Live Coding in Music Education: Special Issue of The Journal of Music Technology and Education Guest edited by Andrew Brown QCGU

Title: The development of Sonic Pi and its use in educational partnerships: co-creating pedagogies for learning computer programming

Authors: Samuel Aaron, Alan F. Blackwell, and Pamela Burnard

University of Cambridge Computer Laboratory and Faculty of Education

Abstract:
Sonic Pi is a new open source software tool and platform originally developed for the Raspberry Pi
 computer, designed to enable school children to learn programming by creating music. In this article we share insights from a scoping study on the development of Sonic Pi and its use in educational partnerships. Our findings draw attention to the importance of collaborative relationships between teacher and computer scientist and the value of creative pedagogies for learning computer programming as a live-coded participatory enterprise.
1. Introduction: change, educational partnerships and the focus of the study

Live coding is a growing international phenomenon that brings together the creative skills of musicking and computer programming; it is a mode of digital creativity that considers coding as a performance. Live coding extends the exciting notion of ‘liveness’ (Tanimoto 1990, Collins et al 2003, Church et al 2010) with composition happening in the immediacy of improvised performance. Coding offers a much higher degree of sonic abstraction than that of standard Western music notation; it affords the performer the ability to explicitly express musical and acoustic structure in the immediate or real time of improvised performance, thus merging improvisation, composition and performance creativities.
In this article, we consider ways in which the ‘liveness’ of live coding offers a response to the preoccupation with change in the modern age. Despite the possibilities that digital technologies are acknowledged to offer education in general and music education in particular, the incorporation of new digital technologies in pedagogic practices that characterise music education remains a challenging political, social and practical task (Brown and Dillon, 2012). On the one hand, teachers have been systematically positioned as barriers to change, and on the other hand, teachers have become positioned in policy as agents of change, so much so that ‘school music’ pedagogic practices are often presented in an abstract manner that is removed from everyday experience. Because of this they can lack the authenticity of engagement (Finney and Burnard, 2009). Live coding, as a shared practice of technical construction, offers an authentically collaborative response to change.
Collaborative approaches to teaching provide useful models that enable deep learning to occur. Because collaborative partnerships and partnership practices continue to gain popularity as a form of professional development and pedagogic innovation, school leaders are employing professionals such as scientists and artists to enable and enhance creativity and expertise. Manifestations of diverse musical creativities and innovation are characterised, in partnership collaborations that are driven by a specified task or project, as a mission-to-be-accomplished (Burnard, 2011a). Goals include: a culminating event showcasing original compositions created during the partnership; development of new curricular materials; and the extension of a school’s relationships with a neighbourhood cultural institution or organisation (Colley, Eidsaa, Kenny and Leung (2012)). In this article, we describe the ways in which live coding serves as a technological practice sharing these attributes.
Similarly, in the area of design and technology, as with computer science teaching, increasing emphasis is being placed on the social and educational empowerment of digital technologies, the value of collaborative work for promoting quality learning outcomes, and creating new music in the digital habitats of participatory cultures arising from live coding (Holmboe & Scott, 2005). However, little evidence, beyond subjective satisfaction, has been provided in terms of live coding and music-related digital learning habitats (Partti, 2012). Thus, the study in hand attempts to develop and apply a sociocultural framework for investigating: the process of learning programming using live coding; its educational challenges; the promise of user empowerment in digital music making; and the potential disruption to canonic practices of music education by the utilisation of digital technologies.

Live coding implicitly challenges several classical conventions in technical music education. Most significantly, it challenges the conventional distinction between performance and composition, by notating music at performance time. Loss of this distinction between performance and composition introduces ambiguities with regard to the nature of notation, improvisation and interpretation – for example, pedagogy that distinguishes between ‘theory’ and ‘performance’ cannot easily account for the production of explicit structural descriptions in front of a listening audience.
Furthermore, controlling digital technologies through code rather than a pre-programmed GUI promises user empowerment, with more expressive languages that are able to reconfigure a device instead of simply operating it within predetermined constraints. The digital ‘instrument’ is problematic in educational contexts, especially where assistive user interfaces or genre-specific generative algorithms can be associated with de-skilling of traditional instrumental competence. Live coding empowers learners to explore rhythmic, timbral, dynamic, melodic and harmonic structural devices from a far wider variety of musical traditions. The combination of these two factors – interpretation and empowerment – are fundamentally creative yet, also, potentially disruptive to prior educational agendas.

In order to explore these themes and potentials of live coding, the remainder of this article describes a scoping study, exploring the new world of musical performance and composition enabled by Sonic Pi.

2. Introducing Raspberry Pi and the context of the study

As discussed in the previous section, live coding offers a response to current concerns in the democratisation of digital technologies. The Sonic Pi system was explicitly intended, from the outset of this scoping study, as an educational intervention addressing those concerns. The opportunity to develop Sonic Pi arose from the activities of the Raspberry Pi Foundation, an organisation that has been in the forefront of educational change in the UK, having an explicit concern for broader access to technically-oriented tools for hacking and making. We argue that this context provided an especially congenial and relevant starting point for the introduction of live coding to an educational context. This section describes the key elements of that context.
The Raspberry Pi Foundation is a UK-based educational charity, best known for the creation of the Raspberry Pi computer. The Raspberry Pi is a low-cost ($25) single-board computer that can run a full version of the Linux operating system. It has proven extremely popular as a low cost platform for web servers, control applications, home automation and other hobby applications. However, it can also operate as a reasonably capable personal computer, with the addition of a few commodity components: a USB keyboard and mouse, a television screen for a monitor, a mobile phone charger for a power supply, and a camera memory card as disk storage.

