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findings support the recent advances in higher organisms 
that the flexibility of metabolic reprogramming and the bal-
ance between energetics and stress resistance are the unify-
ing principles of lifespan extension. Future work to reveal 
how the metabolic switch and stress response is coordi-
nated will help delineate the molecular mechanisms of 
aging in yeast and shed novel insight into aging/anti-aging 
principles in higher organisms.
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Introduction

Two paradigms of aging studies in S. cerevisiae, i.e., chron-
ological lifespan and replicative lifespan, have led to dis-
covery of many pro-aging and anti-aging factors (TOR/
SCH9, Ras/PKA, AMPK and SIR2) that are function-
ally conserved in higher organisms, including mammals 
(Burkewitz et al. 2014; Enns and Ladiges 2010; Johnson 
et al. 2013; Poulose and Raju 2015). While the replica-
tive lifespan (RLS) measures the potential of mother cells 
to produce daughters in rich medium, the chronological 
lifespan (CLS) determines the mean and maximum survival 
of non-dividing cells in starving conditions. Two lines of 
evidence suggest that metabolic shift from fermentation to 
respiration and the activation of stress response are both 
important for CLS extension. Work from the labs of Shadel 
and Barrientos indicate that CLS extension, mediated by 
calorie restriction or reduced TOR signaling, requires mito-
chondrial respiration above a certain threshold (Bonawitz 
et al. 2007; Ocampo et al. 2012; Pan and Shadel 2009). 
Studies from the labs of Longo, De Virgilio and our own 

Abstract Studies on replicative and chronological aging 
in Saccharomyces cerevisiae have greatly advanced our 
understanding of how longevity is regulated in all eukary-
otes. Chronological lifespan (CLS) of yeast is defined as 
the age-dependent viability of non-dividing cell popula-
tions. A number of nutrient sensing and signal transduc-
tion pathways (mainly TOR and PKA) have been shown 
to regulate CLS, yet it is poorly understood how the star-
vation signals transduced via these pathways lead to CLS 
extension. Using reporters whose expressions are induced 
by glucose starvation, we have screened the majority of 
the ‘signaling’ mutants in the yeast genome and identified 
many genes that are necessary for stress response. Subse-
quent analyses of the ‘signaling’ mutants not only revealed 
novel regulators of CLS, such as the GSK-3 ortholog 
Mck1, but also demonstrated that starvation signals trans-
mitted by SNF1/AMPK, PKC1 and those negatively regu-
lated by TOR/PKA, including Rim15, Yak1 and Mck1 
kinases, are integrated to enable metabolic reprogramming 
and the acquisition of stress resistance. Coordinated meta-
bolic reprogramming ensures the accumulation of storage 
carbohydrates for quiescent cells to maintain viability. We 
provide new evidence that Yak1, Rim15 and Mck1 kinases 
cooperate to activate  H2O2-scanvenging activities, thus lim-
iting the levels of ROS in cells entering quiescence. These 
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suggest that reduced TOR/PKA signaling extends CLS via 
the activation of stress response dependent on the Msn2/4 
and Gis1 transcription factors, and the Rim15 and Yak1 
kinases (Wanke et al. 2008; Wei et al. 2008; Zhang et al. 
2013). Mitochondria are the major source of ATP, but also 
a major source of reactive oxygen species (ROS) whose 
accumulation is detrimental to lifespan extension (Breiten-
bach et al. 2012). Therefore, metabolic switch to respira-
tion and the control of ROS levels have to be coordinated to 
ensure longevity.

Based on this hypothesis, we screened the majority of 
mutants defective in ‘signaling’, using starvation-induced 
reporters (controlled by the HSP12 and the SSA3 pro-
moters) whose expression is dependent on Msn2/4, Gis1 
and Hsf1. Mck1, the yeast GSK-3 ortholog, was identi-
fied as a novel regulator of quiescence entry (Quan et al. 
2015). Mck1 acts in parallel to the PAS kinase Rim15 to 
activate starvation-induced gene expression, the acqui-
sition of stress resistance, the accumulation of storage 
carbohydrates (trehalose and glycogen), and the exten-
sion of CLS. Further genetic analyses revealed that the 
key factors for cell survival in stationary phase are the 
accumulation of sufficient storage carbohydrates (both 
trehalose and glycogen) and the elimination of ROS dur-
ing the transition phases (Cao et al. 2016). The accumu-
lation of trehalose and glycogen requires the integration 
of starvation signals transduced from multiple signaling 
pathways, including the energy-sensing complex (SNF1/
AMPK), and the cell wall integrity (CWI) pathway, and 
the Yak1, Rim15 and Mck1 kinases which were previ-
ously shown to be negatively regulated by TOR and/or 
PKA. We have also demonstrated that the levels of intra-
cellular reactive oxygen species (ROS) and the popu-
lation size are controlled by Yak1, Rim15 and Mck1 
kinases. Removal of any of the three kinase genes, espe-
cially MCK1, severely decreased the  H2O2-scavenging 
activity in post-diauxic shift cells (Fig. 1). Removal of 
YAK1 from the rim15∆ or mck1∆ mutants, abolished 
such activity, suggesting that Yak1 may act in parallel to 
Rim15 or Mck1 to eliminate intracellular ROS (Fig. 1). 
These data support the observation that metabolic repro-
gramming to increase energy storage and the activation of 
anti-oxidant defence systems are coordinated by a set of 
key signaling proteins to ensure long-term survival (Cao 
et al. 2016). Coordination of storage carbohydrate accu-
mulation and the antioxidant defence systems is effected 
in part through transcriptional activation by Msn2/4, Gis1 
and Hsf1 (Fig. 2). This set of factors are responsible for 
transcription activation of mitochondrial respiration, the 
antioxidant defence systems and the expression of molec-
ular chaperones (exemplified by HSP and SSA proteins) 
(De Virgilio 2012; Morano et al. 2012). Based on these 

