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Abstract  18 

Human cytomegalovirus (HCMV) primary infection and periodic re-activation of latent virus is 19 

generally well controlled by T-cell responses in healthy people.  In older donors, overt HCMV 20 

disease is not generally seen despite the association of HCMV infection with increased risk of 21 

mortality.  However, increases in HCMV-DNA in urine of older people suggest that, although the 22 

immune response retains functionality, immunomodulation of the immune response due to lifelong 23 

viral carriage may alter its efficacy.  Viral transcription is limited during latency to a handful of viral 24 

genes and there is both an IFNγ and cellular IL-10 CD4+ T-cell response to HCMV latency-25 

associated proteins.  Production of cIL-10 by HCMV-specific CD4+ T-cells is a candidate for ageing 26 

related immunomodulation.  To address whether long-term carriage of HCMV changes the balance 27 

of cIL-10 and IFNγ secreting T-cell populations, we recruited a large donor cohort aged 23–78 years 28 

and correlated T-cell responses to 11 HCMV proteins with age, HCMV-IgG levels, latent HCMV-29 

load in CD14+ monocytes and T-cell numbers in the blood.   IFNγ responses by CD4+ and CD8+ T-30 

cells to all HCMV proteins were detected, with no age-related increase in this cohort.  IL-10 31 

secreting CD4+ T cell responses were predominantly to latency-associated proteins but did not 32 

increase with age.  Quantification of HCMV genomes in CD14+ monocytes, a known site of latent 33 

HCMV carriage, did not reveal any increase in viral genome copies in older donors.  Importantly, 34 

there was a significant positive correlation between the latent viral genome copy number and the 35 

breadth and magnitude of the IFNγ T-cell response to HCMV proteins.  This study suggests in 36 

healthy aged donors that HCMV specific changes in the T cell compartment were not affected by age 37 

and were effective, as viremia was a very rare event.  Evidence from studies of unwell aged has 38 

shown HCMV to be an important co-morbidity factor,  surveillance of latent HCMV load and low-39 

level viremia in blood and body fluids, alongside typical immunological measures and assessment of 40 

the anti-viral capacity of the HCMV-specific immune cell function would be informative in 41 

determining if anti-viral treatment of HCMV replication in the old maybe beneficial.   42 
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Introduction 43 

A consequence of ageing in the human population is a decline in immune function, often described as 44 

immune senescence, which includes a loss of adaptive immune cells and an increase in inflammatory 45 

cytokines resulting in dysregulation of the immune response (McElhaney and Effros, 2009).  There is 46 

now evidence from a number of studies that, after the age of 65, the age associated loss of immune 47 

function results in individuals becoming more susceptible to infectious diseases as well as increased 48 

morbidity and mortality from autoimmune disorders (Denkinger et al., 2015; Kline and Bowdish, 49 

2016).  Infection with human cytomegalovirus (HCMV) is characterized by its life-long persistence 50 

in the infected individual due, in part, to its ability to establish a latent infection in bone marrow stem 51 

cells and myeloid cells (Sinclair and Sissons, 2006).  Despite a robust immune response to the 52 

primary infection, the large number of immune evasion molecules encoded by HCMV allows it to 53 

establish its latent life cycle (Wills et al., 2015).  Primary HCMV infection and reactivation from 54 

latency is generally well controlled in healthy individuals; however, when the immune system is 55 

compromised, or under developed, it can become a significant problem (Crough and Khanna, 2009; 56 

Jackson et al., 2011).  A potential impact of lifelong persistence of HCMV is its effect on the host 57 

immune response with ageing. A number of longitudinal and population cohort studies have 58 

suggested that HCMV sero-positivity was linked to age-related (i) increase in susceptibility to 59 

infections, (ii) poor response to vaccinations and (iii) increased risk of all-cause mortality compared 60 

to age matched HCMV sero-negative individuals – which has been termed the Immune Risk 61 

Phenotype (IRP) (Olsson et al., 2001; Wikby et al., 2002; Trzonkowski et al., 2003; Ouyang et al., 62 

2004; Hadrup et al., 2006; Strindhall et al., 2013).  Analysis of a number of large population cohorts 63 

recruited for cancer, dementia and nutritional studies in the UK and USA have also shown a 64 

significant association between HCMV sero-positivity and mortality from cardiovascular related 65 

disease (Simanek et al., 2011; Gkrania-Klotsas et al., 2012; Olson et al., 2013; Savva et al., 2013; 66 

Spyridopoulos et al., 2016).  However, other studies have shown no such age-related correlation 67 

between HCMV sero-positivity and declines in immune responses to either novel infections (Lelic et 68 

al., 2012; Schulz et al., 2015) or responses to vaccination (Furman et al., 2015).  Similarly, a study 69 

measuring frailty in older people saw a positive association with inflammatory cytokines but not 70 

HCMV infection (Collerton et al., 2012) perhaps consistent with studies that have shown that rises in 71 

inflammatory cytokines in the serum of older donors is not primarily driven by HCMV (Bartlett et 72 

al., 2012). 73 

It has been observed that infection with HCMV changes the composition of the CD4+ and CD8+ 74 

memory T cell repertoires; this includes an expansion of the T cell population which have lost 75 

expression of the co-stimulatory molecules CD27 and CD28 but also show re-expression of CD45RA 76 

and co-expression of  the carbohydrate HNK-1 (CD57) (reviewed in (Weltevrede et al., 2016)). Such 77 

T cells are considered to be a highly differentiated phenotype (Harari et al., 2004), and potentially 78 

dysfunctional as they often lose the ability to secrete cytokines and have limited proliferative 79 

capacity (Ouyang et al., 2004; Henson et al., 2009).  It has been suggested that expanded populations 80 

of highly differentiated T cells in HCMV sero-positive older donors may be detrimental to the 81 

infected individual (Vescovini et al., 2010; Derhovanessian et al., 2014; Broadley et al., 2017).  82 

However, such increases in these highly differentiated T cells is also observed in young HCMV 83 
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positive individuals (Miles et al., 2007) and it is, also, now clear that these highly differentiated T 84 

cells are still functional and, with the correct co-stimulation, can proliferate (Waller et al., 2007; 85 

Riddell et al., 2015). Similarly, HCMV specific T cells have been shown to produce multiple anti-86 

viral cytokines and have efficient cytotoxic capacity despite a highly differentiated phenotype 87 

(Casazza et al., 2006; Lachmann et al., 2012; Riou et al., 2012).  Furthermore, older HCMV sero-88 

positive individuals do not appear to suffer from overt HCMV disease from reactivating virus or 89 

HCMV re-infection which suggests that the immune response of older people retains the ability to 90 

control virus replication (Stowe et al., 2007).  Despite older HCMV sero-positive donors having 91 

functional HCMV specific immune responses, there does appear to be age-related increases in levels 92 

of viral DNA detectable in urine (Stowe et al., 2007) and blood (Furui et al., 2013). This suggests 93 

that the immune response in older people may be altered, possibly due to lifelong carriage of the 94 

virus, and that immunomodulation of the HCMV specific immune response, as either a direct 95 

consequence of the viral infection or bystander effects, results in reduced clearance of reactivating 96 

virus in older people (Wills et al., 2015).   97 

Latent carriage of HCMV in CD34+ progenitor cells and their myeloid derivatives is characterized 98 

by repression of viral immediate Early (IE) gene transcription with a restricted gene expression 99 

profile which cannot support production of infectious virus.   A number of viral genes have been 100 

identified as being transcribed during HCMV latent infection, including UL138 (Goodrum et al., 101 

2007), LUNA (latent undefined nuclear antigen; UL81-82as) (Bego et al., 2005; Reeves and Sinclair, 102 

2010), US28 (Beisser et al., 2001), UL111A (vIL-10) (Jenkins et al., 2004) and UL144 (Poole et al., 103 

2013).  Analysis of the secreted cellular proteins (cell secretome) of experimentally latently infected 104 

CD34+ and CD14+ cells have identified the induced expression of chemokines which can recruit T 105 

cells as well as the cellular cytokines IL-10 and TGF-β, both of which can modulate the activity of T 106 

cells which have migrated to the environment surrounding the latent infection (Mason et al., 2012).  107 

HCMV specific CD4+ T cells have been identified that either secrete cIL-10 or have a regulatory cell 108 

phenotype (Tovar-Salazar et al., 2010; Schwele et al., 2012; Terrazzini et al., 2014; Derhovanessian 109 

et al., 2015; Clement et al., 2016) and, in the mouse, it has been shown that CD4+ T regulatory cells 110 

(Tregs) and IL-10 secretion can reduce viral clearance and increase persistence in murine 111 

cytomegalovirus (MCMV) (Jost et al., 2014; Clement et al., 2016).  Additionally, there is evidence 112 

that the frequency of HCMV specific inducible Tregs is increased in older individuals (Terrazzini et 113 

al., 2014), alongside an overall increase in frequency of T regulatory cells in old age (Gregg et al., 114 

2005; Chidrawar et al., 2009).  Previously, we have identified CD4+ T cells specific for peptides to 115 

two of the latency-associated proteins, UL138 and LUNA which secrete cIL-10 and also possess Th1 116 

anti-viral effector functions (Mason et al., 2013). We have also shown that the UL138 specific CD4+ 117 

T cells recognize experimentally latently infected CD14+ monocytes, secrete cIL-10 and suppress T 118 

cell function.    119 

 120 

With these observations in mind, we hypothesized that the long term carriage of HCMV could create 121 

an immunomodulatory environment to help prevent clearance of the virus by skewing the CD4+ T 122 

cell compartment towards a suppressive or regulatory cIL-10 producing phenotype.  We also wanted 123 
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to assess whether the same environment had an impact on the frequency of HCMV specific CD8+ T 124 

cells within a large old aged donor cohort, who have carried HCMV for longer compared to younger 125 

sero-positive donors.  Additionally, within the study, we wanted to measure the levels of latent viral 126 

genome carriage and determine if infectious virus was detectable and relate this to changes in the T 127 

cell response.  To address these questions, we conducted a study on a large healthy donor cohort 128 

which encompassed a broad age range (23 – 78 years) of both HCMV sero-positive and negative 129 

donors.  We performed absolute cell counts, measured HCMV specific antibody levels, assayed viral 130 

genome copy number in total peripheral blood and in CD14+ cells as well as measuring the CD8+ 131 

specific production of IFNγ and CD4+ specific production of IFNγ and IL-10 in response to 132 

stimulation by overlapping peptide pools to eleven HCMV proteins (5 latency associated and 6 lytic 133 

only expressed proteins).   The study group exhibited typical age-related decline in both absolute 134 

CD4+ and CD8+ naïve T cell numbers and HCMV sero-positive donors had increased absolute 135 

numbers of T cells with a differentiated phenotype compared to sero-negative donors.  We did not 136 

see an inversion of the CD4:CD8 ratio within this donor cohort, a characteristic associated with the 137 

IRP, although CD4:CD8 ratio was decreased in HCMV sero-positive donors compared to sero-138 

negative.   In contrast to studies in other donor cohorts, we did not see an age related expansion of the 139 

HCMV IgG response or an influence of donor age on either the breadth or magnitude of the T cell 140 

responses (Parry et al., 2016; Weltevrede et al., 2016). We detected both CD4+ and CD8+ specific 141 

IFNγ responses to all 11 HCMV proteins analyzed and also detected more limited CD4+ specific IL-142 

10 responses to the same proteins, we also confirmed our previous observations that CD4+ specific 143 

IL-10 responses are more common towards latency associated proteins.   We were able to detect 144 

latent HCMV genomes in isolated peripheral blood CD14+ monocytes in 45% of donors but, in 145 

contrast to previous reports (Parry et al., 2016), we did not observe an increase in HCMV copy 146 

number in donors aged over 70 years old.  Importantly, we did see a significant association between 147 

the levels of HCMV detected in CD14+ monocytes and both the breadth and magnitude of the CD8+ 148 

T cell responses to HCMV proteins, irrespective of donor age.   Overall it is our opinion that larger 149 

latent HCMV reservoirs will lead to increased HCMV reactivation and dissemination events, which 150 

in normal healthy individuals will stimulate secondary HCMV specific T cell responses, thus driving 151 

increases in T cell frequency and differentiation status.     152 
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Materials and methods 153 

 154 

Ethics and Donor Cohort information 155 

The study donor cohort was recruited by the National Institute of Health Research (NIHR) 156 

Cambridge BioResource, using their Biobank of volunteers, who predominantly are local to 157 

Cambridge or live in the East Anglian Region of the United Kingdom.  Ethical approval was 158 

obtained from University of Cambridge Human Biology Research Ethics Committee.  Informed 159 

written consent was obtained from all donors in accordance with the Declaration of Helsinki 160 

