr>
<tr>
<td>Kaban et al. [2003]</td>
<td>Global</td>
<td>Plate</td>
<td>Crust 5.1 densities</td>
</tr>
<tr>
<td>Louden et al. [2004]</td>
<td>North Atlantic</td>
<td>Plate</td>
<td>Compaction</td>
</tr>
<tr>
<td>Hillier and Watts [2005]</td>
<td>North Pacific</td>
<td>Plate</td>
<td>Compaction</td>
</tr>
<tr>
<td>Crosby et al. [2006]</td>
<td>Global</td>
<td>TBL instability</td>
<td>Compaction</td>
</tr>
<tr>
<td>Steinberger [2007]</td>
<td>Global</td>
<td>Plate-like</td>
<td>Crust 2.0 densities</td>
</tr>
<tr>
<td>Zhong et al. [2007]</td>
<td>Pacific</td>
<td>Plate and half-space</td>
<td>Compaction</td>
</tr>
<tr>
<td>Ito and van Keken [2007]</td>
<td>Global</td>
<td>Plate</td>
<td>Applied (compaction unclear)</td>
</tr>
<tr>
<td>Muller et al. [2008a]</td>
<td>Global</td>
<td>Plate and TBL instability</td>
<td>Compaction</td>
</tr>
<tr>
<td>Winterbourne et al. [2009]</td>
<td>Central and South Atlantic</td>
<td>TBL instability</td>
<td>Compaction</td>
</tr>
<tr>
<td>Crosby and McKenzie [2009]</td>
<td>Global</td>
<td>TBL instability</td>
<td>Compaction</td>
</tr>
<tr>
<td>Whittaker et al. [2010]</td>
<td>SE Indian</td>
<td>Half-space</td>
<td>Compaction</td>
</tr>
<tr>
<td>Flament et al. [2013]</td>
<td>Global</td>
<td>Plate</td>
<td>Compaction</td>
</tr>
<tr>
<td>Czarnota et al. [2013]</td>
<td>Australia</td>
<td>TBL instability</td>
<td>Compaction</td>
</tr>
<tr>
<td>Winterbourne et al. [2014]</td>
<td>Global</td>
<td>TBL instability</td>
<td>Compaction</td>
</tr>
<tr>
<td>King and Adam [2014]</td>
<td>Global</td>
<td>Plate</td>
<td>Constant density</td>
</tr>
<tr>
<td>Wobbe et al. [2014]</td>
<td>South Pacific</td>
<td>Plate</td>
<td>Compaction</td>
</tr>
<tr>
<td>Steinberger [2016]</td>
<td>Global</td>
<td>Plate-like</td>
<td>Crust 1.0 densities</td>
</tr>
<tr>
<td>Hoggard et al. [2016]</td>
<td>Global</td>
<td>TBL instability</td>
<td>Compaction</td>
</tr>
</tbody>
</table>

TBL = thermal boundary layer [e.g., Crosby et al., 2006]. Plate cooling, plate-like (i.e., half-space cooling for young lithosphere followed by constant depth), and TBL instability relationships all flatten at older oceanic ages.
Finally, a brief analysis illustrates the importance of our well-resolved spot measurements of oceanic residual depth for constraining the amplitude of the long-wavelength components of dynamic topography.

2. Oceanic Crust Database

Accurate knowledge of the thickness and density structure of oceanic crust is required in order to apply corrections for sedimentary and crustal loading. Such measurements can be locally obtained from seismic reflection and wide-angle experiments that image both basement and Moho. A database has been compiled that comprises 1240 reflection lines, 302 modern (i.e., waveform-modeled) wide-angle experiments, and 395 vintage (i.e., slope-intercept) refraction experiments (Figure 1). Data sources include vintage academic experiments and profiles acquired by the seismic contracting industry and are tabulated in the supporting information. These experiments and profiles range over more than 300,000 km and provide comprehensive coverage of the oceanic realm, particularly at thickly sedimented continental margins where accurate isostatic corrections are essential. There is inevitably a bias toward continental margins where the activities of the hydrocarbon industry are concentrated. Regions where flexural bending occurs or where large-amplitude, short-wavelength gravity anomalies are visible have been excluded.

On each image, *bona fide* oceanic crust is identified by its characteristic acoustic architecture in conjunction with the pattern of magnetic anomalies [Müller et al., 2008a], with free-air gravity anomalies [Sandwell et al., 2014], and with regional studies of continent-ocean boundaries. Figure 2 shows six examples from this global inventory. Generally, the sediment-basement interface is clearly visible. The base of the crust (i.e., Moho) often consists of a single bright reflection, marking the base of typically cross-hatched lower crustal reflectivity (e.g., Figure 2e). Sometimes, the Moho reflection is patchy or even invisible, particularly along margins with uneven bathymetry, thick sedimentary piles, or rugose sediment-basement interfaces.

The reliability of crustal models determined from seismic wide-angle and refraction surveys depends upon the vintage of the experiment and upon the modeling technique employed. Optimal results come from modern, densely sampled experiments where observed and calculated travel times, together with waveforms, are
Figure 2. Images of oceanic crust. (a) Seismic reflection profile of 59 Ma oceanic crust west of India. S = seabed; B = sediment-basement interface; M = Moho discontinuity. (b) Equatorial Brazil (92 Ma). (c) Tanzania (142 Ma). (d) East India (110 Ma). (e) South Brazil (104 Ma). (f) Gulf of Mexico (170 Ma). Crustal ages from magnetic reversal history [Müller et al., 2008a]. Approximate locations are shown in Figure 1. Seismic data are shown courtesy of ION Geophysical Corporation.

matched using either forward or inverse modeling [e.g., Zelt and Smith, 1992; Holmes et al., 2008]. To ensure accurate Moho identification, it is essential that these wide-angle experiments have been reversed and that the horizontal range is large enough to observe diving waves that turn within the upper mantle (i.e., $P_n$ phases). Older refraction experiments were generally analyzed using slope-intercept methods that typically underpredict true crustal thickness by $\sim 20\%$, which results in underestimation of the crustal correction [White et al., 1992].

3. Sedimentary Correction

To remove the effect of sedimentary loading, an isostatic correction is applied where the mass of sediment is replaced with an equivalent water load balanced by asthenospheric mantle (Figure 3). The sedimentary correction, $C_s$, is given by

$$
C_s = \left( \frac{\rho_a - \bar{\rho}_s}{\rho_a - \rho_w} \right) z_s
$$

where $\rho_a$ is the density of the asthenosphere, $\rho_w$ is the density of water, $\bar{\rho}_s$ is the average density of the sedimentary column, and $z_s$ is the thickness of the sedimentary column (Table 2).
Maps of sedimentary thickness are plentiful but of uncertain pedigree and variable accuracy. For example, global sedimentary thickness grids [e.g., Laske and Masters, 1997; Divins, 2003] have adequate spatial resolution but are prone to significant error where sedimentary deposits are thick, especially adjacent to continental margins or where there is significant basement topography (supporting information). Accurate measurements are best made when sediment-basement interfaces are imaged in seismic reflection or wide-angle experiments.

Seismic reflection profiles are recorded in two-way travel time which must be converted into thickness using a velocity model. The velocity model used here for the sedimentary pile is a revised version of that used by Winterbourne et al. [2009] that allows for compaction within the sedimentary pile. Two-way travel time, \( t \), is related to the vertical acoustic velocity by

\[
t = 2 \int_0^z \frac{dz}{v(z)}
\]

where \( v(z) \) is the bulk velocity as a function of depth, \( z \). This velocity depends upon the contributions from the pore space and from the solid grains, which are related in the time domain by

\[
\frac{1}{v(z)} = \phi(z) + \frac{1 - \phi(z)}{v_{sg}}
\]

where \( v_w \) is the pore fluid velocity, \( v_{sg} \) is the solid grain velocity, and \( \phi(z) \) is the porosity as a function of depth [Wyllie et al., 1956]. An empirical function is used to parameterize the decrease of porosity as a function of depth given by

\[
\phi(z) = \phi_0 \exp \left( -\frac{z}{\lambda} \right)
\]

where \( \phi_0 \) is the initial porosity and \( \lambda \) is the compaction decay length scale [Athy, 1930]. By combining these equations, we obtain

\[
\frac{t}{2} = \frac{z}{v_{sg}} + \phi_0 \lambda \left( \frac{1}{v_w} - \frac{1}{v_{sg}} \right) \left[ 1 - \exp \left( -\frac{z}{\lambda} \right) \right]
\]
Table 2. Notation Table

