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1. Introduction

Most native speakers of English, in almost all contexts and situations, would agree that
dogs, cows, or cats are animals, and that tables or pencils are not. However, for certain
concepts, membership of the animal category is less clear-cut. Whether lexical concepts
such as dinosaur, human being, or amoeba are considered animals seems to depend on the
context in which such concepts are described, the perspective of the speaker or listener,
and even the formal scientific knowledge of the interlocutors. Despite this indeterminacy,
when communicating, humans intuitively reason about such relations between concepts
and categories (Quillian 1967; Collins and Quillian 1969). Indeed, the ability to quickly
perform inference over such networks and arrive at coherent knowledge representations
is crucial for human language understanding.

The Princeton WordNet lexical database (Miller 1995; Fellbaum 1998) is perhaps
the best-known attempt to formally represent such a semantic network. In WordNet,
concepts are organized in a hierarchical fashion, in an attempt to replicate observed
aspects of human semantic memory (Collins and Quillian 1972; Beckwith et al. 1991).
One of the fundamental relations between concepts in WordNet is the so-called TYPE-OF
or hyponymy–hypernymy relation that exists between category concepts such as animal
and their constituent members such as cat or dog. The type-of relation is particularly
important in language understanding because it underlines the lexical entailment (LE)
relation. Simply put, an instantiation of a member concept such as a cat entails the
existence of an animal. This lexical entailment in turns governs many cases of phrasal and
sentential entailment: If we know that a cat is in the garden, we can quickly and intuitively
conclude that an animal is in the garden, too.1

Because of this fundamental connection to language understanding, the automatic
detection and modeling of lexical entailment has been an area of much focus in natural
language processing (Bos and Markert 2005; Dagan, Glickman, and Magnini 2006; Baroni
et al. 2012; Beltagy et al. 2013, inter alia). The ability to effectively detect and model both
lexical and phrasal entailment in a human-like way may be critical for numerous related
applications, such as question answering, information retrieval, information extraction,
and text summarization and generation (Androutsopoulos and Malakasiotis 2010). For
instance, in order to answer a question such as “Which mammal has a strong bite?”, a
question-answering system has to know that a jaguar or a grizzly bear are types of
mammals, whereas a crocodile or a piranha are not.

Although inspired to some extent by theories of human semantic memory, large-scale
inventories of semantic concepts, such as WordNet, typically make many simplifying
assumptions, particularly regarding the nature of the type-of relation, and consequently
the effect of LE. In WordNet, for instance, all semantic relations are represented in a
binary way (i.e., concept X entails Y) rather than gradual (e.g., X entails Y to a certain
degree). However, since at least the pioneering experiments on prototypes (Rosch 1973,
1975), it has been known that, for a given semantic category, certain member concepts
are consistently understood as more central to the category than others (even when
controlling for clearly confounding factors such as frequency) (Coleman and Kay 1981;
Medin, Altom, and Murphy 1984; Lakoff 1990; Hampton 2007). In other words, WordNet
and similar resources fail to capture the fact that category membership is a gradual

1 Because of dual and inconsistent use in prior work, in this work we use the term lexical entailment (LE) in its
stricter definition: it refers precisely to the taxonomical hyponymy–hypernymy relation, also known as
TYPE-OF, or IS-A relation. More details on the distinction between taxonomical and substitutable LE are
provided in Section 2.
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semantic phenomenon. This limitation of WordNet also characterizes much of the LE
research in NLP, as we discuss later in Section 3.

To address these limitations, the present work is concerned with graded lexical
entailment: the degree of the LE relation between two concepts on a continuous scale.
Thanks to the availability of crowdsourcing technology, we conduct a variant of the
seminal behavioral data collection by Rosch (1973), but on a massive scale. To do so, we
introduce the idea of graded or soft LE, and design a human rating task for (X, Y) concept
pairs based on the following question: To what degree is X a type of Y?. We arrive at a data
set with 2,616 concept pairs, each rated by at least 10 human raters, scored by the degree
to which they exhibit typicality and semantic category membership and, equivalently,
LE. Using this data set, HyperLex,2 we investigate two questions:r (Q1) Do we observe the same effects of typicality, graded membership,

and graded lexical entailment in human judgments as observed by Rosch?
Do humans intuitively distinguish between central and non-central
members of a category/class? Do humans distinguish between full and
partial membership in a class as discussed by Kamp and Partee (1995)?r (Q2) Is the current LE modeling and representation methodology as
applied in NLP research and technology sufficient to accurately capture
graded lexical entailment automatically? What is the gap between current
automatic systems and human performance in the graded LE task?

The article is structured as follows. We define and discuss graded LE in Section 2.
In Section 3, we survey benchmarking resources from the literature that pertain to
semantic category membership, LE identification, or evaluation, and motivate the
need for a new, more expressive resource. In Section 4, we describe the design and
development of HyperLex, and outline the various semantic dimensions (such as POS
usage, hypernymy levels, and concreteness levels) along which these concept pairs
are designed to vary.

This allows us to address Q1 in Section 5, where we present a series of qualitative
analyses of the data gathered and collated into HyperLex. High inter-annotator agree-
ment scores (pairwise and mean Spearman’s ρ correlations around 0.85 on the entire
data set; similar correlations on noun and verb subsets) indicate that participants found
it unproblematic to rate consistently the graded LE relation for the full range of concepts.
These analyses reveal that the data in HyperLex enhance, rather than contradict or
undermine, the information in WordNet, in the sense that hyponymy–hypernymy pairs
receive highest average ratings in HyperLex compared with all other WordNet relations.
We also show that participants are able to capture the implicit asymmetry of the graded
LE relation by examining ratings of (X, Y) and reversed (Y, X) pairs. Most importantly,
our analysis shows that the effects of typicality, vagueness, and gradual nature of LE
are indeed captured in human judgments. For instance, graded LE scores indicate that
humans rate concepts such as to talk or to speak as more typical instances of the class
to communicate than concepts such as to touch, or to pray.

In Section 6 we then turn our attention to Q2: We evaluate the performance of a
wide range of LE detection or measurement approaches. This review covers: (i) dis-
tributional models relying on the distributional inclusion hypothesis (Geffet and Dagan

2 HyperLex is available online at: http://people.ds.cam.ac.uk/iv250/hyperlex.html.
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2005; Lenci and Benotto 2012) and semantic generality computations (Santus et al.
2014); (ii) multi-modal approaches (Kiela et al. 2015); (iii) WordNet-based approaches
(Pedersen, Patwardhan, and Michelizzi 2004); and (iv) a selection of state-of-the-art
recent word embeddings, some optimized for similarity on semantic similarity data
sets (Mikolov et al. 2013b; Levy and Goldberg 2014; Wieting et al. 2015, inter alia),
others developed to better capture the asymmetric LE relation (Vilnis and McCallum
2015; Vendrov et al. 2016). Because of its size, and unlike other word pair scoring
data sets such as SimLex-999 or WordSim-353, in HyperLex we provide standard
train/dev/test splits (both random and lexical [Levy et al. 2015; Shwartz, Goldberg,
and Dagan 2016]) so that HyperLex can be used for supervised learning. We therefore
evaluate several prominent supervised LE architectures (Baroni et al. 2012; Roller,
Erk, and Boleda 2014; Weeds et al. 2014, inter alia). Although we observe interesting
differences in the models, our findings indicate clearly that none of the currently available
models or approaches accurately model the relation of graded LE reflected in human
subjects. This study therefore calls for new paradigms and solutions capable of capturing
the gradual nature of semantic relations such as hypernymy in hierarchical semantic
networks.

In Section 8, we turn to the future and discuss potential applications of the graded
LE concept and HyperLex. We conclude in Section 9 by summarizing the key aspects of
our contribution. HyperLex offers robust, data-driven insight into how humans perceive
the concepts of typicality and graded membership within the graded LE relation. We
hope that this will in turn incentivize research into language technology that both reflects
human semantic memory more faithfully and interprets and models linguistic entailment
more effectively.

2. Graded Lexical Entailment

Note on Terminology. Because of dual and inconsistent use in prior work, in this work
we use the term lexical entailment (LE) in its stricter definition. It refers precisely to the
taxonomical asymmetric hyponymy–hypernymy relation, also known as IS-A, or TYPE-OF
relation (Hearst 1992; Snow, Jurafsky, and Ng 2004; Weeds, Weir, and McCarthy 2004;
Pantel and Pennacchiotti 2006; Do and Roth 2010, inter alia), e.g., snake is a TYPE-OF
animal, computer is a TYPE-OF machine.

