Primary Aldosteronism

Physiological and Pathological Roles in Human Adrenal of the Glomeruli-Defining Matrix Protein NPNT (Nephronectin)

Ada Ee Der Teo, Sumedha Garg, Timothy Isaac Johnson, Wanfeng Zhao, Junhua Zhou, Celso Enrique Gomez-Sanchez, Mark Gurnell, Morris Jonathan Brown

Abstract—Primary aldosteronism is a common cause of hypertension, which becomes refractory if undiagnosed, but potentially curable when caused by an aldosterone-producing adenoma (APA). The discovery of somatic mutations and differences in clinical presentations led to recognition of small but common zona glomerulosa (ZG)–like adenomas, distinct from classical large zona fasciculata–like adenomas. The inverse correlation between APA size and aldosterone synthase expression prompted us to undertake a systematic study of genotype–phenotype relationships. After a microarray comparing tumor subtypes, in which NPNT (nephronectin) was the most highly (>12-fold) upregulated gene in ZG-like APAs, we aimed to determine its role in physiological and pathological aldosterone production. NPNT was identified by immunohistochemistry as a secreted matrix protein expressed exclusively around aldosterone-producing glomeruli in normal adrenal ZG and in aldosterone-dense ZG-like APAs; the highest expression was in ZG-like APAs with gain-of-function CTNNB1 mutations, whose removal cured hypertension in our patients. NPNT was absent from normal zona fasciculata, zona fasciculata–like APAs, and ZG adjacent to an APA. NPNT production was regulated by canonical Wnt pathway, and NPNT overexpression or silencing increased or reduced aldosterone, respectively. NPNT was proadhesive in primary adrenal and APA cells but antiadhesive and antiapoptotic in immortalized adrenocortical cells. The discovery of NPNT in the adrenal helped recognition of a common subtype of APAs and a pathway by which Wnt regulates aldosterone production. We propose that this arises through NPNT’s binding to cell-surface integrins, stimulating cell–cell contact within glomeruli, which define ZG. Therefore, NPNT or its cognate integrin could present a novel therapeutic target. (Hypertension. 2017;69:1207-1216. DOI: 10.1161/HYPER TENSIONAHA.117.09156.)

Online Data Supplement

Key Words: adenoma ■ aldosterone ■ extracellular matrix ■ hypertension ■ Wnt signaling pathway

Five percent to 13% of all hypertension and 20% of resistant hypertension can be attributed to primary aldosteronism, of which unilateral aldosterone-producing adenoma (APA) is the most common curable cause.1,2 Early detection of APA is important because of significant increases in cardiovascular morbidity and mortality: congestive cardiac failure and ischemic heart disease are 2 to 5 times more prevalent,3 with an increase in 14-year mortality in these patients compared with matched patients with essential hypertension.4 Whether this additional risk is due directly to aldosterone excess, independent of high blood pressure, or reflects greater average duration of hypertension before diagnosis, clinical outcome is considered to benefit from prompt recognition and removal of APAs.5

Over the past decade, new molecular stratifications have enabled the recognition of a group of smaller zona glomerulosa (ZG)–like APAs.6–8 Compared with the classical large lipid-laden zona fasciculata (ZF)–like APA with mutations in inward rectifier potassium channel 4 (KCNJ5),6 not only is this ZG-like subtype of APA histologically and biochemically different, it also harbors hallmark somatic mutations in genes encoding a subunit of the voltage-gated calcium channel (CACNA1D),8 Na⁺/K⁺-ATPase (ATP1A1),8,9 Ca²⁺-ATPase (ATP2B3),9 or the Wnt pathway mediator β-catenin (CTNNB1).10 Biochemically, these smaller ZG-like APAs have a higher capacity for aldosterone production; semiquantitative analysis of immunohistochemical staining has revealed that CYP11B2 score is inversely correlated with tumor size and
In addition, ZG-like APAs are more responsive to angiotensin II, with higher levels of type 1 angiotensin II receptor mRNA. However, because of their small size, they are readily overlooked on cross-sectional imaging because computed tomography is unable to reliably detect adrenal tumors <5 to 6 mm. We hypothesized that specific gene products are responsible for the increased hormone production in these aldosterone-dense APAs and can potentially be used as a diagnostic biomarker when imaging proves inconclusive.

In this article led us to hypothesize a key role in bringing ZG cells together to form functional units for aldosterone production through intercellular communication. This is supported by the observation, in rat ZG cells, of numerous tight junctions likely to be important in the establishment of electrical coupling, and the more recent discovery, only in intact adrenal slices, of oscillating membrane potentials regulating aldosterone secretion.

In this study, we have found that NPNT is directly involved in the physiological secretion of aldosterone in the adrenal. By using both cell lines and primary human adrenal cells, we have also uncovered a previously unknown role of NPNT in adhesion and cell survival.

Methods

Human Subjects

Human adrenal tissues from patients who underwent adrenalectomy after being diagnosed with unilateral APA or pheochromocytoma were obtained from Cambridge University Hospitals’ Human Research Tissue Bank postsurgery at Addenbrooke’s Hospital, Cambridge, United Kingdom. All tissues were obtained with approval from the Tissue Bank postsurgery at Addenbrooke’s Hospital, Cambridge, United Kingdom. All tissues were obtained with approval from the United Kingdom. All tissues were obtained with approval from the United Kingdom.