The founders of Raspberry Pi included several of the creators and early users of the BBC Microcomputer, which had been a dramatic technology educational intervention for the UK in the early 1980s. Often credited with kick-starting the UK videogames industry, the BBC Micro represented an unusual hybrid of popular enthusiasm among young hobbyists and investment by schools purchasing their first computers (Blyth 2015). The low cost design of Raspberry Pi was intended to be equally accessible as a platform for young enthusiasts and for educational use. It has proven successful to an extent substantially beyond that anticipated. Although designed with the expectation that some tens of thousands might be manufactured, total sales at the time of writing are closer to five million.

At the time Raspberry Pi was launched, secondary school curricula in the UK were the subject of intense debate, in part resulting from relatively vigorous intervention in curriculum definition by the Conservative Secretary of State for Education (DfE/Gove 2012). However, these conditions proved favourable to a review of the “ICT” curriculum in favour of more academically-oriented Computer Science. Rather than emphasising the applications of ICT (spreadsheets, web usage, presentation software etc.), the computer science curriculum was associated with a return to computer programming as a fundamental technical skill. The Computing at School association, a national organisation initially sponsored and convened with assistance from Microsoft Research Cambridge, acted as an advocacy and facilitating body for the definition of a schools curriculum in Computer Science (Computing at School Working Group 2012).

The significant media attention paid to the Cambridge-based manufacturing success of the Raspberry Pi offered a natural platform for joint advocacy involving representatives of Raspberry Pi and Computing at School. Professional bodies, such as the British Computer Society and Institute of Engineering at Technology, worked with both organisations to lobby for a strengthened curriculum, and to support localised, independent and community technology education initiatives such as STEMNET and Code Clubs.

This growing tide of enthusiasm for more technically-oriented programming education resulted in significant attention to the potential of the Raspberry Pi as an educational platform. However, the majority of Raspberry Pi sales had been to technology enthusiasts (of varying ages) rather than to educational institutions. At the time we started the scoping study described in this article, there had been no systematic attempt to develop curriculum materials for the Raspberry Pi, or to evaluate its potential for classroom use.

Although the basic Raspberry Pi is sold as a bare-bones circuit board, with no operating system software installed, the Raspberry Pi Foundation has made a substantial investment in creating and supporting a distribution of the Linux Debian system that can be used to boot up basic user interface and applications functionality. Given the educational objectives of the Foundation, it was natural that this “Raspbian” distribution should include programming languages suitable for use in educational contexts. The highest priorities were MIT’s Scratch, which is widely used as a first programming language in schools, and a standard release of Python, which is considered relatively suitable for educational use because of its readable lightweight syntax, dynamic typing and interpreted execution.

Despite the fact that these languages were available “out of the box” for Raspberry Pi, they offered no clear justification for use of Raspberry Pi as an educational platform. Both were already widely available on school computers, and the relatively low cost Raspberry Pi hardware did not offer any performance advantage over the existing platforms for Python and Scratch. The starting point for this scoping study was therefore to explore whether a different type of programming environment might be created for school use – one that emphasised the appeal of Raspberry Pi to creative enthusiasts rather than simply as apparatus for curriculum-defined practical exercises. It should be noted that this was much the same ambition as for the original development of Scratch itself. However, Scratch first faced opposition from teachers (because it emphasised motivational applications rather than conventional syntax), and then from children (as it was co-opted toward illustration of curriculum points).

Working with an awareness of these previous events, we therefore decided to take a substantially different approach to the development of a new introductory programming platform for the Raspberry Pi. In particular, we adopted a live coding perspective from the outset, in order that programming itself could be perceived by students as a creative educational activity, rather than simply as a technical means to an end.
3. The development of Sonic Pi

Most live coding languages to date have been created by individual developers, pursuing personal research or artistic agendas. At the time of writing, it is rare for the earliest stages of conception and design to be extensively documented. It is particularly rare for the development of a new live coding language to be directly commissioned by an independent commercial sponsor. Because there has been so little opportunity to document the starting point in development of live coding languages, this section therefore pays direct attention to the motivation and design rationale for Sonic Pi. Later sections in this article reflect on the ways in which the context of this partnership has particular resonance in relation to live coding as a collaborative practice.
At the time the Sonic Pi project started in early 2013, the Raspberry Pi Foundation had been engaged in ongoing consultation and debate about curriculum and educational strategy for some months. High-level support from government, together with significant press attention as well as large commercial and philanthropic interests, promised high profile investment in the development of curriculum material and teacher training initiatives. However, such large-scale activities take time to mature, and little concrete progress had been made with trial deployment of Raspberry Pi in classrooms.

The decision was therefore taken to invest in a low-cost, but potentially high-risk, experiment to demonstrate a new style of classroom teaching that was appropriate to the strategic ambitions of the Raspberry Pi Foundation. The Sonic Pi project was thus a response to the need for a very short timeframe project, exploring the development of new software for the Raspberry Pi that could be used in the classroom. Within the available three months, it was also necessary to identify how this software would be used in the classroom, including curriculum material.

The technical capabilities were mainly determined by the available time, given that the original project schedule was so short, and also had to include the development of reusable lesson plans for classroom use, and a trial deployment in a UK school. As a result, the initial version of Sonic Pi was implemented in approximately 3 weeks.