This is different from an alternative definition (Zhitomirsky-Geffet and Dagan 2009;
Kotlerman et al. 2010; Turney and Mohammad 2015) as substitutable lexical entailment:
This relation holds for a pair of words (X, Y) if a possible meaning of one word (i.e., X)
entails a meaning of the other, and the entailing word can substitute the entailed one
in some typical contexts. This definition is looser and more general than the TYPE-OF
definition, as it also encompasses other lexical relations such as synonymy, metonymy,
meronymy, and so forth.3

Definitions. The classical definition of ungraded lexical entailment is as follows: Given
a concept word pair (X, Y), Y is a hypernym of X if and only if X is a type of Y, or
equivalently every X is a Y.4 On the other hand, graded lexical entailment defines the
strength of the lexical entailment relation between the two concepts. Given the concept

3 For instance, Turney and Mohammad (2015) argue that in the sentences Jane dropped the glass and Jane
dropped something fragile, the concept glass should entail fragile.

4 Other variants of the same definition replace TYPE-OF with KIND-OF or INSTANCE-OF.

784
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pair (X, Y) and the entailment strength s, the triplet (X, Y, s) defines to what degree Y is a
hypernym of X (i.e., to what degree X is a type of Y), where the degree is quantified by s
(e.g., to what degree snake is a TYPE-OF animal).

It may be observed as approximate or soft entailment, a weaker form of the classical
entailment variant (Esteva et al. 2012; Bankova et al. 2016). By imposing a threshold thr
on s, all graded relations may be easily converted to discrete ungraded decisions.

(Proto)typicality, Graded Membership, and Graded LE. The graded LE relation as described
by the intuitive question “to what degree is X a type of Y?” encompasses two distinct
phenomena described in cognitive science research (cf. Hampton 2007). First, it can be
seen as the measure of typicality in graded cognitive categorization (Rosch 1973, 1975;
Medin, Altom, and Murphy 1984; Lakoff 1990), where some instances of a category
are more central than others, as illustrated in Fig. 1(a)–Fig. 1(c). It measures to what
degree some class instance X is a prototypical example of class/concept Y. For instance,
when humans are asked to give an example instance of the concept sport, it turns out
that football and basketball are more frequently cited than wrestling, chess, softball, or
racquetball. Another viewpoint stresses that “prototypes serve as reference points for the
categorization of not-so-clear instances” (Taylor 2003). Osherson and Smith (1997) make
further developments to the theory of (proto)typicality by recognizing that there exist
concepts “that lack prototypes while possessing degrees of exemplification.” They list the
famous example of the concept building without a clear prototype; however, people tend
to agree that most banks are more typical buildings than, say, barns or pile dwellings.

Second, the graded LE relation also arises when one asks about the applicability
of concepts to objects: The boundaries between a category and its instances are much
more often fuzzy and vague than unambiguous and clear-cut (Kamp and Partee 1995).
In other words, the graded membership (often termed vagueness) measures the graded
applicability of a concept to different instances. For instance, it is not clear to what extent
different objects in our surroundings (e.g., tables, pavements, washing machines, stairs,
benches) could be considered members of the category chair despite the fact that such
objects can be used as “objects on which one can sit.”

The notions of typicality and graded membership are not limited to concrete or
nominal concepts, as similar gradience effects are detected for more complex and abstract
concepts (e.g., “To what degree is THESIS an instance/type of STATEMENT?”) (Coleman
and Kay 1981), or action verbs (Pulman 1983) and adjectives (Dirven and Taylor 1986).

cat
dog

cow
calfyak

dinosaur

snake

snail

duck

ostrich
mongoose

gander

crab

human

(a) ANIMAL

basketball

soccer
football

rugby
handball

tennis
badmintonsquash

chess

boxing
judo

baseball
softball

cricket

wrestling

racquetball

(b) SPORT

walk
run

crawl

jog
sprint jump

hop

drift

amblecreep
drag

saunter

whisk

tow

speed

trot

(c) TO MOVE

Figure 1
Toy examples illustrating the “typicality” or centrality of various class instances X of the Y classes
(a) animal, (b) sport, (c) (to) move.
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In short, graded membership or vagueness quantifies “whether or not and to what
degree an instance falls within a conceptual category,” whereas typicality reflects “how
representative an exemplar is of a category” (Hampton 2007). The subtle distinction
between the two is discussed and debated at length from the philosophical and psycholog-
ical perspective (Osherson and Smith 1981; Kamp and Partee 1995; Osherson and Smith
1997; Hampton 2006, 2007; Blutner, Pothos, and Bruza 2013; Decock and Douven 2014).
In our crowdsourcing study with non-expert workers, we have deliberately avoided
any explicit differentiation between the two phenomena captured by the same intuitive
“to-what-degree” question, reducing the complexity of the study design and allowing
for their free variance in the collected data in terms of their quantity and representative
concept pairs. In addition, the distinction is often not evident for verb concepts. We
leave further developments with respect to the two related phenomena of typicality
and vagueness for future work, and refer the interested reader to the aforementioned
literature. However, we already provide preliminary qualitative analyses in this article
(see Section 5) suggesting that both phenomena are captured in graded LE ratings.

Relation to Relational Similarity. A strand of related research on relational similarity
(Turney 2006; Jurgens et al. 2012) also assigns the score s to a pair of concepts (X, Y). Note
that there exists a fundamental difference between relational similarity and graded LE. In
the latter, s refers to the degree of the LE relation in the (X, Y) pair, that is, to the levels of
typicality and graded membership of the instance X for the class Y, whereas the former
quantifies the typicality of the pair (X, Y) for some fixed lexical relation class R (Bejar,
Chaffin, and Embretson 1991; Vylomova et al. 2016), for example, to what degree the
pair (snake, animal) reflects a typical LE relation or a typical synonymy relation.5

Graded LE vs. Semantic Similarity. A plethora of current evaluations in NLP and represen-
tation learning almost exclusively focus on semantic similarity and relatedness. Semantic
similarity as quantified by, for example, SimLex-999 or SimVerb-3500 (Gerz et al. 2016)
may be redefined as graded synonymy relation. The graded scores there, in fact, refer to
the strength of the synonymy relation between any pair of concepts (X, Y). One could say
that semantic similarity aims to answer the question to what degree X and Y are similar.6

Therefore, an analogy between previously annotated semantic similarity data sets and
our objective to construct a graded LE data set may be utilized to introduce the graded
LE task and facilitate the construction of HyperLex.

3. Design Motivation

3.1 Lexical Entailment Evaluations in NLP

Because the work in NLP and human language understanding focuses on the ungraded
version of the LE relation, we briefly survey main ungraded LE evaluation protocols
in Section 3.1.1, followed by an overview of benchmarking LE evaluation sets in

5 For instance, given the lexical relation classification scheme of Bejar, Chaffin, and Embretson (1991), LE or
CLASS–INCLUSION is only one of the 10 high-level relation classes.

6 From the SimLex-999 guidelines: “Two words are syonymys if they have very similar meanings. Synonyms
represent the same type or category (...) you are asked to compare word pairs and to rate how similar they
are...” Synonymy and LE capture different aspects of meaning regarding semantic hierarchies/taxonomies:
For example, whereas the pair (mouse, rat) receives a score of 7.78 in SimLex-999 (on the scale 0–10), the
same pair has a graded LE score of 2.22 in HyperLex.
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Section 3.1.2. We show that none of the existing evaluation protocols coupled with
existing evaluation sets enables a satisfactory evaluation of the capability of statistical
models to capture graded LE. As opposed to existing evaluation sets, by collecting
human judgments through a crowdsourcing study our new HyperLex evaluation set
also enables qualitative linguistic analysis on how humans perceive and rate graded
lexical entailment.

3.1.1 Evaluation Protocols. Evaluation protocols for the lexical entailment or type-of relation
in NLP, based on the classical definition of ungraded LE, may be roughly clustered as
follows:

(i) Entailment Directionality. Given two words (X, Y) that are known to stand in a lexical
entailment relation, the system has to predict the relation directionality, that is, which
word is the hypernym and which word is the hyponym. More formally, the following
mapping is defined by the directionality function fdir:

fdir : (X, Y)→ {−1, 1} (1)

fdir simply maps to 1 when Y is the hypernym, and to −1 otherwise.

(ii) Entailment Detection. The system has to predict whether there exists a lexical entailment
relation between two words, or the words stand in some other relation (synonymy,
meronymy–holonymy, causality, no relation, etc.). A more detailed overview of lexical
relations is available in related work (Hendrickx et al. 2010; Jurgens et al. 2012; Vylomova
et al. 2016). The following mapping is defined by the detection function fdet:

fdet : (X, Y)→ {0, 1} (2)

fdet simply maps to 1 when (X, Y) stand in a lexical entailment relation, irrespective to
the actual directionality of the relation, and to 0 otherwise.