Cell Culture

Human adrenocortical carcinoma H295R cells were obtained from the American Type Culture Collection (ATCC CRL-1573) and grown in DMEM supplemented with 10% FBS, 100 U penicillin, 0.1 mg/mL streptomycin, 0.4 mmol/L l-glutamine, and insulin-transferrin-selenium at 37°C in 5% CO₂. Human embryonic kidney cells were obtained from the American Type Culture Collection (ATCC CRL-11082) and grown in DMEM supplemented with 10% FBS.

Gene Overexpression and Silencing

Gene overexpression was performed using lipid-mediated cell transfection lipofectamine 3000 (Thermo Fisher), whereas gene silencing was achieved using DharmaFECT 1 lipid transfection reagent (Dharmacon), both according to manufacturer’s instructions. Cells were harvested for analysis of mRNA and protein expression after 48 hours. Further details are provided in the online-only Data Supplement.

RNA Extraction, Reverse Transcription, and Quantitative Real-Time Polymerase Chain Reaction

Fifty to 100 mg of tissue or 1×10⁶ cells were used for each RNA extraction. Further details are provided in the online-only Data Supplement. Quantitative real-time polymerase chain reaction was performed using TaqMan ABI probes (Applied Biosystems) for NPNT (Hs01568126), ITGB1 (Hs00559595), and BCL2 (Hs00608023). CYP11B2 expression was quantified using custom-made TaqMan probes (Invitrogen) previously validated for specificity.

Immunohistochemistry

Immunohistochemistry was performed using the peroxidase–antiperoxidase method on fresh frozen human tissue. In cases where fresh frozen tissue was unavailable, immunohistochemistry was performed on formalin-fixed, paraffin-embedded adrenal sections (4 μm) using an automated immunostainer with cover tile technology (Bond-III system; Leica Biosystems). NPNT antibody (HPA003711, Sigma; 1:50 dilution) and CYP11B2 antibody (custom mouse antihuman antibody from Dr Celso E. Gomez-Sanchez) were used as the primary antibodies. Further details are provided in the online-only Data Supplement.

Aldosterone Measurement

Supernatant from cultured cells was used for aldosterone quantification using the homogenous time resolved fluorescence assay (Cisbio assays) based on the fluorescence resonance energy transfer technology, according to manufacturer’s instructions. The final fluorescence readout was conducted using a Pherastar FS microplate reader (BMG Labtech). Aldosterone concentrations were then normalized to total cell protein, quantified by the bicinchoninic acid protein assay (Pierce Biotechnology).

Firefly/Renilla Luciferase Assay

To measure the activity of Wnt transcriptional complex T-cell factor/lymphoid enhancer factor (TCF/LEF), firefly luciferase and renilla luciferase activities were measured 48 hours after cotransfection with the Dual-Glo Luciferase Assay System (Promega) and normalized to the empty pCMV6 vector as described in the manufacturer’s protocol. Canonical Wnt signaling was quantified using the Cignal TCF/LEF reporter (luc) kit (SA Biosciences).

Cell Confluency and Cytotoxicity Assay

To measure changes in H295R cell confluency post-NPNT silencing, time-lapsed images were obtained using an Incucyte system (Essen BioScience). To differentiate changes in cell proliferation from cytotoxicity, cell-impermeant cyanine dimer nucleic acid stain YOYO-1 (Y3601; Life Technologies) was used. Further details are provided in the online-only Data Supplement.

Annexin V–Propidium Iodide Dual Stain

To assess apoptosis over time, cells were double labeled with annexin V–APC (550474; BD Pharmingen) and propidium iodide (Sigma). After silencing, adherent cells were trypsinized, added to any detached cells in the supernatant as previously described, stained with annexin V–propidium iodide, and analyzed with the FACSCanto II flow cytometer (Becton-Dickinson). Further details are provided in the online-only Data Supplement.

Xcelligence Cell Impedance Measurement and Hoechst Stain Assay

To evaluate changes in adhesion in response to NPNT, wells of an E-Plate 16 (ACEA Biosciences) were precoated with PBS, or 10 μg/mL of BSA, NPNT, or laminin for 1 hour at 37°C as previously described. Cell adhesion was also measured by Hoechst.
dye quantification of cells remaining on precoated wells post-wash. Further details are provided in the online-only Data Supplement.

Proteins and Chemicals
Proteins used in this study were BSA (A9576; Sigma), NPNT (4298-NP-050; R&D systems), fibronectin (FC010; Millipore), and laminin (AG56P; Millipore). The selective porcupine inhibitor, LGK-974 (1 μmol/L; Selleck Chemicals), as used previously, was used to analyze the effect of blocking all Wnt secretion.

Statistical Analysis
Results are expressed as mean values with SEM and compared using the 2-sided Student t test or by 1-way ANOVA followed by Tukey post hoc test. Significance level of P<0.05 was considered to indicate statistical significance. Statistical analysis was performed using Graphpad Prism (Graphpad Software).