(HBREC.2014.07).   Known HCMV sero-positive and sero-negative donors were recruited in three 161 

age groups; Young (18 – 40 years), Middle (41 – 64 years) and Old (65+ years) were included in this 162 

study.  Volunteers being treated with oral or intravenous immunomodulatory drugs (including 163 

steroids, tacrolimus, cyclosporins, azathioprines, Mycophenolate, Methotrexate, Rituximab, 164 

Cyclophosphamide) within the last 3 months, undergoing injected Rheumatoid Arthritis treatment 165 

including anti-TNFα agents and anyone actively, or within the last 24 months, being treated with 166 

cancer chemotherapy were excluded from the study.  119 HCMV sero-positive and sero-negative 167 

donors were included in this study, the age range of the recruited donor cohort was 23 – 76 years, 70 168 

donors were female and 49 donors were male.  Further characteristics of the studied donor cohort are 169 

detailed in Table 1.  In total, a 50ml peripheral blood sample was collected from each donor, 170 

comprised of 1.2ml clotted blood, 1.2ml EDTA treated blood and 47.6ml Lithium Heparin treated 171 

blood samples. 172 

 173 

Peripheral Blood Mononuclear cell isolation 174 

Peripheral blood mononuclear cells (PBMC) were isolated from the heparinized blood samples using 175 

Lymphoprep (Axis-shield, Oslo, Norway) density gradient centrifugation. 176 

 177 

Absolute count Protocol 178 

50μl of the EDTA treated whole blood sample was transferred to Becton Dickinson Trucount tubes 179 

(BD Biosciences, Oxford, UK) and stained with a pre-mixed antibody cocktail containing CD45-180 

VioBlue, CD3-VioGreen (Miltenyi Biotec, Bisley, UK.), CD4-Brilliant Violet 605, CD8-PerCP-181 

Cy5.5, CD28-PE, CD27-APC-Cy7, CD45RA-FITC, CD25-APC and CD127-PE-Cy7 (BioLegend, 182 

San Diego, USA).  Following staining the red blood cells was lysed and the cells fixed using FACS 183 

Lysing solution (BD Biosciences).  The samples were stored at -80°C until acquisition (Hensley-184 

McBain et al., 2014).  Samples were acquired on a LSR Fortessa (BD Biosciences) along with 185 

Fluorescence Minus One (FMO) controls using FACS Diva software (BD Biosciences).   Samples 186 

were then analyzed using FlowJo software (Treestar, Oregon, USA), firstly the trucount bead 187 

population was identified and then the trucount bead negative population (i.e. cells) were analyzed by 188 

gating for single cells, then CD45
hi

 lymphocytes, CD3+ T cells, CD4+ and CD8+ expressing cells.  189 
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The CD4+ and CD8+ T cell populations were further subdivided into 4 memory populations defined 190 

by expression of CD27 and CD45RA, and 4 differentiation populations defined by expression of 191 

CD27 and CD28 were identified and in CD4+ T cells a Treg population defined as CD25
hi

 and 192 

CD127
lo

 were identified, gate and quadrant positions were identified using the FMO controls.  A 193 

representative gating strategy and the formula used to calculate the absolute cell counts is illustrated 194 

in Sup. Fig. 1, the event number for all populations, and trucount beads were exported to an excel 195 

sheet where the number of cells per μl of blood for each T cell subset was calculated according to 196 

manufacturer instructions. 197 

 198 

HCMV IgG Antibody levels Protocol 199 

HCMV sero-status was confirmed using serum from the clotted blood sample and HCMV IgG levels 200 

determined using an IgG enzyme-linked immunosorbent (EIA) assay, HCMV Captia (Trinity 201 

Biotech, Didcot, UK) following manufacturer’s instructions, on serum derived from clotted blood 202 

samples.  The EIA assay is semi-quantitative, containing negative, positive and calibrator controls 203 

which allow the computation of an Immune Serum Ratio (ISR) value for the amount of HCMV IgG 204 

present in the sample.  In addition to the manufacturer controls and quality control protocols, a 205 

known positive serum sample was also run to check inter-assay variability was acceptable. 206 

 207 

HCMV ORF peptide mixes 208 

8 HCMV ORF encoded proteins (UL55 (gB), UL82 (pp71), UL122 (IE2), UL123 (IE1), US3, 209 

UL138, US28 and UL111A(vIL-10)) were selected and peptide libraries comprising consecutive 210 

15mer peptides overlapping by 10 amino acid were synthesized by ProImmune PEPScreen (Oxford, 211 

UK) from sequences detailed in the Sylwester et. al. study (Sylwester et al., 2005).  A further 3 212 

HCMV ORF encoded proteins (UL83 (pp65), UL144 (which incorporated known strain variants) and 213 

LUNA (UL81-82as)) 15mer peptide libraries were synthesized by JPT Peptide Technologies GmbH 214 

(Berlin, Germany).  The individual lyophilized peptides from each ORF library were reconstituted 215 

and used as previously described (Jackson et al., 2014). 216 

 217 

Depletion of CD4+ and CD8+ T cells from PBMC 218 

PBMC were depleted of either CD4+ or CD8+ T cells by MACS using anti-CD4+ or anti-CD8+ 219 

direct beads (Miltenyi Biotech), according to manufacturer's instructions, and separated on either LS 220 

columns (Miltenyi Biotech) or by using an AutoMACS Pro (Miltenyi Biotech). Efficiency of 221 

depletion was determined by staining cells with a CD3-FITC, CD4-PE and CD8-PerCPCy5.5 222 

antibody mix (all BioLegend) and analyzed by flow cytometry. Depletions performed in this manner 223 

resulted in mean 3.8% residual CD8+ T cells and 8.6% residual CD4+ T cells (from n=61 donors). 224 

 225 
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Dual FLUOROSPOT assays 226 

2 x 10
5
 PBMC depleted of either CD8+ or CD4+ T cells suspended in X-VIVO 15 (Lonza, Slough, 227 

UK) supplemented with 5% Human AB serum (Sigma Aldrich) were incubated in pre-coated 228 

Fluorospot plates (Human IFNγ and IL-10 FLUOROSPOT (Mabtech AB, Nacka Strand, Sweden) ) 229 

in triplicate with ORF mix peptides (final peptide concentration 2µg/ml/peptide) and an unstimulated 230 

and positive control mix (containing anti-CD3 (Mabtech AB), Staphylococcus Enterotoxin B (SEB), 231 

Phytohaemagglutinin (PHA) and Pokeweed Mitogen (PWM) and Lipopolysaccharide (LPS) (all 232 

Sigma Aldrich)) at 37ºC in a humidified CO2 atmosphere for 48 hours.   The cells and medium were 233 

decanted from the plate and the assay developed following the manufacturer’s instructions.  234 

Developed plates were read using an AID iSpot reader (Oxford Biosystems, Oxford, UK) and 235 

counted using AID EliSpot v7 software (Autoimmun Diagnostika GmbH, Strasberg, Germany) using 236 

distinct counting protocols for IFNγ and IL-10 secretion.  Donor results were discounted from further 237 

analysis if there was greater than 1000 spot forming units (sfu) background secretion of IFNγ or IL-238 

10 in the unstimulated wells, additionally the sfu response in the positive control wells had to be at 239 

least 100sfu (IFNγ) or 50sfu (IL-10) greater than the background sfu.  All data were then corrected 240 

for background cytokine production and the positive response cut-off for IFNγ and the IL-10 241 

responses was determined by comparing the distribution of the responses from HCMV sero-positive 242 

and sero-negative donors to all HCMV proteins and the positive control.  This analysis determined 243 

that the positive response for IFNγ and IL-10 was greater than 100sfu/million, this threshold is 244 

indicated in Figures 3A, 4A and 5A (dashed line). 245 

 246 

Measurement of HCMV DNAemia in whole blood 247 

A 1ml EDTA treated whole blood sample was stored at -20°C for each donor.  DNA was isolated 248 

from the whole blood sample using the QIAamp DNA Blood Midi Kit (Qiagen, Manchester, UK) 249 

following the manufacturer’s instructions.  Extracted DNA samples were stored at -20°C until 250 

required.  The detection of HCMV by Real Time Quantitative PCR method using the StepOne Real-251 

Time PCR system (Applied Biosystems, ThermoFisher Scientific) was performed using a method 252 

adapted from (Mattes et al., 2005).  Real-time amplification of HCMV DNA used glycoprotein B-253 

specific primers, (5’-GAGGACAACGAAATCCTGTTGGGCA-3’ [gB1] and 5’-254 

GTCGACGGTGGAGATACTGCTGAGG-3’ [gB2] (Fox et al., 1995)), and detection with a 255 

TaqMan probe (5’ 6-FAM- CAATCATGCGTTTGAAGAGGTAGTCCA-BHQ1 3’ [gBP3] (Mattes 256 

et al., 2005)) mixed with ABI Universal Mastermix (Applied Biosystems, ThermoFisher Scientific), 257 

the final assay volume was 25µl, which includes a 5µl donor or control sample.   PCR cycling 258 

conditions were 2 min at 50°C, 10 min at 95°C and 45 cycles of 15 s at 95°C and 60 s at 60°C, all 259 

donor samples were screened in duplicate with a high (50 000 copies/ml) and low (500 copies/ml) 260 

positive control samples (whole EDTA treated blood spiked with HCMV genomes from the World 261 

Health Organization (WHO) international standard (Fryer et al., 2010) (National Institute for 262 

Biological Standards and Control (NIBSC), Potters Bar, UK)),  run in triplicate.  Samples with 263 

detectable HCMV DNA were repeated in triplicate in a real-time amplification including a standard 264 

curve in triplicate of 1 – 10
4
 HCMV genomes (WHO International Standard) in addition to the high 265 
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and low positive controls.  The HCMV DNA load was calculated using the StepOne Software 266 

(Applied Biosystems, ThermoFisher Scientific) and reported as HCMV copies/ml blood.   267 

 268 

Latent Viral Load Digital PCR 269 

CD14+ Monocytes were extracted using CD14+ Magnetic beads and MS columns (Miltenyi Biotec) 270 

from PBMC isolated from 20ml of heparinized Peripheral Blood in a HCMV clean facility.  The 271 

monocytes were enumerated, dry pelleted and stored at -80°C prior to DNA extraction.  DNA was 272 

extracted from the cell pellet in a 1:1 mixture of PCR solutions A (100mM KCl, 10mM Tris-HCl 273 

pH8.3 and 2.5mM MgCl2) and B (10mM Tris-HCl pH8.3, 2.5mM MgCl2, 1% Tween 20, 1% Nonidet 274 

P-40 and 0.4mg/ml Proteinase K) at a final concentration equivalent to 10000 cells/µl, for 60 min at 275 

60°C followed by a 10 min 95°C incubation (Roback et al., 2001), extracted DNA samples were 276 

stored at -80°C until required.  Measurement of HCMV DNA in extracted CD14+ cells was assessed 277 

using a droplet digital PCR method (Parry et al., 2016).  Using the QX200 droplet digital PCR 278 

system (Bio-rad, Watford, UK) a reaction mixture containing 2µl of donor CD14+ DNA (equivalent 279 

to 20000 cells) or positive control sample was mixed with PCR grade water, 2xddPCR supermix for 280 

probes (Bio-rad), FAM labeled HCMV primer and probe (from Human CMV HHV5 kit for qPCR 281 

using a glycoprotein B target, PrimerDesign, Southampton, UK) and HEX labeled RPP30 copy 282 

number assay for ddPCR (Bio-rad).  Droplets were generated with droplet generation oil (Bio-rad) in 283 

the QX200 droplet generator (Bio-rad), then the sample was loaded into a 96 well PCR plate 284 

(Eppendorf, Stevenage, UK), sealed with a PX1 PCR Plate sealer (Bio-rad) and PCR amplification 285 

was performed using a C1000 Touch Thermocycler (Bio-rad), for 10 min at 95°C followed by 40 286 

cycles of 30 s at 94°C and 60s at 60°C.  Following PCR amplification the PCR plate was loaded onto 287 

the QX200 Droplet Reader (Bio-rad) where the presence or absence of PCR product in each droplet 288 

was read and analyzed by QuantaSoft software (Bio-rad) which gives the result of the number of 289 

virus copies per µl of PCR reaction.  All donor CD14+ DNA samples were run in either 290 

quadruplicate or triplicate.  The RPP30 copy number primer probe enabled the determination of the 291 

cell number included in the reaction and the HCMV viral load number was adjusted according to this 292 

and expressed as HCMV copies per million CD14+ cells. 293 

Statistics 294 

Statistical analysis was performed using GraphPad Prism version 6.00 for Windows (GraphPad 295 

