This gut ain’t big enough for both of us. Or is it? Helminth-microbiota interactions in veterinary species

Laura E. Peachey*, Timothy P. Jenkins, Cinzia Cantacessi*

Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, United Kingdom

*Correspondence: lep41@cam.ac.uk (LEP); cc779@cam.ac.uk (CC)

Gastrointestinal helminth parasites share their habitat with a myriad of other organisms, i.e. the commensal microbial flora. Increasing evidence, particularly in humans and rodent models of helminth infection, points towards a multitude of interactions occurring between parasites and the gut microbiota, with a profound impact on both host immunity and metabolic potential. Despite this information, the exploration of the effects that parasite infections exert on the commensal gut microbes of veterinary species is a field of research in its infancy. In this article, we summarise studies that have contributed to current knowledge of helminth-microbiota interactions in species of veterinary interest, and identify possible avenues for future research in this area, which could include the exploitation of such relationships to improve parasite control and delay or prevent the development of anthelmintic resistance.

Key words: Gastrointestinal parasites, gut microbiota, alpha diversity, host-parasite interactions, livestock species, alternative intervention methods
Gut micro- and macrobiota: cooperation or competition?

The gastrointestinal (GI) tract of vertebrates is inhabited by a vast array of organisms, i.e. the micro- and macrobiota (see Glossary). The former is composed largely of commensal microorganisms, which play a vital role in host nutrition and maintenance of energy balance, in addition to supporting the development and function of the vertebrate immune system [1-3]. On the other hand, the macrobiota includes parasitic helminths, which are mostly considered detrimental to host health via a range of pathogenic effects that depend on parasite size, location in the GI tract, burden of infection, metabolic activity and interactions with the host immune system [4]. Sharing the same environment within the vertebrate host, it is plausible that the GI microbiota and parasitic helminths interact with each other, and the results of such interactions may impact, directly or indirectly, on host health and homeostasis [5-7]. For instance, helminths and microbiota compete for host nutrients while, in parallel, the known immune-modulatory properties of a range of parasites may translate into modifications of mucosal and systemic immunity to the resident bacteria [8]. The complex relationships occurring between helminths and microbiota have long been neglected; however, recent studies pointing towards a role of these interactions in the overall pathophysiology of helminth disease [5-7, 9-28] are drawing attention to this little-known area of research. Nevertheless, current knowledge of helminth-microbiota interplay relies heavily on studies of helminth-infected humans or rodent models [5, 7, 11-15, 18-22, 25, 26], while the impact that parasites exert on the commensal flora of species of veterinary interest is still poorly understood. Given the production losses and the considerable morbidity and mortality associated to a range of helminth diseases in livestock [29-33], as well as the global threat of emerging anthelmintic resistance [34-36], the exploration of the complexities of host-helminth-microbiota interactions in species of veterinary interest is timely and relevant. The implications of this newly acquired knowledge will be multiple, from a better understanding of the systems biology of parasites, to the collection of information that could form a solid basis for the development of novel intervention strategies against GI helminths.

In this article we provide an overview of current knowledge of helminth-microbiota interactions in species of veterinary interest, suggest potential applications of this knowledge in veterinary clinical medicine, and outline avenues of future research that, in our view, will be pivotal to translate research findings into practice. Given that mice are, in principle, a veterinary species and that mouse models of infection are often used in veterinary research [37-39], data available for these hosts will be considered here alongside that from other animal species.
A matter of (animal and helminth) species