(iii) Entailment Detection and Directionality. This recently proposed evaluation protocol
(Weeds et al. 2014; Kiela et al. 2015) combines (i) and (ii). The system first has to detect
whether there exists a lexical entailment relation between two words (X, Y), and then,
if the relation holds, it has to predict its directionality (i.e., the correct hypernym). The
following mapping is defined by the joint detection and directionality function fdet+dir:

fdet+dir : (X, Y)→ {−1, 0, 1} (3)

fdet+dir maps to 1 when (X, Y) stand in a lexical entailment relation and Y is the hypernym,
to −1 if X is the hypernym, and to 0 if X and Y stand in some other lexical relation or
no relation.

Standard Modeling Approaches. These decisions are typically based on the distributional
inclusion hypothesis (Geffet and Dagan 2005) or a lexical generality measure (Herbelot
and Ganesalingam 2013). The intuition supporting the former is that the class (i.e.,
extension) denoted by a hyponym is included in the class denoted by the hypernym, and
therefore hyponyms are expected to occur in a subset of the contexts of their hypernyms.
The intuition supporting the latter hints that typical characteristics constituting the inten-
sion (i.e., concept) expressed by a hypernym (e.g., move or eat for the concept animal) are

787



Computational Linguistics Volume 43, Number 4

semantically more general than the characteristics forming the intension7 of its hyponyms
(e.g., bark or has tail for the concept dog). In other words, superordinate concepts such
as animal or appliance are semantically less informative than their hyponyms (Murphy
2003), which is also reflected in less specific contexts for hypernyms.

Unsupervised (distributional) models of lexical entailment were instigated by the
early work of Hearst (1992) on prototypicality patterns (e.g., the pattern “X such as
Y” indicates that Y is a hyponym of X). The current unsupervised models typically
replace the symmetric cosine similarity measure that works well for semantic similarity
computations (Bullinaria and Levy 2007; Mikolov et al. 2013a) with an asymmetric
similarity measure optimized for entailment (Weeds, Weir, and McCarthy 2004; Clarke
2009; Kotlerman et al. 2010; Lenci and Benotto 2012; Herbelot and Ganesalingam 2013;
Santus et al. 2014).

Supervised models, on the other hand, learn the asymmetric operator from a
training set, differing mostly in the feature selection to represent each candidate
pair of words (Baroni et al. 2012; Fu et al. 2014; Rimell 2014; Roller, Erk, and Boleda
2014; Weeds et al. 2014; Fu et al. 2015; Roller and Erk 2016; Shwartz, Goldberg, and
Dagan 2016).8 An overview of the supervised techniques also discussing their main
shortcomings is provided by Levy et al. (2015); a thorough discussion of differences
between unsupervised and supervised entailment models is provided by Turney and
Mohammad (2015).

Why is HyperLex Different? In short, regardless of the chosen methodology, the
evaluation protocols (directionality or detection) may be straightforwardly translated
into binary decision problems: (1) distinguishing between hypernyms and hyponyms;
(2) distinguishing between lexical entailment and other relations.

HyperLex, on the other hand, targets a different type of evaluation. The graded
entailment function fgraded defines the following mapping:

fgraded : (X, Y)→ R+
0 (4)

fgraded outputs the strength of the lexical entailment relation s ∈ R+
0 .

By adopting the graded LE paradigm, HyperLex thus measures the degree of lexical
entailment between words X and Y constituting the order-sensitive pair (X, Y). From
another perspective, it measures the typicality and graded membership of the instance X
for the class/category Y. From the relational similarity viewpoint (Jurgens et al. 2012;
Zhila et al. 2013), it also measures the prototypicality of the pair (X, Y) for the LE relation.

3.1.2 Evaluation Sets

BLESS. Introduced by Baroni and Lenci (2011), the original BLESS evaluation set
includes 200 concrete English nouns as target concepts (i.e., X-s from the pairs (X, Y)),
equally divided between animate and inanimate entities. A total of 175 concepts were
extracted from the McRae feature norms data set (McRae et al. 2005), and the remaining
25 were selected manually by the authors. These concepts were then paired to 8,625

7 The terms intension and extension assume classical intensional and extensional definitions of a concept
(van Benthem and ter Meulen 1996; Baronett 2012).

8 Typical choices are feature vector concatenation (~X⊕ ~Y ), difference (~Y− ~X ), or element-wise multiplication
(~X� ~Y), where ~X and ~Y are feature vectors of concepts X and Y.
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different relatums (i.e., Y-s), yielding a total of 26,554 (X, Y) pairs, where 14,440 contain
a meaningful lexical relation and 12,154 are paired randomly. The lexical relations
represented in BLESS are lexical entailment, co-hyponymy, meronymy, attribute, event,
and random/no relation.

The use of its hyponymy–hypernymy/LE subset of 1,337 (X, Y) pairs is then 2-
fold. First, for directionality evaluations (Santus et al. 2014; Kiela et al. 2015), only the
LE subset is used. Note that the original BLESS data are always presented with the
hyponym first, so gold annotations are implicitly provided here. Second, for detection
evaluations (Roller, Erk, and Boleda 2014; Santus et al. 2014; Levy et al. 2015), the pairs
from the LE subset are taken as positive pairs, and all the remaining pairs are considered
negative pairs. That way, the evaluation data effectively measure a model’s ability to pre-
dict the positive LE relation. Another evaluation data set based on BLESS was introduced
by Santus et al. (2015). Following the standard annotation scheme, it comprises 7,429
noun pairs in total, and 1,880 LE pairs in particular, covering a wider range of relations
than BLESS (i.e., the data set now includes synonymy and antonymy pairs).

Adaptations of the original BLESS evaluation set were proposed recently. First,
relying on its LE subset, Weeds et al. (2014) created another data set called WBLESS
(Kiela et al. 2015) consisting of 1,976 concept pairs in total. Only (X, Y) pairs where Y
is the hypernym are annotated as positive examples. It also contains reversed LE pairs
(i.e., X is the hypernym), cohyponymy pairs, meronymy–holonymy pairs, and randomly
matched nouns balanced across different lexical relations; all are annotated as negative
examples. Because of its construction, WBLESS is used solely for experiments on LE
detection. Weeds et al. (2014) created another data set in a similar fashion, consisting of
5,835 noun pairs, targeting co-hyponymy detection.

For the combined detection and directionality evaluation, a variant evaluation set
called BiBLESS was proposed (Kiela et al. 2015). It is built on WBLESS, but now explicitly
distinguishes direction in LE pairs. Examples of concept pairs in all BLESS variants can be
found in Table 1. A majority of alternative ungraded LE evaluation sets briefly discussed
here have a structure very similar to BLESS and its variants.

Kotlerman et al. (2010). Based on the original data set of Zhitomirsky-Geffet and Dagan
(2009), this evaluation set (Kotlerman et al. 2010) contains 3,772 word pairs in total. The
structure is similar to BLESS: 1,068 pairs are labeled as positive examples (i.e., 1 or entails
iff X entails Y), and 2,704 labeled as negative examples, including the reversed positive
pairs. The assignment of binary labels is described in detail by Zhitomirsky-Geffet and
Dagan (2009). The class sizes are not balanced, and because of its design, although each
pair is unique, 30 high-frequent nouns occur in each pair in the data set. Note that

Table 1
Example pairs from BLESS data set variants.

Variant Pair Annotation

BLESS (cat, animal) 1
WBLESS (cat, animal) 1

(cat, monkey) 0
(animal, cat) 0

BiBLESS (cat, animal) 1
(cat, monkey) 0
(animal, cat) −1
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this data set has been annotated according to the broader definition of substitutable LE
(see Section 2).

Baroni et al. (2012). The N1 � N2 evaluation set contains 2,770 nominal concept pairs,
with 1,385 pairs labeled as positive examples (i.e., 1 or entails) (Baroni et al. 2012). The
remaining 1,385 pairs labeled as negatives were created by inverting the positive pairs
and randomly matching concepts from the positive pairs. The pairs and annotations
were extracted automatically from WordNet and then validated manually by the authors
(e.g., the abstract concepts with a large number of hyponyms such as entity or object were
removed from the pool of concepts).

Levy et al. (2014). A similar data set for the standard LE evaluation may be extracted from
manually annotated entailment graphs of subject–verb–object tuples (i.e., propositions)
(Levy, Dagan, and Goldberger 2014): Noun LEs were extracted from entailing tuples that
were identical except for one of the arguments, thus propagating the proposition-level
entailment to the word level. This data set was built for the medical domain and adopts
the looser definition of substitutable LE.

