Is the Chemical Strategy for Imbuing “Polyene” Character in Diketopyrrolopyrrole-Based Chromophores Sufficient for Singlet Fission?

Tushita Mukhopadhyay,*,† Andrew J. Musser,‡,†,‡,§ Boregowda Puttaraju,‡ Joydeep Dhar,‡ Richard H. Friend,*‡ and Satish Patil‡,†

†Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560012, India
‡Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom
§Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge CB3 0HE, United Kingdom

Supporting Information

ABSTRACT: In this work, we have rationally designed and synthesized a novel thiophene-diketopyrrolopyrrole (TDPP)-vinyl-based dimer. We have investigated the optical and electronic properties and have probed the photophysical dynamics using transient absorption to investigate the possibility of singlet exciton fission. These revealed extremely rapid decay to the ground state (<50 ps), which we confirm is due to intramolecular excitonic processes rather than large-scale conformational change enabled by the vinyl linker. In all cases, the main excited state appears to be “dark”, suggesting rapid internal conversion into a dark 2A_{g}-type singlet state. We found no evidence of triplet formation in TDPP-V-TDPP under direct photoexcitation. This may be a consequence of significant singlet stabilization in the dimer, bringing it below the energy needed to form two triplets. Our studies on this model compound set valuable lessons for design of novel triplet-forming materials and highlight the need for more broadly applicable design principles.

Considerable efforts have been directed toward the development of efficient excitonic solar cells based on organic materials, through a multitude of advancements in the design of appropriate molecular backbones, thin-film processing conditions, and device-architectural engineering.1−5 To date, the highest power conversion efficiency achieved in organic solar cells is in the range of ~10%.6 One critical limitation for these and indeed all other single-junction solar cell technologies arises from fundamental thermodynamic processes such as relaxation of high-energy carriers/excitons to the band edge. The consideration of such processes yields the Shockley−Queisser efficiency limit of ~33% for single-junction solar cells.7,8 One of the ways to circumvent this limitation is by invoking and implementing the concept of singlet exciton fission (SEF).8,9 This process involves the conversion of a singlet exciton into a pair of low-energy triplet excitons, which are initially coupled into an overall singlet state. This maintenance of singlet spin enables SEF to proceed on ultrafast time scales to outcompete other loss channels.10

Efficient SEF relies on correct alignment of the singlet and triplet energy states, such that 2\varepsilon(T1) ≤ \varepsilon(S1).11 By thereby splitting a high-energy exciton into two low-energy excitons, it becomes possible to harvest a significant proportion of the energy in “visible spectrum” photons typically lost to thermalization, resulting in a new maximum efficiency limit of ~44%.12 In recent years, computational and experimental studies have demonstrated that acenes, for example, pentacene, exhibit efficient SEF with ~200% triplet yield on time scales as fast as 80 fs.13−19 SEF proceeds either through an intermolecular or intramolecular mechanism.20−24 For both mechanisms, SEF rates and efficiencies can be controlled by fine tuning the strength of interchromophore coupling, which in the case of intermolecular fission entails the difficult task of optimizing chromophore packing within the film.18,24,25 Furthermore, several groups have demonstrated that coupling between singlet and triplet pair manifolds can be very effectively mediated by intermediate charge-transfer (CT) states.21−23,26 This insight provides design criteria for the selection of building blocks for new intramolecular SEF materials that satisfy two key requirements for efficient SEF: an increased S1−T1 gap (to achieve 2\varepsilon(T1) ≤ \varepsilon(S1)) and a lowest-lying optical excitation with significant CT character that can mediate the SEF process.27−31

There is little knowledge about the degree of interchromophore coupling needed to make SEF competitive with fluorescence and to yet allow the component triplets of the singlet-coupled triplet pair to “escape” and behave as independent excitations.15,32,33 It is evident, however, that these processes require a delicate balance of chemical design parameters. These processes depend largely on the crystal
environment, whether by positioning the molecules favorably for direct interaction or by stabilizing the low-energy CT states that serve as virtual states in the coupling process. The interchromophore interaction can range from mere physical contact through indirect covalent coupling to direct covalent bonding that permits strong π-conjugation. The extent of coupling has direct effects on the SEF rate but also indirectly affects the process by modifying the energy of the states of the isolated monomers and thus the exergicity of SEF. This interchromophore coupling can be controlled by tailoring the chemical structure.