Software, San Diego, CA, USA). Correlation was assessed by Pearson or Spearman correlation 296 

according to the distribution of the data.   Multiple data sets groups were compared using a 1 way 297 

ANOVA Kruskall-Wallis test with post hoc Dunn’s multiple comparisons or selected Mann Whitney 298 

U comparisons using an adjusted p value (p≤0.05/n comparisons) to correct for multiple testing false 299 

discovery.  300 
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Results 301 

Characterization of the ARIA Study Donor Cohort 302 

To determine whether long-term carriage of HCMV alters the HCMV specific T cell response, with 303 

respect to cytokine secretion or state of T cell differentiation,  and whether any identified changes 304 

impact on latent HCMV viral carriage and/or levels of HCMV IgG, we designed an age cross-305 

sectional study.  Donors were placed into 3 age groups: Young (age ≤ 40 years), Middle aged (age 41 306 

– 64 years) and Old (age ≥ 65 years) and also grouped on the basis of their HCMV sero-status.  307 

Potential donors were excluded from the study if they were currently taking, or had taken in the 308 

previous 3 months, any immunomodulatory or monoclonal antibody treatments or if they were 309 

currently cancer sufferers or had any form of cancer in the previous 24 months.  In total, 119 310 

individuals from the 3 age groups were included in this analysis: age range, virological and 311 

immunological parameters (HCMV IgG levels, HCMV DNA copies/ml whole blood and the 312 

CD4:CD8 Ratio) for the donor cohort are detailed in Table 1.  Correlation of the levels of HCMV 313 

IgG (ISR) (summarized for the 3 age groups in Table 1) within HCMV sero-positive (HCMV+ve) 314 

donors with age did not show a significant accumulation with age (Pearson r=0.1012, (95% CI: -315 

0.0923, 0.2873), p=0.3043).  Neither was there a significant decrease in the CD4:CD8 ratio within 316 

the HCMV+ve donor group with age (Spearman rs=0.08563, (95% CI:-0.1135, 0.2781), p=0.3851).    317 

The composition of the CD8+ and CD4+ T cell compartments, in whole blood isolated directly ex 318 

vivo, were enumerated and compared between donor age and HCMV sero-status.  Figure 1 319 

summarizes the impact of increasing age on T cell numbers in the entire donor cohort.  This analysis 320 

shows that both CD8+ and CD4+ T cell numbers significantly decrease with age (Figure 1B 321 

Spearman rs=-0.255, p=0.005 and Figure 1D Spearman rs=-0.207, p=0.024 respectively) which was 322 

likely due to the significant loss of naïve CD8+ and CD4+ T cells (Figures 1C and 1E) with no 323 

corresponding increase in numbers of memory T cell populations (Supplementary Figure 2).  324 

Enumeration of CD4+ T regulatory cells present in the peripheral blood of all donors, based on the 325 

expression of CD127 and CD25 (Hardy et al., 2013), showed that there was no effect of age on the 326 

size of this cell population (Figure 1F).  When comparing the impact of HCMV infection, in donors 327 

of all ages, on the numbers of differentiated T cell subsets, we observed a significant expansion of the 328 

effector memory (TEM – CD27-CD45RA-) population in both CD8+ (Figure 2B) and CD4+ T cells 329 

(Figure 2D).  Within CD8+ T cells only, we also saw a significant increase in the highly 330 

differentiated TEMRA (CD27-CD45RA+) and CD27-CD28- (LATE) populations (Figures 2B and 2C).  331 

A key component of the IRP which is associated with HCMV infection is the inversion of the 332 

CD4:CD8 ratio (<1), we only saw this phenomenon in 10% of the sero-positive donor group.  333 

However we observed that overall the CD4:CD8 ratio was significantly decreased in HCMV sero-334 

positive donors compared to sero-negatives (Figure 2G). 335 

Magnitude and Breadth of T cell responses to HCMV Proteins remain stable with donor age. 336 

To establish whether HCMV latent and lytic protein specific T cells are maintained and are 337 

functional during long term carriage of the virus, we analyzed T cell responses to 5 viral genes 338 

known to be expressed during HCMV latent infection; UL138 (Goodrum et al., 2007), LUNA (Bego 339 
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et al., 2005; Reeves and Sinclair, 2010), US28 (Beisser et al., 2001), UL111A (vIL-10) (Jenkins et 340 

al., 2004) and UL144 (Poole et al., 2013), two of which (UL138 and LUNA), we have previously 341 

shown elicit both an IFNγ and IL-10 CD4+ T cell response (Mason et al., 2013). We also wanted to 342 

measure the range of T cell responses in a large donor cohort to a number of viral proteins expressed 343 

during lytic infection; we have previously identified both CD4+ and CD8+ T cells producing IFNγ 344 

from many donors to 6 HCMV lytic proteins pp65, IE1, IE2, gB, pp71 and US3 (Jackson et al., 2014; 345 

Jackson et al., 2017).  Using Fluorospot methodology, we were able to measure CD8+ T cell IFNγ 346 

responses and both IFNγ and IL-10 CD4+ T cell responses to overlapping peptide pools of these 11 347 

HCMV proteins.  Both HCMV sero-positive and sero-negative donors of all ages were included in 348 

these antigen specific screens and, after discounting samples following quality control (high 349 

spontaneous cytokine spot forming unit (sfu) counts in unstimulated wells or failure of positive 350 

control stimulation), 98 donors were included in the CD8+ T cell analysis, 99 donors in the CD4+ T 351 

cell IFNγ analysis and 73 donors in the CD4+ T cell IL-10 analysis.   352 

Figure 3 summarizes the results from the screen of 98 donors for CD8+ IFNγ T cell responses. A 353 

majority of the HCMV sero-positive donors analyzed had an above threshold (100 sfu/million) CD8+ 354 

IFNγ T cell response to the 6 lytic  proteins analyzed as well as responses to the latency associated 355 

proteins UL144 and US28 proteins (Figure 3A).  We noted positive CD8+ T cell responses to LUNA 356 

(31.8% of donors) and UL138 (29.6% of donors), which whilst present in our previous study, using 357 

an enzymatic ELISPOT method, were below the positive response threshold (Mason et al., 2013) 358 

because this was a much less sensitive detection system.  The frequency of individual donors who 359 

produced CD8+ T cell responses to 1 or more HCMV proteins is presented as pie charts for the lytic 360 

expressed proteins (Figure 3B), latency associated proteins (Figure 3E) and for all HCMV proteins 361 

(Figure 3H).  These analyses shows that a majority of the donors produced a response to 5 or 6 lytic 362 

proteins (51.6% - blue and deep pink segments Figure 3B), that 29.7% of the donor cohort responded 363 

to 4 or 5 of the latency associated proteins (green and blue segments Figure 3E) and, overall, 47.2% 364 

of the cohort responded to 8 or more HCMV proteins (orange, dark green, teal and purple segments, 365 

Figure 3H).  The broad range of responses to lytic, latent and all HCMV proteins observed were also 366 

maintained with age (Figures 3C, 3F and 3I respectively).  An analysis of  whether increasing age 367 

alters the magnitude of the CD8+ T cell IFNγ response to HCMV revealed no impact on the 11 368 

individual proteins (data not shown) or  the summed responses to lytic (Figure 3D), latent (Figure 369 

3G) or all (Figure 3J) HCMV proteins examined.   370 

We also examined the CD4+ T cell responses of the donor cohort to the same 11 HCMV proteins in 371 

99 donors.  As observed for the CD8+ T cell responses, the majority of the HCMV seropositive 372 

donor cohort produced an above threshold IFNγ response to all the lytic expressed proteins but also 373 

latency-associated UL144 and US28 (Figure 4B).  The responses to the lytic expressed proteins by 374 

CD4+ T cells  have already been reported in a sub-set of this donor cohort (Jackson et al., 2017), 375 

however the observation that both UL144 and US28 proteins induce T cell responses in the majority 376 

of HCMV sero-positive donors has not previously been reported.  Only 29.6% of the donor cohort 377 

examined produced an above threshold CD4+ IFNγ response to UL138, LUNA and vIL-10 latency 378 

associated proteins; this is a similar frequency to that seen in the CD8+ T cell compartment and not 379 

dissimilar to the percentage of responding donors for UL138 and LUNA CD4+ T cell responses 380 
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previously reported in a small scale study (Mason et al., 2013).  The ability of individual donors to 381 

mount CD4+ IFNγ responses to multiple HCMV proteins is summarized as pie charts (Figure 4B, 382 

4E, 4H).  In contrast to the CD8+ T cell IFNγ response routinely seen to 5 or 6 lytic proteins, fewer 383 

donors were capable of mounting responses to 5 or 6 of the lytic expressed HCMV proteins (43.9% - 384 

blue and deep pink segments, Figure 4B). This trend was maintained in response to the latent proteins 385 

(22% responding to 4 or 5 proteins – green and blue segments, Figure 4E) and, overall, only 33% of 386 

the donor cohort responded to 8 or more of the examined HCMV proteins (Figure 4H - orange, dark 387 

green, teal and purple segments).  Despite this lower proportion of HCMV sero-positive donors 388 

responding to many HCMV proteins, the overall breadth of the CD4+ IFNγ T cell response remained 389 

stable with increasing donor age which shows that there was no significant increase or decrease in the 390 

number of proteins an individual responded to within the lytic (Figure 4C) or latent group of proteins 391 

(Figure 4F) or to all 11 proteins examined (Figure 4I).  Also, we did not observe an effect of donor 392 

age on the magnitude of the response to the individual HCMV proteins (data not shown) or to the 393 

summed responses to the 6 lytic proteins (Figure 4D), 5 latent proteins (Figure 4G) or to the summed 394 

response of all 11 proteins (Figure 4J).   395 

We next examined the ability of CD4+ T cells to produce cIL-10 following stimulation with our 11 396 

candidate HCMV proteins.  Cellular IL-10 levels were measured in 73 HCMV donors from the 397 

cohort (these donors having passed the quality control thresholds outlined in the methods).  Although 398 

we have already shown that lytically expressed proteins pp71 and US3 can induce cIL-10 production 399 

by CD4+ T cells in a small sub-set of this donor cohort (Jackson et al., 2017), in this larger donor 400 

cohort pp71 (38.8%), US3 (32.8%) and pp65 (23.8%) are the most common lytic proteins to trigger 401 

an above threshold cIL-10 CD4+ T cell response.  The latency associated proteins, US28 (34.3%), 402 

LUNA (31.3%) and UL138 (26.8%) also frequently induced a CD4+ specific cIL-10 response in this 403 

donor cohort.  In contrast to the ability of donors to produce IFNγ T cell responses to multiple 404 

HCMV proteins, a positive cIL-10 response to any one of the 11 HCMV proteins examined was 405 

absent in 19 of 67 seropositive donors (grey segment – Figure 5H) and no donors produced responses 406 

to more than 9 of the 11 HCMV proteins.  When examining the response to the 6 lytic proteins, about 407 

half of the 67 donors (49.3%) did not produce a cIL-10 response (grey segment – Figure 5B).  408 

Despite this more limited breadth of the response, 70% of the donors examined produced an above 409 

threshold cIL-10 response to 1 or more HCMV protein.  The ability of an individual donor to produce 410 

a cIL-10 response to HCMV proteins was not affected by age (Figures 5C, 5F, 5I) and neither was 411 

the magnitude of the responses to each of the 11 HCMV proteins (data not shown).  The relationship 412 

of the total cIL-10 responses, for each donor, to the 6 lytic proteins (Figure 5D), 5 latent proteins 413 

(Figure 5G) and all 11 proteins (Figure 5J) was also stable with donor age.  Overall, the data 414 

presented show that the breadth and magnitude of the IFNγ and cIL-10 HCMV specific T cell 415 

responses, within this donor cohort, do not show any impact of either increasing donor age or 416 

putative long term carriage of the virus on these HCMV specific T cell responses. 417 

  418 

In review



HCMV T-cell Responses in Ageing 

 
13 

CD4+ T cells specific for LUNA, UL138, pp71, US3 and US28 proteins are more frequently 419 

biased towards expression of cIL-10 than IFN γ and this was not affected by donor age. 420 