The choice of music as an application domain was determined by available expertise, because Sam Aaron had been based in the Computer Laboratory for the previous 2 years as a live coding researcher (Aaron, Blackwell, Hoadley and Regan, 2011). It seemed that music was a good fit for the Raspberry Pi Foundation, which had a clear priority on creative experiences with technology. However, creative experiences for students resulted in a degree of tension with the schools computing curriculum, which was clearly situated within the STEM (Science, Technology, Engineering and Mathematics) priorities of UK educational policy, rather than Arts and Music. The Computing at School curriculum does have a single reference to the performing arts (Computing at School Working Group 2012, page 8). However, this paragraph was contributed to the curriculum by the second author, and it is fair to say that the arts had not until then been a major area of focus for the curriculum working group. This curriculum policy implication was therefore an element of the project that we were interested to explore more directly.

A core technical challenge throughout the project was the development of suitable engineering components to deliver an adequate quality of sound synthesis on the Raspberry Pi. A key requirement was an operational port of the SuperCollider
 server to the Raspberry Pi, which Sam had completed before the start of the Sonic Pi project; this was a key platform element. As with Sam’s own live coding performance practice, the tone quality of the synthesised audio is treated as a critical element of music production, even where the melodic and rhythmic aspects might be relatively trivial. The Raspberry Pi is a low-cost platform, and, unsurprisingly, had not been designed with audio quality as a high priority.

Alex Bradbury, a PhD student in the Computer Lab and prolific Raspberry Pi contributor, assisted with the necessary low-level audio plumbing to get SuperCollider working on the Raspberry Pi, and also with work carried out after this scoping study, to ensure Sonic Pi was correctly packaged and available as part of the Raspbian distribution.
The main point of contact with the Raspberry Pi Foundation was via Foundation trustees Robert Mullins and Alan Mycroft, both members of the teaching faculty at the University of Cambridge Computer Laboratory. Both had strong links to the Computing at Schools initiative, and during time spent travelling to regular meetings with schools organisations, curriculum bodies, professional institutions and potential commercial sponsors, Rob had become a valuable sounding board for the decisions that were regularly made regarding tradeoffs between creative aspirations for the children (and for Sam!) and computer science content relating to programming language features.

The Sonic Pi project commenced with discussions among a group of programming language educators and compiler designers within Cambridge University. However, it quickly became apparent that the main challenges and research questions of the project were not issues that are considered central to these research areas. A pragmatic decision had been taken not to create a new programming language syntax, but rather to develop a variant of the Ruby programming language. Ruby does support a style of development that is expressed as “domain-specific” languages customised for particular applications. Sam had experience as a professional Ruby programmer, but was also motivated by a desire to introduce languages in the classroom that reflected actual commercial practice. As noted by Mark Guzdial in his contributions to the recent Dagstuhl seminar on Live Coding (Blackwell, et al 2014), many students appreciate exposure to text syntax code – they want to feel that they are learning the tools that real programmers use, not brightly coloured educational toys. This is exacerbated by the observation of Margolis (2013) that disadvantaged students may be keenly aware of educational experiences that deny them technical mastery. Other classroom studies subsequent to the Sonic Pi scoping study have confirmed anecdotal observations among UK high school students that Scratch, in particular, is not perceived by students as being “programming” (Stead & Blackwell 2014).
These aspects of the Sonic Pi design, informed by very recent concerns and developments in computer science pedagogy, introduced challenges for acceptance of the project among Raspberry Pi collaborators and supporters in the trial school. For example, a school governor, visiting the final lesson in the trial class, wanted to know “what language is this written in”, apparently reflecting some personal professional experience. As a relatively new language, older professional programmers are less likely to be familiar or proficient with Ruby. It is completely unknown as a teaching language, where successive generations have been familiar with Basic, Pascal, Java or Python as languages that are commonly taught in schools, and have spread into industrial use as a result of their comparative simplicity. Concern regarding the “relevance” of Ruby was deflected on that occasion by observing that this was the language Twitter had been implemented in, and was thus relevant to the real world rather than speculatively academic.

The question of which concrete syntax should be applied in early programming language education has been a matter of perennial debate among CS educators, and also among those who have little educational experience but strong views on the relative degree of “intuitiveness” of their favoured language. As with most computer scientists, Sam also has views on these questions, and felt that Ruby struck a good compromise with respect to its style of concrete syntax. However, most of those who have seen Sonic Pi recognise it as a relatively generic imperative syntax, and probably do not notice the Ruby references in a typical introductory lesson. Our computer science collaborators, although supportive of the project, did not find the implementation language particularly interesting. Of course, the 3-week constraint on the implementation of Sonic Pi allowed little opportunity for technical innovation.

The authors of this article were all closely involved in the planning and execution of the scoping study to assess and extend the Sonic Pi agenda. Sam Aaron and Alan Blackwell are experienced designers of programming languages. Alan is a core member of the Psychology of Programming Interest Group. Pam Burnard became involved in planning the evaluation of the first schools trials, based on her background as an investigator of creative learning, and of music and music technologies. Teacher Carrie Anne Philbin was introduced to Sam as a result of her previous contacts with the Raspberry Pi Foundation at public and media events, and was the sole educator involved in the initial stage of the project.