Custom Evaluation Sets. A plethora of relevant work on ungraded LE do not rely on
established evaluation resources, but simply extract ad hoc LE evaluation data using
distant supervision from readily available semantic resources and knowledge bases
such as WordNet (Miller 1995), DBPedia (Auer et al. 2007), Freebase (Tanon et al. 2016),
Yago (Suchanek, Kasneci, and Weikum 2007), or dictionaries (Gheorghita and Pierrel
2012). Although plenty of the custom evaluation sets are available online, there is a clear
tendency to construct a new custom data set in every subsequent paper that uses the
same evaluation protocol for ungraded LE.

A standard practice (Snow, Jurafsky, and Ng 2004, 2006; Bordes et al. 2011; Riedel
et al. 2013; Socher et al. 2013; Weeds et al. 2014; Shwartz, Goldberg, and Dagan 2016;
Vendrov et al. 2016, inter alia) is to extract positive and negative pairs by coupling
concepts that are directly related in at least one of the resources. Only pairs standing in
an unambiguous hypernymy/LE relation, according to the set of indicators from Table 2,
are annotated as positive examples (i.e., again 1 or entailing, Table 1) (Shwartz et al. 2015).
All other pairs standing in other relations are taken as negative instances. Using related
rather than random concept pairs as negative instances enables detection experiments.
We adopt a similar construction principle regarding wide coverage of different lexical
relations in HyperLex. This decision will support a variety of interesting analyses related
to graded LE and other relations.

Table 2
Indicators of LE/hypernymy relation in structured semantic resources.

Resource Relation

WordNet instance hypernym, hypernym
Wikidata subclass of, instance of
DBPedia type
Yago subclass of
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Jurgens et al. (2012). Finally, the evaluation resource most similar in spirit to
HyperLex is the data set of Jurgens et al. (2012) (https://sites.google.com/site/
semeval2012task2/) created for measuring degrees of relational similarity. It con-
tains 3,218 word pairs labeled with 79 types of lexical relations from the relation
classification scheme of Bejar et al. (1991).

The data set was constructed using two phases of crowdsourcing. First, for each
of the 79 subcategories, human subjects were shown paradigmatic examples of word
pairs in the given subcategory. They were then asked to generate more pairs of the same
semantic relation type. Second, for each of the 79 subcategories, other subjects were
shown word pairs that were generated in the first phase, and they were asked to rate the
pairs according to their degree of prototypicality for the given semantic relation type.
This is different from HyperLex, where all word pairs, regardless of their actual relation,
were scored according to the degree of lexical entailment between them.

Bejar et al.’s hierarchical classification system contains ten high-level categories, with
five to ten subcategories each. Only one high-level category, CLASS–INCLUSION, refers to
the true relation of ungraded LE or hyponymy–hypernymy, and the scores in the data set
do not reflect graded LE. The data set aims at a wide coverage of different fine-grained
relations: It comprises a small sample of manually generated instances (e.g., the number
of distinct pairs for the CLASS–INCLUSION class is 200) for each relation scored according
to their prototypicality only for that particular relation. For more details concerning the
construction of the evaluation set, we refer the reader to the original work. Also, for
details on how to convert the data set to an evaluation resource for substitutable LE, we
refer the reader to the work of Turney and Mohammad (2015).

HyperLex: A Short Summary of Motivation. The usefulness of these evaluation sets is
evident from their wide usage in the LE literature over recent years: They guided the
development of semantic research focused on taxonomic relations. However, none of
the evaluation sets contains graded LE ratings. Therefore, HyperLex may be considered
as a more informative data collection: It enables a new evaluation protocol focused
on gradience of the TYPE-OF relation rooted in cognitive science (Hampton 2007). As
discussed in Section 2, graded annotations from HyperLex may be easily converted to
ungraded annotations: HyperLex may also be used in the standard format of previous
LE evaluation sets (see Table 1) for detection and directionality evaluation protocols (see
later in Section 7.2).

Second, a typical way to evaluate word representation quality at present is by
judging the similarity of representations assigned to similar words. The most popular
semantic similarity evaluation sets such as SimLex-999 or SimVerb-3500 consist of word
pairs with similarity ratings produced by human annotators. HyperLex is the first
resource that can be used for the intrinsic evaluation (Schnabel et al. 2015; Faruqui et al.
2016) of LE-based vector space models (Vendrov et al. 2016); see later in Section 6.6.
Encouraged by high inter-annotator agreement scores and evident large gaps between
the human and system performance (see Section 7), we believe that HyperLex will guide
the development of a new generation of representation-learning architectures that induce
hypernymy/LE-specialized word representations, as opposed to the current ubiquitous
word representations targeting exclusively semantic similarity and/or relatedness
(see later the discussion in Sections 7.4 and 8).

Finally, HyperLex provides a wide coverage of different semantic phenomena related
to LE: graded membership vs. typicality (see Section 2), entailment depths, concreteness
levels, word classes (nouns and verbs), word pairs standing in other lexical relations,
etc. Besides its primary purpose as an evaluation set, such a large-scale and diverse
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crowdsourced semantic resource (2,616 pairs in total!) enables novel linguistic and
cognitive science analyses regarding human typicality and vagueness judgments, as well
as taxonomic relationships (discussed in Section 5).

4. The HyperLex Data Set

Construction Criteria. Hill, Reichart, and Korhonen 2015 argue that comprehensive
high-quality evaluation resources have to satisfy the following three criteria:

r (C1) Representative: The resource covers the full range of concepts occurring
in natural language.r (C2) Clearly defined: A clear understanding is needed of what exactly the
gold standard measures; that is, the data set has to precisely define the
annotated relation (e.g., relatedness as with WordSim-353, similarity as with
SimLex-999, or in this case graded lexical entailment).r (C3) Consistent and reliable: Untrained native speakers must be able to
quantify the target relation consistently relying on simple instructions.

The choice of word pairs and construction of the evaluation set were steered by
these requirements. Criterion C1 was satisfied by sampling a sufficient number of pairs
from the University of Southern Florida (USF) Norms data set (Nelson, McEvoy, and
Schreiber 2004). As shown in prior work (Hill, Reichart, and Korhonen 2015), the USF
data set provides an excellent range of different semantic relations (e.g., synonyms vs.
hypernyms vs. meronyms vs. cohyponyms) and semantic phenomena (e.g., it contains
concrete vs. abstract word pairs, noun pairs vs. verb pairs). This, in turn, guarantees a
wide coverage of distinct semantic phenomena in HyperLex. We discuss USF and the
choice of concept words in more detail in Section 4.1.

Criteria C2 and C3 were satisfied by providing clear and precise annotation
guidelines that accurately outline the lexical entailment relation and its graded variant
in terms of the synonymous definition based on the TYPE-OF relationship (Fromkin,
Rodman, and Hyams 2013) for average native speakers of English without any linguistic
background. We discuss the guidelines and questionnaire structure in Sections 4.3 and 4.4.

Final Output. The HyperLex evaluation set contains noun pairs (2,163 pairs) and verb
pairs (453 pairs) annotated for the strength of the lexical entailment relation between the
words in each pair. Because the LE relation is asymmetric and the score always quantifies
to what degree X is a type of Y, pairs (X, Y) and (Y, X) are considered distinct pairs. Each
concept pair is rated by at least 10 human raters. The rating scale goes from 0 (no type-of
relationship at all) to 10 (perfect type-of relationship). Several examples from HyperLex
are provided in Table 3.

In its 2,616 word pairs, HyperLex contains 1,843 distinct noun types and 392
distinct verb types. In comparison, SimLex-999 as the standard crowdsourced evaluation
benchmark for representation learning architectures focused on the synonymy relation
contains 751 distinct nouns and 170 verbs in its 999 word pairs. In another comparison,
the LE benchmark BLESS (see Section 3.1.2) contains relations where one of the words
in each pair comes from the set of 200 distinct concrete noun types.
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Table 3
Example word pairs from HyperLex. The order of words in each pair is fixed, for example, the pair
chemistry / science should be read as “Is CHEMISTRY a type of SCIENCE?”

Pair HyperLex LE Rating

chemistry / science 10.0
motorcycle / vehicle 9.85
pistol / weapon 9.62
to ponder / to think 9.40
to scribble / to write 8.18
gate / door 6.53
thesis / statement 6.17
to overwhelm / to defeat 4.75
shore / beach 3.33
vehicle / motorcycle 1.09
enemy / crocodile 0.33
ear / head 0.00

4.1 Choice of Concepts

Sources: USF and WordNet. To ensure a wide coverage of a variety of semantic phenomena
(C1), the choice of candidate pairs is steered by two standard semantic resources available
online: (1) the USF norms data set9 (Nelson, McEvoy, and Schreiber 2004), and (2)
WordNet10 (Miller 1995).