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Value</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>$C_s$</td>
<td>Correction for sedimentary loading</td>
<td>km</td>
<td></td>
</tr>
<tr>
<td>$C_c$</td>
<td>Correction for crustal loading</td>
<td>km</td>
<td></td>
</tr>
<tr>
<td>$z_s$</td>
<td>Sedimentary thickness</td>
<td>km</td>
<td></td>
</tr>
<tr>
<td>$z_c$</td>
<td>Crustal thickness</td>
<td>km</td>
<td></td>
</tr>
<tr>
<td>$z_w$</td>
<td>Water depth</td>
<td>km</td>
<td></td>
</tr>
<tr>
<td>$z_r$</td>
<td>Zero age depth of oceanic crust</td>
<td>km</td>
<td></td>
</tr>
<tr>
<td>$z_p$</td>
<td>Lithospheric plate thickness</td>
<td>km</td>
<td></td>
</tr>
<tr>
<td>$t$</td>
<td>Two-way travel time</td>
<td>s</td>
<td></td>
</tr>
<tr>
<td>$v_w$</td>
<td>Acoustic velocity of water</td>
<td>$1.50 \pm 0.01$</td>
<td>km s$^{-1}$</td>
</tr>
<tr>
<td>$v_s$</td>
<td>Acoustic velocity of solid grains</td>
<td>$5.50 \pm 0.50$</td>
<td>km s$^{-1}$</td>
</tr>
<tr>
<td>$\overline{v}_c$</td>
<td>Bulk acoustic velocity of oceanic crust</td>
<td>$6.28 \pm 0.34$</td>
<td>km s$^{-1}$</td>
</tr>
<tr>
<td>$\rho_w$</td>
<td>Density of seawater</td>
<td>$1.03 \pm 0.01$</td>
<td>Mg m$^{-3}$</td>
</tr>
<tr>
<td>$\rho_s$</td>
<td>Bulk sediment density</td>
<td></td>
<td>Mg m$^{-3}$</td>
</tr>
<tr>
<td>$\rho_g$</td>
<td>Density of solid grains</td>
<td>$2.65 \pm 0.05$</td>
<td>Mg m$^{-3}$</td>
</tr>
<tr>
<td>$\overline{\rho}_c$</td>
<td>Mean density of oceanic crust</td>
<td>$2.86 \pm 0.03$</td>
<td>Mg m$^{-3}$</td>
</tr>
<tr>
<td>$\rho_a$</td>
<td>Density of asthenospheric mantle</td>
<td>$3.20 \pm 0.02$</td>
<td>Mg m$^{-3}$</td>
</tr>
<tr>
<td>$\rho_m$</td>
<td>Density of mantle at 0°C</td>
<td>$3.30$</td>
<td>Mg m$^{-3}$</td>
</tr>
<tr>
<td>$\alpha$</td>
<td>Thermal expansivity</td>
<td>$3 \times 10^{-5}$</td>
<td>°C$^{-1}$</td>
</tr>
<tr>
<td>$\kappa$</td>
<td>Thermal diffusivity</td>
<td>$1 \times 10^{-6}$</td>
<td>m$^2$ s$^{-1}$</td>
</tr>
<tr>
<td>$\phi$</td>
<td>Fractional porosity of sediment</td>
<td></td>
<td>dimensionless</td>
</tr>
<tr>
<td>$\phi_i$</td>
<td>Initial porosity of sediment</td>
<td>$0.61$</td>
<td>dimensionless</td>
</tr>
<tr>
<td>$\lambda$</td>
<td>Compaction decay length scale</td>
<td>$3.9$</td>
<td>km</td>
</tr>
</tbody>
</table>

A set of intersections between seismic reflection and refraction profiles provide the means to calibrate equation (5) since both thickness and two-way travel time for the sedimentary pile are known. Here a global distribution of 43 intersections is used to calibrate the velocity model shown in equation (5) by carrying out a parameter sweep through $\phi - \lambda - v_s$ space (Figure 1). Each $\phi - \lambda - v_s$ triplet yields a velocity relationship for which the root-mean-square (RMS) misfit is calculated with respect to the time-depth observations.

This simple analysis determines the optimal values of $\phi_i$ and $\lambda$, but it does not constrain $v_s$ (Figures 4b–4d). Since the principal constituents of abyssal sediments are quartz and clay minerals, laboratory-based solid grain velocity measurements can be exploited [e.g., Christensen, 1982]. A value of $v_s = 5.5 \pm 0.5$ km s$^{-1}$ embraces typical variations encountered within abyssal sedimentary piles. This value and its uncertainty have been incorporated within the sedimentary correction.

The smallest RMS misfit when $v_s = 5.5$ km s$^{-1}$ is 0.354 and yields a velocity model with $\phi_i = 0.61$ and $\lambda = 3.9$ km. Uncertainty is calculated by incrementally increasing the misfit value and selecting all $\phi - \lambda$ combinations for $v_s = 5.5$ km s$^{-1}$ that have misfit values which fall beneath this threshold. The $t$-$z$ curve for each combination was calculated using equation (5), and upper and lower bounds of the resultant velocity curves were determined. When 67% of the original time-depth sediment thickness observations fall within this envelope, the RMS misfit threshold reached is 0.434 (Figure 4).

Bulk sedimentary density, $\overline{\rho}_s$, also increases with compaction as it depends upon the relative contributions from fluid in the pore space and the solid grains.

$$\overline{\rho}_s(z) = \int_0^z \rho_w \phi(z) + \rho_g [1 - \phi(z)]dz$$

(6)

where $\rho_w$ is the density of water and $\rho_g$ is the solid grain density, which is assumed to be a mixture of quartz and clay (i.e., $2.65 \pm 0.05$ Mg m$^{-3}$) [Christensen, 1982]. By combining this relationship with equation (4), we obtain

$$\overline{\rho}_s(z) = \rho_g + \frac{\phi_i \lambda}{z} (\rho_w - \rho_g) \left[ 1 - \exp \left( -\frac{z}{\lambda} \right) \right]$$

(7)
Figure 4. Sedimentary velocity and compaction. (a) Black crosses = 43 TWTT-depth pairs of sedimentary thickness from coincident reflection and wide-angle experiments (Figure 1). Solid/dashed lines = optimal velocity model with standard deviation (i.e., RMS misfit $\leq 0.434$). (b) Misfit plotted as a function of $\phi$ and $\lambda$ parameter sweep for $v_{sg} = 5.5$ km s$^{-1}$. Black cross = global minimum at $\phi = 0.61$ and $\lambda = 3.9$ km; dashed contour (0.434) = all $\phi$-$\lambda$ pairs for $v_{sg} = 5.5$ km s$^{-1}$ that yield adequate fit to 67% of TWTT-depth pairs. (c) Misfit plotted as a function of $v_{sg}$ and $\phi$, for $\lambda = 3.9$ km. Note that optimal compaction parameters show weak dependence upon $v_{sg}$.

The previously obtained optimal compaction parameters are used. Cumulative errors arising from uncertainties in all variables used for the sedimentary correction are difficult to analytically propagate. Instead, a practical Monte Carlo approach was used in which the sedimentary correction is calculated 200 times by randomly sampling each parameter from a Gaussian distribution based on the mean and standard deviations given in Table 2. For each test, a selected value of $v_{sg}$ is used to extract all corresponding $\phi$-$\lambda$ combinations that yield misfit values which fall beneath the misfit threshold. In this way, uncertainties in compaction parameters, the densities of water, solid grains, and asthenospheric mantle together with uncertainties in the velocities of water and solid grains are propagated into the sedimentary correction. The results are shown in Figure 5 and are consistent with the more limited sedimentary loading corrections presented by Crough [1983a], Sykes [1996], and Louden et al. [2004].

This analysis has been used to calculate sedimentary thicknesses along each of the 1936 seismic experiments shown in Figure 1. The sedimentary correction was then applied to remove the effects of sedimentary loading. The resultant estimates have been averaged over 1° bins to yield 2297 individual measurements with associated uncertainties.
Figure 5. Sedimentary density and isostatic corrections. (a) Bulk sedimentary density plotted as a function of sediment TWTT using equation (7). Standard deviation arises from uncertainties in compaction parameters, velocities, and densities of water and solid grains. (b) Same plotted as a function of sediment thickness where standard deviation arises from compaction parameters and densities only. (c) Sedimentary correction plotted as a function of sediment TWTT using equation (1). Standard deviation includes uncertainties in all input parameters (Table 2). (d) Same plotted as a function of sediment thickness. Green crosses = corrections from Crough [1983a]; red crosses = corrections from Louden et al. [2004]; blue crosses = corrections from Sykes [1996] based upon observations from core samples only. Note that trade-off between sediment velocity and density reduces effect of compaction parameter uncertainty in Figure 5c compared to Figure 5d.

4. Crustal Correction

The crustal correction, $C_c$, concerns the isostatic replacement of crustal thickness that differs from a reference crustal thickness with an equivalent water load. Usually, observed crustal thickness is normalized with respect to the global average thickness of 7.1 km [White et al., 1992]. The correction is given by

\[ C_c = \left( \frac{\rho_o - \rho_c}{\rho_o - \rho_w} \right) (z_c - 7.1) \]

(8)

where $z_c$ and $\rho_c$ are the thickness and average density of oceanic crust, respectively.

A reliable global database of oceanic crustal thickness does not currently exist. However, there are many local and regional studies which we have collated into a useful compilation. The principal challenge is to convert two-way travel time measurements into depth. The data sets analyzed here are mostly located along the oldest oceanic crust that abuts continental margins. The bulk acoustic velocity of oceanic crust does not appear to vary significantly with age after $\sim$30 Ma since compaction and alteration of porosity within oceanic Layer 2 are complete by this time [Carlson and Herrick, 1990]. A bulk velocity of $v_c = 6.28 \pm 0.34$ km s$^{-1}$ is calculated from a compilation of velocity-depth profiles based upon waveform modeling of modern wide-angle experiments (supporting information). Figure 6 shows that there is, in fact, a small systematic increase in bulk velocity with age. Fortunately, this increase has only a minor effect on crustal thickness estimates since it represents a smaller source of uncertainty compared with the uncertainty in bulk velocity itself. The average density of oceanic crust estimated by Carlson and Herrick [1990] is 2.86 $\pm$ 0.03 Mg m$^{-3}$. This value is based upon analysis of core material from drilling programs, ophiolitic samples, and the observed seismic velocity structure of oceanic crust. Errors arising from uncertainties in the thickness and density of the crust and other isostatic parameters have been analytically propagated (Appendix A).
Figure 6. Crustal velocities and corrections. (a) Histogram of bulk velocities for oceanic profiles listed in the supporting information. Black polygon = crust > 30 Ma; white polygon = crust < 30 Ma; mean and standard deviation of each group is given in top right-hand corner. (b) Solid/dashed line = crustal correction plotted as a function of TWTT with 1σ standard deviation arising from uncertainties in velocity and density. (c) Solid/dashed line = crustal correction plotted as a function of true crustal thickness with 1σ standard deviation arising from uncertainty in density only.

This analysis is used to calculate and apply the crustal correction for 1161 measurements that have been averaged in 1° bins. However, there are seismic reflection profiles within our database upon which the Moho is either not visible or poorly imaged. In these cases, regional estimates, based upon adjacent profiles and upon the presence of seamounts or fracture zones, are used to gauge whether oceanic crust might be either thicker or thinner than the reference value. In this way, the sign of the crustal correction is estimated but not its magnitude. The median size of the crustal correction is 200 m, which is generally considerably smaller than the sedimentary correction. The non-crustal corrected residual topography estimates therefore still provide important and useful upper or lower bounds. In subsequent figures, circles are locations where both sedimentary and crustal corrections have been applied. Upper and lower limits are represented as downward and upward pointing triangles, respectively. An additional uncertainty of 200 m is added to all triangles to represent the absence of a local crustal correction. Finally, since vintage (i.e., slope-intercept) refraction analyses generally underpredict true crustal thickness, measurements based upon these data sets are represented with downward pointing triangles.