Current studies of helminth-microbiota interactions in veterinary species involve a range of animals and parasites, and are characterised by a vast heterogeneity in experimental designs and techniques which, taken together, lead to a variety of findings (Table 1). In spite of these variations, a small number of specific changes in the composition of the host gut microbiota have been consistently observed in helminth-infected animals, irrespective of (host and parasite) species. Such changes are therefore likely to represent genuine helminth-associated alterations to the resident commensal flora. For instance, populations of Lactobacillaceae, gram positive bacteria of the phylum Firmicutes with an important role in carbohydrate metabolism [40], are frequently expanded in the presence of helminths in the GI tract of animals, including mice infected with the roundworm Heligmosomoides polygyrus [5, 6, 12, 14], the whipworm Trichuris muris [15] and the hookworm Nippostrongylus brasiliensis [13]. Interestingly, Lactobacillaceae were also increased in the biliary ducts of hamsters infected by the trematode Opisthorchis viverrini [26], and in the faecal microbiota of cats with patent infections by the roundworm Toxocara cati [17]. Lactobacillaceae are known to exert immune-modulatory functions in the host gut, primarily by promoting an expansion of T regulatory cells, which underpins their use as a probiotic supplement for GI inflammatory diseases [41]. In particular, in a recent key study, Reynolds and co-workers [5] not only demonstrated that experimental infections of mice with H. polygyrus were accompanied by a marked expansion in populations of Lactobacillaceae, but also that increased worm burdens could be observed following administration of Lactobacillus species to mice prior to experimental parasite infection [5]. This finding led the authors to hypothesise the occurrence of a form of mutualism between Lactobacillaceae and selected GI helminths, whereby each promotes the activation of T regulatory mechanisms, thus reducing the effect of the host immune response on the counterpart. Unlike for the Lactobacillaceae, knowledge of the impact of GI helminth infections on populations of other microbes is inconsistent, being largely dependent on species of hosts and parasites under consideration. For instance, Enterobacteriaceae are increased in H. polygyrus-infected mice [5, 14]. As these bacteria are able to tolerate oxidative stress [42, 43], their expansion is linked to the onset of intestinal inflammation following parasite infection. In addition, a marked increase in bacteria of the genus Mucispirillum (family Deferribacteraceae) has been associated to infections by T. muris and T. suis in mice and pigs, respectively, likely as a consequence of the increased production of host mucin in response to helminth colonisation [11, 15, 24]. Conversely, the
microbiota of *T. muris* infected-mice displays a marked reduction in abundance of genera of
the phylum Bacteroidetes, e.g. *Prevotella* and *Parabacteroides* [11, 15], which results in an
overall decrease in microbial species **richness** and diversity (i.e. **alpha diversity**) in the GI
tract.

The impact of helminth infections on microbial richness and diversity

Alpha diversity is defined as the mean species diversity within a population of microbes, and
it is dependent on both **microbial richness** (i.e. the number of species making up a microbial
population) and **evenness** (i.e. the relative abundance of each microbial species in a
population) [44]. While an increased alpha diversity in the GI microbiota is generally
associated with a ‘healthy’ gut homeostasis, many inflammatory GI and/or systemic diseases
are accompanied by a reduced alpha diversity [45-47]. Consistent with this knowledge, a few
studies have reported a marked decrease in alpha diversity in correspondence of the acute
phase of infection by parasitic helminths. Examples include rabbits infected by the nematode
Trichostrongylus retortaeformis [7] and mice infected by *T. muris* [11, 15]. In contrast, in
humans and primates, natural or experimental infections by GI helminths (e.g. *T. trichiura*
and *Necator americanus*) were accompanied by a general increase in microbial alpha
diversity [18-20, 27]. However, in most studies conducted to date in a range of animal-
helminth systems, the alpha diversity of the gut microbiota remained unchanged following
parasite infection [6, 13, 16, 17, 23, 25, 28]. Whilst obvious differences in animal and
parasite species, as well as in experimental set-ups, might account for these contrasting
observations, it is plausible that the acute onset of inflammation that follows parasite invasion
of the GI tract is accompanied by an initial decrease in microbial alpha diversity, and that this
is restored (or increased) in concomitance with the establishment of chronic infections. Thus,
the time of sampling, and hence the stage of parasite infection, is an important variable that
may significantly impact on the findings of such studies. Nonetheless, determining the impact
that helminths exert on the alpha diversity of the gut microbiota of species of veterinary
interest, and particularly on that of livestock, is of paramount importance, as the gut
metabolism of these species (and consequently their productivity) is greatly dependent on the
maintenance of a ‘healthy’ commensal flora.