findings, we have proposed a framework for further stud-
ies to address the molecular mechanisms of quiescence 
entry (Miles and Breeden 2017), stress response (Ho 
and Gasch 2015) and chronological lifespan extension in 
yeast (Fig. 2). In this perspective, highlighted below are 
areas of research in yeast which we believe will further 
advance our understanding of aging principles in other 
eukaryotic organisms.

The roles of Trehalose

The accumulation of storage carbohydrates, especially 
trehalose, is essential to CLS extension (Cao et al. 2016). 
Trehalose protects stationary-phase cells against various 
stresses (Eleutherio et al. 2015), supports cell cycle pro-
gression in poorer nutrient conditions (Ewald et al. 2016) 
and fuels quiescence exit upon return to growth (Shi et al. 
2010). The performance of baker’s and brewer’s yeasts 
largely relies on their capacity to accumulate trehalose 
(Eleutherio et al. 2015). In plants, trehalose accumula-
tion triggers autophagy during desiccation (Williams et al. 
2015). Mammals do not synthesise this disaccharide. 
However, trehalose administration decreases the levels of 
toxic protein aggregates in animal models of neurodegen-
erative disorders by inducing autophagy (Emanuele 2014). 
Recently, it has been revealed that trehalose can be actively 
transported into mammalian cells, inhibiting glucose uptake 
and promoting autophagy via AMPK and ULK1 activation 
(DeBosch et al. 2016; Mayer et al. 2016). Further studies 
on the functions of trehalose in stress resistance, autophagy 
and lifespan extension and on how the accumulation of tre-
halose is regulated will be beneficial to both biotechnology 
and medicine (Eleutherio et al. 2015).
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Fig. 1  H2O2-scavenging activities in post-diauxic shift cells. Sam-
ples of WT and mutant cells grown in YPD were taken shortly after 
glucose is exhausted (12 h). Total protein was extracted by breaking 
cells with glass beads in Tris buffer (pH 7.5). The amount of  H2O2 
broken down (mM/min) was monitored at 240 nm and normal-
ised to total amount of protein (mg) used in each assay to represent 
 H2O2-scavenging activities. Mean value and standard deviation from 
quadruplicates were shown
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Mitochondrial ROS as an adaptive signal 
to extend chronological lifespan

The free radical theory of aging (Harman 1956) has 
recently been challenged by a number of findings that 
mitochondrial ROS are not always harmful and can 
stimulate pro-longevity pathways in animals (Wang and 
Hekimi 2015). It is generally accepted that severe mito-
chondrial dysfunction accelerates aging, whereas mild 
mitochondrial stress can induce a wide-ranging cytopro-
tective changes (both metabolic and biochemical), result-
ing in longer lifespan (Sun et al. 2016; Yun and Finkel 
2014). In yeast, loss of cytochrome C oxidase promotes 
ROS accumulation (albeit mainly from the ER) and 
severely reduces chronological lifespan (Leadsham et al. 
2013). Indeed, when mitochondrial respiratory capacity 
is maintained above a threshold level (40%), yeast cells 
can accumulate sufficient nutrient stores to enable stress 
resistance and CLS extension (Ocampo et al. 2012). Two 
lines of evidence in yeast are consistent with mitochon-
drial ROS acting as an adaptive signal to extend CLS. 
First, yeast strains with reduced TOR signaling exhib-
ited enhanced mitochondrial ROS (superoxide anions) 
during the growth phase, resulting in reduced levels of 
ROS in stationary-phase cells and elevated lifespan (Pan 
et al. 2011). This mtROS-activated hormesis and longev-
ity extension involves the activation of stress response 
dependent on Msn2/4 and Gis1 (Pan et al. 2011), and the 
Rph1-dependent epigenetic silencing by triggering a non-
canonical activation of the DNA damage response path-
ways (Schroeder et al. 2013). Second, inactivation of cat-
alases increases chronological lifespan through enhanced 
levels of hydrogen peroxide, which activates superox-
ide dismutase to inhibit the accumulation of superoxide 