5. Age-Depth Correction

Many studies address the water-loaded depth of oceanic basement as a function of crustal age. Empirical relationships are estimated directly from global observational databases, while theoretical relationships are usually based upon conductive cooling of either half-space or plate models [e.g., Parsons and Sclater, 1977; Stein and Stein, 1992; Crosby et al., 2006]. Here we revisit this well-known and debated topic using our new database of water-loaded basement depths corrected for sedimentary and crustal loading. In order to correct for subsidence as a function of time, oceanic crustal ages have been assigned to each observation. We use ages calculated from the global synthesis of Müller et al. [2008a]. Where necessary, this synthesis has been supplemented using additional regional studies of oceanic crustal ages (supporting information).

5.1. Empirical Relationships

Our previously published compilations of residual depth measurements exploited an empirical age-depth relationship derived from the observation-based analysis of Crosby and McKenzie [2009]. They used long-wavelength ($\lambda > 3000$ km) free-air gravity anomalies as a proxy to identify and remove significant dynamic topographic signals (see Crosby et al. [2006] for further details). In contrast to older age-depth studies, particular care was taken to remove contamination caused by crustal thickness variations. Oceanic plateaux...
and regions with anomalously thin crust were identified using a combination of gravity anomalies and bathymetric maps and manually excised. Here we first repeat our previous approach and analyze our measurements using this published empirical relationship. The curve has been adjusted to remove discontinuities and to account for the effect of cooling by hydrothermal circulation at mid-oceanic ridges which tends to lower the temperature of the youngest crust [e.g., Grose and Afonso, 2013]. The corrected water-loaded depth to oceanic basement in meters, \( z_{w*} \), is given by

\[
\begin{align*}
z_{w}(t) &= \begin{cases} 
2700 & 0 \leq t < 1 \\
2652 + 324 \sqrt{t} & 1 \leq t \leq 73 \\
5028 + 5.26t - 250 \sin \left( \frac{t-75}{30} \right) & 73 < t \leq 156 \\
5750 & t > 156
\end{cases}
\end{align*}
\]

where \( t \) is plate age in millions of years (Figure 7a). The majority of water-loaded depths to basement fall within \( \pm 1 \) km of this empirical relationship with a mean residual depth of \(-90 \) m and a standard deviation of \( \pm 710 \) m. Figure 7b shows an alternative empirical relationship that has been calculated using a 50 Ma Gaussian moving window. In this case, the mean residual depth is 0 m and the standard deviation is \( \pm 650 \) m.

### 5.2. Theoretical Relationships

Since our revised and augmented global database now consists of 2297 accurate spot measurements, it is both appropriate and desirable to revisit rival theoretical models that attempt to account for plate subsidence as a function of age. The two best-known descriptions are the half-space cooling model and the plate cooling model. The half-space cooling model neglects horizontal heat flow and solves the one-dimensional heatflow equation for vertical diffusion within a semi-infinite half-space [Turcotte and Oxburgh, 1969]. This calculation yields the temperature distribution within oceanic lithosphere as a function of age. This predicted behavior can be combined with thermal expansivity and isostasy to obtain an analytical solution for the water-loaded depth of ocean floor, \( z_{w*} \), as a function of age, \( t \), such that

\[
\begin{align*}
Z_{w}(t) &= Z_{s} + 2\rho_{v}\alpha\Delta T\kappa^{-\frac{1}{3}}t \quad (\text{Eq. 9})
\end{align*}
\]

where \( Z_{s} \) is the zero-age depth, \( \rho_{v} \) is the density of mantle at surface temperature, \( \alpha \) is the coefficient of thermal expansion, \( \kappa \) is the thermal diffusivity, and \( \Delta T \) is the temperature difference between the surface and the mid-ocean ridge [Turcotte and Schubert, 2002]. \( Z_{s} \) and \( B = 2\rho_{v}\alpha\Delta T\kappa^{-\frac{1}{3}} \cdot (\rho - \rho_{w})\pi^{-\frac{1}{3}} \) can be independently varied to generate a parameter sweep through \( Z_{w} \) space. The misfit, \( M \), between water-loaded basement depth observations, \( z_{w}^\text{obs} \), and the age-depth relationship, \( z_{w}^\text{model} \), is given by

\[
M = \frac{1}{N} \sum_{i=1}^{N} (z_{w}^\text{obs} - z_{w}^\text{model})^{2}
\]

where \( N \) is the total number of observations. \( M \) is not weighted by uncertainties arising from the crustal and sedimentary corrections. This omission is important since some portions of oceanic floor may have negligible sedimentary cover and average crustal thickness, yielding negligible uncertainties in water-loaded basement depths. However, given that the effect of present-day dynamic topography has not been removed, it would be inappropriate to weight the age-depth relationship strongly in favor of these locations.

An optimal half-space cooling model is located at \( z_{s} = 2.67 \) km and \( B = 284 \) m Ma\(^{-0.5}\) and has a residual misfit of \( M = 0.460 \) (Figures 8a and 9a). Using published values for constant parameters (Table 2), this value of \( B \) yields a ridge axis temperature of \( 1027 \) °C, which is significantly smaller than the generally accepted value of \( -1300 \pm 50 \) °C that is consistent with the thickness and chemical composition of mid-oceanic ridge basalts (MORB) [e.g., Klein and Langmuir, 1987; McKenzie and Bickle, 1988; White et al., 1992; Herzberg et al., 2007; Matthews et al., 2016]. On these grounds, we conclude that the half-space cooling model is inadequate.

We note that our retrieved value of \( B = 284 \) m Ma\(^{-0.5}\) is significantly lower than previous estimates of \( B = 315 - 365 \) m Ma\(^{-0.5}\) [e.g., Parsons and Sclater, 1977; Stein and Stein, 1992; Korenaga and Korenaga, 2008]. These previous estimates are larger because, in all three cases, a half-space cooling model was fitted to observations from young oceanic lithosphere (typically \(<70 \) Ma). By restricting our fitting procedure in the same way,
Figure 7. Empirical age-depth relationships. (a) Water-loaded basement depths averaged over 1° bins plotted as a function of age. Circles = 1161 depths corrected for sedimentary and crustal loading; upward/downward triangles = 1136 lower/upper bounds corrected for sedimentary loading only; solid/dashed lines = relationship of Crosby and McKenzie [2009] with ±1 km bounds; colored circles with error bars = six residual depth measurements made from profiles shown in Figure 2. (b) Water-loaded depths as before. Solid/dashed lines = 50 Ma Gaussian running average of age-depth measurements with ±1 km bounds. (c) Histogram, mean, and standard deviation of residual depths with respect to Crosby and McKenzie [2009] relationship. (d) Histogram, mean, and standard deviation of residual depths with respect to 50 Ma Gaussian running average.
Figure 8. Theoretical age-depth relationships. (a) Water-loaded basement depths averaged over 1° bins plotted as a function of age. Circles = 1161 depths corrected for sedimentary and crustal loading; upward/downward triangles = 1136 lower/upper bounds corrected for sedimentary loading only; solid/dashed lines = best-fitting half-space cooling model with ±1 km bounds; colored circles with error bars = six residual depth measurements made from profiles shown in Figure 2. (b) Water-loaded depths as before. Solid/dashed lines = best-fitting plate cooling model with ±1 km bounds. (c) Histogram, mean, and standard deviation of residual depths with respect to half-space cooling model. (d) Histogram, mean, and standard deviation of residual depths with respect to plate cooling model.
Figure 9. Half-space and plate cooling misfits. (a) Misfit, $M$, as a function of ridge axis temperature, $\Delta T$, and zero-age depth, $z_r$, for half-space cooling model. Black cross = global minimum where $M = 0.460$. Values of other parameters are shown in Table 2. (b) $M$ as a function of ridge axis/basal temperature, $\Delta T$, and plate thickness, $z_p$, at zero-age depth, $z_r = 2.38$ km, for plate cooling model. Black cross = global minimum where $M = 0.442$; red line = misfit minima for mantle potential temperature range of $1330 \pm 50^\circ C$, compatible with MORB geochemistry [Herzberg and Asimow, 2015; Matthews et al., 2016]; white circles = plate models for the North Pacific and North Atlantic Oceans from Parsons and Sclater [1977]; white square = plate model obtained by Stein and Stein [1992].

we obtain $B = 330$ m Ma$^{-0.5}$, which agrees with this earlier work and corresponds to a ridge axis temperature of $1195^\circ C$. However, it is important to emphasize that the more crucial test of the half-space cooling model is whether or not it can be applied to a complete database of age-depth measurements. In this regard, the half-space cooling model fails.

The mismatch between predicted ridge axis temperature and that expected from basalt geochemistry suggests that a half-space cooling model is not a physically realistic description of subsidence as a function of age. This issue was originally resolved by introducing a plate model whereby the ridge axis temperature is also applied along the base of a lithospheric plate whose thickness is stabilized at ages greater than $\sim 60$ Ma by the onset of small-scale convective overturn or growth of a Rayleigh-Taylor instability in this thermal boundary layer [McKenzie, 1967; Sclater and Francheteau, 1970]. In this case, the water-loaded depth as a function of time is given by

$$z_n(t) = z_r + \left( \frac{\rho_w a \Delta T_p}{2(\rho - \rho_w)} \right) \left[ 1 - \frac{8}{\pi^2} \sum_{n=0}^{\infty} \frac{1}{(1 + 2n)^2} \exp \left( -\kappa (1 + 2n)^2 \pi^2 t / z_p^2 \right) \right]$$

where $z_p$ is the thickness of the lithospheric plate and $n$ has integer values [Turcotte and Schubert, 2002]. This equation has four independent variables (i.e., $z_r$, $C = \frac{1}{2} a \Delta T / (\rho - \rho_w)$, $\kappa$, and $z_p$). In order to identify the optimal plate cooling model, we have calculated how the misfit between observed residual depths and this relationship varies as a function of these four variables. If $\kappa = 1 \times 10^{-6}$ m$^2$ s$^{-1}$, a global minimum misfit is identified by carrying out a parameter sweep through $z_r$, $\Delta T$, $z_p$ space with values of all other constants fixed (Table 2). A slice through $\Delta T$, $z_p$ space containing this global minimum is shown in Figure 8b. This minimum occurs at $z_r = 2.38$ km, $\Delta T = 1253^\circ C$, and $z_p = 146$ km and has a misfit value of $M = 0.442$, which is similar to the minimum $M = 0.460$ for the half-space model.