USF was used as the primary source of concept pairs. It is a large database of free
association data collected for English, generated by presenting human subjects with one
of 5,000 cue concepts and asking them to write the first word coming to mind that is
associated with that concept. Each cue c was normed in this way by over 10 participants,
resulting in a set of associates a for each cue, for a total of over 72,000 (c, a) pairs. For
each such pair, the proportion of participants who produced associate a when presented
with cue c can be used as a proxy for the strength of association between the two words.

The norming process guarantees that two words in a pair have a degree of semantic
association that correlates well with semantic relatedness, reflected in different lexical
relations between words in the pairs. Inspecting the pairs manually revealed a good
range of semantic relationship values represented—for example, there were examples
of ungraded LE pairs (car / vehicle, biology / science), cohyponym pairs (peach / pear),
synonyms or near-synonyms ( foe / enemy), meronym–holonym pairs (heel / boot), and
antonym pairs (peace / war). USF also covers different POS categories: nouns (winter /
summer), verbs (to elect / to select), and adjectives (white / gray), at the same time spanning
word pairs at different levels of concreteness (panther / cat vs. wave / motion vs. hobby /
interest). The rich annotations of the USF data (e.g., concreteness scores, association
strength) can be combined with graded LE scores to yield additional analyses and
insight.

WordNet was used to automatically assign a fine-grained lexical relation to each pair
in the pool of candidates; this guided the sampling process to ensure a wide coverage of
word pairs standing in different lexical relations (Shwartz, Goldberg, and Dagan 2016).

9 http://w3.usf.edu/FreeAssociation/.
10 https://wordnet.princeton.edu/.
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Lexical Relations. To guarantee the coverage of a wide range of semantic phenomena, we
have conditioned the cohort/pool used for sampling on the lexical relation between the
words in each pair. As mentioned earlier, the information was extracted from WordNet.
We consider the following lexical relations in HyperLex:

1. hyp-N: (X, Y) pairs where X is a hyponym of Y according to WordNet. N is
the path length between the two concepts in the WordNet hierarchy, for
example, the pair cathedral / building is assigned the hyp-3 relation. Because
of unavailability of a sufficient number of pairs for longer paths, we have
grouped all pairs with the path length ≥ 4 into a single class hyp ≥ 4. It
was shown that pairs that are separated by fewer levels in the WordNet
hierarchy are both more strongly associated and rated as more similar (Hill,
Reichart, and Korhonen 2015). This fine-grained division over LE levels
enables analyses based on the semantic distance in a concept hierarchy.

2. rhyp-N: The same as hyp-N, now with the order reversed: X is now a
hypernym of Y. Such pairs were included to investigate the inherent
asymmetry of the type-of relation and how human subjects perceive it.

3. cohyp: X and Y are two instances of the same category, that is, they share a
hypernym (e.g., dog and elephant are instances of the category animal). For
simplicity, we retain only (X, Y) pairs that share a direct hypernym.

4. mero: It denotes the PART–WHOLE relation, where X always refers to the
meronym (i.e., PART), and Y to the holonym (i.e., WHOLE): finger / hand,
letter / alphabet. By its definition, this relation is observed only between
nominal concepts.

5. syn: X and Y are synonyms and near-synonyms, for example, movement /
motion, attorney / lawyer. In case of polysemous concepts, at least one sense
has to be synonymous with a meaning of the other concept, for example,
author / writer.

6. ant: X and Y are antonyms, for example, beginning / end, to unite / to divide.

7. no-rel: X and Y do not stand in any lexical relation, including the ones not
present in HyperLex (e.g., causal relations, space–time relations), and are
also not semantically related. This relation specifies that there is no apparent
semantic connection between the two concepts at all, for example, chimney /
swan, nun / softball.

POS Category. HyperLex includes subsets of pairs from two principle meaning-bearing
POS categories: nouns and verbs.11 This decision will enable finer-grained analyses
based on the two main POS categories. It is further supported by recent research in
distributional semantics showcasing that different word classes (e.g., nouns vs. verbs)
require different modeling approaches and distributional information to reach per-class
peak performances (Schwartz, Reichart, and Rappoport 2015). In addition, we expect
verbs to have fuzzier category borders because of their high variability and polysemy,

11 We have decided to leave out adjectives: They are represented in USF to a lesser extent than nouns and
verbs, and it is thus not possible to sample large enough subsets of adjective pairs across different lexical
relations and lexical entailment levels, namely, only syn and ant adjective pairs are available in USF.
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increased abstractness, and a wide range of syntactic–semantic behavior (Jackendoff
1972; Levin 1993; Gerz et al. 2016).

Pools of Candidate Concept Pairs. The initial pools for sampling were selected as follows.
First, we extracted all possible noun pairs (N / N) and verb pairs (V / V) from USF
based on the associated POS tags available as part of USF annotations. Concept pairs
of other and mixed POS (e.g., puzzle / solve, meet / acquaintance) were excluded from the
pool of candidate pairs.12 To ensure that semantic association between concepts in a pair
is not accidental, we then discarded all such USF pairs that had been generated by two
or fewer participants in the original USF experiments.13 We also excluded all concept
pairs containing a multi-word expression (e.g., put down / insult, stress / heart attack), pairs
containing a named entity (e.g., Europe / continent), and pairs containing a potentially
offensive concept (e.g., weed / pot, heroin / drug).14

All remaining pairs were then assigned a lexical relation according to WordNet.
In case of duplicate (X, Y) and (Y, X) pairs, only one variant (i.e., (X, Y)) was retained.
In addition, all rhyp-N pairs at this stage were reversed into hyp-N pairs. All no-rel
pairs from USF were also discarded at this stage to prevent the inclusion of semantically
related pairs with a prominent degree of association in the no-rel subset of HyperLex.

In the final step, all remaining pairs were divided into per-relation pools of candidate
noun and verb pairs for each represented relation: hyp-N, cohyp, mero, syn, ant. Two
additional pools were created for rhyp-N and no-rel after the sampling process.

4.2 Sampling Procedure

The candidate pairs were then sampled from the respective per-relation pools. The
final number of pairs per each relation and POS category was influenced by: (1) the
number of candidates in each pool (therefore, HyperLex contains significantly more
noun pairs); (2) the focus on LE (therefore, HyperLex contains more hyp-N pairs at
different LE levels); (3) the wide coverage of most prominent lexical relations (therefore,
each lexical relation is represented by a sufficient number of pairs); and (4) logistic
reasons (we were unable to rate all candidates in a crowdsourcing study and had to
sample a representative subset of candidates for each relation and POS category in the
first place).

Step 1: Initial Sampling. First, pairs for lexical relations hyp-N, cohyp, mero, syn, and ant
were sampled from their respective pools. WordNet, although arguably the best choice
for our purpose, is not entirely reliable as a gold standard resource, with occasional
inconsistencies and debatable precision regarding the way lexical relations have been
encoded: for example, silly is a hyponym of child according to WordNet. Therefore, all
sampled pairs were manually checked by the authors plus two native English speakers
in several iterations. Only such sampled pairs where the majority of human checkers
agreed on the lexical relation were retained. If a pair was discarded, another substitute
pair was randomly sampled if available, and again verified against human judgments.

12 POS categories are generally considered to reflect very broad ontological classes (Fellbaum 1998). We thus
felt it would be very difficult, or even counter-intuitive, for annotators to rate mixed POS pairs.

13 The numbers are available as part of USF annotations.
14 Note that the pairs with the same concept without any offensive connotation were included in the pools,

for example, weed / grass, weed / plant, or ecstasy / feeling.
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Figure 2
A total number of noun and verb pairs in HyperLex representing different fine-grained semantic
relations extracted from WordNet.

Step 2: Reverse and No-Rel Pairs. Before the next step, the pool for rhyp-N was generated
by simply reversing the order of concepts in all previously sampled (X, Y) hyp-N pairs.
The pool for no-rel was generated by pairing up the concepts from the pairs extracted in
Step 1 at random using the Cartesian product. From these random parings, we excluded
those that coincidentally occurred elsewhere in USF (and therefore had a degree of
association), as well as those that were assigned any lexical relation according to WordNet.
From the remaining pairs, we accepted only those in which both concepts had been
subject to the USF norming procedure, ensuring that these non-USF pairs were indeed
unassociated rather than simply not normed. rhyp-N and no-rel were then sampled
from these two pools, followed by another manual check. The rhyp-N pairs will be used
to test the asymmetry of human and system judgments (see later in Tables 7 and 8),
which is immanent to the LE relation.

Figure 2 shows the exact numbers of noun and verb pairs across different lexical
relations represented in HyperLex. The final set of 2,616 distinct word pairs15 was then
annotated in a crowdsourcing study (Sections 4.3 and 4.4).