4. Introducing the research, educational partnership and findings

The educational research took the form of a naturalistic inquiry employing qualitative methods. The educational researcher did not make site visits to observe the lessons taught during the scoping study, but rather assembled post hoc reflections on the teaching and learning and curriculum change. Semi-structured interviews with the teacher, Carrie Anne, and Sam, the computer scientist, and analysis of relevant documentation on the planning and implementation of the coding classes, within the wider comprehensive secondary school environment, provided sufficient data to build a picture of the beliefs and practices within the project. The data collection methods also included student questionnaires and critical incident charting activity for eliciting pupil perspectives and exploring aspects of their learning. The teacher, Carrie Anne, facilitated and collected data as part of a student learning focus and collective clarification of what was learned, and paid attention to, as retrospective reflection activity. The questions largely related to the kinds of knowledge that informed the pupils and that shaped their responses to, and thinking about, computer programming. This data provided a snapshot of class opinion. Three semi-structured interviews were set up with both Sam and Carrie Anne to gain understanding of their planning and delivery of the teaching sequences, and their reflections on the partnership and emerging pedagogic practice. Data from the teaching sequence and the subsequent pupil questionnaire and reflections on the Sonic Pi session was used in the analysis.

Developing collaborative relationships and a pedagogic practice for learning Sonic Pi/ computer programming

A key theme emerging from the literature on successful Creative Partnership projects has been relationships developed between teachers and creative practitioners (these could range from mathematicians, scientists and architects to actors and conceptual artists). A joint approach, where teachers and creative practitioners work alongside each other collaboratively, allows for in-depth sustained exploration of the kinds of practice required to support creative learning (Galton, 2010). We argue that live coding is especially supportive of such a joint approach, and that both the collaborative relationship and pedagogic practices reflect this support.
The Sonic Pi scheme of work, or lesson sequence, was collaboratively designed by Sam Aaron and Carrie Anne Philbin. This involved a kind of mutual tuning in and openness to each other. Being able to talk about different practices (such as pedagogic, programming and musical), to feel that pull that one needs to be able to listen and tune in and to observe different practices, enabled both Sam and Carrie Anne to mesh understandings and expertise with a shared passion for music and technologies, leading to Sonic Pi learning and the reapplication of that understanding in the classroom.

Reflecting on the development of the collaborative relationship Sam observed:

There was a definite sense of journeying together into the unknown. While a musician playing an acoustic instrument might seek to extend the traditional techniques of their instrument in order to find new and exciting sounds, the starting point for digital musicians is based on audio material and digital sound creation and manipulation techniques. What we did was explore new paths creating new practices together for exchange of professional expertise and the pursuit of obtaining as wide a participation as possible

As the collaborating teacher, Carrie Anne emphasised: the importance of being adaptive and adapting reflexively to learning environments and learners; the need to collaboratively create specific spaces for students to learn programming through music; and that understanding what this means for interacting with Sonic Pi in the classroom setting was paramount.

Carrie Anne and Sam adaptively supported each other. The capacity and willingness to take risks and work with the unfamiliar created new challenges to the occupational orthodoxies played out in programmer-teacher interactions, as Carrie Anne explains:

It felt like we were involved in kind of merging our professional approaches to form a new one. For example, I normally work with the desks arranged in a certain way. Sam felt it was important to change this around to ensure the students could work in pairs and small groups arranged in different ways and spaces…to give them more opportunities to talk about their ideas….how to generate motivation and explore musical ideas while still working towards an outcome….meant having to navigate between being a teacher, a learner and negotiator…the classroom space changed and generated new ways of learning…purposeful experimenting, playing and trying out ideas as they composed in different ways.
And so the Sonic Pi curriculum was collaboratively planned and delivered in five classroom hours, as this table shows:

Table 1: Lesson focus and learning objectives jointly decided

	Lesson
	Focus
	Learning objectives

	1
	Sequencing
	Computers are general-purpose devices

Basic architecture: CPU, storage, input/output

The idea of a program as a sequence of statements written in a programming language

Changing the order of the statements changes the behaviour of the program

	2
	Debugging and Iteration
	Programs contain syntax.

Incorrect syntax creates errors which need to be debugged

Debugging is a problem solving activity

Programs can contain interesting and meaningful structures.

An interesting and useful structure is repetition or iteration.

Syntax can be used to represent both actions to be performed and also punctuate the structure of the program.

	3
	Conditionals and randomisation
	Programs can make decisions.

A simple form of decision is called a conditional.

The potential decisions are called branches.

Programs can contain random acts.

Programmers use comments to explain interesting parts of a program.

	4
	Data structures and algorithms
	Numbers are simple elements of data.

We can model both time and notes with numbers.

Numbers can be aggregated into data structures such as lists.

Algorithms are a series of steps or instructions for solving a problem such as sorting and shuffling a list of numbers.

Many useful algorithms have already been implemented and are made available to use through programming libraries.

	5
	Concurrency
	Computers can multitask i.e. do many things at once.

A simple program has one flow of control i.e. one thread of execution.

Programs can have multiple threads of execution.

Multiple threads work at the same time i.e. concurrently

Technical overview of Sonic Pi

The architecture of Sonic Pi relies on the SuperCollider synthesis engine, as also employed in Sam’s Overtone language for live coding performance (Aaron & Blackwell 2013). SuperCollider runs as a server process that generates sound. Sonic Pi code is created in a simple editor client, allowing code to be typed directly into a text window. A large “run” button interprets the code currently displayed in the window as shown in Figure 1, with SuperCollider synths
 invoked by the simple set of commands described in Table 2.