The recovered value of $z_p$ is consistent with surface wave tomographic models that show a pattern of age-dependent shear-wave velocity anomalies which die out below a depth of 150 km [e.g., Priestley and McKenzie, 2013]. The recovered value of $\Delta T$ is slightly smaller than independent estimates of $\sim 1330 \pm 50^\circ C$ derived from basalt geochemistry and oceanic crustal thickness measurements [Herzberg and Asimow, 2015; Matthews et al., 2016]. However, it is crucial to emphasize that a negative trade-off exists between basal temperature and plate thickness. This trade-off indicates that $\Delta T = \sim 1330 \pm 50^\circ C$ yields an equally good fit to the
global database of age-depth measurements for a slightly smaller plate thickness of 130 ± 10 km (see red bar in Figure 9b). Significantly, translating across the misfit well in the direction of trade-off has a minimal effect on the shape of the age-depth relationship. Thus, any changes in calculated residual depth measurements are negligible. The values of both ΔΤ and z_p recovered by this analysis are consistent with the classic results obtained by Parsons and Sclater [1977] for the North Pacific and North Atlantic Oceans. However, our revised values are not consistent with the higher basal temperature and lower plate thickness obtained by Stein and Stein [1992].

In summary, our revised and augmented global database of water-loaded oceanic basement depths comprises the largest and most robust set of observations against which different models of oceanic lithosphere can be tested. Results indicate that the plate cooling model provides the most satisfactory explanation for subsidence of oceanic lithosphere as a function of age. The revised plate model is attractive on physical grounds and also yields a symmetric distribution of residual depths with minimal skewness (Figure 8b). Crucially, the distributions of residual depth measurements are fairly similar, irrespective of which of the different empirical and theoretical age-depth relationships are used (Figures 7 and 8). The consequences arising from using the alternative age-depth relationships are summarized in the supporting information.

6. Flexure and Geoid Height Corrections

Flexure of oceanic lithosphere due to loading by seamounts, sedimentary deposits, and subduction zones is a well-known source of bathymetric variation within the oceanic realm [Watts, 2001]. The wavelength of this flexural deformation depends upon the rigidity of the lithosphere and is usually manifested by large free-air gravity anomalies [Gilbert, 1895]. Many studies of the elastic properties of oceanic lithosphere have been carried out since the 1940s, and the general consensus is that elastic thickness is typically 10–20 km [Watts, 2001]. There is limited evidence that elastic thickness varies with plate age from near zero at active spreading centers up to a maximum of ∼40 km within the oldest oceanic basins [e.g., McKenzie and Fairhead, 1997; Watts and Burov, 2003; Bry and White, 2007; Mouthereau et al., 2013; Craig and Copley, 2014].

The spatial scale of sedimentary loading is typically large, with major deposits such as the Amazon Cone and Nigerian Delta extending over distances of 500–1000 km. In these instances, Airy (i.e., local) isostasy is generally an adequate approximation. In Appendix B, deformation associated with the Bengal Fan is used to illustrate potential flexural effects (Figure B1). Significant flexural bending is confined to locations with the largest gradients of loading (e.g., coastlines), and minimal deflection is observed within the bulk of the adjacent oceanic basins. Furthermore, flexural signals have wavelengths on the order of ∼100 km for the expected range of elastic thicknesses. These length scales are significantly shorter than residual depth anomaly variations which occur on scales of ∼1000 km. In order to avoid any flexural contamination, residual depth measurements have therefore been averaged within 1°, 2°, and 4° bins, which acts as a spatial smoothing filter [e.g., Watts and Ribe, 1984]. The longitudinal width of each bin is multiplied by 5 at latitudes above 70°. Short-wavelength flexural features adjacent to subduction zones and seamounts are clearly manifest by high-amplitude free-air gravity anomalies and have been excised from our observational database.

Finally, it is important to point out that residual depth anomalies are normally calculated with respect to the local sea-level. This reference is necessarily an equipotential surface (i.e., the geoid). Since the height of the non-hydrostatic geoid varies by tens of meters, we should correct spot measurements of residual depth for variations in geoid height using the shape of the undeformed hydrostatic surface as the reference [Nakiboglu, 1982; Chambat et al., 2010]. The amplitude of this correction is generally minor with an RMS amplitude of 49 m. The largest correction is −145 m and occurs in the Ross Sea. When comparing our corrected observational database with a given predictive model of dynamic topography, it should be ascertained whether the predicted dynamic topography is calculated with respect to the geoid height anomalies or to the hydrostatic surface. Both geoid-corrected and geoid-uncorrected oceanic residual depth measurements are listed in the supporting information.

7. Residual Depth Anomalies

The majority of residual depth observations fall within ±1 km of the expected age-depth relationship with outliers of up to ±2 km (Figures 7 and 8). There is little evidence for an overall offset toward either positive or negative excursions. The mean and standard deviation for spot measurements is 0 ± 660 m. The steepest
gradients of residual depth are up to 1.5 m km\(^{-1}\) and occur south of Newfoundland, at the southern end of the Argentine Abyssal Plain, in the Gulf of Mexico, and at the eastern end of the Great Australian Bight. Oceanic crust in the vicinity of Iceland and Afar exhibits the largest positive anomalies, while the Beaufort Sea, the Gulf of Mexico, and the eastern portion of the Banda Arc have the largest negative anomalies (Figure 10). The spatial pattern of anomalies varies from spectacular \(\sim 1000\) km undulations that occur along the west coast of Africa to a gigantic (\(\sim 2500\) km) swell in the North Atlantic Ocean centered on Iceland. These patterns exceed flexural length scales and most likely manifest sub-lithospheric density variations within the convecting interior.

A comprehensive spectral analysis of this observational database is described by Hoggard et al. [2016], whose results suggest that shallow convective circulation directly beneath the lithosphere makes a significant contribution to variations of dynamic topography. Here we primarily restrict our discussion to the relationship between this observational database and independent geological and geophysical observations (e.g., topography, free-air gravity anomalies, volcanism, earthquake seismicity, and tomographic models). The comparison between residual depth patterns and earthquake tomographic models presented here is visual and qualitative. A more quantitative approach is important but represents a significant undertaking [e.g., Steinberger, 2016; Richards et al., 2016]. Here we concentrate on using the SL2013sv tomography model because it is specifically aimed at imaging upper mantle shear-wave velocity anomalies without imposing an a priori crustal model [Schaeffer and Lebedev, 2013]. We note that many similar anomalies are evident in numerous other models [e.g., French et al., 2013; Priestley and McKenzie, 2013]. Four regional case studies are presented here, with three additional localities described in Appendix D.

7.1. Icelandic Swell
A major swell centered beneath Iceland extends across the entire North Atlantic Ocean from Baffin Island to western Norway and from Svalbard to Newfoundland (Figure 11). Peak residual depths are +2.3 km for measurements to which both sedimentary and crustal corrections have been applied. The amplitude of this swell decreases approximately radially away from Iceland. Anomaly size drops to +1.1 km on the southern Hatton Bank margin, to +700 m south of Greenland, to +500 m on the northern Voring margin of Norway, and to +900 m in the Greenland Sea west of Svalbard. The swell extends southeastward as far as the Porcupine
Figure 11. Residual topography of North Atlantic region. (a) Residual depth anomalies averaged in 1° bins. Symbols and ship-track data as in Figure 10; contours = non-hydrostatic free-air gravity anomalies from GOCO05S database, band-pass (9000 > λ > 730 km) filtered and plotted every 10 mGal [Mayer-Guerr, 2015]; black rings = Icelandic, Jan Mayen, and Eifel magmatic hotspots [Courtillot et al., 2003]; dashed line = transect shown in Figure 11c. (b) Horizontal slice at depth of 250 km through SL2013sv tomographic model contoured every 0.5% [Schaeffer and Lebedev, 2013]. Gray dots = earthquakes (M > 4) from ANSS (1898–1975), CEC (1900–1975), and CMT (1976–2016) catalogues [Engdahl and Villasenor, 2002; Dziewonski et al., 1981]; green beachballs = normal faulting focal mechanisms with MW > 5 from CMT catalogue [Ekström et al., 2012]. (c) Transect showing residual depth measurements within 80 km corridor with 1σ uncertainties often smaller than symbol size; black line with gray band = dynamic topography predicted from free-air gravity anomalies scaled using an admittance, Z = 30 ± 10 mGal km⁻¹. (d) Vertical slice along transect showing shear-wave velocity anomalies from SL2013sv model [Schaeffer and Lebedev, 2013].

Basin offshore Ireland and southwestward to the Newfoundland margin. Westward, positive residual depth anomalies occur throughout the Labrador Sea including Baffin Bay but die out toward the northern reaches of this basin.

This large-scale bathymetric swell correlates both with free-air gravity anomalies and with upper mantle shear-wave velocity anomalies. The center of the swell is associated with a gradual reduction in earthquake seismicity along the mid-oceanic ridge where the number of large (MW > 5) normal earthquakes decreases. This reduction may be consistent with a decrease in the thickness of the seismogenic layer [Brace and Byerlee, 1970; Watts et al., 1980]. These different observations are consistent with the presence of a hot thermal
Figure 12. Residual topography of Australian-Antarctic Discordance. (a) Residual depth anomalies averaged in 1° bins. Symbols and ship-track data as in Figure 10; contours = non-hydrostatic free-air gravity anomalies from GOCO05S database, low-pass ($\lambda > 730$ km) filtered and plotted every 10 mGal [Mayer-Guerr, 2015]; black rings = Balleny and East Australian magmatic hotspots [Courtillot et al., 2003]; gray tramlines = spreading segments along mid-oceanic ridge [Gale et al., 2013]; dashed line = transect shown in Figure 12c. (b) Horizontal slice at depth of 200 km through SL2013sv tomographic model contoured every 0.5% [Schaeffer and Lebedev, 2013]. Gray dots = earthquakes as in Figure 11; green beachballs = normal faulting focal mechanisms ($MW \geq 5$) from CMT catalogue [Ekström et al., 2012]. (c) Transect showing residual depth measurements within 80 km corridor with 1σ uncertainties often smaller than symbol size; black line with gray band = dynamic topography calculated from free-air gravity anomalies using an admittance, $Z = 30 \pm 10$ mGal km$^{-1}$. (d) Vertical slice along transect showing shear-wave velocity anomalies from SL2013sv model [Schaeffer and Lebedev, 2013]. Note that anomalous velocities have been excluded within upper 100 km, associated with high homologous temperatures and partial melting beneath the ridge axis.