4.3 Question Design and Guidelines

Here, we detail the exact annotation guidelines followed by the participants in the
crowdsourcing study. In order to accurately outline the LE relation to average native
speakers of English without any linguistic background, we have deliberately eschewed
the usage of any expert linguistic terminology in the annotation guidelines, and have also
avoided addressing the subtle differences between typicality and vagueness (Section 2).
For instance, terms such as hypernymy, lexical entailment, prototypicality, or taxonomy were
never explicitly defined using any precise linguistic formalism.

(Page 1). We have adopted a simpler and more intuitive definition of lexical entail-
ment instead, based on the type-of relationship between words in question (Fromkin,
Rodman, and Hyams 2013), illustrated by a set of typical examples in the guidelines
(see Figure 3(a)).

15 The final number was obtained after randomly discarding a small number of pairs for each relation in order
to distribute the pairs of both POS categories into tranches of equal size in the crowdsourcing study (see
Section 4.4).
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(a) Page 1 (b) Page 2(a)

Figure 3
Page 1 and Page 2(a) of HyperLex annotation guidelines.

(Page 2). Following that, a clear distinction was made between words standing in a
broader relationship of semantic relatedness and words standing in an actual type-of
relation (see Fig. 3(b)). We have included typical examples of related words without any
entailment relation, including meronymy pairs (tyre / car), cohyponymy pairs (plant /
animal), and antonymy pairs (white / black), and pairs in other lexical relations (e.g., shore /
sea). Because HyperLex also contains verbs, we have also provided several examples for
a type-of relation between verbs (see Fig. 3(b)).

Potential polysemy issues have been addressed by stating, using intuitive examples,
that two words stand in a type-of relation if any of their senses stand in a type-of relation.
However, we acknowledge that this definition is vague, and the actual disambiguation
process was left to the annotators and their intuition as native speakers. A similar context-
free rating was used in the construction of other word pair scoring data sets such as
SimLex-999 or WordSim-353.16 In the next step, we have explicitly stressed that the
type-of relation is asymmetric (see Fig. 4(a)).

(Page 3). The final page explains the main idea behind graded lexical entailment, graded
membership, and prototypical class instances, according to the theories from cognitive
science (Rosch 1973, 1975; Lakoff 1990; Hampton 2007; Divjak and Arppe 2013) by
providing another illustrative set of examples (see Fig. 4(b)). The main goals of the study
were then quickly summarized in the final paragraph, and the annotators were reminded
to think in terms of the type-of relationship throughout the study.

4.4 Questionnaire Structure and Participants

We use the Prolific Academic (PA) crowdsourcing platform,17 an online marketplace
very similar to Amazon Mechanical Turk and to CrowdFlower. Although PA was used
to recruit participants, the actual questionnaire was hosted on Qualtrics.18 Unlike other

16 Determining the set of exact senses for a given concept, and then the set of contexts that represent those
senses, introduces a high degree of subjectivity into the design process. Furthermore, in the infrequent case
that some concept X in a pair (X, Y) is genuinely (etymologically) polysemous, Y can provide sufficient
context to disambiguate X (Hill, Reichart, and Korhonen 2015; Leviant and Reichart 2015).

17 https://prolific.ac/. (We chose PA for logistic reasons.)
18 https://www.qualtrics.com/.
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(a) Page 2(b) (b) Page 3

Figure 4
Page 2(b) and Page 3 of HyperLex annotation guidelines.

crowdsourcing platforms, PA collects and stores detailed demographic information from
the participants upfront. This information was used to carefully select the pool of eligible
participants. We restricted the pool to native English speakers with a 90% approval rate
(maximum rate on PA), of age, 18–50 years, born and currently residing in the United
States or the UK.

Immediately after the guidelines, similar to the SimLex-999 questionnaire, a qualifica-
tion question is posed to the participant to test whether she/he understood the guidelines
and is allowed to proceed with the questionnaire. The question is shown in Figure 5(a).
In the case of an incorrect answer, the study terminates for the participant without
collecting any ratings. In case of a correct answer, the participant begins rating pairs by
moving a slider, as shown in Figure 5(b). Having a slider attached to the question “Is
X a type of Y?” implicitly translates the posed question to the question “To what degree
is X a type of Y?” (Section 2). The pairs are presented to the participant in groups of six
or seven. As with SimLex-999, this group size was chosen because the (relative) rating
of a set of pairs implicitly requires pairwise comparisons between all pairs in that set.
Therefore, larger groups would have significantly increased the cognitive load on the
annotators. Because concept pairs were presented to raters in batches defined according
to POS, another advantage of grouping was the clear break (submitting a set of ratings
and moving to the next page) between the tasks of rating noun and verb pairs. For better
inter-group calibration, from the second group onward the last pair of the previous group
became the first pair of the present group. The participants were then asked to re-assign
the rating previously attributed to the first pair before rating the remaining new items
(Figure 5(b)).

It is also worth stressing that we have decided to retain the type-of structure of
each question explicitly for all word pairs so that raters are constantly reminded of the
targeted lexical relation, that is, all (X, Y) word pairs are rated according to the question

“Is X a type of Y?”, as shown in Figure 5(b). For verbs, we have decided to use the infinitive
form in each question, for example, “Is TO RUN a type of TO MOVE?”

Following a standard practice in crowdsourced word pair scoring studies (Finkelstein
et al. 2002; Luong, Socher, and Manning 2013; Hill, Reichart, and Korhonen 2015), each
of the 2,616 concept pairs has to be assigned at least 10 ratings from 10 different accepted

798
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(a) Qualification question (b) Survey structure

Figure 5
(a) Qualification question. The correct answer is “Is GOOSE a type of ANIMAL?” (b) A group of
noun pairs to be rated by moving the sliders. The rating slider was initially at position 0, and it
was possible to attribute a rating of 0, although it was necessary to have actively moved the slider
to that position to proceed to the next page. The first pair is repeated from the previous page, and
the last pair will be repeated on the next page.

annotators. We collected ratings from more than 600 annotators in total. To distribute the
workload, we divided the 2,616 pairs into 45 tranches, with 79 pairs each: 50 are unique
to one tranche, and 20 manually chosen pairs are in all tranches to ensure consistency.
The use of such consistency pairs enabled control for possible systematic differences
between annotators and tranches, which could be detected by variation on this set of
20 pairs shared across all tranches. The remaining 9 are duplicate pairs displayed to
the same participant multiple times to detect inconsistent annotations. The number of
noun and verb pairs is the same across all tranches (64 of 79 and 15 of 79, respectively).
Each annotator was asked to rate the pairs in a single tranche only. Participants took
10 minutes on average to complete one tranche, including the time spent reading the
guidelines and answering the qualification question.

4.5 Post-Processing

Eighty-five percent of total exclusions occurred because of crowdsourcers answering the
qualification question incorrectly: We did not collect any ratings from such workers. In
the post-processing stage, we additionally excluded ratings of annotators who (a) did
not give equal ratings to duplicate pairs; (b) showed suspicious rating patterns (e.g.,
randomly alternating between two ratings, using one single rating throughout the
study, or assigning random ratings to pairs from the consistency set). The final acceptance
rate was 85.7% (if we also count the workers who answered the qualification question
incorrectly for the total number of assignments) and 97.5% (with such workers excluded
from the counts). We then calculated the average of all ratings from the accepted raters
(≥ 10) for each word pair. The score was finally scaled linearly from the 0–6 to the 0–10
interval as also done by Hill, Reichart, and Korhonen (2015).
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Table 4
A comparison of HyperLex IAA with several prominent crowdsourced semantic similarity/
relatedness evaluation benchmarks that also provide scores for word pairs. Numbers in
parentheses refer to the total number of word pairs in each evaluation set.

Benchmark IAA-1 IAA-2

WORDSIM (353) 0.611 0.756
(Finkelstein et al. 2002)
WS-SIM (203) 0.667 0.651
(Agirre et al. 2009)
SIMLEX (999) 0.673 0.778
(Hill, Reichart, and Korhonen 2015)

HYPERLEX (2616) 0.854 0.864

HYPERLEX: NOUNS (2163) 0.854 0.864
HYPERLEX: VERBS (453) 0.855 0.862

5. Analysis

Inter-Annotator Agreement. We report two different inter-annotator agreement (IAA)
measures. IAA-1 (pairwise) computes the average pairwise Spearman’s ρ correlation
between any two raters. This is a common choice in previous data collection in distribu-
tional semantics (Padó, Padó, and Erk 2007; Reisinger and Mooney 2010a; Silberer and
Lapata 2014; Hill, Reichart, and Korhonen 2015).