Helminth-associated alterations in host metabolism

Several studies have examined the functional effects of helminth infection on host
metabolism [6, 7, 10, 11, 16, 23, 24], either directly by evaluating differences in levels of
faecal metabolites in infected vs non-infected hosts [11, 24], or indirectly by inferring helminth-associated changes in host metabolism based on expansion or reduction of selected bacterial populations in response to parasite infection [48]. Of note, bacterial taxa and/or metabolic markers associated with fibrolytic potential and carbohydrate and protein transport and metabolism have been shown to be altered in response to parasite infection [6, 10, 11, 16, 24]. In particular, studies in both T. suis-infected pigs and T. muris-infected mice have inferred a down-regulation in these metabolic pathways in the colon [10, 11, 24]. In mice infected by T. muris, suggested changes were linked to a reduction in Prevotella and Parabacteroides (phylum Bacteroidetes), which are known to play an important role in degradation of proteins and carbohydrates [49]. In contrast, increases in carbohydrate, protein and lipid metabolism have been speculated to occur as a consequence H. polygyrus and Haemonchus contortus infections in mice colons and goat abomasa, respectively [6, 16]; in particular, in the latter study, such increases were concurrent with an expansion in Prevotella species [16]. The authors of this study hypothesized that, given that infections by H. contortus are generally associated with overall protein loss, changes in abomasal microbiota in response to Haemonchus-driven pathology could reflect an attempt of the vertebrate host to functionally compensate for protein deficiency [16]. Whether changes in microbiota composition and metabolism are caused by direct interactions of the microbial flora with helminth parasites or, indirectly, by changes in mucosal immunity as a response to parasite infection, remains to be determined. Establishing causal relationships between helminths and gut microbiota is nonetheless pivotal, as this knowledge will form the necessary basis for the development of novel parasite control strategies based on the manipulation of the host commensal flora.

Which came first, the chicken or the egg?

Three main hypotheses have been formulated on the causality of relationships between parasitic helminths and the resident commensal flora. In particular, helminth-associated changes in gut microbiota could be (i) secondary to the host immune response to infection [5, 7, 13, 15], (ii) driven by the vertebrate host in a bid to create a hostile environment for the parasite [50, 51] and (iii) the result of direct interactions with parasite excretory/secretory (ES) products [14, 52] (Figure 1). The first hypothesis is supported by the findings of several studies which correlate up-regulation of cytokines following parasite invasion with changes in microbial composition [5, 7, 14, 15]. For instance, Cattadori and co-workers [7]
demonstrated that up-regulation of interferon (IFN) γ following infection of rabbits with *T. retortaeformis* was associated with the expansion of *Pasteurellaceae, Clostridiaceae, Ruminococcaceae, Peptostreptococcaceae* and *Flammenovirgaceae*, and that that the *Enterobacteriaceae* were reduced in correspondence with up-regulation of Th2 cytokines [7].

Further support for this hypothesis was provided by a study by Fricke and colleagues [13], who demonstrated that the effects of *N. braziliensis* infection on the composition of the murine gut microbiota, host antimicrobial proteins (AMP) and IL-17 expression, were attenuated in STAT6 -/- and IL-13 -/- knockout mice, thus presenting evidence of a role of Th2 responses in parasite-associated modifications in the commensal flora [13]. However, contrary to these findings, a study examining the effect of *H. polygyrus* on the composition of the gut microbiota of laboratory mice recorded no differences in parasite-associated microbial changes between IL4-α -/- knockout and wild type mice, thus indicating that, at least in this instance, Th2 responses were not responsible for the observed modifications [14]. On the other hand, evidence for an active role of the host in inducing changes in the gut microbiota following helminth infection has been provided by observations that successful host responses to helminth infection are linked to increased production of AMPs, such as lysozymes in cattle [51] and angiogenin 4 in mice [50], albeit it was suggested that these responses may represent a downstream effect of Th2-mediated immunity [13]. Finally, although there is no direct evidence of a direct interaction between parasite ES and gut microbiota, the ES products of *H. polygyrus* are known to contain lysozymes, which could plausibly have a direct effect on GI microbiota [52]. From this set of observations, it is evident that the causal relationships between infections by parasitic helminths and changes in the composition of the commensal flora remain to be thoroughly investigated. While each of the theories described above is unequivocally valid, the reality may be represented more accurately by a complex community ecology scenario, whereby all of the factors described above are inextricably linked. In the immediate future, dissecting these relationships will be crucial, as knowledge of this area will enable host-parasite systems to be manipulated for clinical benefit.