Anomaly in the uppermost mantle beneath Iceland that may be fed by an upwelling mantle plume. Other tomographic studies have imaged a low-velocity sub-plate channel within which the plume head is localized. Delorey et al. [2007] used surface wave tomography to image a $\sim 150 \pm 50$ km thick, slow shear-wave velocity anomaly beneath the Reykjanes Ridge, south of Iceland. Rickers et al. [2013] carried out full-waveform inverse modeling which shows that this thin layer has an irregular planform that reaches beneath the fringing continental margins of the North Atlantic Ocean.

Other studies show that rapidly varying temporal changes in Icelandic plume activity occur which provide additional support that dynamic topography may be generated by transient anomalies within a sub-plate...
asthenospheric channel. Plume initiation is associated with the emplacement of intrusive and extrusive volcanic rocks across a ~2000 km wide region stretching from Baffin Island to the Faroes that constitute the North Atlantic Igneous Province [White and McKenzie, 1989]. Rare Earth element and $^{40}$Ar/$^{39}$Ar analyses indicate that initial excess temperatures peaked at 100–200°C around 56 Ma, before decreasing by 50 Ma [White and McKenzie, 1989; White et al., 1995; Storey et al., 2007]. The extent of smooth versus highly fractured oceanic crust away from Iceland down the Reykjanes Ridge suggests that the radius of the plume head reduced dramatically to ~300 km by 46 Ma, before steadily increasing to a present-day lateral extent of ~900 km [Jones et al., 2002].

In addition to these dramatic changes in swell radius, corroborating evidence for channelized sub-plate flow is provided by the pattern of V-shaped ridges on either side of the Reykjanes Ridge. These diachronous ridges track anomalously hot ripples of plume material that spread away from the Icelandic plume [Vogt, 1971]. The ripples travel radially outward at ~40 cm yr$^{-1}$ which is an order of magnitude faster than plate spreading rates [Parnell-Turner et al., 2014]. Older transient perturbations are inferred to have generated a series of ancient ephemeral landscapes that have been mapped along fringing continental margins [Underhill, 2001; Smallwood and Gill, 2002; Hartley et al., 2011; Millett et al., 2016]. Uplift and subsidence of a spectacular buried landscape in the Faroe-Shetland basin has been modeled using radial Poiseuille flow, which suggests that this landscape formed when a hot ripple was laterally advected beneath the plate within a low-viscosity, 200 km thick channel [Hartley et al., 2011].

7.2. Australian-Antarctic Discordance

The Australian-Antarctic Discordance is a second region where sub-plate asthenospheric flow can be linked to the bathymetric expression of dynamic topography. A ~2000 km wide negative residual depth anomaly, or drawdown, with an amplitude of ~1 km is centered on the southeast Indian Ridge and extends southward to Wilkes Land and northward to the Great Australian Bight (Figure 12). There are several lines of evidence that support the presence of anomalously cold temperatures and downwelling flow within the upper mantle beneath this portion of the mid-oceanic ridge. First, there is a notable increase in the number of large ($M_w > 5$) earthquakes with normal faulting mechanisms along the ridge axis where the maximum drawdown occurs, potentially consistent with an increase in the thickness of the seismogenic layer. Second, the magnetization and geochemistry of mid-oceanic ridge basalts are consistent with low magmatic crystallization temperatures [Anderson et al., 1980; Klein et al., 1991; Christie et al., 2004; Dalton et al., 2014]. Third, seismological studies show that shear-wave velocities are anomalously fast within the top 200 km of the mantle [Forsyth et al., 1987; Ritzwoller et al., 2003]. Finally, geoid and free-air gravity analyses demonstrate that a broad negative anomaly straddles the region, consistent with the proposal that active mantle downwelling causes the Australian-Antarctica Discordance [Marks et al., 1991]. These different observations have been combined in geodynamical models of mantle flow which require the existence of a shallow channel of low viscosity [Buck et al., 2009].

7.3. Antarctica

Oceanic residual depth anomalies often vary over length scales as short as ~1000 km and are best illustrated along transects whose margins are largely unaffected by active tectonics since continental rifting and breakup. One excellent and illuminating example is a near-complete circum-Antarctica transect (Figure 13). Starting in the Weddell Sea south of the Falkland Islands and east of the Antarctic Peninsula, residual depths show a minimum of ~400 m rising eastward up to +600 m offshore Dronning Maud Land. Continuing clockwise around Antarctica, a substantial negative anomaly peaking at ~800 m occurs offshore Enderby Land. Residual depths then steadily increase to a value of ~300 m near Kemp Land, which occurs along the southern margin of the Indian Ocean. Wilhelm II Land has anomalies ranging from +200 m down to ~500 m, which continue to decrease toward Wilkes Land where they reach a maximum of ~1.2 km, marking the southernmost extent of the Australian-Antarctica Discordance.

Continuing clockwise around Antarctica into Oates Land, a positive residual depth anomaly of ~500 m occurs in the vicinity of the Balleny Islands. These seamounts are active stratovolcanoes that produce enriched basaltic melts generated by the proposed Balleny plume [Lanyon et al., 1993]. The Ross Sea has neutral to ~500 m residual depth anomalies. The Amundsen Sea, offshore Marie Byrd Land, is characterized by positive residual depth anomalies varying from +600 m proximal to the shelf down to zero in more distal regions. This swell is associated with volcanic edifices known as the Marie Byrd seamounts that were mostly formed
Figure 13. Residual topography of Antarctica. (a) Residual depth anomalies averaged in 1° bins. Symbols and ship-track data as in Figure 10; contours = non-hydrostatic free-air gravity anomalies from GOCO05S database, band-pass (9000 > \( \lambda \) > 730 km) filtered and plotted every 10 mGal [Mayer-Guerr, 2015]; black ring = Balleny hotspot [Courtillot et al., 2003]; dashed line labeled b-b' = locus of transect shown below. (b) Transect showing residual depth measurements within 80 km corridor with 1σ uncertainties often smaller than symbol size; black line with gray band = dynamic topography calculated from free-air gravity anomalies using an admittance, \( Z = 30 \pm 10 \) mGal km\(^{-1} \).
in early Cenozoic (65–56 Ma) times but have been rejuvenated with minor Pliocene activity [Kipf et al., 2014]. This broadly uplifted region is also evident in the residual depth study of Wobbe et al. [2014]. However, their recovered amplitudes are probably too large because they did not carry out crustal corrections and they also used an age-depth relationship based exclusively upon North Pacific bathymetric observations [Crosby et al., 2006]. Finally, the Bellingshausen Sea has crustal-corrected negative anomalies as low as $-1.2$ km which steadily rise up to $+500$ m along the western flank of the Antarctic Peninsula toward the South Sandwich Islands.

This circum-Antarctica pattern of residual depth anomalies is generally mirrored by changes in free-air gravity anomalies. This match suggests that scaling the free-air gravity field by a constant value of admittance, $Z = 30 \pm 10$ mGal/km, sometimes yields a reasonable proxy for dynamic topography within the oceanic realm, in agreement with many previous studies [Crosby et al., 2006; Winterbourne et al., 2009]. However, correlation between these residual depth measurements and a range of seismic tomographic models is notably poor. The quality of this correlation probably reflects the limited resolution of these global tomographic models as a result of sparse ray coverage for Antarctica, particularly within the upper mantle.

### 7.4. South Atlantic Ocean

The pattern of residual depth anomalies along either side of the South Atlantic Ocean is particularly striking (Figure 14). A notable feature are smoothly varying cycles that define a regular series of domes and depressions with amplitudes of $\pm 1$ km and wavelengths of $\sim 1000$ km.

At the northern end of the South American margin, negative residual depths of $-800$ m occur in the vicinity of the Amazon Cone. These low values persist within the Demerara abyssal plain and then start to steadily climb southward. The Pernambuco abyssal plain has minor positive residual depth anomalies which grow southward reaching amplitudes of $+600$ m before decreasing again. This portion of the continental margin occurs on the flanks of the onshore Borborema Plateau. The seaboard of this plateau is characterized by emergent Miocene coastal deposits [Rossetti et al., 2013]. There is also a series of Holocene and Pleistocene marine terraces that yield uplift rates of $0.1$ – $0.5$ mm yr$^{-1}$ [Barreto et al., 2002; Bezerra et al., 2003; Angulo et al., 2006; Hein et al., 2014]. Within the center of the plateau, late Miocene and Pliocene volcanic rocks have ocean island basalt source affinities, which suggests that regional uplift may be caused by decompression melting of anomalously hot asthenospheric mantle [Gordani, 1970; Knesel et al., 2011].

South of the Borborema Plateau, residual depth measurements have positive values of up to $+700$ m. At about $25^\circ$S, a steep gradient occurs and residual depths decrease toward the Argentine Abyssal Plain which is characterized by a $-600$ m residual depth anomaly. This substantial negative anomaly is $\sim 2000$ km wide and is thought to be one of the largest convective drawdowns on Earth [Hohertz and Carlson, 1998].

A contrasting set of residual depth anomalies are observed along the West African margin. Starting in the north, offshore Liberia has $+300$ m residual topography which decreases to $-600$ m within the Guinea abyssal plain. Values climb to $+1$ km at the Cameroon Volcanic Line. This elongated swell is associated with Oligocene to present-day seamounts with ocean island basalt affinities that are consistent with a sub-plate thermal anomaly. Offshore Gabon, negative anomalies of $-400$ m steadily increase southward, peaking at $+1.2$ km adjacent to the onshore Angolan dome. Here the amplitude and wavelength of residual depth measurements are in striking agreement with the location of this topographic dome which straddles the continental margin. There is an excellent match between these residual depth measurements, the long-wavelength free-air gravity anomaly, and shear-wave velocity anomalies. The cyclic character of residual depth is clearly visible and well matched by assuming an admittance value of $Z = 30 \pm 10$ mGal km$^{-1}$.