A complementary measure would smooth individual annotator effects. For this aim,
our IAA-2 (mean) measure compares the average correlation of a human rater with the
average of all the other raters. It arguably serves as a better “upper bound” than IAA-1
for the performance of automatic systems. HyperLex obtains ρ = 0.854 (IAA-1) and
ρ = 0.864 (IAA-2), a very good agreement compared to other prominent crowdsourced
benchmarks for semantic evaluation which also used word pair scoring (see Table 4).19

We also report IAAs over different groups of pairs according to the relation extracted
from WordNet in Table 5.

We acknowledge the fact that the grading process at places requires specific world-
knowledge (e.g., to what degree is SNAKE a type of REPTILE?, to what degree is TOMATO a
type of FRUIT?), or is simply subjective and demographically biased (e.g., to what degree is
TO PRAY a type of TO COMMUNICATE?), which needs principled qualitative analyses.
However, the HyperLex inter-rater agreement scores suggest that participants were
able to understand the characterization of graded lexical entailment presented in the
instructions and to apply it to concepts of various types (e.g. nouns vs. verbs, concrete vs.
abstract concepts, different lexical relations from WordNet) consistently.

Typicality in Human Judgments. In the first analysis, we investigate the straightforward
question: Are some concepts really more (proto)typical of semantically broader higher-
level classes? Several examples of prominent high-level taxonomic categories, along with

19 Note that the IAAs are not computed on the entire data set, but are in fact computed per tranche, as one
worker annotated only one tranche. Exactly the same IAA computation was used previously by Hill,
Reichart, and Korhonen (2015).
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Table 5
Inter-annotator agreements, measured by average pairwise Spearman’s ρ correlation over
different fine-grained lexical relations extracted from WordNet.

hyp−1 hyp−2 hyp−3 hyp≥4 cohyp mero syn ant no−rel rhyp−1 rhyp−2 rhyp−3 rhyp≥4

IAA-1 0.850 0.844 0.859 0.848 0.857 0.856 0.860 0.858 0.854 0.855 0.842 0.868 0.856
IAA-2 0.866 0.847 0.872 0.851 0.875 0.876 0.883 0.858 0.859 0.845 0.850 0.846 0.859

LE scores, are shown in Table 6. We might draw several preliminary insights based on
the presented lists. There is an evident prototyping effect present in human judgments:
Concepts such as cat, monkey, or cow are more typical instances of the class animal than
the more peculiar instances, such as mongoose or snail, according to HyperLex annotators.
Instances of the class sport also seem to be sorted accordingly, as higher scores are
assigned to arguably more prototypical sports such as basketball, volleyball, or soccer, and
less prototypical sports such as racquetball or wrestling are assigned lower scores.

Nonetheless, the majority of hyp-N pairs (X, animal) or (X, sport), where X is a
hyponym of animal/sport according to WordNet (WN), are indeed assigned reasonably
high graded LE scores. It suggests that humans are able to: (1) judge the LE relation
consistently and decide that a concept indeed stands in a type-of relation with another
concept, and (2) grade the LE relation by assigning more strength to more prototypical
class instances. Similar patterns are visible with other class instances from Table 6, as well
as with other prominent nominal classes (e.g., bird, appliance, science). We also observe
the same effect with verbs, for example, (drift, move, 8.58), (hustle, move, 7.67), (tow, move,
7.37), (wag, move, 6.80), (unload, move, 6.22).

We also analyze if the effects of graded membership/vagueness (see the discussion
in Section 2) are also captured in the ratings, and our preliminary qualitative analysis
suggests so. For instance, an interesting example quantifies the graded membership in the
class group: (gang, group, 9.25), (legion, group, 7.67), (conference, group, 6.80), (squad, group,
8.33), (caravan, group, 5.00), (grove, group, 3.58), (herd, group, 9.23), (fraternity, group, 8.72),
(staff, group, 6.28). Although we have not explicitly distinguished between typicality and
graded membership in our annotation guidelines, with both subsumed under the TYPE-
OF formulation of graded lexical entailment, the listed examples suggest that human
subjects are able to quantify both in a satisfying manner.

Table 6
Graded LE scores for instances of several prominent taxonomical categories/classes represented in
HyperLex (i.e., the categories are the word Y in each (X, Y, s) graded LE triplet).

TYPE-OF animal food sport person vehicle

cat 10.0 sandwich 10.0 basketball 10.0 girl 9.85 car 10.0
monkey 10.0 pizza 10.0 hockey 10.0 customer 9.08 limousine 10.0
cow 10.0 rice 10.0 volleyball 10.0 clerk 8.97 motorcycle 9.85
bat 9.52 hamburger 9.75 soccer 9.87 citizen 8.63 van 9.75
mink 9.17 mushroom 9.07 baseball 9.75 nomad 8.63 automobile 9.58
snake 8.75 pastry 8.83 softball 9.55 poet 7.78 tractor 9.37
snail 8.62 clam 8.20 cricket 9.37 guest 7.22 truck 9.23
mongoose 8.33 snack 7.78 racquetball 9.03 mayor 6.67 caravan 8.33
dinosaur 8.20 oregano 5.97 wrestling 8.85 publisher 6.03 buggy 8.20
crab 7.27 rabbit 5.83 recreation 2.46 climber 5.00 bicycle 8.00
plant 0.13 dinner 4.85 – – idol 4.28 vessel 6.38
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Hypernymy/LE Levels. Graded LE scores in HyperLex averaged for each WordNet relation
are provided in Table 7. Note that the LE level is extracted as the shortest direct path
between two concept words in the WordNet taxonomy, where X-s in each (X, Y) pair
always refer to the less general concept (i.e., hyponym).

Graded LE scores for nouns increase with the increase of the LE level (i.e., WN path
length) between the concepts. A longer WN path implies a clear difference in semantic
generality between nominal concepts, which seems to be positively correlated with the
degree of the LE relation and ease of human judgment. A similar finding in directionality
and detection experiments on BLESS and its variants was reported by Kiela et al. (2015).
They demonstrate that their model is less accurate on concepts with short paths (i.e.,
the lowest results are reported for WN hyp-1 pairs from BLESS), and the performance
increases with the increase of the WN path length. The tendency is explained by the
lower difference in generality between concepts with short paths, which may be difficult
to discern for a statistical model. The results from Table 7 show that human raters also
display a similar tendency when rating nominal pairs.

Another factor underlying the observed scores might be the link between HyperLex
and the source USF norms. Because USF contains free association norms, one might
assume that more prototypical instances are generated more frequently as responses to
cue words in the original USF experiments. This, in turn, reflects in their greater presence
in HyperLex, especially for concept pairs with longer WN distances.

Further, nominal concepts higher in the WN hierarchy typically refer to semantically
very broad but well-defined categories such as animal, food, vehicle, or appliance (see again
Table 6). Semantically more specific instances of such concepts are easier to judge as
true hyponyms (using the ungraded LE terminology), which also reflects in higher LE
ratings for such instances. However, gradience effects are clearly visible even for pairs
with longer WN distances (Table 6).

The behavior with respect to the LE level is reversed for verbs: the average scores
decrease over increasing LE levels. We attribute this effect to a higher level of abstractness
and ambiguity present in verb concepts higher in the WN hierarchy stemming from a
fundamental cognitive difference: Gentner (2006) showed that children find verbs harder
to learn than nouns, and Markman and Wisniewski (1997) present evidence that different

Table 7
Average HyperLex scores across all pairs, and noun and verb pairs representing finer-grained
semantic relations extracted from WordNet.