Results

NPNT Is Selectively Expressed in the Subtype of Smaller ZG-Like APAs and Able to Distinguish Between the 2 APA Classes
Microarray analysis revealed NPNT to be 12.2-fold upregulated in the smaller ZG-like APAs with higher aldosterone synthetic capacity (Figure 1A). Validation with quantitative real-time polymerase chain reaction revealed a 9-fold difference; both ZG-like APAs and adrenocortical carcinomas (ACCs) had significantly elevated levels of NPNT compared with the ZF-like APAs (Figure 1B). The 2 APAs with the highest levels of NPNT harbored gain-of-function mutations in the Wnt gene CTNNB1.

In a further microarray comparing the ZG and ZF of 20 human adrenals isolated via laser capture microdissection, NPNT was on average 2-fold more highly expressed in the outer, aldosterone-producing zone of the ZG (Figure 1C). This selective expression was evident in protein immunohistochemistry, in which NPNT staining is localized exclusively to the ZG (Figure 1D; Figure S1). When mounted on the same slide, NPNT also makes it easy to differentiate between the 2 APA subtypes as there is negligible staining in ZF-like APAs (Figure 1E; Figure S2). In all cases, NPNT expression appeared extracellular and strikingly periglomerular, surrounding clusters of cells.

NPNT Expression Corresponds to Aldosterone Synthase CYP11B2 Expression
Although the ZG is the zone of physiological aldosterone production, CYP11B2 staining is patchy. The overall analysis of 20 normal adrenal and APA samples revealed a significant positive correlation between NPNT and CYP11B2 encoding aldosterone synthase (r=0.82; P<0.0001; Figure 2A). At the protein level, areas of CYP11B2 expression also corresponded consistently with NPNT staining (Figure 2B; Figure S3). We also compared the ZG expression of genes in adrenal adjacent to a pheochromocytoma versus that next to an APA (ie, in a state of aldosterone excess). NPNT was 3.6-fold upregulated in ZG, compared with ZF, when adjacent to a pheochromocytoma, but diminished or absent when adjacent to an APA (Figure 2C). The same observations were made at the protein level (Figure 2D). Similarly, CYP11B2 was 2-fold upregulated

Figure 1. NPNT (nephronectin) is selectively expressed in normal adrenal zona glomerulosa (ZG), ZG-like aldosterone-producing adenomas (APAs), and adrenocortical carcinomas (ACCs). A, Microarray analysis of NPNT, comparing 8 zona fasciculata (ZF)-like adenomas with 5 ZG-like adenomas. B, Quantitative real-time polymerase chain reaction of NPNT, on mRNA extracted from 11 ZF-like APAs and 10 ZG-like APAs differentiated based on their genotypic mutations, as well as 6 ACCs. C, Microarray analysis of NPNT, comparing 20 paired ZF and ZG (each pair from the same patient), isolated via laser capture microdissection. D, Representative immunohistochemistry of NPNT showing selective extracellular localization in the ZG of adrenal adjacent to a pheochromocytoma (4× magnification; inset: 20× magnification). E, Representative immunohistochemistry of NPNT comparing staining between ZF-like APA and ZG-like APA mounted on the same slide (4× magnification). In (A)–(C), bars represent mean expression per group±SEM. Statistical analyses were conducted by Student t test (A and C) or 1-way ANOVA followed by Tukey post hoc test (B). *P<0.05; **P<0.005; ***P<0.0005. M indicates medulla; and NS, not significant.
in ZG next to a pheochromocytoma versus next to an APA and 7.8-fold higher on quantitative real-time polymerase chain reaction.

NPNT Drives Aldosterone Production

NPNT overexpression in H295R cells increased aldosterone synthesis compared with control (Figure 3A). Similarly, silencing NPNT by >75% reduced hormone production (Figure 3B). NPNT has been previously found to bind strongly and specifically to integrin receptor α8β1,16 with ≈100-fold higher affinity compared with other RGD motif-containing proteins such as fibronectin or vitronectin.27 In our study, silencing ITGB1, encoding integrin subunit β1, by ≈80%, caused a similar reduction in aldosterone production comparable to silencing of NPNT (Figure 3C). This receptor silencing was accompanied by a 3.8-fold increase in NPNT mRNA expression (P=0.01).

NPNT Is a Wnt Target Gene and Produces Aldosterone via This Pathway

NPNT was found to be a Wnt/β-catenin target gene in skin, being induced by Wnt activation in the bulge and hair germ cells.17 We investigated the influence of Wnt on NPNT mRNA expression in H295R cells, using plasmids modulating Wnt signaling. To activate the Wnt canonical pathway, ΔN47 β-catenin, a strong constitutive inducer encoding an N-terminally truncated form of β-catenin resistant to proteolysis,26 was expressed. This led to a near doubling of NPNT expression levels. Conversely, to inhibit β-catenin–dependent gene transcription, we expressed ΔN-TCF4, a Wnt constitutive repressor, because of an N-terminally truncated, dominant-negative TCF4 protein lacking the β-catenin interaction domain.29 Wnt repression caused NPNT mRNA levels to halve (Figure 4A). To investigate the potential for negative feedback of NPNT on its own release, TCF/LEF activity was measured after changes in NPNT expression. Overexpressing NPNT caused a reduction in Wnt transcriptional activity, whereas silencing NPNT had the opposite effect (Figure 4B).