Potential avenues in veterinary research

Knowledge of helminth-microbiota interactions in veterinary species is advancing, and while further work is required to improve our basic understanding in this field, the potential possibilities to manipulate such interactions to the benefit of the vertebrate hosts are already
evident. For instance, ad hoc modifications of the host microbiota could be exploited to either strengthen the host immune response against the parasite, artificially create a hostile environment for the latter or minimise the negative effects of parasitism on host metabolism. Indeed, the administration of a probiotic supplement [53] containing selected species of Lactobacillaceae such as L. taiwanensis, and L. casei, is known to promote the establishment of H. polygyrus in mice, via a reduction in Th2 cytokines such as IL-4 and IL-13 and an increase in T regulatory CD4+ cells (see above) [5, 54]. This raises the question of whether other microbial species might promote host immunity against parasite infection. Indeed, in protozoal infections, e.g. by Giardia intestinalis and Eimeria acervulina, the administration of probiotic bacteria (including members of the genera Lactobacillus, Bifidobacterium, Enterococcus, Pediococcus and Bacillus) have been shown to promote host immune responses [55-60] that, in the case of Eimeria, were driven by an expansion of mucosal intraepithelial lymphocyte populations and a concomitant increase in the serum levels of specific antibodies [57]. In addition, previous studies have recorded a marked reduction in the intestinal stages of Trichinella spiralis in experimentally infected mice following intraperitoneal or oral administration of L. casei [61-65]; in one instance, these observations were accompanied by an increase in IL-4 and reduction in IFNγ [64], thus suggesting that the administration of probiotics had promoted an effective Th2 response. Similarly, administration of the probiotic Bifidobacterium animalis to mice prior to experimental infections with Strongyloides venezuelensis has resulted in a significant reduction of worm burdens [66]. This finding corroborated previous observations that expansions of Bifidobacterium in humans and pigs are associated with lower burdens of helminth parasites [20, 67]. Future studies should further explore the potential use of Bifidobacterium and other probiotics to improve host response to helminth infections in veterinary species (Figure 2).

Unlike probiotics, prebiotics are dietary supplements composed of non-digestible plant fibres, which promote the growth of resident gut microbes [68]. Prebiotics have been shown to have profound effects on the outcome of helminth infections. A primary example comes from the dietary supplementation of inulin in pigs [69-71, 72]. Inulin is a glycosidic fructan, that is resistant to digestion in the small intestine of monogastric species, thus acting as a bacterial substrate in the large intestine, particularly for Lactobacillales [73]. Supplementation of 16% dietary inulin results in 87% and 71% reductions in burdens of Oesophagostomum dentatum and T. suis, respectively, in infected swine [69-71, 72]. High levels of the products of bacterial metabolism of inulin, i.e. lactic acid and short chain fatty acids, are thought to be responsible for this effect, as they lead to a reduction of the luminal
pH in the caecum and colon which, in turn, results in death and expulsion of adult worms [70] (Figure 2). However, thus far, no knowledge is available on the effect of inulin administration on the composition of the gut microbiota, which would greatly assist the identification of the bacterial populations implicated in the anthelmintic properties of inulin. In another study in pigs, diet supplementation with the natural forage chicory, that contains high levels of fructan, resulted in a 64% reduction in Ascaris suum burdens, which was associated with expanded populations of Lachnospiraceae and Bifidobacterium and reduced Enterobacter [67]. Interestingly, the same study reported increased T. suis burdens following the supplementation, which contrasts previous observations of the effects of inulin administration in this animal species [71, 72]. These discrepancies may be linked to differences in relative doses of the supplements, or to inherent differences between changes in the composition of gut microbiota associated to the administration of inulin and chicory, respectively. This contrasting information further emphasises the need for a concurrent evaluation of the effects of supplement administration to the composition of the commensal flora which, in our opinion, is a necessary step towards the evaluation of the promise of dietary interventions as a parasite control strategy alternative to the use of anthelmintics in veterinary species.

In addition to administering dietary supplements with anthelmintic properties, it is also plausible that dietary alterations per se could be exploited to improve host resilience and/or resistance to infection (Figure 2). Indeed, previous studies have indicated that helminth-associated alterations in GI microbiota in mice, pigs and rabbits may be linked to changes in the ability of the commensal flora to metabolise proteins, carbohydrates and lipids which, in turn, could result in production losses [6, 10, 11, 16, 24]. Interestingly, preventing the natural behaviour of coprophagy in rabbits infected with T. retortaeformis resulted in the restoration of prior helminth-associated perturbations in GI microbiota [7], thus indicating that some of the effects of parasitism on the host microbiota and metabolism could potentially be mitigated by diet manipulation. This data indicates that further, more comprehensive, investigations are needed in order to evaluate the real impact of helminth infections on the metabolic functions of the microbiota, and thus to develop strategies to minimise such effects and prevent helminth-associated production losses. Given the global threat of anthelmintic resistance worldwide, strategic manipulation of diet, in combination with good management practices, could represent the future of parasite control in production animals in a post-anthelmintics era.
Final considerations and future directions