Using the fluorospot technology, we were able to ask whether CD4+ T cell responses to our 421 

candidate HCMV proteins was dominated by either IFNγ or IL-10 secretion or whether it was 422 

comprised of cells that secrete both cytokines.  Figure 6 shows the relative cytokine composition of 423 

the CD4+ T cell response to each of the 11 HCMV proteins examined for donors who generated an 424 

above threshold response (> 100 sfu/million) for either cytokine.  Overall, we found that IFNγ and 425 

cIL-10 are generally produced by distinct populations of CD4+ T cells, as dual secretors were very 426 

rare (red bars – Figure 6).  The CD4+ T cell responses to UL144 (Figure 6D), gB (Figure 6J), pp65 427 

(Figure 6H), IE1 (Figure 6K) and IE2 (Figure 6I) proteins were dominated by IFNγ secretion.  In 428 

contrast, the donor cohort responses to the proteins UL138 (Figure 6C), LUNA (Figure 6B), US28 429 

(Figure 6A), vIL-10 (Figure 6E), pp71 (Figure 6F) and US3 (Figure 6G) showed more cIL-10 430 

secretors (white spotted bars).  Although there was no significant change in the magnitude of the 431 

CD4+ T cell IL-10 response to HCMV proteins with age (summarized Figure 5), we were interested 432 

to see if there was a change in the proportion of IFNγ and IL-10 secretion by CD4+ T cells within 433 

individuals during long term viral carriage.  The data presented in figure 6 are arranged with donor 434 

age along the x-axis and does not show any obvious changes in the composition of the positive CD4+ 435 

T cell response.  Analysis of the proportion of donors in which the majority of the CD4+ T cell 436 

responses was secretion of cIL-10  (i.e. greater than 50% of the total CD4+ T cell response of the 437 

individual to each HCMV protein) revealed that for LUNA 48.5% of responding donors had a 438 

dominant cIL-10 response (Sup. Figure 3A).  UL138, pp71, US3 and US28 also elicited a greater 439 

than 50% IL-10 response in more than a third of the donor cohort (42.8%, 38.4%, 34% and 33.3% 440 

respectively; Sup. Figure 3A).  When looking at the breadth of the cIL-10 dominant responses with 441 

donor age, there was no significant increase in the breadth of HCMV proteins an individual produced 442 

a majority cIL-10 response towards for all proteins (Sup. Figure 3B), lytic proteins (Sup. Figure 3C) 443 

or latent associated proteins (Sup. Figure 3D).   444 

 445 

The magnitude of latent HCMV DNA load in CD14+ monocytes is not affected by donor age in 446 

the ARIA Cohort. 447 

In addition to assessing the effect of increasing age on the T cell response to HCMV lytic and latent 448 

expressed proteins, the other principle aim of this study was to determine if there was an age-related 449 

effect on latent viral load.  Consequently, we screened whole blood of all donors in the study for the 450 

presence of HCMV DNA using a quantitative real time PCR assay.  No viral DNA was detectable in 451 

the 14 HCMV sero-negative donors and of the 105 HCMV sero-positive donors, viral genome was 452 

only detected in 1 of these (274 copies/ml whole blood).   The donor with detectable HCMV in 453 

whole blood also had an inverted CD4:CD8 ratio and above average numbers of differentiated 454 

memory CD8+ T cells, data summarized in supplementary Figure 4.  During latent HCMV infection, 455 

virus is known to reside in CD34+ hematopoietic stem cells and derivative CD14+ monocytes 456 

(Reeves et al., 2005).  Using a sensitive digital droplet PCR approach (Parry et al., 2016), we 457 

quantified the number of copies of HCMV present in isolated CD14+ monocytes from all donors.   In 458 
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total we assessed 108 HCMV sero-positives and negatives for HCMV DNA present in CD14+ cells; 459 

of these, no copies of viral genome were detected in the 14 HCMV sero-negative donors.  We did, 460 

however, detect HCMV genomes in 43 of 94 (45.7%) of CD14+ monocytes from HCMV sero-461 

positive donors (51 of 94 were below the level of detection of this assay, 1 genome in 60 000 cells); 462 

the latent viral load (copies HCMV/million CD14+ cells) for the 94 sero-positive donors, relative to 463 

donor age, is summarized in figure 7.  Within this ARIA donor cohort, we did not observe a 464 

significant relationship between age and the magnitude of the latent viral load.  465 

 466 

High Latent viral loads in CD14+ Monocytes were associated with both increased breadth and 467 

frequency of IFNγ secreting HCMV specific T cells. 468 

HCMV is latently carried in CD34+ hematopoietic progenitor cells and subsequently in the periphery 469 

by monocyte derivatives from these cells (Reeves and Sinclair, 2013). Virus reactivation from these 470 

myeloid lineage cells would activate HCMV specific T cells and could drive increased frequencies, 471 

as well as potentially seeding more cells in the latent reservoir.  Theoretically, increased frequency of 472 

latently infected cells could result in increased virus reactivation events, potentially resulting in 473 

induction of more T cell stimulation and, possibly, an increase in HCMV specific antibody levels 474 

during life-long persistence.   Consequently, we assessed whether there was an association between 475 

HCMV specific IgG levels and latent viral load, but these measures were unrelated (data not shown).  476 

We then assessed whether there was an association between the latent viral load and the CD8+ and 477 

CD4+ T cell responses to the individual HCMV proteins as well as to the magnitude and breadth of 478 

the total responses of each donor.  We did not observe an association between latent load and the cIL-479 

10 CD4+ response and there was only a significant association between the magnitude and breadth of 480 

the CD4+ IFNγ response to the subset of 6 lytic proteins and increased latent viral load (data not 481 

shown).  There was a significant association with the summed total of the CD8+ T cell response to 482 

lytic (Figure 8B), latent (Figure 8D) and all proteins (Figure 8F).  Also, high viral copy latent load 483 

correlated significantly to the breadth of the CD8+ T cell responses to lytic (Figure 8A) and all 484 

HCMV proteins (Figure 8E).        485 
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Discussion 486 

The aims of this study were to determine whether HCMV specific CD4+ T cells secreting cIL-10 487 

increase with age and long-term viral carriage and to determine whether there are changes in breadth 488 

and frequency of the IFNγ secreting T cell response to HCMV infection in healthy older donors.  We 489 

also wanted to measure the latent viral load of HCMV DNA in a large donor cohort for the first time 490 

and assess whether donors aged over 65 years manifested changes in immune cell numbers indicative 491 

of immunosenescence.  Using an age cross-sectional study methodology, we recruited a donor cohort 492 

spanning 6 decades (23 – 78 years) and measured virological and immunological parameters.  The 493 

donors were recruited by the Cambridge Bioresource from their Biobank of volunteers who live 494 

predominantly in areas local to Cambridge and the East Anglian Region of the United Kingdom 495 

(UK).  Donors were recruited based on HCMV sero-status and by excluding donors suffering from 496 

immune altering illnesses or under treatment for these conditions, such that all participants could be 497 

safely considered to be generally healthy.   498 

We analyzed the CD4+ and CD8+ T cell compartments in peripheral blood and observed a loss of 499 

naïve CD4+ and CD8+ T cell numbers as well as a corresponding loss of total CD4+ and CD8+ T 500 

cell numbers with increasing age.  The age-related loss of naïve T cells numbers is a well-established 501 

phenomenon due to the involution of the thymus and decreased T cell output (Lynch et al., 2009) and 502 

has been observed in most studies of ageing populations (Weltevrede et al., 2016).  In our study, 503 

there was no accumulation of memory T cell populations (measured in absolute numbers) within this 504 

cohort, which has also been observed in other studies when using absolute numbers (Chidrawar et al., 505 

2009; Wertheimer et al., 2014).  However, when expressed as a percentage of the CD8+ T cell 506 

compartment, there was a significant age-related accumulation of differentiated TEMRA (CD27-507 

CD45RA+) and Late stage (CD27-CD28-) memory cell populations as has been previously reported 508 

(Weltevrede et al., 2016).   It is likely that the increase in percentage (relative frequency) of 509 

differentiated memory T cell populations previously reported in aged cohorts, was due to the 510 

decrease in the absolute size of the overall CD8+ T cell compartment, which results in an increase in 511 

the proportion of memory cells even if the absolute numbers do not increase (Chidrawar et al., 2009; 512 

McElhaney and Effros, 2009; Wertheimer et al., 2014).   513 

Previous investigations into the impact of HCMV persistence on immunosenescence in older people 514 

have reported a range of immune parameters and HCMV specific markers altering with age.  These 515 

include the Immune Risk Phenotype (IRP), defined by a collection of markers which, taken together, 516 

were suggested to be indicative of increased mortality in the elderly and which included an inversion 517 

of the CD4:CD8 ratio, expansion of CD8+ CD28
null

 and CD8+ TEMRA memory T cells and HCMV 518 

sero-positivity (Olsson et al., 2001; Wikby et al., 2002; Hadrup et al., 2006; Strindhall et al., 2013).  519 

There have also been reports of HCMV specific IgG levels increasing in older donors (McVoy and 520 

Adler, 1989; Alonso Arias et al., 2013; Parry et al., 2016) as well as accumulation of HCMV specific 521 

T cells with age (summarized in (Weltevrede et al., 2016)).  Similarly, it has been suggested that 522 

there is an age-related increase in levels of HCMV DNA in blood (Furui et al., 2013), urine (Stowe et 523 

al., 2007) and an increase in latent viral genome copy number in CD14+ cells of donors aged over 70 524 

years (Parry et al., 2016).   Overall, as our donor cohort exhibited a normal ageing immune 525 
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phenotype, we examined the impact of HCMV sero-positivity on T cell memory phenotype within 526 

the study group.  There were no significant differences in naïve T cell numbers between aged HCMV 527 

sero-positive compared to aged HCMV sero-negative donors in our cohort and we only observed an 528 

inverted CD4:CD8 ratio in 10% of the sero-positive donor cohort; donors exhibiting this phenotype 529 

were distributed throughout the age categories.  We did see an increase in the numbers of 530 

differentiated T cells in HCMV sero-positive donors of all ages compared to sero-negatives, 531 

confirming that our study participants have a similar T cell phenotype to that observed in many 532 

previous studies of HCMV infection (Weltevrede et al., 2016).  There was, however, no association 533 

between increasing donor age and higher levels of HCMV IgG nor was there an increase in the 534 

breadth and frequency of the HCMV specific T cell IFNγ response or CD4+ cIL-10 response to the 535 

eleven HCMV proteins examined within the study group.   We also did not detect increased copies of 536 

latent HCMV genome in CD14+ monocytes of our older donors.   The separate impact of HCMV 537 

infection from ageing on the differentiation of T cells has been observed in other population studies 538 

(Lelic et al., 2012; Furman et al., 2015) and the kidney transplant primary infection model and 539 

reports from primary infection has shown a rapid acquisition of a more differentiated T cell 540 

phenotype in the months following initial infection (Gamadia et al., 2003; Day et al., 2007; Miles et 541 

al., 2007; Lilleri et al., 2008).   Furthermore, we observed a significant association between high 542 

latent viral loads and higher frequency HCMV specific CD8+ T cell responses, which was again 543 

irrespective of donor age.  These observations alongside the increased numbers of differentiated 544 

memory T cells suggest that, within this healthy donor cohort, it is HCMV infection, rather than the 545 

age of the donor, which leads to increased differentiation of the T cell population and expansion of 546 

HCMV specific T cells.    547 

Work on donor cohorts from different geographical locations have reported different findings from 548 

the original Swedish studies which described the IRP (Olsson et al., 2001; Wikby et al., 2002; 549 

Hadrup et al., 2006; Strindhall et al., 2013), these have included  a lack of “inflation” of HCMV 550 

specific T cells with age despite high HCMV sero-prevalence in the aged  donor groups (Colonna-551 

Romano et al., 2007) and the association of a naïve T cell phenotype in HCMV sero-positive old 552 

people with increased morbidity in Belgium (Adriaensen et al., 2015).   HCMV sero-prevalence 553 

varies depending on geographical location and socio-economic status (Gandhi and Khanna, 2004; 554 

Crough and Khanna, 2009); in the developed world between 30 – 70% of populations are HCMV 555 

sero-positive, with acquisition of the virus increasing with age (Cannon et al., 2010). In contrast, in 556 

developing countries, sero-prevalence can be higher than 90% with acquisition of the virus 557 

commonly occurring in early childhood (Miles et al., 2007; Cannon et al., 2010).  Consequently, the 558 

disparate observations reported as consequences of HCMV infection in different aged donor cohorts 559 

may be a result of geography as well as other biological parameters such as exposure to infectious 560 

diseases, vaccination history and the current health of the participants.  It has also been shown in 561 

other studies of very old cohorts that increased HCMV IgG levels and differentiated CD4+ T cells 562 

are associated with elderly individuals in poor health (Vescovini et al., 2010) and there are also a 563 

number of studies associating HCMV sero-positivity and higher HCMV IgG titers with poor 564 

outcomes from cardiovascular disease (Simanek et al., 2011; Gkrania-Klotsas et al., 2012; Savva et 565 

al., 2013; Spyridopoulos et al., 2016).  Our view is that, in some cohorts that have been studied, aged 566 

donors suffering from e.g. heart disease, cancer or neurodegenerative disorders may not control virus 567 