The West African coastline exhibits multiple lines of independent evidence that support rapid and ongoing regional uplift and subsidence (Figure 15). The present-day continental shelf edge is characterized by a striking angular unconformity that truncates Oligocene to Pliocene deltaic forest deposits. Denudation estimates from the overcompaction of these sediments suggest that deltaic topset deposits have been removed by uplift and erosion. Inverse modeling of stacking velocities indicates that up to $500$ m of post-Pliocene uplift occurred, which steadily decays away to zero to the north [Al-Hajiri et al., 2009]. This uplift gradient is consistent with the amplitude and wavelength of residual depth measurements, suggesting that a component of regional uplift of the Angolan dome occurred within the last $5$ – $10$ Ma. Quaternary uplift rates of $0.3$ mm yr$^{-1}$ have been estimated from the age and height of emergent marine terraces that flank the dome south of Luanda [Giresse et al., 1984; Jackson et al., 2005; Guiraud et al., 2010]. An optically stimulated luminescence
Figure 14. Residual topography of South Atlantic Ocean. (a) Residual depth anomalies averaged in 1° bins. Symbols and ship-track data as in Figure 10; contours = non-hydrostatic free-air gravity anomalies from GOCC005 database, low-pass (> 730 km) filtered and plotted every 10 mGal [Mayer-Guerr, 2015]; major bathymetric features are labeled; AP = abyssal plain; box = location of Figure 15; dashed lines labeled b-b' and c-c' = transects shown below. (b) Transect along South American margin showing residual depth measurements within 80 km corridor with 1σ uncertainties often smaller than symbol size; black line with gray band = dynamic topography calculated from free-air gravity anomalies using an admittance, \( Z = 30 \pm 10 \) mGal km^{-1}. (c) Transect along West African margin.
Figure 15. Residual topography of West Africa. (a) Residual depth anomalies averaged in 1° bins. Symbols and ship-track data as in Figure 10; contours = non-hydrostatic free-air gravity anomalies from GOCO05S database, low-pass (> 730 km) filtered and plotted every 10 mGal [Mayer-Guerr, 2015]. (b) Topographic map overlain with major drainage [SRTM30_Plus database] [Becker et al., 2009]. Red squares = uplift rate values calculated from post-Pliocene shelf denudation estimates [Al-Hajri et al., 2009]; yellow stars = emergent marine terraces [Giresse et al., 1984; Jackson et al., 2005; Guiraud et al., 2010; Walker et al., 2016]. (c) Horizontal slice at depth of 200 km through SL2013xv tomographic model contoured every 0.5% [Schaeffer and Lebedev, 2013]. Symbols = residual depth anomalies from Figure 15a.
study of a prominent terrace complemented by $^{14}$C dating of cockle and bivalve shells suggests that uplift rates might be as fast as 1.5–2 mm yr$^{-1}$ [Walker et al., 2016].

Onshore, the radial drainage pattern suggests that growth of this dome has influenced regional geomorphology. Many Angolan rivers rise within the Bié Plateau which has elevations of 1.5–2 km. A regional uplift history calculated by inverting an inventory of longitudinal river profiles suggests that the Angolan dome grew in two stages [Roberts and White, 2010]. The first stage occurred in Oligo-Miocene (~25 Ma) times when about 500 m of uplift occurred. This event is corroborated by calibrated seismic reflection profiles from the continental shelf on which a ~25 Ma sequence stratigraphic boundary separating aggrading and prograding sedimentary packages is clearly visible [Walford and White, 2005]. The second stage of domal growth occurred within the last 10 Ma. This second stage coincides with the offshore truncation of Pliocene deltaic sedimentary rocks [Al-Hajri et al., 2009].

Finally, the Congo River and its tributaries drain the northern portion of the Angolan dome and deliver clastic sediments onto the adjacent Atlantic margin at a position where a negative residual depth anomaly occurs. Reconstructions of solid sedimentary flux show that there are notable increases at different stages during Neogene times that are consistent with the inferred uplift history of this dome [Lavier et al., 2001].

In summary, a range of disparate independent observations demonstrates the first-order control that spatial and temporal changes of dynamic topography can exert on the structural geometry of continental margins. As elsewhere, shear-wave velocity anomalies immediately beneath the lithospheric plate correlate with residual depth anomalies and other geological observations. This correlation underlines the role that shallow mantle convection, potentially within a low-viscosity channel, appears to play in generating and maintaining bathymetric and topographic features [e.g., Phipps Morgan et al., 1995].

8. Consequences for Long-Wavelength Dynamic Topography

Since the 1980s, there has been considerable debate about the spatial and temporal pattern of dynamic topography produced by convective circulation of the Earth’s mantle. This debate has centered on differences between the amplitude and wavelength of observed and predicted dynamic topography. Hoggard et al. [2016] used an earlier version of the database of oceanic residual depth anomalies presented here to generate a spherical harmonic representation. Their aims were twofold. First, they showed that residual depth observations can be accurately fitted up to and including a maximum spherical harmonic degree $l_{\text{max}} = 30$ (i.e., wavelengths down to and including $\lambda = 1300$ km). This maximum degree was chosen based upon the decrease of residual misfit with increasing $l_{\text{max}}$. Second, Hoggard et al. [2016] showed that the long-wavelength components of this spherical harmonic representation (i.e., $i = 1–3$ corresponding to $\lambda \geq 11,500$ km) broadly agree with the pattern of geoid anomalies. The amplitude of this long-wavelength dynamic topography is non-zero but is significantly smaller than amplitudes obtained from some predictive models of dynamic topography. Thus, the peak amplitude of observed dynamic topography at $i = 1–3$ is about 500 m, compared with 1–2 km suggested by many, but not all, predictive models.

Subsequently, Yang and Gurnis [2016] have used the observational database of Hoggard et al. [2016] to argue that the maximum degree to which a spherical harmonic representation can be inferred is only $l_{\text{max}} < 5$ (i.e., $\lambda > 7300$ km). This assertion is predicated upon a statistical analysis known as the cross-validation procedure that seeks to assess the ability of a given model to successfully predict new data [see Arlot and Celisse, 2010; and references therein]. When only a limited amount of data is available, the philosophy of cross-validation is applied by splitting these data into a training set and a validation set. A model is fitted to the training set, and its predictive ability is evaluated on the withheld validation data as an estimate of model performance.

In their cross-validation analysis, Yang and Gurnis [2016] randomly select 80% of the oceanic spot measurements and compute the spherical harmonic fit for increasing values of $l_{\text{max}}$. This procedure is repeated 30 times for each $l_{\text{max}}$, before the average misfit between the model and both the 80% training set and 20% validation set is computed. When $l_{\text{max}} \geq 5$, they assert that the misfit for the validation set is significantly larger than that for the training set. Yang and Gurnis [2016] therefore conclude that a spherical harmonic representation of oceanic spot measurements should be restricted to $l_{\text{max}} = 5$. This spherical harmonic fit has the important consequence of yielding peak amplitudes of 1.2 km for the $i = 1–3$ long-wavelength components.

It is not immediately obvious that this approach is a useful test of the main conclusions presented by Hoggard et al. [2016]. Cross-validation is principally designed to test the predictive power of a model with respect to
new data. The aim of Hoggard et al. [2016] was simply to investigate the spherical harmonic contents of the existing oceanic residual depth measurements. Nevertheless, we take this opportunity to re-examine these issues using a revised database of 2297 spot measurements that is analyzed within the same cross-validation framework employed by Yang and Gurnis [2016].

Our spot measurements of oceanic residual topography data are randomly split 1000 times into an 80% training set and a 20% validation set, in accordance with the Monte Carlo cross-validation scheme [Picard and Cook, 1984]. Spherical harmonic fitting is then carried out for increasing values of $t_{\max}$ using the approach described by Hoggard et al. [2016]. The model misfit, $\chi^2$, is subsequently calculated for both the training and validation sets. The median value at each $t_{\max}$ for 1000 ensembles is shown in Figure 16a. This procedure was repeated for 70%–30%, 60%–40%, and 50%–50% training-validation set splits.

Two important conclusions can be drawn from this Monte Carlo cross-validation analysis. First, $\chi^2$ for the ensemble of validation sets is greater than for the ensemble of training sets. This conclusion accords with the well-known classic statistical phenomenon — any model fitted to a data set always provides a more optimistic fit to data used in its derivation than to any new data [e.g., Larson, 1931; Mosteller and Tukey, 1977; Picard and Cook, 1984]. Second, and more importantly, $\chi^2$ for both ensembles of training and validation sets continues to significantly reduce up to, and well beyond, $t_{\max} = 5$. Thus, for an 80%–20% split, the median value for the ensemble of training sets yields $\chi^2 = 14.7$ for $t_{\max} = 5$, decreasing to $\chi^2 = 2.0$ for $t_{\max} = 30$. The median value for the equivalent ensemble of validation sets yields $\chi^2 = 15.8$ for $t_{\max} = 5$, decreasing to $\chi^2 = 4.6$ for $t_{\max} = 30$. Thus, a spherical harmonic representation where $t_{\max} = 5$ yields a significantly poorer match to oceanic spot measurements compared to a spherical harmonic representation where $t_{\max} = 30$.