The exploration of the mechanisms that govern the interactions between parasitic helminths and the gut microbiota in veterinary species has a number of implications for translational research in this field. Overall, thus far, research in this area is characterised mostly by inconsistent findings, with a few exceptions. The reasons for this are three-fold; firstly, observed changes in gut microbiota are likely to be unique to each host-helminth system, thus making comparisons between findings unwarranted. Secondly, the current literature is characterised by a heterogeneity of experimental designs, which span, beside host and helminth species, time and location of sampling and techniques used to characterise changes in the microbiota (Table 1 and Box 1). Indeed, all these variables are likely to have a profound impact on the changes observed and the repeatability of the experiments [6, 15]. In addition, the lack of appropriate negative control samples in a large number of studies published to date is likely to have led to misinterpretations of findings. Thirdly, subtle differences in the baseline composition of the microbiota and individual immune responses to helminth infections may heavily influence the outcomes of experiments, even in instances where the host-helminth system, sample location and time point, and analytical techniques are identical [12]. This knowledge highlights the need for repeatability before conclusions are drawn. Indeed, it is only through repeated observations of specific sets of findings that common ‘truths’ begin to emerge. In addition, where possible, a ‘standardisation’ of study designs will be crucial to minimise biases and, in our opinion, should involve sampling both the luminal and mucosally associated microbiota throughout the gut, and at several time-points corresponding to acute and chronic helminth infection. Importantly, in the future, investigations of the intimate mechanisms that govern the interplay between parasites and GI flora should include, besides the commensal bacteria, viruses and eukaryotes inhabiting the gut. Studies of helminth-microbiota interactions under natural conditions of (co)infections will also assist in translating laboratory findings to ‘real life’ clinical scenarios. Indeed, whilst knowledge to date suggests that the manipulation of the gut microbiota has the potential to make both war and peace with helminth infections in veterinary species, more studies are needed in order to make the most of this potentially powerful tool (see Outstanding Questions).

Acknowledgements

Funding from the Horserace Betting Levy Board, Thoroughbred Breeders’ Association and British European Breeders Fund (LEP) and the Biotechnology and Biological Sciences
Research Council UK (TPJ) is gratefully acknowledged. Research in the CC laboratory is supported by grants by the Royal Society and the Isaac Newton Trust/Wellcome Trust/University of Cambridge.
References

50. D'Elia, R. et al. (2009) Expulsion of Trichuris muris is associated with increased expression of angiogenin 4 in the gut and increased acidity of mucins within the goblet cell. BMC Genomics 10, 492.

Glossary

Alpha diversity: In ecology, the mean species diversity at the local, within-site or within-habitat scale. It is dependent on both the number of species making up a population (richness) and the relative abundance of each species in a population (evenness).

Diet manipulation: A targeted feeding approach that is aimed at inducing a specific physiological effect.

Macrobiota: The macroscopic flora and fauna of a region.

Microbiota: The microscopic flora and fauna of a region.

Microbial evenness: Microbial species similarity in abundance within an environment or population.

Microbial metabolism: The chemical processes that occur within a microbe in order to maintain life.

Microbial richness: Number of microbial species present in a given sample.

Prebiotic: Dietary supplements that allow specific changes in the composition and/or activity in the gastrointestinal microflora.