In review



HCMV T-cell Responses in Ageing 

 
17 

efficiently leading to increased HCMV IgG levels or HCMV DNAemia and concomitant increased 568 

numbers of differentiated memory T cell populations and an inverted CD4:CD8 ratio thereby 569 

confounding some studies.    570 

One of our aims was to address the production of cIL-10 by HCMV specific CD4+ T cells within a 571 

large donor cohort in order to assess how prevalent the production of this suppressive cytokine is by 572 

HCMV antigen specific T cells and whether this response increases in older donors.   Evidence from 573 

mouse models of MCMV infection have shown that production of cIL-10 can result in reduced viral 574 

clearance and a reduction in production of IFNγ by MCMV specific T cells (Jost et al., 2014; 575 

Clement et al., 2016).  This could provide an explanation for the observation that, despite a functional 576 

immune response preventing overt HCMV mediated disease, older donors have detectable HCMV 577 

DNA in blood and urine (Stowe et al., 2007; Furui et al., 2013).  In some HCMV studies, increases in 578 

inducible regulatory CD4+ T cells have been reported in older people with this being associated with 579 

vascular pathology in these individuals (Terrazzini et al., 2014).  Similarly, it has also been suggested 580 

that the HCMV specific CD4+ CD28-CD27- T cell population, reported as expanded in HCMV 581 

seropositive older people (Fletcher et al., 2005) contains a T regulatory population characterized by 582 

FoxP3 and CD25
hi

 expression (Tovar-Salazar et al., 2010).  As already discussed, there was no 583 

accumulation of the cIL-10 CD4+ T cell response with increasing donor age in this cohort; we were 584 

also interested to see if there was a shift in the bias of the responding CD4+ T cells to individual 585 

HCMV proteins from IFNγ to IL-10 or vice-versa.  The results confirmed our previous observation 586 

that the production of cIL-10 by CD4+ T cells is more likely to be in response to latency associated 587 

proteins (Mason et al., 2013); in this cohort almost 50% and 40% of donors produced a majority cIL-588 

10 response to stimulation by the LUNA and UL138 peptide pools respectively regardless of donor 589 

age. Similarly, other latency associated proteins included in this study, US28 and vIL-10, also 590 

showed a number of donors biased towards cIL-10 production, which is in contrast to the response 591 

towards many of the lytically expressed proteins included in this study.   592 

The use of the digital droplet PCR (ddPCR) protocol (Parry et al., 2016) has, enabled better 593 

quantification of the levels of latent HCMV genomes in the CD14+ cell compartment.  We were able 594 

to detect and quantify latent HCMV genomes in 45.7% of examined HCMV sero-positive donors 595 

comparing favorably to the 36% detection rate in HCMV positive donors described recently by 596 

ddPCR (Parry et al., 2016).  Our ability to quantify latent HCMV load in our donor cohort led to a 597 

particularly interesting observation with respect to HCMV specific T cell response.  As already 598 

noted, high copy numbers of latent HCMV detected in CD14+ monocytes significantly correlated 599 

with an increase in the breadth and magnitude of the HCMV specific CD8+ T cell response measured 600 

by IFNγ secretion.  From this result, we hypothesize that higher viral genome copy number was a 601 

result of an accumulation of reactivation events over the time, resulting in viral replication and 602 

reseeding of the latent CD34+ cellular pool; consequently this production of viral proteins stimulates 603 

and activates HCMV specific memory  T cell response leading to an increase in frequency of these 604 

cells.  The virus most likely employs its immune evasion functions to create a window of opportunity 605 

to allow reactivation from latency and the production of new virions despite the presence of a primed 606 

anti-viral immune response (Wills et al., 2015).  In older donors, uncontrolled reactivation of HCMV 607 

subsequently causing either disease or other medical complications has not been observed, and 608 
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HCMV DNA has not been routinely detected in the blood (Vescovini et al., 2004; Stowe et al., 609 

2007), apart from in a Japanese cohort study, but the DNA positive detection rate was only 4.3% of 610 

donors aged 60 – 69 years (Furui et al., 2013).  However, there is evidence that older people may not 611 

control virus replication as adequately as the young, as HCMV DNA has been detected in other 612 

bodily fluids in the old (Stowe et al., 2007).  Within this study, our exclusion criteria may have 613 

precluded recruitment of donors who had less effective control of virus replication resulting in low 614 

level virus dissemination.  In support of this conclusion, it is interesting to note that a single aged 615 

male donor with detectable HCMV DNA in whole blood did have an inverted CD4:CD8 ratio as well 616 

as an above average number of highly differentiated memory CD8+ T cell populations; they also had 617 

limited HCMV specific T cell responses to our 11 candidate HCMV proteins (Supplementary Figure 618 

4).   619 

We have demonstrated that, in an East Anglian-based donor cohort which has a typical healthy 620 

ageing profile, older HCMV sero-positive donors do not exhibit the hallmark features of the IRP, 621 

differences in the breadth and magnitude of their HCMV specific IFNγ production; or that latent viral 622 

load was affected by age.  Importantly, though we did see a significant relationship between high 623 

latent viral load and increased breadth and magnitude of the functional HCMV specific CD8+ T cell 624 

responses, latent viral load did not correlate with increased numbers of differentiated memory T cell 625 

populations or HCMV specific IgG.  This, we believe, reflects the importance of including 626 

measurement of viral load in studies on the impact of HCMV infection in older donors as opposed to 627 

inferring the impact of the virus from measuring a variety of other immune parameters as has 628 

previously occurred.  In a previous study in a Birmingham based old aged cohort, the authors 629 

observed an increase in HCMV specific T cell responses alongside, an increase in latent viral 630 

carriage in donors aged over 70 years (Parry et al., 2016). Whilst the authors do not present data 631 

correlating latent viral load with the frequency of HCMV specific T cells, we think it possible in light 632 

of our findings, that in this older cohort study, the increase in HCMV specific T cell responses in 633 

older donors could be associated with increased latent viral carriage.     634 

Detection of low level HCMV viremia in the blood of the old would be a strong indicator of a 635 

diminution of immune control, however the results from our study group and others (Vescovini et al., 636 

2004; Stowe et al., 2007) suggests this is rarely observed, probably because it would represent a 637 

significant loss of control.  However, the presence of virus in other bodily fluids e.g. saliva or urine 638 

could also indicate loss of immune control.  It should be considered that chronic low level persistent 639 

HCMV replication and an associated inflammatory environment could be important in particular old 640 

patients groups; there is epidemiological evidence that HCMV comorbidity plays a role in 641 

exacerbating cardiovascular disease (Simanek et al., 2011; Gkrania-Klotsas et al., 2012; Savva et al., 642 

2013; Spyridopoulos et al., 2016) and also with increasing impaired physical function and ill health 643 

(Vescovini et al., 2010; Haeseker et al., 2013; Adriaensen et al., 2015; Broadley et al., 2017).  Future 644 

investigations into the impact of HCMV infection in older people should also monitor latent viral 645 

carriage of the virus alongside measuring whether low level viremia is present in the blood and other 646 

bodily fluids, e.g. urine or saliva; in order to improve our understanding of the impact of HCMV 647 

infection in the elderly. 648 

In review



HCMV T-cell Responses in Ageing 

 
19 

Conflict of Interest 649 

The authors declare that the research was conducted in the absence of any commercial or financial 650 

relationships that could be construed as a potential conflict of interest. 651 

Author Contributions 652 

SEJ, MRW, ELP and JHS designed the project and experiments. SEJ, GXS, GO and ELP carried out 653 

the experiments. SEJ and MRW wrote the manuscript. SEJ carried out statistical analysis and 654 

prepared figures. SEJ and MRW submitted this paper. All authors reviewed the manuscript. 655 

Funding 656 

This work was funded by Medical Research Council Grant (GB) [MR/K021087/1] awarded to MRW 657 

and JHS and funded SEJ, ELP and GO. GXS is funded by a Medical Research Council (GB) Sackler 658 

Prize PhD award. 659 

Acknowledgments 660 

We wish to thank Dr. Effrossyni Gkrania-Klotsas for advice on the original design and statistical 661 

analysis of the results from this study. 662 

This research was supported by the Cambridge NIHR BRC Cell Phenotyping Hub. 663 

We gratefully acknowledge the participation of all Cambridge NIHR BioResource volunteers, and 664 

thank the Cambridge BioResource staff for their help with volunteer recruitment. We thank the 665 

National Institute for Health Research (NIHR) Cambridge Biomedical Research Centre (BRC) and 666 

NHS Blood and Transplant (NHSBT) for funding.  Further information can be found at 667 

www.cambridgebioresource.org.uk.  668 

  669 

In review



HCMV T-cell Responses in Ageing 

 
20 

References 670 

Adriaensen, W., Derhovanessian, E., Vaes, B., Van Pottelbergh, G., Degryse, J.M., Pawelec, G., et 671 

al. (2015). CD4:8 ratio >5 is associated with a dominant naive T-cell phenotype and impaired 672 

physical functioning in CMV-seropositive very elderly people: results from the BELFRAIL 673 

study. J Gerontol A Biol Sci Med Sci 70(2), 143-154. doi: 10.1093/gerona/glu018. 674 

Alonso Arias, R., Moro-Garcia, M.A., Echeverria, A., Solano-Jaurrieta, J.J., Suarez-Garcia, F.M., 675 

and Lopez-Larrea, C. (2013). Intensity of the humoral response to cytomegalovirus is 676 

associated with the phenotypic and functional status of the immune system. J Virol 87(8), 677 

4486-4495. doi: 10.1128/JVI.02425-12. 678 

Bartlett, D.B., Firth, C.M., Phillips, A.C., Moss, P., Baylis, D., Syddall, H., et al. (2012). The age-679 

related increase in low-grade systemic inflammation (Inflammaging) is not driven by 680 

cytomegalovirus infection. Aging Cell 11(5), 912-915. doi: 10.1111/j.1474-681 

9726.2012.00849.x. 682 

Bego, M., Maciejewski, J., Khaiboullina, S., Pari, G., and St Jeor, S. (2005). Characterization of an 683 

antisense transcript spanning the UL81-82 locus of human cytomegalovirus. J Virol 79(17), 684 

11022-11034. doi: 10.1128/JVI.79.17.11022-11034.2005. 685 

Beisser, P.S., Laurent, L., Virelizier, J.L., and Michelson, S. (2001). Human cytomegalovirus 686 

chemokine receptor gene US28 is transcribed in latently infected THP-1 monocytes. J Virol 687 

75(13), 5949-5957. doi: 10.1128/JVI.75.13.5949-5957.2001. 688 

Broadley, I., Pera, A., Morrow, G., Davies, K.A., and Kern, F. (2017). Expansions of Cytotoxic 689 

CD4+CD28- T Cells Drive Excess Cardiovascular Mortality in Rheumatoid Arthritis and 690 

Other Chronic Inflammatory Conditions and Are Triggered by CMV Infection. Front 691 

Immunol 8, 195. doi: 10.3389/fimmu.2017.00195. 692 

Cannon, M.J., Schmid, D.S., and Hyde, T.B. (2010). Review of cytomegalovirus seroprevalence and 693 

demographic characteristics associated with infection. Rev Med Virol 20(4), 202-213. doi: 694 

10.1002/rmv.655. 695 

Casazza, J.P., Betts, M.R., Price, D.A., Precopio, M.L., Ruff, L.E., Brenchley, J.M., et al. (2006). 696 

Acquisition of direct antiviral effector functions by CMV-specific CD4+ T lymphocytes with 697 

cellular maturation. J Exp Med 203(13), 2865-2877. doi: 10.1084/jem.20052246. 698 

Chidrawar, S., Khan, N., Wei, W., McLarnon, A., Smith, N., Nayak, L., et al. (2009). 699 

Cytomegalovirus-seropositivity has a profound influence on the magnitude of major 700 

lymphoid subsets within healthy individuals. Clin Exp Immunol 155(3), 423-432. doi: 701 

10.1111/j.1365-2249.2008.03785.x. 702 

Clement, M., Marsden, M., Stacey, M.A., Abdul-Karim, J., Gimeno Brias, S., Costa Bento, D., et al. 703 

