Variation of maternal KIR and fetal HLA-C genes in reproductive failure: too early for clinical intervention.

Ashley Moffett¹,²*, Olympe Chazara¹,², Francesco Colucci²,³ & Martin H Johnson²,⁴

¹Dept of Pathology and ²Centre for Trophoblast Research, ³Department of Obstetrics and Gynaecology, ⁴Dept. of Physiology, Development and Neuroscience, University of Cambridge.

*Corresponding Author: am485@cam.ac.uk
Abstract

A distinctive type of (uterine) Natural Killer (uNK) cell is present in the uterine decidua during the period of placental formation. uNK cells express members of the Killer Immunoglobulin-like Receptor (KIR) family that bind to parental HLA-C molecules on the invading placental trophoblast cells. The maternal KIR genes and their fetal ligands are highly variable, so different KIR/HLA-C genetic combinations occur in each pregnancy. Some women only possess inhibitory KIR genes, whilst other women also express activating KIRs. The overall signal that NK cells receive from paternal HLA-C on trophoblast depends on the ratio of activating and inhibitory KIRs expressed by them. Thus, NK cells provide a balance during placentation to ensure maternal survival, but at the same time an adequately nourished fetus. Because inhibitory KIRs are found more frequently in women with defective placentation, e.g. pre-eclampsia, fetal growth restriction or recurrent miscarriage, some fertility clinics suggest that women should be ‘tissue typed’ for their KIR genotypes. We explain why, presently, it is premature to introduce KIR and HLA-C typing to predict pregnancy outcome. However, in future, selecting for certain combinations of KIR and HLA-C variants in surrogacy, egg or sperm donation may prove useful to reduce disorders of pregnancy.

Key words: Placental disorders, Natural Killer (NK) cells, HLA-C, KIR, trophoblast, tissue typing
Introduction

A critical period in human pregnancy occurs during the first trimester when the trophoderm attaches to the uterine surface epithelium with subsequent invasion of trophoblast cells through the decidua until they stop in the inner myometrium. Infiltration of placental cells deep into the uterus is essential, because trophoblast moves towards, and then transforms, the spiral arteries to establish the fetal blood supply line. A range of evidence points to defects in placental/uterine interactions underpinning a spectrum of pregnancy disorders, such as pre-eclampsia, unexplained stillbirth, fetal growth restriction and recurrent miscarriage (Brosens, 2011). Disordered interactions between trophoblast and uterus may also contribute to primary infertility and failed IVF, given the epidemiological overlap between all these conditions (Basso, 2003).

We hypothesise here that part of the regulation of placentation results from local immune recognition of trophoblast by decidual leukocytes, an idea that arose from two observations. First, cellular interactions in the decidua occur between cells from two genetically different individuals (allogeneic cells). Secondly, the crucial role that the decidua plays in the regulation of placentation is obvious from studying pregnancy disorders that arise when decidua is absent: in this scenario, known as placenta percreta/accreta, trophoblast invades relentlessly through the uterus, a situation that often occurs when the placenta forms over a previous caesarian section scar.

Key features of the immune system are specificity and memory. In terms of human pregnancy, epidemiological and genetic studies of pre-eclampsia do point to ‘partner specificity’ (Lie, 1998). Furthermore, the protective effect of a first pregnancy against pre-eclampsia in subsequent pregnancies with the same father might be interpreted as ‘memory’ (Trogstad, 2001). A further important point is the high incidence (~25%) of pre-eclampsia in oocyte donation pregnancies (Levron, 2014). In this situation the embryo is derived from two allogeneic individuals and shares no ‘self’ with the mother. This situation is therefore analogous to a mother being exposed to two rather than one paternal genomes. There are no comparable studies indicating that particular fathers might be ‘risky’ in recurrent miscarriage or primary infertility.
uNK cells and trophoblast HLA-C