Probiotic: Live micro-organisms which, when administered in adequate amounts, confer a health benefit to the host.
Box 1: Techniques for profiling of microbial populations

A range of techniques are available for microbial population profiling, each with pros and cons relating to data generation and analysis, and costs (Figure I). Amongst ‘traditional’ methods, culturing allows the identification and analysis of specific, ‘target’ bacteria; however a large number of microbial species inhabiting the vertebrate gut (>30%) are currently uncultivable [74]. Fluorescence in situ hybridization (FISH) uses fluorescently labelled oligonucleotide probes that are hybridised to complementary target bacterial 16S rRNA sequences, thus allowing separation of species through flow cytometry and subsequent phylogenetic identification [75]. Terminal restriction fragment length polymorphism (T-RFLP) consists in applying fluorescently labelled primers to amplify bacterial DNA, followed by digestion of the 16S rRNA amplicon through restriction enzymes, and separation by gel electrophoresis [76]. Conversely, in denaturing gradient gel electrophoresis/temperature gradient gel electrophoresis (DGGE/TGGE) the 16S rRNA amplicons are denatured by a denaturant/or temperature gradient within the gel, thus allowing for separation of bacterial taxa according to differences between sequences. Other techniques that allow both identification of bacterial taxa and semi-quantitation of taxon abundance include Sanger sequencing or qPCR of cloned bacterial 16S rRNA amplicons and DNA microarrays [77-79]. While cloning and qPCR target specific microbial groups, microarrays can be used for unbiased analyses of bacterial populations and overcome potential errors introduced by PCR amplification. More recently, studies of helminth-microbiota interactions have taken advantage of the availability of next generation sequencing technologies; these allow the unbiased evaluation of microbial populations while simultaneously providing data on relative abundance of individual species within each sample. These techniques can either rely on high-throughput amplification of the bacterial 16S rRNA gene (which includes a PCR step) or on the direct sequencing of whole bacterial genomes, as well as those of viruses and eukaryotic organisms, within each sample [80]. These techniques require specific expertise and are relatively costly.
Table 1. A summary of currently available studies on host-helminth-microbiota interactions in veterinary species, including study design, microbiota profiling techniques and principal findings.