anions (Mesquita et al. 2010). Although it is not clear 
what type of ROS acts as the ultimate signal, these stud-
ies suggest that ROS generated by mitochondrial respi-
ration may feed into the regulation network that coordi-
nates metabolic reprogramming and the acquisition of 
stress resistance (Fig. 2). In this respect, tor1∆ mutants 
accumulates less ROS at the stationary phase (Pan et al. 
2011) but higher levels of storage carbohydrates (Cao 
et al. 2016; Hu et al. 2014) than wild-type cells. It would 
be interesting to determine whether enhanced energy 
storage or reduced ROS levels play a dominant role in 
CLS extension in tor1∆ cells. Similarly, it is interesting 
to investigate whether strains defective in catalase activi-
ties also accumulate higher levels of energy stores to sup-
port extended lifespan. Finally, future work should also 
include the reconstruction of the genome-wide regula-
tion network and reveal how ROS signals are sensed and 
transduced to the components of this network (Fig. 2).

Yeast CLS as a model to delineate basic principles 
of aging

Studies in different organisms, including mammals, have 
identified nine hallmarks of aging: genomic instability, tel-
omere attrition, epigenetic alterations, loss of proteostasis, 
deregulated nutrient sensing, mitochondrial dysfunction, cel-
lular senescence, stem cell exhaustion, and altered intercel-
lular communication (Lopez-Otin et al. 2013). Each of these 
hallmarks is connected to undesirable metabolic alterations 
and all the interventions designed to delay aging, including 
calorie restriction, are thought to operate in the context of 
metabolic reprogramming to ensure efficient nutrient uti-
lization and to enhance stress resistance (Lopez-Otin et al. 
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Fig. 2  The current model of CLS regulation in yeast. Upon glucose 
starvation, a number of signaling complexes/proteins are activated 
(represented by SNF1/AMPK) or derepressed (represented by Yak1, 
Rim15 and Mck1), which in turn promote mitochondrial respira-
tion to accumulate storage carbohydrates (represented by trehalose). 

Yak1, Rim15 and Mck1 cooperate to retain transition-phase cells at 
 G1/G0 by imposing a size threshold for S phase entry. The accumula-
tion of storage carbohydrates, the antioxidant defense systems and the 
expression of molecular chaperones are transcriptionally activated by 
Msn2/4, Gis1 and Hsf1 transcription factors to maintain proteostasis
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2016). Our findings that CLS extension in yeast is regulated 
by a signaling network coordinating metabolic reprogram-
ming and stress response suggest that yeast CLS model 
shares the basic principles with those operating in higher 
organisms. Under normal laboratory conditions, yeast cells 
change their metabolism from fermentation (rapid growth 
and reproduction on glucose), to respiration (slow growth 
and reproduction on non-fermentable carbon sources), and 
to maintenance on storage carbohydrates and other recycled 
nutrients. Enhancing the capability of yeast cells to switch to 
respiration by either genetic (tor1∆) or environmental (calo-
rie restriction) modulations further extends CLS. Conversely, 
severely compromising peroxisomal function, mitochondrial 
respiration, gluconeogenesis, or deleting the effectors of the 
quiescence program shortens CLS (Bonawitz et al. 2006; 
Cao et al. 2016; Garay et al. 2014; Kawalek et al. 2013; 
Leadsham et al. 2013; Ocampo et al. 2012; Wei et al. 2008). 
In mammals, normal energy metabolism is periodically 
shifted between glucose and fat oxidation by the mitochon-
drial machinery, in response to physiological and nutritional 
circumstances. Dietary restriction and other lifespan-extend-
ing measures regulates mitochondrial function and triggers 
metabolic switches from anabolism to non-toxic catabolism, 
thought to be coordinated by the activation of sirtuin and 
AMPK, and the inhibition of mTOR and IGF-insulin sensing 
pathways (Finkel 2015; Lopez-Otin et al. 2016). Therefore, 
CLS extension in yeast also involves similar principles of 
regulation to those controlling lifespan in mammals. Reveal-
ing how SNF1/AMPK, CWI (PKC1), and other effectors of 
the quiescence program (Yak1, Rim15, and Mck1 in Fig. 2) 
coordinate metabolic reprogramming and stress response via 
the regulation of mitochondrial respiration will provide an 
in-depth understanding of the molecular mechanisms under-
lying this metabolic switch in yeast, allowing the identifi-
cation of evolutionarily conserved signaling and metabolic 
modules that are essential to metabolic flexibility and lifes-
pan extension.

In summary, our and others’ findings support that the 
key to extend lifespan in yeast and other eukaryotic organ-
isms may lie with their ability (and the opportunity) to 
metabolically switch to alternative fuels and, at the same 
time, to overcome the redox stress to maintain homeosta-
sis. Metabolic disorders contribute to many age-related 
diseases, such as diabetes and cancer. Revealing how the 
signal transduction cascades, ROS signals and metabolic 
circuits are rewired during the shift to mitochondrial res-
piration in yeast will provide valuable insights into ageing 
mechanisms and age-related diseases in mammals.
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