One rational design approach to optimize this coupling for intramolecular SEF materials is based on alternately coupling electron-rich and electron-deficient moieties to form a quinoidal D–A–D backbone imparting significant CT character to the lowest-energy optical excitation. The resulting CT state possesses a large absorption cross section and may couple more strongly to multie exciton triplet states than pure singlet Frenkel excitons. We highlight in particular the design strategy proposed with this motif for conjugated polymers and oligomers. In that work, the oxidized thiophene acceptor found to be necessary to enable SEF simultaneously endows materials with significant oligo/polyene character, suggesting that a judicious balance of CT and polyene character is needed.

Indeed, the property of intramolecular SEF can also be achieved by incorporating oligoene-like moieties. In conventional polyenes, the lowest 2Ag states lie below the 1Bu states, enabling rapid (few ps) internal conversion to this dark singlet that renders them largely nonemissive. It has long been considered that the 2Ag state is crucial to enable SEF as it can be alternatively described as a bound triplet pair. However, more recent experimental evidence in oligoene aggregates and conjugated polyenes has revealed direct triplet formation instead from the bright 1Bu state. It thus remains unclear what aspect of oligoene character enables SEF and precisely how the coupling between manifolds is achieved, though it is clear empirically that it is a powerful “ingredient” for SEF materials.

Among the reported intramolecular SEF materials, vinylene-containing polymers have typically exhibited some form of optical activation, with fission enhanced by or even requiring excitation with a photon above the bandgap. The lack of intramolecular SEF in shorter oligoenes such as the carotenoids despite suitable energetics suggests that there is also a minimum size requirement for this SEF motif. On the other hand, nonactivated intramolecular singlet fission has been observed in several pentacene and tetracene dimers, with efficiencies as high as 200%. These results indicate that intramolecular SEF may be possible as long as two distinct sites for the product triplets are available.

The chemical design of CT SEF chromophores can be challenging as it not only involves increasing the S1−T1 gap but also endowing the S1 state with sufficient CT character to enhance its coupling with the multie excitonic triplet state. The former involves either the destabilization of the S1 state or stabilization of the T1 state by fine tuning chromophore structural motifs. The latter is feasible when there is a large electronic coupling between donor and acceptor leading to a large HOMO−LUMO spatial overlap and hence large exchange energies. The present understanding and the scarcity of appropriately designed materials provide little insight into the possible ways of harvesting multiple excitons in molecular materials. Diketopyrrolopyrrole (DPP)-based polymers and oligomers have attracted attention by virtue of high efficiencies in solar cells (∼10%) and high hole (∼20 cm2 V−1 s−1) and electron mobilities (∼12 cm2 V−1 s−1) in organic field-effect transistors. Their attractive properties such as high electron affinities and relatively low triplet energies can lead to the exploration of novel design principles for next-generation singlet fission materials based on DPP oligomers and polymers. Recent work has suggested that DPP derivatives can undergo SEF in the solid state thanks in part to the CT character of their excitations, making them strong candidates for intramolecular SEF design motifs. This work addresses the challenge in developing intramolecular singlet fission materials.

In keeping with the aforesaid design principle of combining CT and polyene character, we coupled together two thiophene-DPP molecules (TDPP) with a vinyl (V) linker to control the interchromophore coupling, yielding the dimer TDPP-V-TDPP. UV−vis absorption measurements reveal substantial interaction between the DPP units, while photoluminescence (PL) spectroscopy shows the molecule to be nonemissive, as typically observed in polyenes. Cyclic voltammetry (CV) measurements have been performed to elucidate the ionization potential and electron affinity. In order to probe the excited-state dynamics and better understand the interplay of bright and dark states, we performed transient absorption (TA) measurements on TDPP-V-TDPP in solution as well as in rigid polystyrene (PS) matrices. We observe in all cases that the initial “bright” excited state appears to rapidly decay by internal conversion into a dark and extremely short-lived 2Ag-type singlet, analogous to polyene photophysics because of the V bridging unit. There is no evidence of triplet or charge formation nor does substantial conformational change drive the rapid excited-state deactivation, which we consider instead to be analogous to the fast vibrationally mediated decay active in carotenoids and other polyenes. Our experiments demonstrate that SEF is inactive in this material, which is likely a consequence of the strongly reduced singlet energy upon dimerization. Our study nonetheless sets important lessons for
the design principles of DPP-based oligomers for future applications as next-generation SEF materials.