(2016). Cytomegalovirus-Specific IL-10-Producing CD4+ T Cells Are Governed by Type-I 704 

IFN-Induced IL-27 and Promote Virus Persistence. PLoS Pathog 12(12), e1006050. doi: 705 

10.1371/journal.ppat.1006050. 706 

Collerton, J., Martin-Ruiz, C., Davies, K., Hilkens, C.M., Isaacs, J., Kolenda, C., et al. (2012). Frailty 707 

and the role of inflammation, immunosenescence and cellular ageing in the very old: cross-708 

sectional findings from the Newcastle 85+ Study. Mech Ageing Dev 133(6), 456-466. doi: 709 

10.1016/j.mad.2012.05.005. 710 

In review



HCMV T-cell Responses in Ageing 

 
21 

Colonna-Romano, G., Akbar, A.N., Aquino, A., Bulati, M., Candore, G., Lio, D., et al. (2007). 711 

Impact of CMV and EBV seropositivity on CD8 T lymphocytes in an old population from 712 

West-Sicily. Exp Gerontol 42(10), 995-1002. doi: 10.1016/j.exger.2007.05.006. 713 

Crough, T., and Khanna, R. (2009). Immunobiology of human cytomegalovirus: from bench to 714 

bedside. Clin Microbiol Rev 22(1), 76-98, Table of Contents. doi: 10.1128/CMR.00034-08. 715 

Day, E.K., Carmichael, A.J., Ten Berge, I.J.M., Waller, E.C.P., Sissons, J.G.P., and Wills, M.R. 716 

(2007). Rapid CD8(+) T cell repertoire focusing and selection of high-affinity clones into 717 

memory following primary infection with a persistent human virus: Human Cytomegalovirus. 718 

J Immunol 179(5), 3203-3213. 719 

Denkinger, M.D., Leins, H., Schirmbeck, R., Florian, M.C., and Geiger, H. (2015). HSC Aging and 720 

Senescent Immune Remodeling. Trends Immunol 36(12), 815-824. doi: 721 

10.1016/j.it.2015.10.008. 722 

Derhovanessian, E., Chen, S., Maier, A.B., Hahnel, K., de Craen, A.J., Roelofs, H., et al. (2015). 723 

CCR4+ Regulatory T Cells Accumulate in the Very Elderly and Correlate With Superior 8-724 

Year Survival. J Gerontol A Biol Sci Med Sci 70(8), 917-923. doi: 10.1093/gerona/glu128. 725 

Derhovanessian, E., Maier, A.B., Hahnel, K., McElhaney, J.E., Slagboom, E.P., and Pawelec, G. 726 

(2014). Latent infection with cytomegalovirus is associated with poor memory CD4 responses 727 

to influenza A core proteins in the elderly. J Immunol 193(7), 3624-3631. doi: 728 

10.4049/jimmunol.1303361. 729 

Fletcher, J.M., Vukmanovic-Stejic, M., Dunne, P.J., Birch, K.E., Cook, J.E., Jackson, S.E., et al. 730 

(2005). Cytomegalovirus-specific CD4+ T cells in healthy carriers are continuously driven to 731 

replicative exhaustion. J Immunol 175(12), 8218-8225. 732 

Fox, J.C., Kidd, I.M., Griffiths, P.D., Sweny, P., and Emery, V.C. (1995). Longitudinal analysis of 733 

cytomegalovirus load in renal transplant recipients using a quantitative polymerase chain 734 

reaction: correlation with disease. J Gen Virol 76 ( Pt 2)(2), 309-319. doi: 10.1099/0022-735 

1317-76-2-309. 736 

Fryer, J.F., Heath, A.B., Anderson, R., Minor, P.D., and Unit, B. (2010). WHO international standard 737 

for human cytomegalovirus (HCMV) for nucleic acid amplification (NAT) …. WHO 738 

international standard for human cytomegalovirus (HCMV) for nucleic acid amplification 739 

(NAT) …. 740 

Furman, D., Jojic, V., Sharma, S., Shen-Orr, S.S., Angel, C.J., Onengut-Gumuscu, S., et al. (2015). 741 

Cytomegalovirus infection enhances the immune response to influenza. Sci Transl Med 742 

7(281), 281ra243. doi: 10.1126/scitranslmed.aaa2293. 743 

Furui, Y., Satake, M., Hoshi, Y., Uchida, S., Suzuki, K., and Tadokoro, K. (2013). Cytomegalovirus 744 

(CMV) seroprevalence in Japanese blood donors and high detection frequency of CMV DNA 745 

in elderly donors. Transfusion 53(10), 2190-2197. doi: 10.1111/trf.12390. 746 

Gamadia, L.E., Remmerswaal, E.B., Weel, J.F., Bemelman, F., van Lier, R.A., and Ten Berge, I.J. 747 

(2003). Primary immune responses to human CMV: a critical role for IFN-gamma-producing 748 

CD4+ T cells in protection against CMV disease. Blood 101(7), 2686-2692. doi: 749 

10.1182/blood-2002-08-2502. 750 

Gandhi, M.K., and Khanna, R. (2004). Human cytomegalovirus: clinical aspects, immune regulation, 751 

and emerging treatments. Lancet Infect Dis 4(12), 725-738. doi: 10.1016/S1473-752 

3099(04)01202-2. 753 

In review



HCMV T-cell Responses in Ageing 

 
22 

Gkrania-Klotsas, E., Langenberg, C., Sharp, S.J., Luben, R., Khaw, K.T., and Wareham, N.J. (2012). 754 

Higher immunoglobulin G antibody levels against cytomegalovirus are associated with 755 

incident ischemic heart disease in the population-based EPIC-Norfolk cohort. J Infect Dis 756 

206(12), 1897-1903. doi: 10.1093/infdis/jis620. 757 

Goodrum, F., Reeves, M., Sinclair, J., High, K., and Shenk, T. (2007). Human cytomegalovirus 758 

sequences expressed in latently infected individuals promote a latent infection in vitro. Blood 759 

110(3), 937-945. doi: 10.1182/blood-2007-01-070078. 760 

Gregg, R., Smith, C.M., Clark, F.J., Dunnion, D., Khan, N., Chakraverty, R., et al. (2005). The 761 

number of human peripheral blood CD4+ CD25high regulatory T cells increases with age. 762 

Clin Exp Immunol 140(3), 540-546. doi: 10.1111/j.1365-2249.2005.02798.x. 763 

Hadrup, S.R., Strindhall, J., Kollgaard, T., Seremet, T., Johansson, B., Pawelec, G., et al. (2006). 764 

Longitudinal studies of clonally expanded CD8 T cells reveal a repertoire shrinkage 765 

predicting mortality and an increased number of dysfunctional cytomegalovirus-specific T 766 

cells in the very elderly. J Immunol 176(4), 2645-2653. 767 

Haeseker, M.B., Pijpers, E., Dukers-Muijrers, N.H., Nelemans, P., Hoebe, C.J., Bruggeman, C.A., et 768 

al. (2013). Association of cytomegalovirus and other pathogens with frailty and diabetes 769 

mellitus, but not with cardiovascular disease and mortality in psycho-geriatric patients; a 770 

prospective cohort study. Immun Ageing 10(1), 30. doi: 10.1186/1742-4933-10-30. 771 

Harari, A., Vallelian, F., and Pantaleo, G. (2004). Phenotypic heterogeneity of antigen-specific CD4 772 

T cells under different conditions of antigen persistence and antigen load. Eur J Immunol 773 

34(12), 3525-3533. doi: 10.1002/eji.200425324. 774 

Hardy, M.Y., Vari, F., Rossetti, T., Hart, D.N., and Prue, R.L. (2013). A flow cytometry based assay 775 

for the enumeration of regulatory T cells in whole blood. J Immunol Methods 390(1-2), 121-776 

126. doi: 10.1016/j.jim.2012.07.004. 777 

Hensley-McBain, T., Heit, A., De Rosa, S.C., McElrath, M.J., and Andersen-Nissen, E. (2014). 778 

Optimization of a whole blood phenotyping assay for enumeration of peripheral blood 779 

leukocyte populations in multicenter clinical trials. J Immunol Methods 411, 23-36. doi: 780 

10.1016/j.jim.2014.06.002. 781 

Henson, S.M., Franzese, O., Macaulay, R., Libri, V., Azevedo, R.I., Kiani-Alikhan, S., et al. (2009). 782 

KLRG1 signaling induces defective Akt (ser473) phosphorylation and proliferative 783 

dysfunction of highly differentiated CD8+ T cells. Blood 113(26), 6619-6628. doi: 784 

10.1182/blood-2009-01-199588. 785 

Jackson, S.E., Mason, G.M., Okecha, G., Sissons, J.G., and Wills, M.R. (2014). Diverse specificities, 786 

phenotypes, and antiviral activities of cytomegalovirus-specific CD8+ T cells. J Virol 88(18), 787 

10894-10908. doi: 10.1128/JVI.01477-14. 788 

Jackson, S.E., Mason, G.M., and Wills, M.R. (2011). Human cytomegalovirus immunity and immune 789 

evasion. Virus Res 157(2), 151-160. doi: 10.1016/j.virusres.2010.10.031. 790 

Jackson, S.E., Sedikides, G.X., Mason, G.M., Okecha, G., and Wills, M.R. (2017). Human 791 

Cytomegalovirus (HCMV)-Specific CD4+ T Cells Are Polyfunctional and Can Respond to 792 

HCMV-Infected Dendritic Cells In Vitro. J Virol 91(6), 16. doi: 10.1128/JVI.02128-16. 793 

Jenkins, C., Abendroth, A., and Slobedman, B. (2004). A novel viral transcript with homology to 794 

human interleukin-10 is expressed during latent human cytomegalovirus infection. Journal of 795 

Virology 78(3), 1440-1447. doi: 10.1128/Jvi.78.3.1440-1447.2004. 796 

In review



HCMV T-cell Responses in Ageing 

 
23 

Jost, N.H., Abel, S., Hutzler, M., Sparwasser, T., Zimmermann, A., Roers, A., et al. (2014). 797 

Regulatory T cells and T-cell-derived IL-10 interfere with effective anti-cytomegalovirus 798 

immune response. Immunol Cell Biol 92(10), 860-871. doi: 10.1038/icb.2014.62. 799 

Kline, K.A., and Bowdish, D.M. (2016). Infection in an aging population. Curr Opin Microbiol 29, 800 

63-67. doi: 10.1016/j.mib.2015.11.003. 801 

Lachmann, R., Bajwa, M., Vita, S., Smith, H., Cheek, E., Akbar, A., et al. (2012). Polyfunctional T 802 

cells accumulate in large human cytomegalovirus-specific T cell responses. J Virol 86(2), 803 

1001-1009. doi: 10.1128/JVI.00873-11. 804 

Lelic, A., Verschoor, C.P., Ventresca, M., Parsons, R., Evelegh, C., Bowdish, D., et al. (2012). The 805 

polyfunctionality of human memory CD8+ T cells elicited by acute and chronic virus 806 

infections is not influenced by age. PLoS Pathog 8(12), e1003076. doi: 807 

10.1371/journal.ppat.1003076. 808 

Lilleri, D., Fornara, C., Revello, M.G., and Gerna, G. (2008). Human cytomegalovirus-specific 809 

memory CD8+ and CD4+ T cell differentiation after primary infection. J Infect Dis 198(4), 810 

536-543. doi: 10.1086/590118. 811 

Lynch, H.E., Goldberg, G.L., Chidgey, A., Van den Brink, M.R., Boyd, R., and Sempowski, G.D. 812 

(2009). Thymic involution and immune reconstitution. Trends Immunol 30(7), 366-373. doi: 813 

10.1016/j.it.2009.04.003. 814 

Mason, G.M., Jackson, S.E., Okecha, G., Poole, E., Sissons, J.G., Sinclair, J., et al. (2013). Human 815 

cytomegalovirus latency-associated proteins elicit immune-suppressive IL-10 producing 816 

CD4(+) T cells. PLoS Pathog 9(10), e1003635. doi: 10.1371/journal.ppat.1003635. 817 

Mason, G.M., Poole, E., Sissons, J.G., Wills, M.R., and Sinclair, J.H. (2012). Human 818 

cytomegalovirus latency alters the cellular secretome, inducing cluster of differentiation 819 

(CD)4+ T-cell migration and suppression of effector function. Proc Natl Acad Sci U S A 820 

109(36), 14538-14543. doi: 10.1073/pnas.1204836109. 821 

Mattes, F.M., Hainsworth, E.G., Hassan-Walker, A.F., Burroughs, A.K., Sweny, P., Griffiths, P.D., 822 

et al. (2005). Kinetics of cytomegalovirus load decrease in solid-organ transplant recipients 823 

after preemptive therapy with valganciclovir. J Infect Dis 191(1), 89-92. doi: 824 