<table>
<thead>
<tr>
<th>Host Species</th>
<th>Parasite species</th>
<th>Time of sampling (days post infection)</th>
<th>Site (S)/type (T) of sample</th>
<th>Method of profiling microbiota</th>
<th>Effect on diversity</th>
<th>Predominant changes reported</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rodents</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mouse (Mas musculus) strain C57BL/6</td>
<td>Trichuris muris</td>
<td>13, 20, 27, 35</td>
<td>S - caecum, T - faeces, lumen</td>
<td>High throughput sequencing of 16S rRNA amplicons (Illumina)</td>
<td>(\uparrow) alpha diversity</td>
<td>Phylum: (\uparrow) Firmicutes, (\uparrow) Proteobacteria, (\uparrow) Bacteroidetes Family: (\uparrow) Lactobacillaceae Genus: (\uparrow) Lactobacillus, (\uparrow) Mucispirillum (caecum only)</td>
<td>[15]</td>
</tr>
<tr>
<td>Mouse (Mas musculus) strain C57BL/6</td>
<td>Trichuris muris</td>
<td>14, 28, 42, 49, 56, 63, 70, 77, 84, 91</td>
<td>T – faeces</td>
<td>Denaturing gradient gel electrophoresis - High throughput sequencing of 16S rRNA amplicons (454)</td>
<td>(\downarrow) alpha diversity</td>
<td>Phylum: (\downarrow) Bacteroidetes Genus: (\downarrow) Prevotella, (\downarrow) Parabacteroides, (\uparrow) Mucispirillum</td>
<td>[11]</td>
</tr>
<tr>
<td>Mouse (Mas musculus) strain C57BL/6 wildtype and IL4\alpha/-</td>
<td>Heligmosoides polygyrus</td>
<td>6, 14, 28</td>
<td>S – ileum, caecum, colon, T – lumen</td>
<td>-Culture -Cloned 16S rRNA amplicon qPCR - Denaturing gradient gel electrophoresis</td>
<td>Not assessed</td>
<td>Class: (\uparrow) Proteobacteria caecum Family: (\uparrow) Enterobacteriaceae caecum Genus: (\uparrow) Lactobacillus ileum, (\uparrow) Bacteroides caecum</td>
<td>[14]</td>
</tr>
<tr>
<td>Mouse (Mas musculus) strain C57BL/6 and BALB</td>
<td>Heligmosoides polygyrus</td>
<td>28</td>
<td>S – duodenum, T – faeces</td>
<td>qPCR</td>
<td>Not assessed</td>
<td>Family: (\uparrow) Enterobacteriaceae, (\uparrow) Lactobacillaceae (duodenum/faeces)</td>
<td>[5]</td>
</tr>
<tr>
<td>Mouse (Mas musculus) strain C57BL/6 (x2)</td>
<td>Heligmosoides polygyrus</td>
<td>14</td>
<td>S – ileum, caecum, colon, T – lumen, faeces</td>
<td>-Cloned 16S rRNA gene sequencing -qPCR total bacteria</td>
<td>Not assessed</td>
<td>Family: (\uparrow) Lactobacillaceae ileum</td>
<td>[12]</td>
</tr>
<tr>
<td>Mouse (Mas musculus) strain C57BL/6 wildtype and STAT6 -/- IL13/-/-</td>
<td>Nippostrongylus brasiliensis</td>
<td>11</td>
<td>S – small intestine, T – lumen, faeces</td>
<td>qPCR - High throughput sequencing of 16S rRNA amplicons (Illumina)</td>
<td>No change</td>
<td>Phylum: (\uparrow) Firmicutes, (\uparrow) Bacteroides, (\uparrow) Actinobacteria Family: (\uparrow) Lactobacillaceae, (\uparrow) S4-27 family (bacteroides), (\uparrow) Coriobacteriaceae Species: (\uparrow) Candidatus arthromitus</td>
<td>[13]</td>
</tr>
<tr>
<td>Wild mice (Apodemus flavicollis)</td>
<td>Heligmosoides polygyrus Syphacia spp. Hymenolepis spp. (N. C)</td>
<td>N/A</td>
<td>S – stomach, ileum, caecum, colon, T – lumen, mucosa</td>
<td>High throughput sequencing of 16S rRNA amplicons (454)</td>
<td>No change (but no controls)</td>
<td>Phylum: H. polygyrus - (\uparrow) Bacteroides, (\uparrow) Firmicutes Sypacia spp. - (\uparrow) Bacteroides, (\uparrow) Firmicutes Family: Hymenolepis spp (\uparrow) S4-27 (Bacteroides) stomach H. polygyrus (\uparrow) Lactobacillaceae ileum</td>
<td>[6]</td>
</tr>
<tr>
<td>Rat (Rattus norvegicus)</td>
<td>Hymenolepis diminuta</td>
<td>58</td>
<td>S – caecum, T – lumen</td>
<td>High throughput sequencing of 16S rRNA amplicons (Illumina)</td>
<td>No change</td>
<td>Family: (\uparrow) Peptostreptococcaceae Genus: (\uparrow) Turibacter</td>
<td>[25]</td>
</tr>
<tr>
<td>Host Species</td>
<td>Parasite species</td>
<td>Time of sampling (days post infection)</td>
<td>Site (S)/type (T) of sample</td>
<td>Method of profiling microbiota</td>
<td>Effect on diversity</td>
<td>Predominant changes reported</td>
<td>Ref.</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------------</td>
<td>--</td>
<td>-----------------------------</td>
<td>-------------------------------</td>
<td>--------------------</td>
<td>-------------------------------</td>
<td>------</td>
</tr>
<tr>
<td>Rodents</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hamster (Mesocricetus auratus)</td>
<td>Opisthorchis viverrini (T)</td>
<td>42</td>
<td>S – bile ducts, colorectum T – lumen</td>
<td>High throughput sequencing of 16S rRNA amplicons (454)</td>
<td>↑ alpha diversity</td>