Which immune cells and target antigens might be involved in preeclampsia? Our focus is on uterine Natural Killer cells (uNK), because they are the dominant population (~70% of leucocytes) present during early placentation and have receptors that can bind to trophoblast ligands. Although T cells, the effector immune cells responsible for rejection of organ grafts, are also present in decidua (~10-30% of leukocytes), there is no evidence to date that pregnancy failure in humans ever results from T cell ‘rejection’ of the placenta (Moffett & Colucci, 2014). Indeed, no molecular recognition system whereby maternal T cells might recognize and target trophoblast has yet been described convincingly. In contrast, uNK are distinctive immune cells that accumulate in large numbers around the infiltrating extravillous trophoblast (EVT) cells in the decidua basalis and they have a range of receptors that can bind to ligands on EVT (Sharkey, 2008; Xiong, 2013). The uNK receptors of particular interest are called Killer Immunoglobulin-like Receptors (KIRs) and they are a highly polymorphic family of genes with great variation between different individuals. Some members of the KIR gene family bind HLA-C molecules, the only polymorphic HLA class I molecule expressed by EVT (Figure 1). Thus, in any pregnancy, individual women vary in comparison with other women in respect of the KIR genes that they have inherited and that are expressed by their uNK cells. The paternally-derived HLA-C allele expressed on the trophoblast will also differ in each pregnancy (even when from the same father) depending on which of the two paternal HLA-C alleles the fetus has inherited (Figure 2).

The possibility that the combinations of two variable gene systems, one in the mother and one in her fetus, might subtly determine the outcome of interactions between trophoblast and uNK cells led to initial studies on pre-eclampsia, a disorder with clear underlying defects in placentation. Pre-eclampsia is associated with certain combinations of maternal KIR/fetal HLA-C genetic variants in cohorts of both Africans and Europeans. Since then, studies of small cohorts of women affected by recurrent miscarriage and fetal growth restriction have indicated a similar relationship. More recently, analysis of maternal KIR and fetal HLA-C variants in normal pregnancies resulting in a range of different birth weights has indicated that selective pressures on these two gene systems are operating to keep human birth weight between two extremes - both associated with high fetal and maternal mortality and
morbidity (Hiby, 2014). Indeed, these KIR and HLA gene families are likely to be subjected to balancing or stabilizing selection via human birth weight, as the two extremes of the normal range are both deleterious (Karn, 1951).

A synthesis of these results is shown in Figure 3. When expressed by a NK cell, individual KIRs can confer either an inhibitory or activating signal to the NK cell. The great complexity of KIR genetic polymorphism can be simplified by considering two main haplotypes, KIR A and KIR B that principally differ by the presence of additional activating KIR on the B haplotype. The KIR A haplotype has only 7 KIR genes, three framework genes present in all individuals, and three inhibitory KIRs. The only activating KIR on the A haplotype, KIR2DS4, is generally non-functional. The KIR B haplotype has a varying number of additional KIRs, many of them activating. The particular KIRs present in the KIR A or B haplotypes that bind to HLA-C molecules are shown in Figure 2. All of the many (>1000) HLA-C alleles present in populations can be divided into two groups, called here C1 and C2, based on which amino acid (asparagine or lysine) is present at position 80 of the HLA-C molecule. This region is where KIRs bind to the HLA-C molecules, the KIR-binding C1 or C2 epitope. There are 2 KIRs that bind to C2 epitopes, inhibitory KIR2DL1 and activating KIR2DS1. Only one KIR binds to C1 epitopes and imparts a weakly inhibitory signal (KIR2DL2/3).

Our results show that when women, who have inherited two KIR A haplotypes (known as a KIR AA genotype), encounter trophoblast expressing a C2 epitope, then trophoblast is more likely to fail to establish a good maternal blood supply to the placenta, with the outcome of poor fetal growth and an increased risk of pre-eclampsia. Furthermore, the risk seems greater if the fetal C2 is derived from a paternal rather than a maternal HLA-C2 allele. The reasons for this are unknown and it is also unclear why the effect of paternal C1 epitopes inherited by the fetus is neutral.

