ChemDataExtractor: A toolkit for automated extraction of chemical information from the scientific literature

Callum Court
Molecular Engineering, University of Cambridge
Supervisor: Dr Jacqueline Cole
Overview

1 Introduction
2 Previous work
3 Challenges
4 Overview of the ChemDataExtractor toolkit
5 Applications
Introduction

- Approximately 20,000 new compounds and properties published in 10,000 biomedical chemistry journals in 2013 alone\(^1\)

- Ideally we would compile all available scientific data into a database of material properties

- Too much data to extract manually
Introduction

- Scientific results are typically presented in papers, patents, etc.
- Containing unstructured and semi-structured data in the form of text, tables, captions, and figures not readily interpretable by machines.
- Modern Machine Learning and Natural Language Processing (NLP) techniques provide us with the means for automated information extraction.
Previous work

- Large scale data-mining for materials discovery:
 - The Materials Genome Initiative\(^2\)
 - The Harvard Clean Energy Project\(^3\)
 - The Materials Project\(^4\)

- Text mining tools for the Chemistry domain:
 - ChemicalTagger\(^5\)
 - ChemEx Project\(^6\)
Previous work

- Previous methods tend to focus on predicting chemical properties confined to a particular field of research (photovoltaics, batteries etc.)
- All would be well complemented by a generic method for generating databases of materials properties in a domain-independent way
Challenges

- Although the scientific literature is relatively formulaic and structured, text-mining the scientific literature is very difficult.
 - Each sub-domain of science has its own specific terminology and abbreviations.
 - These conventions can vary between papers (and perhaps between sections).
 - Each sentence/paragraph cannot be processed individually as information is spread out through multiple sections.
ChemDataExtractor (CDE)

- A comprehensive toolkit for the automated extraction of chemical information from scientific documents.
- Full extraction of melting points, glass transitions, UV-Vis absorption spectra and more
- Full source code and documentation available under MIT license at www.chemdataextractor.org
Document processing

- This stage converts differing file types into a single consistent structure consisting of abstracts, paragraphs, figures, captions and tables.
- Enables all subsequent stages to perform in the same way regardless of initial document type.
Natural language processing

The key stage of the CDE pipeline where relationships and information are extracted from the text of the document:

1. Tokenization
2. Part-of-speech tagging
3. Entity recognition
4. Phrase parsing
5. Information extraction
Natural language processing

Figure 2 shows the UV-vis absorption spectra of 3a (red) and 3b (blue) in acetonitrile. The peak at...
Table parsing

- Tables are an ideal source for retrieving structured data
- This stage treats tables as highly condensed forms of text
- Specialised rules are used to parse table headers and columns in the same way as normal text
Finally, all information from the natural language processor and table processor can be brought together.

This stage resolves the interdependencies between different sections and compiles all information into a set of structured records.

These records can be easily compiled into a database.
Performance

- Evaluation performed on a set of 50 chemistry articles sourced from the Royal Society of Chemistry, American Chemical Society and Elsevier
- Precision: The fraction of retrieved records that are correct
- Recall: The fraction of correct records that are retrieved
- F-score: The harmonic mean of Precision and Recall

<table>
<thead>
<tr>
<th>Record Type</th>
<th>Precision</th>
<th>Recall</th>
<th>F-Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemical identifier records</td>
<td>94.1%</td>
<td>92.7%</td>
<td>93.4%</td>
</tr>
<tr>
<td>Spectrum records</td>
<td>88.3%</td>
<td>85.4%</td>
<td>86.8%</td>
</tr>
<tr>
<td>Chemical property records</td>
<td>93.5%</td>
<td>89.6%</td>
<td>91.5%</td>
</tr>
</tbody>
</table>
Applications

Autogenerated databases of material properties can have great utility in materials science:

1. Materials or drug discovery
2. Property prediction
3. Compound identification
4. Research design
Currently work is being undertaken to enhance the capability of CDE to extract properties associated with the physics corpora.

In particular, the extraction of magnetic properties with the aim of creating large auto-generated databases of magnetic properties.
The Snowball algorithm

- The rule-based approach to phrase parsing is highly inefficient.
- The Snowball algorithm\(^7\) is a semi-supervised machine learning approach to probabilistic phrase parsing.
- Initial results demonstrate a large increase in precision and F-score for CDE when a Snowball step is included into the pipeline.
ChemDataExtractor provides a complete pipeline for automatically extracting chemical data from the scientific literature in a domain independent way.

The overall system presents a high F-score of over 90% when applied to the chemistry literature.

Further enhancements to the system may be able to push this score even higher and make the system more suited for use in the physics domain.

This has great potential for use in materials science research.
References