<td>Phylum: ↑ Spirochaetes, ↑ Lactobacillaceae, ↑ Ruminococcaceae, ↑ Porphyromonadaceae, ↓ Erysipelotrichaceae, ↓ Eubacteriaceae</td>
<td>[26]</td>
</tr>
<tr>
<td>Swine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pig (Sus scrofa domestica)</td>
<td>Trichuris suis (N)</td>
<td>53</td>
<td>S – colon T – lumen</td>
<td>Whole metagenome shotgun sequencing (Illumina)</td>
<td>Not assessed</td>
<td>Phylum: ↓ Fibrobacteres, ↓ Spirochaetes, ↓ Tenericutes, ↓ Gammatimonadetes Genus: ↓ Fibrobacter, ↓ Treponema, ↓ Dorea, ↓ Ruminococcus, ↑ Campylobacter</td>
<td>[10]</td>
</tr>
<tr>
<td>Pig (Sus scrofa domestica)</td>
<td>Trichuris suis (N)</td>
<td>21</td>
<td>S – colon T – lumen</td>
<td>Whole metagenome shotgun sequencing (454) High throughput sequencing of 16S rRNA amplicons (454)</td>
<td>Not assessed</td>
<td>Phylum: ↓ Deferrribacteres, Proteobacteria? Genus: ↓ Oscillobacter, ↓ Succinivibrio, ↓ Mucispirillum, ↑ Paraprevotella, ↓ Desulfovibrio</td>
<td>[24]</td>
</tr>
<tr>
<td>Ruminants</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Goats (Capra aegagrus hircus)</td>
<td>Haemonchus contortus (N)</td>
<td>50</td>
<td>S – abomasum T – lumen</td>
<td>High throughput sequencing of 16S rRNA amplicons (Illumina)</td>
<td>No change</td>
<td>Phylum: ↓ Euryarchaeota Order: ↑ Pasteurellales Species: ↑ Selenomonas ruminantium</td>
<td>[16]</td>
</tr>
<tr>
<td>Cattle (Bos taurus)</td>
<td>Ostertagia ostertagi (N)</td>
<td>14</td>
<td>S – abomasum T – lumen</td>
<td>High throughput sequencing of 16S rRNA amplicons (454)</td>
<td>No change</td>
<td>Genus: ↑ Ethanoligenens, ↓ Subdoligranulum</td>
<td>[23]</td>
</tr>
<tr>
<td>Companion animals</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cats (Felis catus)</td>
<td>Toxocara cati (N)</td>
<td>One time point case control</td>
<td>T – faeces</td>
<td>High throughput sequencing of 16S rRNA amplicons (Illumina)</td>
<td>No change</td>
<td>Phylum: ↑ Actinobacteria Class: ↑ Corebacteria, ↓ Gammaproteobacteria Order: ↑ Lactobacillales, ↑ Corbacteriales Family: ↑ Enterococcaceae, ↑ Corbacteriaceae Genera: ↑ Collinsella, ↑ Enterococcus, ↓ Dorea, ↓ Lactobacillus, ↓ Ruminococcus, ↓ Balleidia, ↓ Jeotgalicoccus</td>
<td>[17]</td>
</tr>
<tr>
<td>Host Species</td>
<td>Parasite species</td>
<td>Time of sampling (days post infection)</td>
<td>Site (S)/type (T) of sample</td>
<td>Method of profiling microbiota</td>
<td>Effect on diversity</td>
<td>Predominant changes reported</td>
<td>Ref.</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
<td>--</td>
<td>-----------------------------</td>
<td>---</td>
<td>---------------------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>Companion animals</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[28]</td>
</tr>
<tr>
<td>Cats and dogs (Felis catus and Canis lupus familiaris)</td>
<td>Ancylostoma caninum (N) (co-infection with Giardia spp.)</td>
<td>One time point case control</td>
<td>T – faeces</td>
<td>High throughput sequencing of 16S rRNA amplicons (bacterial tag encoded FLX amplicon pyrosequencing)</td>
<td>No change</td>
<td>No compositional changes due to Ancylostoma caninum alone in this study</td>
<td></td>
</tr>
</tbody>
</table>

N = nematode, T = trematode, C = cestode
Legends to figures

Figure 1. Current theories of causality of helminth-microbiota interactions in the gastrointestinal system of vertebrate hosts. (1) Helminth infections induce local and systemic host immune responses which, in turn, impact on the composition of the microbial flora; (2) the host epithelial cells produce antimicrobial proteins (AMP) in response to helminth infections, with subsequent alteration of the microbial flora; (3) Helminth excretory/secretory products (ES) induce shifts in the gut microbiota composition.

Figure 2. Potential use of microbiota manipulation for controlling helminth infection and disease. (A) Selected probiotics, e.g. Bifidobacteria, could be administered to promote host Th2 immune responses leading to death and expulsion of parasites; (B) Prebiotics, e.g. inulin, could be administered to promote growth of selected bacterial taxa, e.g. lactobacilli, and increase in their metabolites (e.g. short chain fatty acids (SCFAs) or lactic acids (LA)), leading to a decrease in gut pH and helminth death and expulsion; (C) Diet manipulation, e.g. increased protein or carbohydrate, could be used to counteract the changes in microbiota metabolism associated to helminth infection.

Figure I. Pros and cons of ‘traditional’ and ‘modern’ microbiota profiling techniques.