This robust and significant conclusion is confirmed by visually comparing spot measurements and spherical harmonic representations (Figure 17). Transects of oceanic spot measurements both from the West African margin and from the northwest Pacific Ocean have been fitted using spherical harmonic representations with $t_{\max} = 5, 10,$ and 30. When $t_{\max} = 5$ or 10, the global distribution of residual misfits is large (Figures 17c and 17g). When $t_{\max} = 30$, the global distributions of residual misfits are significantly lower and both transects are fitted (Figure 17i–17k).
Figure 17. Spherical harmonic fitting of residual depth anomalies. (a) Transect down West African margin from Figure 14c. Residual depth data averaged within $1^\circ$ bins within 80 km corridor with 1σ uncertainties. Black line with gray bounds = spherical harmonic fit to global residual depth spot measurements alone for $l_{\text{max}} = 5$ with ±250 m envelope. (b) Same for transect in northwest Pacific Ocean. (c) Global map of residual misfit between observations and $l_{\text{max}} = 5$ fit. Green lines = transect locations. (d) $l = 1$–3 components of the $l_{\text{max}} = 5$ fit, contoured every 250 m. (e–h) Same for $l_{\text{max}} = 10$ fit. (i–l) Same for $l_{\text{max}} = 30$ fit.
The Monte Carlo cross-validation procedure crucially highlights the pitfalls of not carrying out a damped spherical harmonic representation to a sufficiently large value of $t_{\text{max}}$. If the chosen $t_{\text{max}}$ is too low, higher-degree power present within the observational database is forced to bleed into lower degree coefficients, which yields excessively large amplitudes of dynamic topography for the $i = 1–3$ components. Figures 17d, 17h, and 17l demonstrate that the peak amplitude for the $i = 1–3$ components decreases from 1.0 km down to 0.6 km and then 0.4 km for $t_{\text{max}} = 5, 10$, and 30, respectively. We suggest that the large amplitude of dynamic topography for the $i = 1–3$ components recovered by Yang and Gurnis [2016] is probably an artifact arising from their choice of a low $t_{\text{max}} = 5$.

9. Conclusions

A comprehensive global database of 2297 oceanic residual depth measurements is built from a combination of seismic reflection, modern wide-angle, and vintage refraction experiments throughout the oceanic realm. Careful analysis has been carried out to remove the isostatic consequences of variable sedimentary loading and also crustal thickness for a subset of 1161 of these spot measurements. Uncertainties have been propagated to ensure the robustness of these measurements and to formally estimate their errors. This database has been used to reassess subsidence of oceanic lithosphere as a function of age. We conclude that an analytical plate model with a basal temperature of $\sim 1250^\circ$C and an equilibrium thickness of 150 km yields the optimal fit to the observational database. Although a half-space cooling model can also be used to fit this database, the resultant ridge axis temperature is $\sim 300^\circ$C smaller than that required to generate the thickness and composition of mid-oceanic ridge basalts.

Residual depth anomalies can be measured with respect to either the plate or half-space cooling models or by fitting an empirical relationship. These anomalies have wavelengths of 1000–2500 km and amplitudes of $\pm 1$ km. Peak amplitudes of $\pm 2$ km are associated with the Icelandic and Afar plume centers. Many other plume swells are manifest by positive residual depth anomalies. Drawdown up to $-2$ km is observed in the Gulf of Mexico, in the Beaufort Sea, and in the Banda Sea. Broad regions of negative residual depth occur across Southeast Asia, across the Australia-Antarctic Discordance, and within the Argentine Abyssal Plain.

Cross-validation analysis of spherical harmonic representations of oceanic spot measurements demonstrates that these observations are optimally fitted using spherical harmonic degrees up to and including $i = 30$ (i.e., wavelengths down to and including $\lambda = 1300$ km). A significant corollary is that the longest wavelength $i = 1–3$ components (i.e., corresponding to wavelengths of $\lambda \geq 11,500$ km) have amplitudes that are considerably smaller than those predicted by many dynamic topographic models.

Independent geological observations suggest that at least some of these positive and negative anomalies grow and decay on timescales of millions of years, which implies that they are generated and maintained by convective circulation of the Earth’s sub-lithospheric mantle. Considerable geological, geophysical, and geochemical evidence corroborate the notion that these anomalies have undergone significant growth and decay within the Neogene period. There is reasonable agreement between observed dynamic topographic patterns and tomographic models of seismic velocity anomalies within the uppermost mantle. We suggest that some dynamic topographic anomalies are generated and maintained by thermal anomalies within shallow sub-plate asthenospheric channels. Independent evidence for rapid lateral asthenospheric flow has been reported for the Icelandic plume and for the Australian-Antarctic Discordance that is consistent with the existence of a low-viscosity channel immediately beneath the lithospheric plates.

Appendix A: Crustal Correction Uncertainties

An error analysis of crustal corrections is carried out by assuming that uncertainties in different parameters are uncorrelated. This assumption permits the use of the variance formula, where for any function $x = f(a, b, \ldots)$, the standard deviation, $\sigma_x$, is given by

$$\sigma_x = \sqrt{\left(\frac{\partial x}{\partial a}\right)^2 \sigma_a^2 + \left(\frac{\partial x}{\partial b}\right)^2 \sigma_b^2 + \ldots} \quad (A1)$$

where $\sigma_a$ is the standard deviation of an example variable [Ku, 1966]. Differentiating equation (8) with respect to each variable and exploiting the quotient rule for the case of mantle density yields

$$\frac{\partial C_m}{\partial \rho_a} = \frac{(z_c - 7.1)(\rho_c - \rho_w)}{(\rho_a - \rho_w)^2} \quad (A2)$$

HOGGARD ET AL. GLOBAL OCEANIC RESIDUAL DEPTH ANALYSIS 2354
The magnitude of these errors as a function of crustal thickness is presented in the supporting information. There is additional uncertainty associated with the depth conversion from two-way travel time for crustal thicknesses estimated from seismic reflection profiles. The above differential terms can be adapted by replacing $z_c$ with $\frac{1}{2}v_c t_c$, where $t_c$ is crustal thickness measured in two-way travel time. In addition, the differential term associated with uncertainty in crustal velocity is given by

$$\frac{∂C_c}{∂v_c} = \frac{(ρ_a - ρ_c) t_c}{2(ρ_a - ρ_w)}$$

(A5)

Parameter uncertainties are listed in Table 2. All crustal-corrected residual depth measurements include the uncertainties arising from these crustal correction errors.
Appendix B: Flexural Analysis

The Bengal Fan provides a helpful case study which illustrates how flexural bending is generated by sedimentary loading. Figure B1a shows the variation of sediment thickness around the Indian sub-continent taken from the NGDC grid [Divins, 2003]. These thicknesses are converted into a sedimentary load using equation (7) which includes the effects of compaction. The water-loaded difference between flexurally and isostatically (i.e., Airy) generated bathymetry has been calculated for a range of elastic thickness values, $T_e$ (Figures B1b–B1f). Significant flexural deflections are confined to regions with the steepest gradients of loading (e.g., coastlines), with minimal effects across the basin itself. Moreover, even for $T_e = 40$ km, flexural bending has wavelengths of order $\sim 250$ km, which is significantly shorter than the $>1000$ km wavelengths associated with observed dynamic topography [Hoggard et al., 2016].

Appendix C: Residual Topography From Ship-Track Database

Many published residual topographic syntheses use global sedimentary and crustal thickness grids [e.g., Colin and Fleitout, 1990; Panasyuk and Hager, 2000; Kaban et al., 2003; Steinberger, 2007; Crosby and McKenzie, 2009]. In order to supplement accurate residual depth point observations, a similar global synthesis is presented here that exploits corrections defined in the main text. Water depths were extracted from the database of Smith and Sandwell [1997] using only hull-mounted bathymetric measurements from a ship-track database. The sedimentary correction was applied using thicknesses taken from the NGDC global grid of Divins [2003]. This representation was infilled in locations with a lack of measurements using the synthesis of Laske and Masters [1997]. Comparison between our accurate sedimentary thickness measurements with these global grids shows that there are significant errors in locations with thick sedimentary piles, particularly in regions adjacent to continental margins and with significant basement topography [e.g., Whittaker et al., 2013; Wobbe et al., 2014]. These correlations are presented in the supporting information. Any regions with sedimentary thickness greater than 1.5 km within the global grid have been excised from the ship-track residual topography.

The crustal correction has been generally omitted due to the absence of a sufficiently accurate global crustal thickness grid for the oceanic realm. Compilations such as CRUST1.0 are constructed from a variety of data sources with variable resolution and accuracy that are subsequently extrapolated into regions with no original measurements [Laske et al., 2013]. Here areas of known anomalous crustal thickness have been excised by detailed mapping carried out on bathymetric and gravity anomaly grids which clearly delimit seamounts, oceanic plateaux, fracture zones, and flexural moats. These data sources and exclusion polygons are included in the supporting information, and the resultant residual topography is plotted in Figure 10. An exception occurs in the North Atlantic Ocean in the vicinity of Iceland, where a crustal correction has been applied using the crustal thickness grid of Winterbourne et al. [2014].

Our spot measurements of residual depth correspond to 2297 points for 1° binning, in contrast to 11,127 from ship-track observations. Note that for 4° binning, spots measurements contribute 757 points, whereas ship-track observations yield 1039. There is a good agreement between residual depths calculated from spot measurements and ship-track observations (supporting information). The best-fit relationship follows a one-to-one ratio with 41% of measurements falling within 100 m of this relationship and 77% within 250 m. The Pearson’s correlation coefficient is $\sim 0.9$.

Appendix D: Additional Residual Depth Maps

D1. Eastern North America

The western central Atlantic Ocean is shown in Figure D1. The east North American margin is characterized by negative residual depths, with drawdown of $\sim 1.2$ km occurring south of Nova Scotia. Residual depth anomalies rise to $\sim 350$ m near Maine and remain approximately constant southward in the vicinity of Georgia. Southeast Florida and the Bahamas have residual topography of $+400$ m. A large negative anomaly stretches out toward the Mid-Atlantic Ridge and surrounds an $\sim 800$ km wide swell of neutral to $+500$ m, known as the Bermuda Rise. The Bermuda seamount was active until at least $\sim 30$ Ma and is associated with the final stages of upwelling of a mantle plume [Vogt and Jung, 2007]. Seismic evidence based upon shear-wave splitting and mantle transition zone thinning suggests that vertical flow of hot buoyant material within the mantle is still ongoing, despite the apparent cessation of volcanism [Benoit et al., 2013]. A low shear-wave velocity
Figure D1. Residual topography of eastern North America. (a) Residual depth anomalies averaged in 1° bins. Symbols and ship-track data as in Figure 10; contours = non-hydrostatic free-air gravity anomalies from GOCO05S database, band-pass (9000 > λ > 730 km) filtered and plotted every 10 mGal [Mayer-Guerr, 2015]; black ring = Bermuda seamount [Courtillot et al., 2003]; black star = COST B-2 well. (b) Horizontal slice at depth of 200 km through SL2013sv tomographic model contoured every 0.5% [Schaeffer and Lebedev, 2013]. Residual depth measurements as in Figure D1a.