TDPP-V-TDPP was synthesized using a Stille coupling reaction involving a monobromo derivative of DPP and 1,2-bis(tris-octylstannyl)ethene in molar ratios of 2:1 using catalyst Pd2(dba)3 and ligand P(o-tol), in dry toluene as the solvent. The synthesis of TDPP-V-TDPP is shown in Scheme 1. DPP was alkylated with the short hexyl chain to enhance the solubility. The synthesis of TDPP-V-TDPP is shown in Scheme 1.

DPP was alkylated with the short hexyl chain to enhance the solubility. The synthesis of TDPP-V-TDPP is shown in Scheme 1.

Figure 1. Normalized UV−vis spectrum of TDPP-V-TDPP (red) in chlorobenzene at a concentration of 50 µg/mL. The weak features seen at ∼500 and 550 nm closely match the absorption of the equivalent TDPP monomer (blue, arbitrary scale). The substantial red shift upon dimerization is a signature of very strong interaction between TDPP units. Arrows indicate pump wavelengths used in TA measurements.

TDPP-V-TDPP exhibits a reversible reduction cycle and a quasi-reversible oxidation cycle. The low PL efficiency of TDPP-V-TDPP means that other spectroscopic tools are needed to build a comprehensive picture of the excited-state decay processes, namely, TA spectroscopy using a system described previously. In this technique, the sample is excited with a short, tunable pump pulse, followed at a precisely controllable time delay by a broadband (490–800 or 800–1175 nm) probe pulse. The transmission spectrum of the probe is measured in the presence and absence of the pump pulse, enabling direct determination of the absorption spectrum of any excited states. Increased transmission of the probe (i.e., ΔT/T > 0) can be attributed to bleaching of the ground-state absorption or stimulated emission from excited singlet states. Reduction in probe transmission (ΔT/T < 0) gives the unique absorption signature of the excited state. In practice, these features tend to strongly overlap, making identification of a distinct excited state difficult unless there is a clear change in the spectral shape over time or a change in the decay kinetics across the detection bandwidth. Because this technique detects excited-state absorption, it is particularly well suited to materials and states that do not strongly emit, such as TDPP-V-TDPP.

In Figure 2, we present TA spectra (a,c) and decay kinetics (b,d) of TDPP-V-TDPP in chlorobenzene solution. Under band-edge excitation (Figure 2a,b), we observe behavior reminiscent of polyenes. The dominant ΔT/T > 0 bands closely agree with the absorption spectrum (gray dashed), enabling assignment to ground-state bleach (GBS). Due to the absence of any additional positive features that could be attributed to stimulated emission, we consider the primary species observed (colored traces) to be an optically “dark” state. On the very earliest time scales (thin black line), we detect additional spectral signatures such as a broadened photoinduced absorption (PIA) in the NIR, with distinct absorption of >1075 nm, and a crossing point between positive and negative TA signals that is shifted ∼10 nm to the red. The presence of this shifted crossing point is a potential sign of stimulated emission of photons from the bright initially excited state, characterized by an extremely short lifetime. These features are assigned as signatures of the initial singlet excited state, which converts on ultrafast time scales to a short-lived dark state, analogous to the rapid 1B → 2A electronic conversion well-known in the polyenes. The time scale of this process is within our instrument resolution and should be <200 fs; the existence of such rapid internal conversion is
consistent with the absence of detectable fluorescence. The lifetime of the second state is well described with biexponential decay, with the primary decay attributed to the 3.6 ps component. There is no evidence of changing spectral shape over the lifetime of this state, suggesting that the two time constants do not reflect internal conversion between different excited states.

Similar basic features are evident following excitation with excess pump photon energy, as at 540 nm (Figure 2c,d). The same signatures of initial (thin black) and longer-lived (blue)
Figure 4. A series of control measurements were performed to identify the source of the ultrafast dynamics in TDPP-V-TDPP. (a) Chemical oxidation and triplet sensitization spectra reveal no similarity to the observed TA spectra following direct excitation nor to the difference between band-edge and excess-energy excitation. There is thus no evidence for SEF or ultrafast charge formation. Full sensitization data are presented in Figure S9, SI. (b) UV−vis absorption spectra of TDPP-V-TDPP in a high-viscosity solution and rigid polymer matrix. (c) TA spectra in concentrated PS solution are essentially indistinguishable from those obtained in chlorobenzene solutions, following both band-edge (dark red, 700 nm) and excess-energy (blue, 540 nm) excitation. (d) TA spectra in a PS matrix reveal the same qualitative differences between excitation at 540 (blue) and 700 nm (dark red). (e) Integrated decay kinetics at the GSB peak reveal the same behavior in a viscous solution (thick) and PS matrix (thin) as that previously observed in chlorobenzene solutions, a slight enhancement of the lifetime following excess-energy excitation (blue), with the decay dominated by the same 3.6 and 10 ps time constants.