In cases where NPNT protein was added to the cell medium, on addition of Wnt inhibitor LGK-974, which blocks Wnt pathways upstream by binding the Wnt chaperone, porcupine, aldosterone production was nearly diminished by half compared with the controls (Figure 4C).

NPNT Is Proadhesive in Normal Adrenal and APA Cells

NPNT promotes cell adhesion in kidney mesangial cells10 and cardiomyocytes.28 Cell impedance was recorded as a measure of cell adhesion in wells coated with PBS, negative control BSA, NPNT, or positive control laminin. NPNT was proadhesive in human embryonic kidney cells, normal primary adrenal cells, and cells cultured from ZF-like and ZG-like APAs.
Teo et al. Role of Nephrinectin in Human Adrenal

These findings are consistent with the hypothesized physiological role of NPNT in adrenal cell clustering for aldosterone production.

Figure 3. NPNT (nephrinectin) drives aldosterone production, likely through receptor ITGB1. A, NPNT overexpression increases protein-normalized aldosterone production, compared with vector control (n=4). B, NPNT silencing decreases protein-normalized aldosterone production, compared with nontargeting control (n=4). C, ITGB1 silencing decreases protein-normalized aldosterone production, compared with nontargeting control (n=4). Bars represent mean expression per group±SEM. Statistical analyses were conducted by Student t test. *P<0.05; **P<0.005; ***P<0.0005.

NPNT Protects H295R Cells From Apoptosis

Discussion

The ZG of human adrenal is unusual among endocrine organs in that few cells produce its signature hormone, aldosterone, and yet there is a high incidence of APA occurrence, which is a common curable cause of hypertension. The ZG has likely evolved primarily to protect mammals from the scarcity of salt that has been the prevailing natural state, including for most of human history. It clearly also has the ability to adapt to chronic salt excess, to which the sparsity of aldosterone synthase is usually attributed,25 but perhaps imperfectly, and hence the frequent somatic mutations permitted by high rates of ZG cell migration and renewal. Our discovery of NPNT, and its putative roles, in the adrenal may help to explain the link between physiology and pathology.

We first discovered NPNT in the adrenal as the most upregulated gene in the smaller ZG-like APAs with higher aldosterone synthetic capacity, harboring mutations of CACNA1D or ATP1A1, when compared with those with a ZF-like phenotype and mutations of KCNJ5. We also noted the exquisite ZG selectivity of its distribution in normal adrenal cortex.8 These original findings have been reproduced by Åkerström et al.33 Interest in finding a mechanistic link between NPNT expression and blood pressure control has also been raised by a large-scale genome-wide association study in which a common single-nucleotide polymorphism in NPNT was associated with blood pressure regulation.34

The investigations that we now report show that NPNT is not just a marker of ZG cells but plays an essential role in normal adrenal physiology as a periglomerular ECM protein. Coupled with its steroidogenic and proadhesive properties,
this is consistent with a physiological role in adrenal cell clustering to form functional aldosterone-producing units in the ZG. Our work provides evidence that a matrix protein can play a role in driving hormone synthesis and, together with the regulation of ZG cell behavior, helps us understand why the ZG may be structured as it is and why tumors that resemble ZG are able to have a higher density of aldosterone production.

The ZG-selective staining suggests that the ECM of which NPNT is a major constituent supports zone-specific cellular behavior. In 2012, Hu et al.20 made the crucial observation that isolated mouse ZG cells are too hyperpolarized to permit calcium entry; however, ZG cells in an intact adrenal slice generate spontaneous membrane oscillations sufficient for recurrent Ca\(^{2+}\) signals, whose periodicity could sustain aldosterone production. Therefore, these findings suggest that the aldosterone-producing ability of adrenal cells requires them to coexist in whole glomeruli, and this process could be regulated by NPNT.

Although the ZG is the zone of physiological aldosterone production, this is not performed by all cells in the area, as evidenced by previous reports of patchy CYP11B2 staining.22 But, the mechanism underlying why some ZG cells express CYP11B2, whereas others do not, is yet to be determined. Together with the consistent correlation between NPNT and CYP11B2 staining, and evidence showing NPNT increases aldosterone production, we propose that the role of this matrix protein is to cluster ZG cells together to form a functional unit as indicated by its periglomerular staining. This is supported by the recent proposal that Ca\(^{2+}\) and Ca\(^{2+}\)-activated K\(^+\) channels in ZG cells, when grouped in rosette structures, act as a pacemaker generating the oscillations that regulate aldosterone production.35 On NPNT silencing, although the cell-corrected fall in aldosterone appears relatively small (Figure 3B), the absolute change consequent on reduction in both secretion and cell number is more substantial and likely to have considerable impact in intact ZG.