How do these genetic findings translate into functional differences in uNK cells? NK cell function is determined by the overall input of the activating and inhibitory signals the NK cells receive. Because activating KIRs are found only on KIR B haplotypes, an individual with two KIR A haplotypes (KIR AA genotype) only has KIR genes that encode receptors that will impart a strong inhibitory signal to uNK cells. The likely candidate KIR responsible for this
deleterious effect on the KIR A haplotype is KIR2DL1 because it binds strongly and specifically to C2 epitopes of HLA-C. In Europeans, when there is a pregnancy with a paternally-derived HL-A C2 epitope, the mother is protected when she has a KIR B haplotype that contains the activating KIR for C2 epitopes, KIR2DS1. There is thus a protective effect in this combination, because, when a paternal C2 epitope is present, the strong inhibitory signal from KIR2DL1 to uNK cells is counter balanced by an activating signal.

Pre-eclampsia

The largest cohorts studied to date are from pregnant white British women with controls selected from the same hospitals at the same time, who had never been pregnant before and had a normal full term pregnancy (Hiby, 2004, 2010). For women developing pre-eclampsia there is an association of a maternal KIR AA genotype with a paternal HLA-C C2 epitope. These findings associated with risk of pre-eclampsia have now been confirmed in a smaller cohort of Ugandan women, but interestingly the protective KIR region is different in Africans compared with Europeans (Nakimuli, 2015). Further large cohorts are needed in European, Asian and African populations to provide further validation. This is essential since the KIR and HLA regions have evolved rapidly with the frequencies of KIR A haplotypes and HLA-C alleles carrying the C2 epitope varying in different populations with a striking inverse correlation between the two. For example, Japanese have increased frequencies of KIR A haplotypes, but a reduced frequency of HLA-C alleles carrying the C2 epitope compared with Europeans (Hiby, 2004). This situation is likely to have evolved to avoid too many pregnancies with this risky combination given that KIR and HLA-C are located on separate chromosomes and segregate independently. This observation also gives rise to speculation that couples of mixed ethnicity might be more or less at risk of pre-eclampsia. However, large cohorts would be needed to test this. Although one study found that the incidence of pre-eclampsia in 324 Japanese women with European partners was not higher than in Japanese women with Japanese partners (Saito, 2006), this study was only based on assumed frequencies of genotypes and no KIR and HLA-C genotyping of the couples was performed (Moffett, 2006). The incidence of the KIR AA genotype is 60% in Japanese women. HLA-C2 group frequencies are 32% in Europeans but only 9% in Japanese. Around 5 of 324 (1.5%) Japanese-European couples had pre-eclampsia. Given this sample size, the authors have <50% power to detect any significant difference (at p < 0.05) in the frequency of pre-
eclampsia between Japanese-European couples compared with Japanese-Japanese couples for an odds ratio as large as 3. Therefore, the conclusions drawn by Saito et al. (2006) are untenable due to the lack of power to recognize any effect, regardless of the direction. The study is thus statistically flawed.

If our own genetic results hold up in more powered studies, is there any role in the future for prediction and prevention of pre-eclampsia? First the accuracy of the genetic prediction needs to be improved. In addition to variation in numbers of KIR genes a woman inherits, there is also allelic variation at individual KIR loci. KIR2DL1 (the inhibitory KIR for C2 epitopes) has four common alleles segregating in Europeans, whose products differ in expression level, binding avidity/affinity and signaling. The different HLA-C allotypes that all bear C2 epitopes may also bind differentially to different KIR allotypic variants. These two levels of allelic variation could explain the low accuracy, which might also be improved by combining the genetic information with models based on uterine artery Doppler ultrasound and maternal factors (Yu, 2005).

Of immediate concern is the risk to oocyte donation recipients and surrogate mothers who are reported to have such a high risk of pre-eclampsia, which could be linked to their higher risk of exposure to foreign C2 (64% versus 40% in a normal pregnancy). Ideally one might predict that women who have a KIR AA genotype should only be offered C1C1 oocytes and should not volunteer for surrogacy unless the donated embryo is also C1C1. Although this is a low risk, low cost intervention, confirmation that the pre-eclampsia cases are indeed associated with fetal C2 is first needed. In such a study, and assuming a 25% risk of pre-eclampsia in oocyte donations versus 10% in other women undergoing assisted reproduction, 750 cases would be needed to detect with 90% power a significant (<0.05, two-sided) risk of pre-eclampsia associated with maternal KIR AA and fetal HLA-C2.