Anomaly has been imaged beneath the seamount [Schaeffer and Lebedev, 2013]. The Bermuda Rise is also visible in the long-wavelength gravity field, although the anomaly pattern appears to have been shifted to more negative values.

Recent uplift rates estimated from emergent coastline deposits are complicated by large-amplitude and ongoing vertical motions associated with glacial isostatic adjustment. This behavior occurs in addition to dynamic topography effects and can overprint it, although the growth and decay of ice sheets and their deformational timescales are significantly shorter. A mid-Pliocene (3.1 ± 0.2 Ma) shoreline, known as the Orangeburg Scarp, can be traced from Virginia down to south Georgia at elevations of 40–80 m above present-day sea-level [Rovere et al., 2015]. Eocene and Miocene paleoshorelines along the New Jersey coastal plain have been compared to global sea-level curves and record 50–200 m of anomalous post-Eocene subsidence [Spasojević et al., 2008].
Offshore New Jersey, the COST B-2 well was drilled in 1976 in the Baltimore Canyon Trough region and has an anomalous subsidence event of ~250 m initiating at 16 Ma and continuing until the present day [Flament et al., 2013]. Mantle convective circulation models have related this event to dynamic topography associated with sinking of the Farallon slab into the lower mantle [Spasojević et al., 2008; Flament et al., 2013]. An alternative model predicts Neogene uplift for this region [Moucha et al., 2008].

These observations underline the difficulties of reconstructing global sea-level curves from individual localities. The relationship published by Miller et al. [2005] was based on backstripping of five wells from the New Jersey area on the basis that this margin is tectonically stable. However, residual depth anomalies and other independent geological constraints show that this region is probably still deforming. Dynamic topographic
Figure D3. Residual topography of Southeast Asia. (a) Residual depth anomalies averaged in 1° bins. Symbols as in Figure 10; contours = non-hydrostatic free-air gravity anomalies from GOCO05S database, band-pass (9000 > \( \lambda > 730 \) km) filtered and plotted every 10 mGal [Mayer-Guerr, 2015]. Black star = borehole from South China Sea [Wheeler and White, 2000]; green star = borehole from Bohai Basin [Wheeler and White, 2002].

and glacio-isostatic adjustment effects are ubiquitous, and hence, sea-level curves based upon local measurements of vertical motions must be treated with caution [Müller et al., 2008b; Flament et al., 2013; Austermann et al., 2013].

D2. Gulf of Mexico

The oceanic crust within the Gulf of Mexico was generated at a Jurassic spreading center [Pindell and Kennan, 2009]. Rifting occurred when the Yucatan block rotated counterclockwise away from the Louisiana margin along a major transform fault running north-south at the western margin that forms part of the Tamaulipas-Golden Lane-Chiapas fracture zone. Rifting is believed to have ended in Early Cretaceous times. Seismic reflection profiles were acquired using state-of-the-art, industry-standard acquisition and processing techniques. Imaging of Moho reflections is excellent despite the presence of a thick sedimentary package. These profiles have yielded a well-resolved pattern of residual depth anomalies (Figure D2). Unfortunately, the distribution of observed anomalies is limited in the north due to the presence of major allochthonous salt
diapers of the Perdido, Sigbee Escarpment, and Atwater Valley fold belts, which limit acoustic penetration and recovery of basement structure. There is a paucity of measurements south of United States of America territorial waters. Residual depth anomalies define a smooth gradient from zero to $-1.5$ km westward across the basin which yields a gradient of $1 \text{ m km}^{-1}$. This pattern is closely matched by long-wavelength gravity anomalies which coincide with fast shear-wave velocity anomalies within the upper mantle.

The timing of this drawdown is difficult to constrain due to complex halokinesis. Backstripped subsidence records from wells along the continental shelf are plentiful and have robust age and paleowater-depth constraints. However, these records are strongly affected by mid-Jurassic to recent anomalous subsidence events generated by evacuation of Late Jurassic salt as it becomes gravitationally unstable and flows downslope [Angeles-Aquino et al., 1994; Peel et al., 1995]. This behavior is driven by marginal overburden and can be initiated by fractional increases in basinward tilt [Rowan et al., 2004]. Drawdown within the central basin may be responsible for destabilizing this salt layer. This tilting is also consistent with the pattern of Miocene uplift of onshore Mexico and the Western United States derived from drainage analysis [Stephenson et al., 2014].

D3. Southeast Asia

Southeast Asia is characterized by broadly negative residual topography (Figure D3). Anomalies within the South China Sea are approximately $-600$ m, decreasing southeastward to $-900$ m within the Sulu Sea and $-1.6$ km within the Celebes Sea south of the Philippines. The Banda Sea sits at $-2.5$ km and is the largest drawdown observed within the database. It is almost completely encircled by subduction zones that are probably the primary cause of downwelling. To the north of Papua New Guinea, the southern Philippine Sea has neutral residual topography, while most of the central basin is drawn down by about $-800$ m. East of the Marianas Trench, residual depths vary from neutral in the south up to $+300$ m off the eastern margin of Japan. Finally, behind the subduction zone within the Sea of Japan, negative anomalies of $-900$ m have been measured.

Estimates for the timing of drawdown within the South China Sea have been determined by backstripping multiple wells and correcting for tectonic subsidence caused by lithospheric extension and cooling [Wheeler and White, 2000; Xie et al., 2006]. These analyses reveal $\sim 300$ m of anomalous subsidence that initiated at $5 \sim 10$ Ma and continues with a present-day rate of $0.1$ mm yr$^{-1}$. Similar work from the Bohai Basin west of the Korean peninsula reveals an $\sim 400$ m anomalous subsidence event at $8$ Ma [Wheeler and White, 2002].

Acknowledgments
This research is supported by a BP-Cambridge collaboration. We are grateful to D. Al-Attar, J. Austermann, A. Bump, R. Corfield, A. Crosby, M. Falder, I. Frame, D. Glassey, S. Ghelichkan, T. Heyn, N. Hodgson, A. Jackson, S. Kisin, P. Koelmeijer, D. Liness, L. Mackay, D. McKenzie, F. Richards, T. Sabato Ceraldi, O. Shorttle, E. Stirling, S. Stephenson, and M. Thompson for their help. We thank B. Horn and K. McDermott from ION Geophysical Corporation for permission to publish partial seismic reflection profiles shown in Figure 2 from their IndiaSPAN$^\text{TM}$, East AfricaSPAN$^\text{TM}$, pelotasSPAN$^\text{TM}$, GulfSPAN$^\text{TM}$, and Greater BrazilSPAN$^\text{TM}$ data sets. B. Steinberger and S. Zhong provided insightful reviews. Figures were prepared using Generic Mapping Tools version 5 [Wessel et al., 2013]. Routines from the SHTOOLS package were used in the spherical harmonic analysis. Residual depth measurements and seismic survey sources are in the supporting information and in the University of Cambridge online repository (https://doi.org/10.17863/CAM.8286). The authors declare no competing financial interests. Earth Sciences contribution esc.3794.

References


Balls, P. J. (2005), Break-up history and evolution of the southern passive margin of Australia, PhD thesis, Royal Holloway Univ. of London.

Ball, P. J. (2005), Break-up history and evolution of the southern passive margin of Australia, PhD thesis, Royal Holloway Univ. of London.


Ball, P. J. (2005), Break-up history and evolution of the southern passive margin of Australia, PhD thesis, Royal Holloway Univ. of London.


Pratt, J. H. (1855), On the attraction of the Himalaya Mountains, and of the elevated regions beyond them, upon the plumb-line in India, Philos. Trans. R. Soc., 145, 53–100.


Erratum

In the originally published version of this article, several instances of text and figures were incorrectly typed-set. In the revised version below, these have been corrected and this version may be considered the authoritative version of record.

In section 6, geoid was changed to geoid height anomalies.

Figure 10 was replaced with the correct version.

In Figure 10 caption, band-pass (9000 > λ > 730 km) was changed to low-pass (>730 km).

Figure 11 was replaced with the correct version.
In Figure 11 caption, low-pass (>730 km) was changed to band-pass (9000> λ>730 km), and \(Z = 35 \pm 10 \text{ mGal km}^{-1}\) was changed to \(Z = 30 \pm 10 \text{ mGal km}^{-1}\).

Figure 12 was replaced with the correct version.

In Figure 12 caption, \(Z = 35 \pm 10 \text{ mGal km}^{-1}\) was replaced with \(Z = 30 \pm 10 \text{ mGal km}^{-1}\).

Figure 13 was replaced with the correct version.

In Figure 13 caption, \(Z = 35 \pm 10 \text{ mGal km}^{-1}\) was replaced with \(Z = 30 \pm 10 \text{ mGal km}^{-1}\).

In section 7.3, \(Z = 35 \pm 10 \text{ mGal km}^{-1}\) was replaced with \(Z = 30 \pm 10 \text{ mGal km}^{-1}\).

In section 7.4, \(Z = 35 \pm 10 \text{ mGal km}^{-1}\) was replaced with \(Z = 30 \pm 10 \text{ mGal km}^{-1}\).

Figure 14 was replaced with the correct version.

In Figure 14 caption, band-pass (9000> λ>730 km) was updated with low-pass (>730 km), and \(Z = 35 \pm 10 \text{ mGal km}^{-1}\) was replaced with \(Z = 30 \pm 10 \text{ mGal km}^{-1}\).

Figure 15 was replaced with the correct version.

In Figure 15 caption, band-pass (9000> λ>730 km) was updated with low-pass (>730 km).

Figure D1 was replaced with the correct version.

Figure D2 was replaced with the correct version.

In Figure D2 caption, band-pass (9000> λ>730 km) was updated with low-pass (>730 km),

Figure D3 was replaced with the correct version.

In Figure D3 caption, 20 mGal was updated with 10 mGal.