Our results also showed that NPNT promotes adhesion in normal adrenal cells and in both subtypes of APAs. This is consistent with previous reports of NPNT expression in hepatocytes, indicating high amounts of connexin-43 along their intercellular junctions, indicating
well-established intercellular communication, and couple electrically with each other resulting in synchronous beating.31

The link between increased cell adhesion and aldosterone production lies within the Wnt signaling system. Intracellular Wnt signaling diversifies into several major pathways, including (1) the β-catenin/TCF–LEF pathway (canonical Wnt), which activates nuclear target genes; (2) the planar cell polarity pathway; and (3) the Wnt/Ca²⁺ pathway, with the last 2 being classified as the noncanonical Wnt pathways.38 Although NPNT expression is itself under control of the canonical pathway, the noncanonical Wnt/planar cell polarity pathway is likely to be involved in mediating NPNT’s control of cell–cell adhesion and the localized assembly of ECM (Figure 4C).39

It has been shown that an aberrant planar cell polarity pathway leads to disruption of integrin β1–mediated interactions and, in turn, disorganization of the ECM.40 In addition, in line with the proposed role of NPNT, integrin β1 expression was reported to be crucial for adhesion of endothelial cells, with its absence causing focal adhesions to become short and disorganized.41

Although our experiments concentrated on the physiological roles of NPNT in normal adrenal and benign APAs, its antiadhesive and antiapoptotic effect on H295R cells have drawn our attention to a potential role in malignancy. ACCs, although rare, are much more devastating than APAs. NPNT has been shown to confer apoptosis resistance in H295R cells by modulating the expression of prosurvival protein BCL2, whose role is to block caspase activation.32 This detachment of cells from the ECM often results in apoptotic cell death known as anoikis.42 Excess secretion of ECM components suppresses the physiological induction of anoikis in maintaining normal tissue architecture43 and could explain the high levels of NPNT expression in adrenocortical carcinoma and immortalized H295R cells (Figure 1B).

However, benign APAs are much commoner than ACCs, and the main translational potential of NPNT may lie in its use as a diagnostic marker in patients with subcentimeter APAs, whose computed tomographic scan and adrenal vein sampling results are inconclusive. Recent publications have reported only 50% concordance between adrenal vein sampling and computed tomography, with >10% of patients aged >50 years lateralizing to opposite sides.44,45 Therefore, in vivo measurement of adrenal NPNT could be a more accurate predictor of APA presence and even genotype, as the secreted protein may be measurable in adrenal vein samples routinely collected for unilateral APA diagnoses.

A limitation of the work to date is that the H295R cell line is not a perfect model for native ZG cells or ZG-like APAs, even though H295R cells have proven invaluable in studying mechanisms involved in the physiological regulation of aldosterone production.46 Therefore, in the adhesion studies, primary adrenal cell types were also used. In addition, the H295R cell line is already known to harbor a CTNNB1 mutation47 with high levels of NPNT; so, whenever applicable, silencing NPNT was prioritized. Furthermore, our work on malignant cells in this study has been performed only on

Figure 5. NPNT (nephronectin) is proadhesive in normal adrenal and aldosterone-producing adenoma (APA) cells, but antiadhesive in H295R. A, NPNT is proadhesive in (i) HEK, (ii) normal primary adrenal, (iii) zona fasciculata (ZF)–like APA, and (iv) zona glomerulosa (ZG)–like APA, but antiadhesive in (v) H295R, as demonstrated by wells precoated with PBS, BSA, NPNT, or laminin, and measured by Xcelligence cell impedance as cell index over time (4 h for cell lines, 10 h for primary adrenal cells; n=2 for ZF-like APA and ZG-like APA, n=4 for the rest). B, NPNT is antiadhesive in H295R cells, as confirmed by Hoechst fluorescent stain assay measuring % maximum fluorescence as a representation of number of cells adhered to well with increasing concentrations of BSA, NPNT, and laminin precoating (n=3 for each protein at each concentration). Bars represent mean values per group±SEM.
Hypertension is a significant public health concern, affecting millions of people worldwide. The management of hypertension involves both lifestyle modifications and the use of pharmacological treatments. One such pharmacological approach is the use of angiotensin-converting enzyme (ACE) inhibitors, which have been shown to be effective in reducing blood pressure and improving cardiovascular outcomes.

ACE inhibitors work by blocking the conversion of angiotensin I to angiotensin II, thereby reducing the production of aldosterone. This results in decreased sodium and water retention, ultimately leading to a decrease in blood pressure. The mechanism of action of ACE inhibitors is well-established and has been extensively studied.

In recent years, there has been a growing interest in the use of angiotensin receptor blockers (ARBs) as an alternative to ACE inhibitors. ARBs are selective blockers of the angiotensin II receptor, which is the primary target of ACE inhibitors. Unlike ACE inhibitors, ARBs do not affect the breakdown of bradykinin, a substance that has vasodilatory effects. This difference in mechanism is thought to contribute to the distinct therapeutic profiles of ACE inhibitors and ARBs.

While ACE inhibitors and ARBs are effective treatments for hypertension, they are not without side effects. ACE inhibitors can cause cough, hyperkalemia, and angioedema, while ARBs can cause cough, hyperkalemia, and renal insufficiency. Therefore, it is important to consider individual patient characteristics when selecting a treatment for hypertension.

In conclusion, the use of ACE inhibitors and ARBs in the management of hypertension is well-supported by evidence. However, the optimal treatment approach may vary depending on the patient's individual needs and characteristics. Further research is needed to continue improving our understanding of the mechanisms underlying hypertension and to develop new, more effective treatments for this common disease.
Acknowledgments
We thank the Cambridge NIHR BRC Cell Phenotyping Hub, in particular, Anna Petrunkina Harrison and Simon McCallum and for their advice and support in flow cytometry.