10.1086/425905. 825 

McElhaney, J.E., and Effros, R.B. (2009). Immunosenescence: what does it mean to health outcomes 826 

in older adults? Curr Opin Immunol 21(4), 418-424. doi: 10.1016/j.coi.2009.05.023. 827 

McVoy, M.A., and Adler, S.P. (1989). Immunologic evidence for frequent age-related 828 

cytomegalovirus reactivation in seropositive immunocompetent individuals. J Infect Dis 829 

160(1), 1-10. 830 

Miles, D.J., van der Sande, M., Jeffries, D., Kaye, S., Ismaili, J., Ojuola, O., et al. (2007). 831 

Cytomegalovirus infection in Gambian infants leads to profound CD8 T-cell differentiation. J 832 

Virol 81(11), 5766-5776. doi: 10.1128/JVI.00052-07. 833 

Olson, N.C., Doyle, M.F., Jenny, N.S., Huber, S.A., Psaty, B.M., Kronmal, R.A., et al. (2013). 834 

Decreased naive and increased memory CD4(+) T cells are associated with subclinical 835 

atherosclerosis: the multi-ethnic study of atherosclerosis. PLoS One 8(8), e71498. doi: 836 

10.1371/journal.pone.0071498. 837 

Olsson, J., Wikby, A., Johansson, B., Löfgren, S., Nilsson, B.-O., and Ferguson, F.G. (2001). Age-838 

related change in peripheral blood T-lymphocyte subpopulations and cytomegalovirus 839 

In review



HCMV T-cell Responses in Ageing 

 
24 

infection in the very old: the Swedish longitudinal OCTO immune study. Mech Ageing Dev 840 

121(1-3), 187-201. doi: 10.1016/s0047-6374(00)00210-4. 841 

Ouyang, Q., Wagner, W.M., Zheng, W., Wikby, A., Remarque, E.J., and Pawelec, G. (2004). 842 

Dysfunctional CMV-specific CD8(+) T cells accumulate in the elderly. Exp Gerontol 39(4), 843 

607-613. doi: 10.1016/j.exger.2003.11.016. 844 

Parry, H.M., Zuo, J., Frumento, G., Mirajkar, N., Inman, C., Edwards, E., et al. (2016). 845 

Cytomegalovirus viral load within blood increases markedly in healthy people over the age of 846 

70 years. Immun Ageing 13(1), 1. doi: 10.1186/s12979-015-0056-6. 847 

Poole, E., Walther, A., Raven, K., Benedict, C.A., Mason, G.M., and Sinclair, J. (2013). The myeloid 848 

transcription factor GATA-2 regulates the viral UL144 gene during human cytomegalovirus 849 

latency in an isolate-specific manner. J Virol 87(8), 4261-4271. doi: 10.1128/JVI.03497-12. 850 

Reeves, M.B., MacAry, P.A., Lehner, P.J., Sissons, J.G., and Sinclair, J.H. (2005). Latency, 851 

chromatin remodeling, and reactivation of human cytomegalovirus in the dendritic cells of 852 

healthy carriers. Proc Natl Acad Sci U S A 102(11), 4140-4145. doi: 853 

10.1073/pnas.0408994102. 854 

Reeves, M.B., and Sinclair, J.H. (2010). Analysis of latent viral gene expression in natural and 855 

experimental latency models of human cytomegalovirus and its correlation with histone 856 

modifications at a latent promoter. J Gen Virol 91(Pt 3), 599-604. doi: 10.1099/vir.0.015602-857 

0. 858 

Reeves, M.B., and Sinclair, J.H. (2013). Circulating dendritic cells isolated from healthy seropositive 859 

donors are sites of human cytomegalovirus reactivation in vivo. J Virol 87(19), 10660-10667. 860 

doi: 10.1128/JVI.01539-13. 861 

Riddell, N.E., Griffiths, S.J., Rivino, L., King, D.C., Teo, G.H., Henson, S.M., et al. (2015). 862 

Multifunctional cytomegalovirus (CMV)-specific CD8(+) T cells are not restricted by 863 

telomere-related senescence in young or old adults. Immunology 144(4), 549-560. doi: 864 

10.1111/imm.12409. 865 

Riou, C., Treurnicht, F., Abrahams, M.R., Mlisana, K., Liu, M.K., Goonetilleke, N., et al. (2012). 866 

Increased memory differentiation is associated with decreased polyfunctionality for HIV but 867 

not for cytomegalovirus-specific CD8+ T cells. J Immunol 189(8), 3838-3847. doi: 868 

10.4049/jimmunol.1201488. 869 

Roback, J.D., Hillyer, C.D., Drew, W.L., Laycock, M.E., Luka, J., Mocarski, E.S., et al. (2001). 870 

Multicenter evaluation of PCR methods for detecting CMV DNA in blood donors. 871 

Transfusion 41(10), 1249-1257. 872 

Savva, G.M., Pachnio, A., Kaul, B., Morgan, K., Huppert, F.A., Brayne, C., et al. (2013). 873 

Cytomegalovirus infection is associated with increased mortality in the older population. 874 

Aging Cell 12(3), 381-387. doi: 10.1111/acel.12059. 875 

Schulz, A.R., Malzer, J.N., Domingo, C., Jurchott, K., Grutzkau, A., Babel, N., et al. (2015). Low 876 

Thymic Activity and Dendritic Cell Numbers Are Associated with the Immune Response to 877 

Primary Viral Infection in Elderly Humans. J Immunol 195(10), 4699-4711. doi: 878 

10.4049/jimmunol.1500598. 879 

Schwele, S., Fischer, A.M., Brestrich, G., Wlodarski, M.W., Wagner, L., Schmueck, M., et al. 880 

(2012). Cytomegalovirus-specific regulatory and effector T cells share TCR clonality--881 

In review



HCMV T-cell Responses in Ageing 

 
25 

possible relation to repetitive CMV infections. Am J Transplant 12(3), 669-681. doi: 882 

10.1111/j.1600-6143.2011.03842.x. 883 

Simanek, A.M., Dowd, J.B., Pawelec, G., Melzer, D., Dutta, A., and Aiello, A.E. (2011). 884 

Seropositivity to cytomegalovirus, inflammation, all-cause and cardiovascular disease-related 885 

mortality in the United States. PLoS One 6(2), e16103. doi: 10.1371/journal.pone.0016103. 886 

Sinclair, J., and Sissons, P. (2006). Latency and reactivation of human cytomegalovirus. J Gen Virol 887 

87(Pt 7), 1763-1779. doi: 10.1099/vir.0.81891-0. 888 

Spyridopoulos, I., Martin-Ruiz, C., Hilkens, C., Yadegarfar, M.E., Isaacs, J., Jagger, C., et al. (2016). 889 

CMV seropositivity and T-cell senescence predict increased cardiovascular mortality in 890 

octogenarians: results from the Newcastle 85+ study. Aging Cell 15(2), 389-392. doi: 891 

10.1111/acel.12430. 892 

Stowe, R.P., Kozlova, E.V., Yetman, D.L., Walling, D.M., Goodwin, J.S., and Glaser, R. (2007). 893 

Chronic herpesvirus reactivation occurs in aging. Exp Gerontol 42(6), 563-570. doi: 894 

10.1016/j.exger.2007.01.005. 895 

Strindhall, J., Skog, M., Ernerudh, J., Bengner, M., Lofgren, S., Matussek, A., et al. (2013). The 896 

inverted CD4/CD8 ratio and associated parameters in 66-year-old individuals: the Swedish 897 

HEXA immune study. Age (Dordr) 35(3), 985-991. doi: 10.1007/s11357-012-9400-3. 898 

Sylwester, A.W., Mitchell, B.L., Edgar, J.B., Taormina, C., Pelte, C., Ruchti, F., et al. (2005). 899 

Broadly targeted human cytomegalovirus-specific CD4+ and CD8+ T cells dominate the 900 

memory compartments of exposed subjects. J Exp Med 202(5), 673-685. doi: 901 

10.1084/jem.20050882. 902 

Terrazzini, N., Bajwa, M., Vita, S., Cheek, E., Thomas, D., Seddiki, N., et al. (2014). A novel 903 

cytomegalovirus-induced regulatory-type T-cell subset increases in size during older life and 904 

links virus-specific immunity to vascular pathology. J Infect Dis 209(9), 1382-1392. doi: 905 

10.1093/infdis/jit576. 906 

Tovar-Salazar, A., Patterson-Bartlett, J., Jesser, R., and Weinberg, A. (2010). Regulatory function of 907 

cytomegalovirus-specific CD4+CD27-CD28- T cells. Virology 398(2), 158-167. doi: 908 

10.1016/j.virol.2009.11.038. 909 

Trzonkowski, P., Mysliwska, J., Szmit, E., Wieckiewicz, J., Lukaszuk, K., Brydak, L.B., et al. 910 

(2003). Association between cytomegalovirus infection, enhanced proinflammatory response 911 

and low level of anti-hemagglutinins during the anti-influenza vaccination - an impact of 912 

immunosenescence. Vaccine 21(25-26), 3826-3836. doi: 10.1016/S0264-410x(03)00309-8. 913 

Vescovini, R., Biasini, C., Telera, A.R., Basaglia, M., Stella, A., Magalini, F., et al. (2010). Intense 914 

Antiextracellular Adaptive Immune Response to Human Cytomegalovirus in Very Old 915 

Subjects with Impaired Health and Cognitive and Functional Status. J Immunol 184(6), 3242-916 

3249. doi: 10.4049/jimmunol.0902890. 917 

Vescovini, R., Telera, A., Fagnoni, F.F., Biasini, C., Medici, M.C., Valcavi, P., et al. (2004). 918 

Different contribution of EBV and CMV infections in very long-term carriers to age-related 919 

alterations of CD8(+) T cells. Exp Gerontol 39(8), 1233-1243. doi: 920 

10.1016/j.exger.2004.04.004. 921 

Waller, E.C., McKinney, N., Hicks, R., Carmichael, A.J., Sissons, J.G., and Wills, M.R. (2007). 922 

Differential costimulation through CD137 (4-1BB) restores proliferation of human virus-923 

In review



HCMV T-cell Responses in Ageing 

 
26 

specific "effector memory" (CD28(-) CD45RA(HI)) CD8(+) T cells. Blood 110(13), 4360-924 

4366. doi: 10.1182/blood-2007-07-104604. 925 

Weltevrede, M., Eilers, R., de Melker, H.E., and van Baarle, D. (2016). Cytomegalovirus persistence 926 

and T-cell immunosenescence in people aged fifty and older: A systematic review. Exp 927 

Gerontol 77, 87-95. doi: 10.1016/j.exger.2016.02.005. 928 

Wertheimer, A.M., Bennett, M.S., Park, B., Uhrlaub, J.L., Martinez, C., Pulko, V., et al. (2014). 929 

Aging and cytomegalovirus infection differentially and jointly affect distinct circulating T 930 

cell subsets in humans. J Immunol 192(5), 2143-2155. doi: 10.4049/jimmunol.1301721. 931 

Wikby, A., Johansson, B., Olsson, J., Lofgren, S., Nilsson, B.O., and Ferguson, F. (2002). 932 

Expansions of peripheral blood CD8 T-lymphocyte subpopulations and an association with 933 

cytomegalovirus seropositivity in the elderly: the Swedish NONA immune study. Exp 934 

Gerontol 37(2-3), 445-453. 935 

Wills, M.R., Poole, E., Lau, B., Krishna, B., and Sinclair, J.H. (2015). The immunology of human 936 

cytomegalovirus latency: could latent infection be cleared by novel immunotherapeutic 937 

strategies? Cell Mol Immunol 12(2), 128-138. doi: 10.1038/cmi.2014.75. 938 

  939 

In review



HCMV T-cell Responses in Ageing 

 
27 

Tables 940 

  All Ages Young  
(<40 years)  

Middle  
(41-64 years)  

Old  
(>65 years)  

   HCMV +ve HCMV -ve HCMV +ve HCMV +ve HCMV +ve 

Donors  
(n) 

All 105 14  33 31 41 
M 44 5 14 14 16 
F  61 9 19 17 25 

Age (Years) 
(Mean ± S.D.) 

All 54.4 ± 15.6 51.4 ± 14.4 34.6 ± 5.1 54.5 ± 6.0 70.2 ± 3.1 
M 54.3 ± 16.1 46.2 ± 12.7 34.7 ± 5.5 53.9 ± 6.5 71.7 ± 2.8 
F  54.5 ± 15.3 54.3 ± 14.4 34.6 ± 4.8 54.9 ± 5.5 69.3 ± 2.8 

HCMV IgG (ISR) 
(Mean ± S.D.) 