[image: image1.png]800 | Sonic Pi - Aphex

vOo

Workspace 1 | Workspace 2 | Workspace 3 | Workspace 4 | Workspace 5 | Workspace 6 | W 4[>
with_synth "saw_beep"
10.times do
play 60
sleep 0.25
play 65
sleep 0.25
end

Figure 1:Version 1 of the Sonic Pi application, as used in the scoping study
Table 2: The Sonic Pi language

	play(note, *args)
	Play the current synth at the specified pitch (supplied as a MIDI note). Optional arguments may be passed to further control the synth. These optional arguments are unique to each synth and are defined as part of the synth description.

	with_synth(synth_name)
	Sets the current synth.

	play_synth(synth_name, *args)
	Play the specified synth with the supplied arguments. Ignores the current synth setting.

	repeat(&block)
	Repeat the block of code forever. Warning, this code will not terminate - so any code below will not get executed. Consider putting inside a thread with in_thread.

	with_tempo(n)
	Sets the current tempo to the new value in BPS. This value is global and the same for all threads.

	current_tempo
	Returns the current tempo in beats per second

	play_pattern(notes, *args)
	Plays the specified MIDI notes with the current synth at the current tempo.

	play_pattern_timed(notes, times, *args)
	Plays the specified MIDI notes with the specified separation times with the current synth at the current tempo. The list of times is a list of durations to sleep between each note

	play_chord(notes, *args)
	Plays the specified MIDI notes simultaneously with the current synth

	in_thread(&block)
	Runs the block of code in a separate thread. This means the code will execute concurrently to the following code after the call to in_thread.

	stop
	Stop all sounds.

Developing the pedagogic practice
Analysis of the pedagogic practices demonstrate the potential for a ‘live-coded’ collaborative style within an educational context. Carrie Anne, the teacher, and Sam, the application developer, took a reflexive, adaptive and reflective approach to lesson planning, adapted from Sam’s own professional software development experience. Professional practice with responsive languages such as Clojure and Ruby is often associated with “agile” development practices, able to respond to changing stakeholder requirements and new technical developments. The similarity (at different scales) between the pedagogic development process and the responsive classroom experiences is part of the characteristically live-coded nature of this whole scoping study.
The starting point for building the collaborative relationship between Carrie Anne and Sam was an exploration of the new Key Stage 3 computing curriculum prepared by the CAS group. Each language feature or computational concept in the lesson was mapped onto curriculum items, as summarised in the earlier outline of learning objectives.

Sam and Carrie Anne agreed on the need to employ a wide range of approaches to ensure students’ engagement with programming. These pedagogical approaches included live performance practices such as drama role play (which provided excellent opportunities to develop students’ procedural knowledge and talk) starting from levels of bodily engagement and ownership. The observed relationship between students and actual learning of programming was reflected in the extensive discussions between Sam and Carrie Anne before and after normal lessons. Another key theme emphasised in developing the pedagogic practice was the level of student choice evident in classroom planning. In some instances Sam required students to make decisions about what coding to explore and how to approach different tasks and take responsibility for reflecting on programming. This emphasised that live coding does not require a predefined correct answer, but can be produced in the moment by students as a response to their own creative enquiries. Also important were the organisation of classroom space and choosing where the students sit in relation to the technologies.

[image: image2.emf]

A

B

C

D

E

F

Figure 2: Classroom layout
A: Main teacher desk. CA would initiate lesson from behind there and occasionally turn to deliver key points. B: Project canvas: Projecting slides created in Google Docs. C: A shared desk with one RP set up. Each star represents: 1 RP, 1 monitor, 1 keyboard, 1 mouse, 1 power supply, 1 HDMI cable, ! SD card, 1 headphone splitter, 2 headphones. These are assembled at the start of every lesson by the students working with them, extending the live-coding emphasis on self-efficacy through enabling and empowerment to the manipulation of the computer hardware itself. D: Chairs for students. Each desk typically has two chairs for paired collaborative work.
Other collaborative decisions

The first lessons were designed in advance, but later lessons were finalised only in the hour or so before the lesson, reflecting the extent to which liveness was valued in this collaboration. Lessons were spaced on a weekly basis, which meant that Sam had time to do further development work each week, reflecting the live-coder ethos that code, rather than a static artefact, is a responsive and evolving medium. During the week, the teacher, Carrie Anne, would create a Google document, based on Sam’s ideas of computing concepts that he felt would be interesting to convey. She would then refine and edit this through the course of the week, creating a lesson plan that could be delivered in a single classroom session, while Sam carried out ongoing technical development.

In each of these development iterations, a key concern was the extent to which the lesson could be technically simple enough for use in an introductory programming class, while also being credible as a “real” programming experience that would be recognised by “real” programmers – including computer science educators and researchers, but also the professional programmers with whom Sam interacts in industry and trade contexts. These considerations reflect the cultural milieu of live coding, in which technical credibility and competence is an essential marker of authenticity.
Music and live coding was used to motivate, frame and structure the lessons, although the pedagogic content was related to Computer Science. (Lessons where there was not a clear musical goal, but that were constructed to communicate a specific (clearly defined) computer science concept, were far less effective.)