Sources of Funding
This research was funded by grants from the National Institute for Health Research (NIHR) Senior Investigator award (NF-SL-0512-10052) to M.J. Brown. A.E.D. Teo is supported by the Agency for Science, Technology and Research (A*STAR) Singapore. This study is also supported by Wellcome Trust Translational Medicine and Therapeutics award to M.J. Brown (085686/Z/08/A). S. Garg is supported by the British Heart Foundation (FS/14/75/31134). J. Zhou is supported by the Cambridge Overseas Trust. Additional support was provided by the NIHR Cambridge Biomedical Research Centre (Cardiovascular and Metabolic, and Human Tissue Bank).

Disclosures
None.

References
Novelty and Significance

What Is New?

• NPNT (nephronectin), selectively expressed in the zona glomerulosa of human adrenal cortex and of aldosterone-producing adenomas arising from this, is shown to have roles in steroidogenesis, cell adhesion, and protection of adrenocortical cells from apoptosis.

What Is Relevant?

• Aldosterone-producing adenomas are greatly underdiagnosed, one reason being the small size of those appearing to arise in the zona glomerulosa of adrenal cortex. Recognition of their separate identity and of the role of NPNT in steroidogenesis will encourage clinicians to give greater consideration to small adenomas.

Summary

NPNT is an exquisitely selective, Wnt-driven zona glomerulosa protein, which seems to play an important role in steroidogenesis, by promoting adhesion of ZG cells and preventing apoptosis.
Physiological and Pathological Roles in Human Adrenal of the Glomeruli-Defining Matrix Protein NPNT (Nephronectin)
Ada Ee Der Teo, Sumedha Garg, Timothy Isaac Johnson, Wanfeng Zhao, Junhua Zhou, Celso Enrique Gomez-Sanchez, Mark Gurnell and Morris Jonathan Brown

Hypertension. 2017;69:1207-1216; originally published online April 17, 2017; doi: 10.1161/HYPERTENSIONAHA.117.09156

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://hyper.ahajournals.org/content/69/6/1207
Free via Open Access

Data Supplement (unedited) at:
http://hyper.ahajournals.org/content/suppl/2017/04/17/HYPERTENSIONAHA.117.09156.DC1

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Hypertension can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Hypertension is online at:
http://hyper.ahajournals.org//subscriptions/
Data Supplement for

PHYSIOLOGICAL AND PATHOLOGICAL ROLES IN HUMAN ADRENAL OF THE GLOMERULI-DEFINING MATRIX PROTEIN NEPHRONECTIN (NPNT)

Ada Ee Der Teo¹, Sumedha Garg¹, Timothy Isaac Johnson², Wanfeng Zhao³,
Junhua Zhou¹,⁴, Celso Enrique Gomez-Sanchez⁵, Mark Gurnell⁶, Morris Jonathan Brown¹,⁴*

¹Clinical Pharmacology Unit, Centre for Clinical Investigation, Addenbrooke’s Hospital, University of Cambridge, Cambridge, UK.
²MRC Cancer Unit, Hutchison/MRC Research Centre, University of Cambridge, Cambridge, UK.
³Tissue Bank, Department of Histopathology, Addenbrooke’s Hospital, Cambridge, UK.
⁴Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and the London School of Medicine & Dentistry, Queen Mary University of London, London, UK.
⁵Division of Endocrinology, Department of Medicine, The University of Mississippi Medical Centre, Jackson, MS, USA; Research and Medicine Services, G.V. (Sonny) Montgomery VA Medical Centre, Jackson, MS, USA
⁶Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge & NIHR Cambridge Biomedical Research Centre, Addenbrooke’s Hospital, Cambridge, UK.

Short title: Role of nephronectin in adrenal hypertension

*Corresponding author

Correspondence to Prof Morris Jonathan Brown, Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and the London School of Medicine & Dentistry, Queen Mary University of London, London, EC1M 6BQ, United Kingdom. Tel: 020 7882 3901, E-mail: morris.brown@qmul.ac.uk
SUPPORTING INFORMATION

MATERIALS AND METHODS

Human subjects
Post-surgery, APAs and their paired adjacent normal adrenal were identified and macroscopically dissected by histopathologists and separated into three categories for processing: a) snap-frozen in liquid nitrogen and then stored at -70°C for immunohistochemistry or DNA extraction, or b) stored in RNA-later for RNA extraction or c) digested with collagenase for two hours and then placed in Dulbecco's Modified Eagle's Medium (DMEM) /Nutrient F-12 Ham supplemented with 10% fetal bovine serum (FBS), 100 U penicillin, 0.1 mg/ml streptomycin, 0.4 mM L-glutamine and insulin–transferrin–sodium selenite (ITS) media at 37 °C in 5% CO₂ for cell culture.

The Cambridge database provided 8 ZF-like APAs and 5 ZG-like APAs for microarray analysis between the two tumor subtypes. A further 3 ZF-like APAs and 5 ZG-like APAs were used for subsequent qRT-PCR validation of microarray findings.