All 3.78 ± 1.28 0.28 ± 0.14 3.66 ± 1.32 3.81 ± 0.99 3.85 ± 1.42 
M 3.67 ± 0.95 0.25 ± 0.10 3.15 ± 0.74 4.06 ± 0.74 3.78 ± 1.06 
F  3.86 ± 1.47 0.29 ± 0.15 4.03 ± 1.51 3.60 ± 1.12 3.90 ± 1.61 

HCMV DNAemia 

(copies/ml blood) 
(Mean ± S.D.) 

All 2.6 ± 26.7
* undetected undetected undetected 6.7 ± 42.4

* 
M 6.3 ± 41.0

* undetected undetected undetected 17.2 ± 66.6
* 

F  undetected undetected undetected undetected undetected 
CD4:8 Ratio 

(Mean ± S.D.) 
All 2.25 ± 1.61 3.60 ± 1.80 2.04 ± 0.85 1.96 ± 0.85 2.63 ± 2.29 
M 2.10 ± 1.00 4.00 ± 2.10 1.80 ± 0.70 2.00 ± 1.00 2.30 ± 1.20 
F  2.40 ± 1.90 3.40 ± 1.50 2.20 ± 0.90 1.90 ± 0.70 2.90 ± 2.80 

* HCMV DNAemia detected in n=1 old male donor 941 
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Figure Legends 943 

Table 1 – ARIA Cohort Donor Characteristics 944 

Summary of the number of donors and age ranges, serum HCMV IgG levels (Immune Status Ratio – 945 

ISR), blood HCMV DNA copies and the CD4:CD8 ratio (generated from absolute count data).   946 

Figure 1 – Impact of Ageing on T cell numbers 947 

EDTA treated whole blood was stained with a panel of phenotyping antibodies in order to enumerate 948 

CD4+ and CD8+ T cells and their subsets.  Representative dot plots from a young and old donor 949 

showing CD4+ and CD8+ T cell gates, naïve T cells subset were defined by CD27+ and CD45RA+ 950 

(TNAIVE) expression and CD4+  T regulatory cells (TREG – CD25
hi

, CD127
lo

); the number of cells/µl 951 

of whole blood present for each gated population of interest are also indicated (A).  Graphs 952 

illustrating the numbers of total CD8+ T cells (B), TNAIVE CD8+ T cells (C), total CD4+ T cells (D), 953 

TNAIVE CD4+ T cells and CD4+ TREG cells of the entire ARIA cohort (n=119) correlated to donor 954 

age.  The relationship of T cell subset numbers with donor age was analyzed using Spearman rank 955 

correlation with the results indicated on each graph (rs (95% Confidence Interval) and p value).  956 

There was a significant decrease in total and TNAIVE CD4+ and CD8+ T cells with age, CD4+ TREG 957 

numbers showed no significant difference.  958 

Figure 2 – Impact of HCMV carriage on T cell numbers 959 

EDTA treated whole blood was stained with a panel of phenotyping antibodies in order to enumerate 960 

CD4+ and CD8+ T cells and their subsets.    Representative dot plots from a HCMV sero-positive 961 

(HCMV+ve) and HCMV sero-negative (HCMV-ve) age-matched donors are illustrated showing the 962 

memory (as defined by CD27 and CD45RA expression) and differentiation level  (as defined by  963 

CD27 and CD28) phenotype of both CD4+ and CD8+ T cells; the number of cells/µl of whole blood 964 

for effector memory (TEM – CD27-CD45RA-)  CD4+ and CD8+ T cells and Intermediate (INT – 965 

CD27-CD28+) and Late (LATE – CD27-CD28-) differentiated CD8+ T cells are shown (A).  Box 966 

and whisker plots comparing cell numbers of the memory (B, D) and differentiation phenotypes (C, 967 

E) of CD8+ T cells and CD4+ T cells respectively between HCMV+ve (red) and HCMV-ve (green) 968 

donors are shown.  The differences between the two groups were analyzed by a Kruskall-Wallis one-969 

way ANOVA test with post-hoc Mann Whitney U test performed with significant results set as 970 

p≤0.015 shown on each graph.  A representative CD4 vs CD8 dot plot from the same donors with 971 

their respective CD4:CD8 ratio indicated are shown (F), the comparison of CD4:CD8 ratios for all 972 

sero-positive vs sero-negative donors are also shown (G) with the significant decrease in the 973 

CD4:CD8 ratio in HCMV positive donors indicated (Mann Whitney test).   974 

Figure 3 – Magnitude and Breadth of CD8+ T cell IFNγ response to HCMV proteins. 975 

The IFNγ secreting CD8+ T cell response to 6 HCMV proteins only expressed during lytic infection: 976 

pp65, IE2, pp71, IE1, gB, US3 and 5 HCMV latency associated proteins: UL144, US28, vIL-10, 977 

LUNA and UL138 were measured in a cohort of 91 HCMV sero-positive and 7 sero-negative donors.  978 

The production of IFNγ was measured using an IFNγ Fluorospot detection method; with the results 979 
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converted to spot forming units/million cells (sfu/million) with background counts subtracted.  The 980 

response to the lytic expressed proteins (red), latency associated (blue) and the positive control by all 981 

98 donors are summarized (A) with HCMV sero-positive donors (dark) and HCMV sero-negative 982 

donors (light) both illustrated.  The positive response threshold cut-off of 100 sfu/million is shown 983 

(dashed line) and the proportion of donors with a positive response to each HCMV protein is 984 

indicated.  The proportion of the 91 sero-positive donors producing a positive response to 1 or more 985 

of the 6 Lytic expressed proteins (B), 5 latency associated proteins (E) or all 11 HCMV proteins (H) 986 

are summarized as pie charts with the key to segments for each graph shown.  Graphs illustrating the 987 

breadth of HCMV sero-positive donors response to HCMV proteins correlated with age are 988 

illustrated for lytic expressed (C), latency associated (F) and all 11 proteins (I); also shown is the 989 

summed IFNγ response to lytic (D), latent (G) and all proteins (J) correlated with age.  Spearman 990 

rank correlation (Spearman rs (95% Confidence Intervals (CI)) and p values) results are indicated on 991 

each graph.  992 

Figure 4 – Magnitude and Breadth of CD4+ T cell IFNγ response to HCMV Proteins. 993 

The IFNγ secreting CD4+ T cell response to 6 HCMV proteins only expressed during lytic infection: 994 

pp65, IE2, pp71, IE1, gB, US3 (red) and 5 HCMV latency associated proteins: UL144, US28, vIL-995 

10, LUNA and UL138 (blue) were measured in a cohort of 91 HCMV sero-positive and 8 sero-996 

negative donors.  The production of IFNγ was measured using an IFNγ Fluorospot method; with the 997 

results converted to spot forming units/million cells (sfu/million) with background counts then 998 

subtracted.  The response to the HCMV proteins and the positive control by all 99 donors are 999 

summarized (A) with HCMV sero-positive donors (dark) and HCMV sero-negative donors (light) 1000 

both illustrated.  The positive response threshold cut-off of 100 sfu/million (dashed line) and the 1001 

proportion of donors with an above threshold response to each HCMV protein is indicated.  The 1002 

proportion of the 91 sero-positive donors producing a positive IFNγ response to 1 or more of the 6 1003 

Lytic expressed proteins (B), 5 latency associated proteins (E) or all 11 HCMV proteins (H) are 1004 

summarized as pie charts with the key to segment color for each graph shown.  Graphs illustrating 1005 

the breadth of HCMV sero-positive donors IFNγ response to HCMV proteins correlated with age are 1006 

illustrated for lytic expressed (C), latency associated (F) and all 11 proteins (I); also shown is the 1007 

summed IFNγ response to lytic (D), latent (G) and all proteins (J) correlated with age.  Spearman 1008 

rank correlation (Spearman rs (95% Confidence Intervals (CI)) and p values) results are indicated on 1009 

each graph. 1010 

Figure 5 – Magnitude and breadth of CD4+ T cell IL-10 response to HCMV Proteins 1011 

The IL-10 secreting CD4+ T cell response to 6 HCMV proteins only expressed during lytic infection: 1012 

pp65, IE2, pp71, IE1, gB, US3 (red) and 5 HCMV latency associated proteins: UL144, US28, vIL-1013 

10, LUNA and UL138 (blue) were measured in a cohort of 67 HCMV sero-positive and 6 sero-1014 

negative donors.  The production of IL-10 was measured using an IL-10 Fluorospot method; with the 1015 

results converted to spot forming units/million cells (sfu/million) with background counts then 1016 

subtracted.  The response to the HCMV proteins and the positive control by all 73 donors are 1017 

summarized (A) with HCMV sero-positive donors (dark) and HCMV sero-negative donors (light) 1018 

both illustrated.  The positive response threshold cut-off of 100 sfu/million (dashed line) and the 1019 
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proportion of donors responding to each HCMV protein is indicated.  The proportion of the 67 sero-1020 

positive donors producing a positive IL-10 response to 1 or more of the 6 Lytic expressed proteins 1021 

(B), 5 latency associated proteins (E) or all 11 HCMV proteins (H) are summarized as pie charts with 1022 

the key to segment color for each graph shown.  Graphs illustrating the breadth of HCMV sero-1023 

positive donors IL-10 response to HCMV proteins correlated with age are illustrated for lytic 1024 

expressed (C), latency associated (F) and all 11 proteins (I); also shown is the summed IL-10 1025 

response to lytic (D), latent (G) and all proteins (J) correlated with age.  Spearman rank correlation 1026 

(Spearman rs (95% Confidence Intervals (CI)) and p values) results are indicated on each graph. 1027 

Figure 6 – CD4+ T cell Donor responses to HCMV LUNA, UL138, pp71, US3 and US28 1028 

proteins were more frequently IL-10 biased. 1029 

The frequency of CD4+ T cells that secrete IFNγ or IL-10 or both in response to stimulation by 1030 

HCMV proteins was measured simultaneously using a dual IFNγ/IL-10 Fluorospot assay.  67 HCMV 1031 

sero-positive donors were analyzed, only donors with above threshold responses for either IFNγ or 1032 

IL-10 (100 sfu/million) to each protein are shown.  The IFNγ (dark grey), IL-10 (white spotted) and 1033 

dual cytokine (red) responses of the donor cohort to US28 (A), LUNA (B), UL138 (C), UL144 (D), 1034 

vIL-10 (E), pp71 (F) US3 (G), pp65 (H), IE2 (I), gB (J) and IE1 (K) are shown as a percentage of the 1035 

total CD4+ T cell (IFNγ + IL-10) response of each donor, the donors are arranged along the x-axis in 1036 

increasing age order. The Lytic expressed proteins axis label is in red (graphs F – K) and the latency 1037 

associated protein responses are labelled in blue (graphs A – E).   1038 

Figure 7 – There was no effect of donor age on the magnitude of latent HCMV load in CD14+ 1039 

Monocytes. 1040 

The DNA of purified CD14+ Monocytes was extracted and HCMV viral load detected using droplet 1041 

digital PCR analysis.  No HCMV was detected in 14 HCMV sero-negative donors tested.  The 1042 

HCMV viral load (copies/10
6
 CD14+ cells) results from 94 HCMV sero-positive donors are shown 1043 

correlated with donor age.   Spearman rank correlation (Spearman rs (95% Confidence Intervals (CI)) 1044 

and p values) analysis is indicated on the graph. 1045 

 Figure 8 – High levels of latent HCMV load in CD14+ monocytes correlates with increased 1046 

frequency and breadth of HCMV specific IFNγ CD8+ T cell responses. 1047 

The HCMV viral load (copies/10
6
 CD14+ cells) from 83 HCMV sero-positive donors was correlated 1048 

with CD8+ HCMV specific T cell responses.  Graphs illustrating the breadth (positive response) of 1049 

individual donors CD8+ IFNγ response to the 6 lytic expressed (red) (A), 5 latency associated (blue) 1050 

(C) and all 11 HCMV proteins (purple) (E) correlated with CD14+ cells HCMV viral load are shown.  1051 

The magnitude of the CD8+ IFNγ response summed for all protein groups is correlated with HCMV 1052 

viral load for lytic (red) (B), latent (blue) (D) and all proteins (purple) (F).  Spearman rank correlation 1053 

(Spearman rs (95% Confidence Intervals (CI)) and p values) results are indicated on each graph. 1054 

 1055 
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