Recurrent Miscarriage

There are several studies of maternal KIR genes in recurrent miscarriage but the findings are conflicting with no clear results (Moffett, 2009). There are many problems with these studies including very small patient numbers, questionable methodology for KIR typing, multiple testing, poorly matched controls and different clinical criteria for recruitment. For example, not all studies have made a simple division between KIR A and KIR B haplotypes but have
analysed individual KIR genes. Clearly at present there is no rationale for introducing KIR typing into the clinic until these issues are resolved. Large well-characterised cohorts are needed with good controls to define clearly whether there are any particular KIR genotypes associated with failure of trophoblast to establish a blood supply in the first trimester.

Infertility/IVF

There is only one study on KIR genotypes in women with infertility and failed IVF, and it points to a lower live birth rate in women with the KIR AA genotype (Alecsandru, 2014). Further studies would be of interest as it is not clear whether the failure could in some cases occur in the early days post-implantation or from failure of attachment of the blastocyst to the surface epithelium. In the latter situation, uNK cells are unlikely to play a part.

Genotyping KIR and HLA in other clinical scenarios

The NK cells that are present in blood participate in responses to infectious agents and cancerous cells and modify the outcome of haematopoietic cell transplantation. Interestingly, genotyping for KIR and HLA is also being investigated in these areas of medicine to improve current treatments. For example, genotyping of HLA-C and KIR significantly improves the prediction of responses to treatment in patients with chronic hepatitis C and hepatitis B virus infection (Suppiah, 2011; Stelma, 2016). Other studies in haplo-identical (half-HLA mismatched) haematopoietic cell transplantations for myeloid leukemia have shown that there is a better outcome if the donor has a KIR B haplotype (Cooley, 2014).

The Future

Can these results be translated yet to any clinical situation in reproduction? In short, the answer must be ‘Not Yet’. There are many reasons for this:

Most of the cohorts studied are small. Large numbers are required for sufficiently powered studies that involve two individuals, two complex gene systems, and conditions of heterogeneous aetiologies influenced by other genetic and environmental contributions. To give one example: a cohort of 3943 pregnancies would be needed to detect with 90% power a significant risk (<0.05, two-sided) of reduced birth weight (120g less than the average 3350g ± 450g) linked to a combination of a given KIR allele and a
given fetal HLA-C allele found in about 4% of the pregnancies. In the current state of knowledge, if maternal KIR/fetal HLA-C genetic combinations were used for screening, considering an incidence of pre-eclampsia of 4%, we would have:

If the positive test result is for the women to be KIR AA (OR 1.54), the sensitivity (true positive rate) would be 36.92% and the specificity (true negative rate) 72.50%.

If the positive test result is for the women to be KIR AA with a paternal HLA-C2 allele in the fetus (OR 2.02), the sensitivity (true positive rate) would be 43.75% and the specificity (true negative rate) 72.20%.

Therefore the performance of these screening tests, in those configurations, would not be useful to identify women at risk of pre-eclampsia.

- Cases and controls must be very carefully matched particularly with regard to ethnicity and genetic admixture because of the great diversity of KIR and HLA genes across different populations.

- Independent studies in different populations across the world are needed to replicate the original findings.

- The clinical characteristics should be identified carefully. For example, in women affected by recurrent miscarriage/failed IVF, all known underlying causes for problems in pregnancy must be excluded. For pre-eclampsia, preexisting hypertension, renal disease, and placental malaria, must be ruled out. In studying true fetal growth restriction, the gestational age is needed and cases with infectious/genetic or other causes of low birth weight must be omitted.