Gene overexpression and silencing
For NPNT overexpression, H295R cells were transfected with GFP-tagged NPNT (RG230311, OriGene) or vector control pCMV6-AC-GFP plasmids. For Wnt constitutive activation, H295R cells were transfected with pcDNA ∆N47 β-catenin, a gift from Eric Fearon (Addgene plasmid #19287); for Wnt constitutive repression, transfection was with pcDNA ∆N TCF4, a gift from Bert Vogelstein (Addgene plasmid #16513), or vector control pcDNA3.1 (Invitrogen).

Gene silencing was achieved using short interfering RNA (siRNA) in the form of ON-TARGETplus human NPNT/ITGB1 or ON-TARGETplus Non-Targeting siRNA as negative control. Short interfering RNA (siRNA) sequences were as follows: NPNT 5′-GCAAAUUAGGAGAGGU-3′, Non-targeting 5′-UGGUUUAAGGAGAGGU-3′. Transient silencing of ITGB1 was achieved using a pool of four siRNA duplexes that each target a sequence of the ITGB1 transcripts (ONTARGETplus SMARTpool, Dharmacon). A mixture of four non-targeting siRNA duplexes was used as a negative control (ON-TARGETplus Non-targeting Pool, Dharmacon). The final concentrations of DharmaFECT 1 and the siRNA in each transfection were 0.2% (v/v) and 25nM respectively, in antibiotic-free complete medium. Efficiency of knockdown was evaluated by qRT-PCR 48h post-transfection.

RNA extraction, reverse transcription and quantitative real-time PCR
RNA extraction from tissues was carried out by dissecting and homogenising 50-100mg of tissue in a lysis matrix using a homogenizer with 1ml of TRizol reagent (Life Technologies). To extract RNA from cells, 1x10⁵ cells were stored in RNAlater (Ambion) until 500μL TRizol was added. Total DNA-free RNA was isolated using the PureLink® RNA Mini Kit and the PureLink® DNase Set (Life Technologies) according to manufacturer’s instructions. On column DNase treatment was performed on all RNA samples to elute DNA-free RNA. Concentration of RNA was determined by Nanodrop spectrophotometry prior to reverse transcription. A two-step
A reverse transcription reaction was performed using AMV reverse transcriptase from the Reverse Transcription System (Promega) according to manufacturer’s instructions.

Immunohistochemistry

Immunohistochemistry was carried out using the unlabelled antibody enzyme (peroxidase-antiperoxidase [PAP]) method on fresh frozen human tissue. Sections of fresh frozen adrenals (14 μm) were thaw-mounted onto microscope slides pre-treated with poly-L-lysine to aid adhesion of the tissue section, and stored at -70°C. When required, slides were air-dried overnight at room temperature and fixed by immersion in ice-cold acetone for 10 min. In cases where fresh frozen tissue was unavailable, immunohistochemistry was performed on formalin-fixed, paraffin-embedded adrenal sections (4 μm) using an automated immunostainer with cover tile technology (Bond-III system, Leica Biosystems). Negative controls, in which the primary antibody was omitted, resulted in complete absence of staining. Images were captured using a standard bright-field microscope, a U-TV1-X digital camera and CellID software (Olympus UK).

Cell confluence and cytotoxicity assay

Time-lapsed images were obtained using an Incucyte system (Essen BioScience), with ×4 magnification from 16 spots within each well of a 24-well plate every 2h over 72h. Cell confluency was automatically determined from bright-field images at different time-points, using the integrated Incucyte software. YOYO-1 was diluted in cell culture medium and used at a final concentration of 78nM for both experimental and control wells. YOYO-1 fluorescence was measured every 4 h for a period of 72 h, and addition of YOYO-1 alone did not induce cytotoxicity. As YOYO-1 only fluorescently stains the nuclear DNA of cells that have lost plasma membrane integrity, cell death can be monitored in real-time with the Incucyte imaging system and fluorescent signal quantified using the Incucyte FLR object counting algorithm (v2.0), finally represented as the object count per mm². Analysis parameters were as follows: Segmentation- Adaptive 2.0; Background intensity- 20.0 AU; Foreground intensity- 60.0 AU; Manual adjustment- 0.0 AU; Refinement- Edge split v2.0; Edge sensitivity- 0.00; Analysis filter- Area >=50μm².

Annexin V-propidium iodide dual stain

Approximately 1 × 10⁶ cells/mL were washed twice with cold PBS, centrifuged at 300 x g, and subsequently re-suspended in 1x binding buffer. 100μL of the solution (1 × 10⁵ cells) was then transferred to a 5ml tube, before 5μL of Annexin V- APC and 5μl PI was added. Cells were vortexed gently and incubated for 15 min in the dark at room temperature, followed by addition of 400μL 1x binding buffer. Finally, samples were analysed by flow cytometry within 1 hour with a Becton-Dickinson FACSCanto II flow cytometer and all data was acquired with the FACSDiva Software. Trypsinisation of adherent cells led to an overall higher basal apoptotic level across both groups treated with non-targeting siRNA and NPNT-specific siRNA.