The relationship in improvisation practice between live performance and preparatory exercises is an important pedagogic consideration, and the same is true in preparation for live coding (Aaron et al 2011). Allowing time for planning sessions that reflect on the lesson content being organised around a limited set of powerful ideas was important to both Sam and Carrie Anne. Before the lessons they did a lot of talking, engaging collaboratively and sharing the burdens and pressures. There were many extended conversations long before and immediately after sessions, many of which included writing live code to develop and illustrate the conversation. There was also extensive shared dialogue during the sessions. The shared space of this educational partnership involved them in a participatory way where exchanging ideas and experiences, inspiring and exploring new activities, seemed to open up new possibilities. They communicated an openness to ideas and a passion for the exploration of programming.

The collaborative pedagogic practice was, however, essentially improvisational in nature, as with live coding itself. The business of inviting judgements on ‘what works’ and the use of improvisation enlivens the learning environment, and reapplying that understanding in this setting seemed essential to both Sam’s deployment of a specialist’s knowledge of programming and Carrie Anne’s pedagogical content knowledge. Successful collaborative relationships require a great deal of time and commitment to talking, sharing and adapting reflexively while working collaboratively alongside each other. There are many key issues central to the success of how people learn by engaging in a creative activity (such as teaching) and in particular how they engage in a creative process together (such as developing a pedagogic practice for the teaching of programming). These include: the sequence of lessons; the spatial and temporal arrangement decided between collaborators; decisions concerning technology use; and related objects and events central to the achievement of tasks and development of understanding (Burnard, 2011b).

In addition, attention and importance was given to the collaborative work of the students and the profound role of classroom talk. Learning to program through music making using Sonic Pi meant that learning was determined by the community and always related to the needs of students – live coding is always directly connected to the person creating the code. Mercer (2000) introduces the notion of collective thinking to describe talk in a joint problem solving activity where participants share both relevant past experience and an information creating context for the joint activity, and work with each other’s ideas using language as a tool to transform the given information into new understanding. The use of exploratory talk, which is the kind of talk in which partners engage critically but constructively with each other’s ideas, seemed to feature as an effective way for Sam and Carrie Anne to think collaboratively. Cumulative talk, the kind of talk in which ‘speakers build on each other’s contributions, [and] add information of their own in a mutually supportive, uncritical way [to] construct shared knowledge and understanding’ (Mercer, 2000, p.31), also featured in the planning of, and within, the teaching sequence.

Both Sam and Carrie Anne seemed to embrace the pleasures and pitfalls of developing innovative pedagogic practice together as a partnership. When they started developing a pedagogy for Sonic Pi it felt less of a certain science than an imprecise art. This improvisational pedagogy, as an analogue to the technical practice of live-coding, can be compared to other domains of enquiry in which live coding has motivated more practice-based and improvisational methods, such as Geoff Cox’s critical writing as form of practice (Cox & McLean 2013). Sam and Carrie Anne placed particular emphasis on the collaborative work, and their exchanges and transfer of particular expertise and knowledges were united around a shared passion for music. The point at which the computer scientist and teacher attuned to each other’s ways of working created new ways to teach programming through music, and the most effective learning environment to achieve this was when improvisatory acts (of collaboration and improvisation in classroom activities) occurred. The collaborative partnership between teacher and computer scientist included successive iterations of stages in the series of lessons where each class was part ‘consumption’ of concepts and experimentation (from interview data):

[image: image3.emf]Reflections on ideas/new thoughts on concepts to teach in next
lesson

i
Concept decision

iii
Language/Tool modifications/additions to support concepts

iv
Framing of CS concept for lesson

v
Reworking of ideas for classroom consumption

Vi
Creation of lesson presentation/plans

vii
Delivery of lesson

viii

Active reflection and thoughts for next lesson

i

Reﬂections on ideas/new thoughts on concepts to teach in next

lesson

ii

Concept decision

iii

Language/Tool modiﬁcations/additions to support concepts

iv

Framing of CS concept for lesson

v

Reworking of ideas for classroom consumption

vi

Creation of lesson presentation/plans

vii

Delivery of lesson

viii

Active reﬂection and thoughts for next lesson

SA

SA

SA

SA

CAP

CAP

CAP

SA

SA

CAP

Figure 3: Co-creating pedagogies
Students’ perceptions of how they used music to learn programming together
The connection between creativity and live coding in music education that emerged in this scoping study is articulated in the following drawings by students from the two Year 9 classes who were involved in the Sonic Pi project. In these drawings, students responded to a request ‘to chart the critical incidents remembered of learning with Sonic Pi’ and to ‘draw what it is to live code’. These representations of student perceptions are overwhelmingly positive responses to the challenges and opportunities brought forth by: participatory culture; live coding; Sonic Pi; learning computer programming; and creating digital music. The practice of live coding has the potential to transform music education by exploring the creative potential of responsive programming languages and environments to provide new pathways for young people into digital arts. We can see this in the following examples (see Figure 4) of students’ responses:

	
	

	[image: image4.jpg]VRMe |

o Deaw A PeTueE OF Yo
ProGramming A RAsPBERRY Pl

	[image: image5.jpg]&”Pb"’J i = Soarc A Unit
‘ Memer iy 4 M‘ lochians
T 0 el n &MWO\M 0 WC&)VM()MX Umm’@
NORNRA (e
!J‘mu- > o WM}XW wﬁ v?’ggc\wﬁm % U oy ek, “30