states can be observed, with only a slight difference in the shape of the GSB. However, on the longest time scales (100 ps and beyond), we can distinguish a faint GSB band at 600 nm and corresponding PIA at 700−800 nm. These are signatures of a new longer-lived state. We find that an additional exponential component (126 ps) is needed to describe the decay dynamics, and a very small fraction of the population persists beyond the 1.5 ns range of our measurements. Such effects could be consistent with optically activated singlet fission, as has been observed in other polyenes, or the activation of other decay channels through excess energy excitation. To clearly establish the nature of this behavior, we systematically measured the pump wavelength dependence.

As shown in Figure 3, we detect qualitatively similar spectral effects of increased pump photon energy at both (a) early and (b) long pump−probe delays. The primary effects are an increase in the relative weight of the PIA in the NIR and a change in the vibronic peak ratio in the GSB, with a progressive increase and broadening of the 0−1 peak.

These changes are particularly pronounced on longer time scales as increased pump photon energy also increases the excited-state lifetime. In addition to this subtle but systematic effect in the decay kinetics (Figure 3c), we find a sharp change in behavior for the two highest-energy pump wavelengths (500 and 515 nm). At these wavelengths, a substantial amount of the longer-lived excited state is generated. We find no evidence, however, for assignment to optically activated SEF as the triplet spectrum obtained through an established sensitization method using N-methylfulleropyrroolidine as a triplet donor exhibits markedly different PIA (Figure 4a). Likewise, it is clear that this longer-lived species is not a CT state as there is a poor match to the spectrum from chemical doping (Figure 4a). The match of all spectra at the short-wavelength edge of the excited-state absorption is intriguing. A similar shoulder at ~700−800 nm is seen under all direct excitation conditions, as well as in the sensitized triplet spectrum and following chemical oxidation, albeit with much lower intensity relative to the GSB. While the onset of this band is largely governed by the position of the ground-state absorption, the similarity of the shoulder suggests a more fundamental relationship between the origin of the bands. We propose that the reason lies in the underlying CT character of excitations in DPP materials in general. This shoulder is evident in polaronic states (chemical reduction) and may be taken as a signature of CT character. Mixing of S1 and T1 states with CT configurations may then endow the PIA with such signatures, analogous to the singlet−triplet mixed features reported in bound TT states in TIPS-tetracene solutions.

Comparison of the long-lived spectra following excitation at <600 nm (Figures S4 and S5, SI) with published data reveals a striking similarity to the bright singlet state in a monomer TDPP derivative in solution. Indeed, we find that the largest effects in the pump wavelength dependence can all be accounted for as selective excitation at high pump photon energies of a subpopulation of monomer-like molecules. As discussed above in the context of the absorption spectrum, we expect that these molecules are not chemical monomers but rather conformers in which the conjugation between TDPP units is ineffective. We find that selectivity of different degrees of torsional disorder can explain the more subtle, systematic changes in TA spectra and kinetics observed across the entire pump wavelength series. Lower pump photon energies selectively excite molecules with more extended conjugation and presumably more planarized structure, as reflected in the 0−0/0−1 vibronic ratio observed in the GSB (a direct measure of the “type” of molecules excited). Molecules in such geometry are likely closer to the equilibrium excited-state geometry and...
thus have a greater radiative rate and need less time for vibrational relaxation, resulting in a slightly shorter excited-state lifetime. The pump wavelength dependence does not explain the surprisingly short primary excited-state lifetime, which is well described by the same 3.6 and 10 ps time constants in all cases (discounting the effects of the monomer-like species). As one of the most likely decay channels for such a covalent dimer is nonradiative decay via torsional relaxation about the central bond, we investigated the effects of geometric constraint in high-viscosity PS solution (95 mg/mL in chlorobenzene) and a rigid PS matrix (Figure 4b–e).