- The population to select as ideal controls is not immediately obvious. Ideally women with a history of normal pregnancies reaching a gestation of >38 weeks, with birth weights in the middle of the normal range, no miscarriages or ectopic pregnancies would be used. This would correspond to a case-control design with extreme phenotypes, which would increase power. Cases and controls should still be matched in terms of unrelated diseases. Earlier studies have used normal first pregnancies.

- A family-based design would also help avoid confounding factors in order to identify the genes responsible for defective placentation in pre-eclampsia.

- The KIR and HLA typing should be done in conjunction with laboratories devoted to tissue typing for transplantation in hospitals or to KIR and HLA diversity in a research setting. The UCLA International Cell Exchange offers validation for KIR typing and all
research laboratories should be a part of this (http://www.hla.ucla.edu/cellDna.htm; Chazara, 2015).

- Analysis of KIR variation has been a challenge given the huge diversity. There is a growing consensus that, because of the tight Linkage Disequilibrium (LD) of KIR, characteristic of the telomeric (t) and centromeric (c) regions of KIR A and B haplotypes, it is better to first use a broad distinction between KIR AA and all other genotypes and then between these centromeric and telomeric (cA, tA, cB and tB) regions. This strategy avoids implicating any KIR that may only be ‘carried’ in LD and not be a risk itself.

If, from these studies, the associations of KIR and HLA-C variants with reproductive problems turn out to be robust, in the future it might be feasible to select sperm from donors who are C1C1 homozygous, because in our cohorts we have always found a neutral effect of C1C1 babies whatever the mother’s KIR genotype. The frequency in the UK of C1C1 men is ~36%.

Conclusion

The KIR/HLA system is likely to be associated with the primary stage in the pathogenesis of pre-eclampsia/defective placentation and is not related to the systemic symptoms. In keeping with this, similar KIR/HLA-C associations are found with recurrent miscarriage and fetal growth restriction. This is one end of the spectrum (in terms of birth weight or low placental efficiency), with large babies at the other end. In this scenario birth weight is acting as a proxy for either a ‘good’ or ‘bad’ placenta. We have described how immune system genes are candidates for balancing the system and keeping the birth weight optimum for the population overall. Rarer combinations are found at the two extremes of birth weight. Obviously there are multiple other genetic, nutritional and environmental influences operating that will modify how uNK cells function in each pregnancy. By bringing together high-resolution genotyping with new approaches to understand the biology of uNK-trophoblast interactions, we will eventually make progress towards predicting and preventing complications of pregnancy.

Acknowledgements

We wish to thank Gordon Smith for his support. MHJ acknowledges support from the Wellcome Trust (088708, 094985 and 100606), which otherwise had no involvement in the
research or its publication. AM & FC acknowledge support from the Wellcome Trust (090108/Z/09/Z and 085992/Z/08/Z), the British Heart Foundation (PG/09/077/27964), and the Centre for Trophoblast Research.

References

Chazara, O., Moffett, A., 2015. Association of maternal KIR and fetal HLA-C genes with the risk of preeclampsia in the Chinese Han population. Placenta 36, 967.

Figure 1. KIR variation

KIR haplotypes are a combination of centromeric and telomeric regions with extensive recombination in between. Only KIR genes encoding potential receptors for HLA-C are shown. The combination of two KIR A haplotypes forms a KIR AA genotype, which will contain two copies of KIR2DL1, a potent inhibitory receptor for C2 epitopes. The KIR2DL1 gene present on the KIR B haplotype has been reported as less functional in terms of expression, binding and signalling.

Figure 2. HLA-C variation

HLA-C alleles are divided into two groups according to a dimorphism at position 80 of the α1 domain (C1: Asn80, C2: Lys80). The pie chart shows the average distribution of HLA-C alleles with the C1 epitope (green) and the C2 epitope (red) in Europeans populations. Different KIRs bind to the C1 and the C2 epitope.

Figure 3. Summary of genetic findings (colour codes as for Fig 1)

1, Hiby 2004; 2, Hiby 2010; 3, Hiby 2008; 4, Hiby 2014