T Ak bier e oo Godelaly b
%%WW@ W/P\c ém

,\fiﬁ& V:w%ﬁbw& 6M%W @
AL Az % svh G,

AL
OV T Lok s auningentsy A0k AL 82 ol wh PO

A
RS\ SR ﬁ;””‘mi ?(M bk 3G Yty

&O@M dhe. vy ovspoct
%WWWW A WM &

PR RAOVOAK W/\&Wpé

w\k MMW& (»M

O‘\r Ll W j’N\’

5 e vag)W/%e/& o
b u\,(*}}w
N Ww%g& W e f‘ﬂ\s“

WWMW’W foh dﬂ\m“&WW
szb“ “ﬂ’”

	[image: image6.jpg]STAeT | M ool UV\/}) comloin +
b & oM wp =

lévﬁ, cUCH JMO(C/C(@VH < W’VCW
" tallenae dunne 007
oy w%f’c 3 %nﬂ% 2
N0 , “. . -
(T sam Faugint
4 va)
R MNCS Ve 57% £ oot

- ﬂ \ A"v W’% US € o
§ éumﬂ Sne {% éj

tgﬁg Otng fu%/&gd% SINC s,

£ ol SoEm

2 w AL W

:§QCCU o2 d@V\CQO(™ TVie
8 % S(/V"f@{ Ve

S; MY A fon osorns we coulal
= SCA U up iowy ! :D

. Re ~ NI &
olcmg ol The > ONI %

MUsYC NOYK ,/'36&@ ‘ ? 14\ "“

	[image: image7.jpg]VRNE |

——

Derw A PeTuee O Yo
iN) ROGRAMMING A RAsPRRY LI

\
h |
4 ® "‘ \
: \
|
N (|
3 | / &
1 |
1 \
? []
£ Y 7 o\ ;
¥ ¥
4 > \

	[image: image8.jpg]e

i Kasebwj P - Saaic A Unit

Memoris + Reflocshians

2T

i 5 6‘\36 g&\ @é&\l nq
gﬂc}\g\k& an \/\/”m,\ ,
i

Bl i 5 1 I

. No s wabi) :
IMMO Tl e " R oo fprlih v
\\Mt@ o %

hewe » PO stgs AN agg
< o '
e celils (el | G Adhen fﬁ\\'fgs f/ii ‘

1 ONI‘O{',/”/(- , W%«Vt W/\Mrd‘t‘ : I

to o Lemcomse ¥ s e
| really

; WOS ded\

e

	[image: image9.jpg]Qe

— Derw A PeTueE OF You
V0T Paospamming A RAsPEORRY Pl

a gémomﬂwméﬁ 2
357 200 oy
= DUDU%UD&SG uon

B anp

Figure 4 Student perceptions of learning to live code using Sonic Pi

5. Lessons for music education

Exciting new possibilities for music making and creating are opened up by live coding in general, and in this study, by SonicPi in particular. In this scoping study we can see, in terms of what Vakeva (2010) calls the ‘participatory revolution’, particular ways in which learning to live code can offer opportunities for experimentation, self expression, new music and new musical learning practices. The brief exploratory sketch of experience reported here illustrates the key dimension of collaborative partnerships and ways of enabling collaborative pedagogic practices to facilitate learning of programming (as well as the shared space created by the social and relational character of learning through participation, a central aspect of this study as for many sociocultural theorists (see, in particular Lave and Wenger, 1991)).

The lessons for music and technology education from this study of Sonic Pi show the need to:

1. Provide more opportunities and time for developing collaborative learning partnerships between students, teachers and computer scientists/live coders and cultivate an experimental attitude through live coding. (It is often assumed that the teacher is the musical expert who will take the lead in all things educational; as this project indicates, one needs to develop a ‘participatory culture’ and open up educational settings to the potential of educational partnerships between various musical communities, especially, in this case, computer scientists who are live coders.)

2. Allow for a high proportion of student talk, much of it occurring between students, teachers and computer scientists, reflecting on new classroom discourses and musical pathways.

3. Nurture the emerging ‘participatory culture’ within each classroom by enabling students to recognise their own musical versatility and creativities through play, experimentation, risk taking, and free interplay between old and new elements across diverse musical styles and genres. This ‘participatory culture’ should allow communication between teacher, student and expert live coders, computer scientists and professional artists in education and industry.

4. Allow time for extended planning sessions that reflect on the pedagogical approach, and recognize substantive taught content that is organized around a set of powerful ideas.

5. Model the ways in which the classroom ethos encourages the exploration of new pathways, new sounds and new thinking about pedagogies, as well as the promotion of diverse musical creativities and the ‘participatory revolution’ in digital music learning and making.

As a postscript to this scoping study report, we note that the positive findings from the scoping study described here have since led to multiple valuable outcomes. The development of Sonic Pi has been supported by two further donations from Raspberry Pi Foundation, allowing a further 24 months of technical research and development. Versions of Sonic Pi have now been released for Windows and Macintosh platforms, in addition to continued support for Raspberry Pi. At the time of writing, Sonic Pi is being downloaded more than 1,000 times a week, from locations around the world, with thousands of active users. The authors have developed further partnerships, including the ambitious Sonic Pi Live and Coding project, an arts-led initiative to explore new music curriculum based around live coding (Burnard et al 2014). Results from these projects will continue to be reported in future.
Acknowledgements

We would like to thank Broadcom Foundation and Raspberry Pi Foundation for their funding of this scoping study, Rob Mullins, Alan Mycroft, Andrew Rice and Alex Bradbury for research support, and especially Carrie Anne Philbin for her enthusiasm and collaboration throughout the development of the Sonic Pi curriculum.