In PS solution, we observe the same absorption line shape as that in dilute chlorobenzene, while the spin-cast PS matrix exhibits pronounced broadening and a red shift. These changes could suggest the presence of intermolecular interactions despite the relatively low TDPP-V-TDPP loading (50 μg/mL). However, there is no corresponding change in the lifetime of the PS matrix, resulting in some molecules with significantly enhanced conjugation length. In viscous solution (Figure 4c), we observe the same spectral shapes and same pump wavelength dependence identified previously: an excitation-dependent vibronic structure in the GSB, no sign of stimulated emission and a PIA toward the NIR. While the TA spectra of the polymer matrix (Figure 4d) appear very different in shape, comparison with the absorption spectrum confirms that the entire spectral shape is consistent with GSB. There are no new features corresponding to the longer-lived excited states or a change in decay pathway due to conformational restriction. In fact, the overall behavior appears to be entirely consistent with measurements in “free” solution; as previously, excitation with higher-energy photons results in an enhancement of the GSB on the “blue” side and a reduction on the “red” side, pointing to the same selectivity of torsional conformers.

In no case do we observe a significant change in the excited-state lifetime (Figure 4e). The decay in PS solution and even PS matrix is almost indistinguishable from that in chlorobenzene solution, ruling out fast large-scale conformational change as the primary decay pathway. We thus consider that the photophysics observed here are most consistent with purely electronic dynamics, following the photylene model in which ultrafast internal conversion from the initial bright state forms a dark state of A₂ symmetry. This state in turn exhibits very strong coupling to the ground-state vibrational manifold and rapidly decays through multiphonon emission.

Our chemical strategy for imbuing polyene character in a donor–acceptor-based covalent dimer appears to be successful but results in no singlet fission. We expect that the primary reason for this behavior lies in the energy balance. Dimerization into TDPP-V-TDPP results in a significant stabilization of the singlet energy, by ~400 meV. It is evident that there is no comparable reduction in the triplet energy, which is estimated at 1.1 eV in the monomer; the net result of this would be that triplet pair formation is energetically inaccessible. Instead, inclusion of the V linker creates the possibility of a dark, lower-energy state analogous to the A₂ state analogous to polyynes, which decays rapidly and nonradiatively back to the ground state. This surprising effect reveals some of the possible pitfalls of small structural changes to design SEF dimers. However, the results also demonstrate that combining polyene character with CT chromophores can be straightforwardly achieved, and the features observed in the PIA spectra suggest that the CT character is maintained in the excited states. The remaining challenge, then, is to modulate the exchange energy to make SEF energetically accessible without too significantly perturbing the beneficial CT mixing. Destabilization of the S₁ state should reduce the of S₁ and CT states while simultaneously increasing the S₁−T₁ gap. This can be modulated by incorporating a covalent linker to control the extent of HOMO–LUMO spatial overlap in the chromophore. Rational choice or design of covalent linkers such as phenyls, biphenyls, or their substituted analogues can increase the energy of the S₁ state by steric or hyperconjugation effects. End-capping the oligomer with strong electron-withdrawing groups such as cyano and so forth will increase the proportion of quinoidal forms and form biradicals that stabilize the triplet state. Such synthetic strategies are currently being implemented in our laboratory, and spectroscopic studies are underway.

ASSOCIATED CONTENT

* Supporting Information
The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.jpcl.6b02919.

Data availability: The data underlying this publication are available at http://10.15131/shef.data.4640731.

Materials and methods, Synthetic procedures, ¹H NMR, ¹³C NMR, cyclic voltammograms, UV–vis after doping, full transient absorption data and fitting, and triplet sensitization (Figures S1–S9) (PDF)

AUTHOR INFORMATION

* Corresponding Authors
 E-mail: satish@sscii.iisc.ernet.in (S.P.).
 E-mail: a.musser@sheffield.ac.uk (A.J.M.).

ORCID

Andrew J. Musser: 0000-0002-4600-6606

Author Contributions

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We thank the NMR Research Centre, Indian Institute of Science, Bangalore for the NMR facility. S.P., R.H.F., and A.J.M. thank UKIERI, British Council for a research grant. T.M. thanks IISc for a Senior Research Fellowship. This work was supported by the Engineering and Physical Sciences Research Council, U.K. (Grant Numbers EP/M005143/1, EP/G060738/1, and EP/M025330/1: “Hybrid Polaritonics”).

REFERENCES

(51) Sun, B.; Hong, W.; Yan, Z.; Aziz, H.; Li, Y. Record High Electron Mobility of 6.3 cm2V−1s−1 Achieved for Polymer Semiconductors Using a New Building Block. Adv. Mater. 2014, 26, 2636−2642.