Xcelligence cell impedance measurement and Hoechst stain assay

Cell adhesion was monitored continually every 15 min using the Xcelligence cell impedance system (RTCA DP Analyzer, Roche) placed in an incubator (humidified atmosphere 5% CO₂ at 37 °C) for a period of 4 to 10 h depending on cell-type. Real-time cell index was determined using the RTCA DP software.
Cell adhesion was also measured by Hoechst dye quantification of cells remaining on pre-coated wells post-wash. A 96-well clear-bottom black plate was pre-coated with 50μL of purified protein diluted in PBS to varying concentrations and incubated overnight at 37 °C. This solution was then aspirated and non-specific binding blocked with 50μL of 1% BSA in PBS, for 1h at 37 °C. Once again, the solution was aspirated and the wells washed twice with 0.1% BSA in PBS. After trypsinization and in pellet form, cells were washed and centrifuged 3x in serum-free DMEM/F-12 medium. 100μL of the cell suspension (4x10⁴ cells) was transferred into each well and incubated for 2h at 37 °C with 5% CO₂. The plate was then agitated on a shaker at a fixed rate for 5s at 1000rpm, and non-adherent cells removed by gentle aspiration.

Following that, cells adherent to wells were fixed with 4% formaldehyde for 20 min followed by washing 5x with PBS. These cells were then stained with Hoechst 33342 (5 μg/ml in 0.001% Triton X-100) for 90min at room temperature. After washing with PBS twice more, each well was filled with 100μl of PBS and fluorescence intensities measured using a microplate reader (Synergy HT, Biotek), with an excitation wavelength of 360 nm and an emission wavelength of 460 nm.
Table S1. Clinical features of patients and phenotype of tumors involved in the microarray comparing the two tumor subtypes (8 ZF-like APAs, 5 ZG-like APAs).

<table>
<thead>
<tr>
<th>Tumor no.</th>
<th>Age at surgery (M)</th>
<th>Sex</th>
<th>APA size (mm)</th>
<th>Systolic BP (mmHg)</th>
<th>Diastolic BP (mmHg)</th>
<th>ZG-like/ZF-like</th>
<th>Mutation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>69</td>
<td>M</td>
<td>14</td>
<td>195</td>
<td>127</td>
<td>101</td>
<td>65</td>
</tr>
<tr>
<td>2</td>
<td>44</td>
<td>M</td>
<td>9</td>
<td>169</td>
<td>140</td>
<td>100</td>
<td>85</td>
</tr>
<tr>
<td>3</td>
<td>41</td>
<td>M</td>
<td>16</td>
<td>150</td>
<td>138</td>
<td>80</td>
<td>73</td>
</tr>
<tr>
<td>4</td>
<td>52</td>
<td>M</td>
<td>8</td>
<td>166</td>
<td>134</td>
<td>116</td>
<td>92</td>
</tr>
<tr>
<td>5</td>
<td>49</td>
<td>M</td>
<td>7</td>
<td>170</td>
<td>120</td>
<td>110</td>
<td>78</td>
</tr>
<tr>
<td>6</td>
<td>41</td>
<td>F</td>
<td>24</td>
<td>155</td>
<td>97</td>
<td>130</td>
<td>90</td>
</tr>
<tr>
<td>7</td>
<td>43</td>
<td>F</td>
<td>17</td>
<td>160</td>
<td>120</td>
<td>100</td>
<td>80</td>
</tr>
<tr>
<td>8</td>
<td>39</td>
<td>M</td>
<td>17</td>
<td>164</td>
<td>133</td>
<td>98</td>
<td>78</td>
</tr>
<tr>
<td>9</td>
<td>55</td>
<td>M</td>
<td>12</td>
<td>160</td>
<td>138</td>
<td>100</td>
<td>93</td>
</tr>
<tr>
<td>10</td>
<td>33</td>
<td>F</td>
<td>25</td>
<td>131</td>
<td>97</td>
<td>73</td>
<td>60</td>
</tr>
<tr>
<td>11</td>
<td>45</td>
<td>M</td>
<td>24</td>
<td>152</td>
<td>130</td>
<td>84</td>
<td>80</td>
</tr>
<tr>
<td>12</td>
<td>45</td>
<td>F</td>
<td>22</td>
<td>136</td>
<td>104</td>
<td>84</td>
<td>70</td>
</tr>
<tr>
<td>13</td>
<td>73</td>
<td>F</td>
<td>20</td>
<td>144</td>
<td>131</td>
<td>72</td>
<td>77</td>
</tr>
</tbody>
</table>

Figure S1. NPNT immunohistochemistry and haematoxylin counterstain in three different formalin-fixed paraffin-embedded (FFPE) human adrenals adjacent to phaeochromocytomas, showing ZG-selective localization and consistent peri-glomerular staining pattern of NPNT. (ZG=zonae glomerulosa, ZF=zonae fasciculata, 20x magnification)
Figure S2. NPNT immunohistochemistry in ZF-like APA vs ZG-like APA mounted on the same slide, differentiating between the two APA subtypes with negligible NPNT staining in ZF-like APAs (10x magnification).

Figure S3. NPNT expression in aldosterone-producing cell clusters (APCCs) correspond consistently with CYP11B2 expression, as demonstrated by staining of serial sections. (20x magnification)