References

Aaron, S., Blackwell, A.F., Hoadley, R. and Regan, R. (2011) A principled approach to developing new languages for live coding. International Conference on New Interfaces for Musical Expressions. Conference Proceedings, 381-386.
Aaron, S. and Blackwell, A.F. (2013). From Sonic Pi to Overtone: Creative musical experiences with domain-specific and functional languages. Proceedings of the first ACM SIGPLAN workshop on Functional art, music, modeling & design, pp. 35-46.
Blackwell, A.F., McLean, A., Noble, J. and Rohrhuber, J., edited in cooperation with Jochen Arne Otto. (2014). Collaboration and learning through live coding. Dagstuhl Reports 3(9), 130-168.
Blyth, T. (2012). The Legacy of the BBC Micro: Effecting change in the UK’s cultures of computing. Nesta/Science Museum. Available online from http://www.nesta.org.uk/publications/legacy-bbc-micro (last accessed 27/04/2015)

Brown, A.R. and Dillon, S C. (2012) Collaborative digital media performance with generative music systems. In G. MacPherson and G. Welch (eds.). The Oxford Handbook of Music Education, New York: Oxford University Press.

Burnard, P. (2011a) Educational leadership, musical creativities and digital technology in education. Journal of Music, Technology and Education, 4(2/3), 157-171.

Burnard, P. (2011b) Creativity, pedagogic partnerships and the improvisatory space of teaching. In K. Sawyer (Ed.) Structure and Improvisation in Creative Teaching (pp.51-72). New York: OUP.
Burnard, P., Brown, N., Florack, F., Major, L., Lavicza, Z. and Blackwell, A.F. (2014) Sonic Pi Live & Coding: A collaborative research project. Project report from Cambridge Junction. Available online from http://www.sonicpiliveandcoding.com/
Church, L., Nash, C. and Blackwell, A.F. (2010). Liveness in notation use: From music to programming. In Proceedings of the 22nd Annual Workshop of the Psychology of Programming Interest Group (PPIG 2010), pp. 2-11.

Collins, N. , McLean, A., Rohrhuber, J. and Ward, A. (2003). Live coding in laptop performance. Organised Sound 8(3), 321–330.

￼￼￼￼Computing at School Working Group (2012). ￼Computer Science: A curriculum for schools. Available online from http://www.computingatschool.org.uk/data/uploads/ComputingCurric.pdf
Department for Education and The Rt Hon Michael Gove (2012) ‘Harmful’ ICT curriculum set to be dropped to make way for rigorous computer science. Press release dated 11 January 2012, available online from
https://www.gov.uk/government/news/harmful-ict-curriculum-set-to-be-dropped-to-make-way-for-rigorous-computer-science (last accessed 29 April 2015)

Finney, J. and Burnard, P. (2009) (Eds.) Music Education with Digital Technology. London: Continuum.

Galton, M. (2010) Going with the Flow or back to normal: The impact of creative practitioners on schools and classrooms. Research Papers in Education, 25(4), 355-375.

Holmboe, C. and Scott, P.H. (2005) Characterising individual and social concept development in collaborative computer science classrooms. Journal of Computers in Mathematics and Science Teaching, 24(1), 89-115. and Scott (2005)

Lave, J. and Wenger, E. (1991) Situated Learning: Legitimate Peripheral Participation. New York: Cambridge University Press.
Margolis, J. (2013) Stuck in the Shallow End: Education, Race and Computing. MIT Press

Mercer, N. (2000) Words and Minds: How we use Language to Think Together. London: Routledge.
Nash, C. and Blackwell, A.F. (2012). Liveness and Flow in Notation Use. In Proceedings of the International Conference on New Interfaces for Musical Expression (NIME), pp. 76-81..
Partti, H. (2012) Learning from Cosmopolitan Digital Musicians: Identity, Musicianship, and Changing Values in (in)formal Music Communities. Kopijyva, Espoo: Studia Musica, 50, Sibelius Academy, Faculty of Music Education. .
Stead, A. and Blackwell, A.F. (2014). Learning syntax as notational expertise when using DrawBridge. In B. du Boulay and J. Good (Eds). Proceedings of the Psychology of Programming Interest Group Annual Conference(PPIG 2014), pp. 41-52.
Tanimoto, S. (1990). VIVA: A Visual Language for Image Processing. Journal of Visual Languages and Computing. 1(2), 127-139.
Colley, B., Eidsaa, R. M., Kenny, A., and Leung, B, (2012) Creativity in Partnership Practices In G, McPherson and G. Welch (Eds.) The Oxford Handbook of Research in Music Education.pp, 408-425)
Vakeva, L. (2010) Garage Band or GarageBand® remixing Musical Futures British Journal of Music Education 27(1), 59-70.
� The Raspberry Pi charitable foundation delivers low cost computing technology to a large audience of over 5 million young people and creative enthusiasts.

� SuperCollider is a new real time synthesis language developed by J. McCartney.

� SuperCollider synthesisers are abstract template designs of audio and control signal flow. Sonic Pi uses these to represent basic instruments such as sine and saw wave beeps and simple bell simulations. The SuperCollider server is capable of concurrently instantiating a given design many times to produce the effect of multiple sounds. For example, the same bell synthesizer design can be instantiated three times to produce a chord.