All Nouns Verbs

hyp-1 7.86 7.99 7.49
hyp-2 8.10 8.31 7.08
hyp-3 8.16 8.39 6.55
hyp≥4 8.33 8.62 5.12
cohyp 3.54 3.29 4.76
mero 3.14 3.14 -
syn 6.83 6.69 7.66
ant 1.47 1.57 1.25
no-rel 0.85 0.64 1.48
rhyp-1 4.75 4.17 6.45
rhyp-2 4.19 3.44 6.15
rhyp-3 3.07 2.72 4.47
rhyp≥4 2.85 2.54 4.11
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Table 8
A selection of scored (X, Y) word pairs from HyperLex holding the hyp-1, hyp-2, and hyp-3
relation according to WordNet along with the HyperLex score for the actual (X, Y) pair (scr) and
the HyperLex score for the reversed (Y, X) pair (i.e., rhyp-N relations): rscr. The reported
percentages on top refer to the ratio of (X, Y) pairs for each relation where scr > rscr.

hyp-1 vs rhyp-1 (89%) hyp-2 vs rhyp-2 (95%) hyp-3 vs rhyp-3 (96%)

Pair scr rscr Pair scr rscr Pair scr rscr

(computer, machine) 9.83 2.43 (gravity, force) 9.50 3.58 (flask, container) 9.37 1.83
(road, highway) 9.67 4.30 (professional, expert) 6.37 6.03 (elbow, joint) 7.18 1.07
(dictator, ruler) 9.87 6.22 (therapy, treatment) 9.17 4.10 (nylon, material) 9.75 1.42
(truce, peace) 8.00 6.38 (encyclopedia, book) 8.93 2.22 (choir, group) 8.72 2.43
(remorse, repentance) 7.63 3.50 (empathy, feeling) 8.85 2.42 (beer, beverage) 9.25 0.67
(disagreement, conflict) 8.78 8.67 (shovel, tool) 9.70 2.57 (reptile, animal) 9.87 1.17
(navigator, explorer) 6.80 7.63 (fraud, deception) 9.52 8.17 (parent, ancestor) 7.00 6.17
(ring, jewelry) 10.0 2.78 (bed, furniture) 9.75 2.63 (note, message) 9.00 6.07
(solution, mixture) 6.52 7.37 (verdict, judgment) 9.67 7.57 (oven, appliance) 9.83 1.33
(spinach, vegetable) 10.0 0.55 (reader, person) 7.43 3.33 (king, leader) 8.67 4.55
(surgeon, doctor) 8.63 4.05 (vision, perception) 3.82 6.25 (hobby, activity) 7.12 6.83
(hint, suggestion) 8.75 7.03 (daughter, child) 9.37 2.78 (prism, shape) 7.50 2.70

cognitive operations are used when comparing two nouns or two verbs. For instance, it
is intuitive to assume that human subjects find it easier to grade instances of the class
animal than instances of verb classes such as to get, to set, or to think.

LE Directionality. Another immediate analysis investigates whether the inherent asymme-
try of the type-of relation is captured by the human annotations in HyperLex. Several
illustrative example pairs and their reverse pairs split across different LE levels are
shown in Table 8. Two important conclusions may be drawn from the analysis.

First, human raters are able to capture the asymmetry; the strong majority of hyp-N
pairs is rated higher than their rhyp-N counterparts: 94% of all hyp-N pairs for which
exists the rhyp-N counterpart are assigned a higher rating. Second, the ability to clearly
detect the correct LE direction seems to rise with the increase of semantic distance in
WordNet: (1) We notice decreasing average scores for the rhyp-N relation as N increases
(see Table 7); (2) We notice a higher proportion of hyp-N concept pairs scoring higher
than their rhyp-N counterparts as N increases (see Table 8). There are evident difficulties
to decide on the entailment direction with several pairs (e.g., navigator / explorer, solution /
mixture, disagreement / conflict), especially for the taxonomically closer hyp-1 pairs, a
finding aligned with prior work on LE directionality (Rimell 2014; Kiela et al. 2015).

Other Lexical Relations. Another look into Table 7, where graded LE scores are averaged
across lexical relations, indicates the expected order of all other lexical relations sorted by
the average per-relation scores (i.e., syn > cohyp > mero > ant > no-rel). no-rel and
ant pairs have the lowest graded LE scores by a large margin. no-rel pairs are expected
to have completely non-overlapping semantic fields, which facilitates human judgment.
With antonyms, the graded LE question may be implicitly reformulated as To what degree
is X a type of −X? (e.g., winner / loser, to depart / to arrive), which intuitively should result
in low graded LE scores: The HyperLex ratings confirm the intuition.

Low scores for cohyp pairs in comparison to hyp-N pairs indicate that the annotators
are able to effectively distinguish between the two related but different well-defined
taxonomic relations (i.e., hyp-N vs cohyp). High scores for syn pairs are also aligned with
our expectations and agree with intuitions from prior work on ungraded LE (Rei and
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Table 9
A total number of concept pairs in each of the four coarse-grained groups based on the concepts’
concreteness ratings: Both concepts are concrete (USF concreteness rating ≥ 4)→ G1; both abstract
→ G2; one concrete and one abstract concept with a difference in concreteness ≤ 1→ G3 or > 1→
G4. rhyp-N pairs are not counted.

G1 G2 G3 G4

# Pairs 979 259 883 344

Briscoe 2014). In a slightly simplified view, given that two synonyms may be observed as
two different utterances of the same semantic concept X, the graded LE question may be
rephrased as To what degree is X a type of X? One might say that syn could be seen as a
special case: the degenerate taxonomic hyp-0 relation. Such an implicit reformulation of
the posed question naturally results in higher scores for syn pairs on average.

Concreteness. Differences in human and computational concept learning and represen-
tation have been attributed to the effects of concreteness, the extent to which a concept
has a directly perceptible physical referent (Paivio 1991; Hill, Korhonen, and Bentz
2014). Because the main focus of this work is not on the distinction between abstract
and concrete concepts, we have not explicitly controlled for the balanced amount of
concrete/abstract pairs in HyperLex. However, because the source USF data set provides
concreteness scores, we believe that HyperLex will also enable various additional
analyses regarding this dimension in future work.

Here, we report the number of pairs in four different groups based on concreteness
ratings of two concepts in each pair. The four groups are as follows: (G1) both concepts
are concrete (USF concreteness rating ≥ 4); (G2) both concepts are abstract (USF rating <
4); (G3) one concept is considered concrete and another abstract, with their difference
in ratings ≤ 1; (G4) one concept is considered concrete and another abstract, with their
difference in ratings > 1.

The statistics regarding HyperLex pairs divided into groups G1 − G4 is presented in
Table 9. rhyp-N pairs are not counted as they are simply reversed hyp-N pairs present in
HyperLex. Concept pairs where at least one concreteness rating is missing in the USF
data are also not taken into account. Although HyperLex contains more concrete pairs
overall, there is also a large sample of highly abstract pairs and mixed pairs. For instance,
HyperLex contains 125 highly abstract concept pairs, with both concepts scoring ≤ 3 in
concreteness (e.g., misery / sorrow, hypothesis / idea, competence / ability, or religion / belief ).
This preliminary coarse-grained analysis already hints that HyperLex provides a good
representation of concepts across the entire concreteness scale. This will also facilitate
further analyses related to concept concreteness and its influence on the automatic
construction of semantic taxonomies.

Data Splits: Random and Lexical. A common problem in scored/graded word pair data sets
is the lack of a standard split to development and test sets (Faruqui et al. 2016). Custom
splits (e.g., 10-fold cross-validation) make results incomparable with others. Further,
because of their limited size, they also do not support supervised learning, and do not
provide splits into training, development, and test data. The lack of standard splits in
such word pair data sets stems mostly from small size and poor coverage—issues that
we have solved with HyperLex.
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Table 10
HyperLex data splits: Basic statistics. The number of pairs is always provided in the following
format #Overall (#N + #V), where #N and #V denote the number of noun and verb pairs
respectively. The columns represent groups/buckets of word pairs according to their LE scores.

Rating Intervals

Split All [0, 2〉 [2, 4〉 [4, 6〉 [6, 8〉 [8, 10]

HyperLex–All 2616 (2163+453) 604 (504+100) 350 (304+46) 307 (243+64) 515 (364+151) 840 (748+92)
Random Split
TRAIN 1831 (1514+317) 423 (353+70) 245 (213+32) 215 (170+45) 361 (255+106) 587 (523+64)
DEV 130 (108+22) 30 (25+5) 17 (15+2) 15 (13+2) 26 (18+8) 42 (37+5)
TEST 655 (541+114) 151 (126+25) 88 (76+12) 77 (60+17) 128 (91+37) 211 (188+23)
Lexical Split
TRAIN 1133 (982+151) 253 (220+33) 140 (122+18) 129 (109+20) 195 (148+47) 416 (383+33)
DEV 85 (71+14) 20 (18+2) 13 (11+2) 11 (8+3) 17 (10+7) 24 (24+0)
TEST 269 (198+71) 65 (52+13) 37 (29+8) 41 (31+10) 63 (37+26) 63 (49+14)

We provide two standard data splits into train, dev, and test data: random and
lexical. In the random split, 70% of all pairs were reserved for training, 5% for de-
velopment, and 25% for testing. The subsets were selected by random sampling, but
controlling for a broad coverage in terms of similarity ranges (i.e., non-similar and highly
similar pairs, as well as pairs of medium similarity are represented). Some statistics are
available in Table 10. A manual inspection of the subsets revealed that a good range of
lexical relations is represented in the subsets.

The lexical split, advocated by Levy et al. (2015) and Shwartz, Goldberg, and Dagan
(2016), prevents the effect of lexical memorization: supervised distributional lexical
inference models tend to learn an independent property of a single concept in the pair
instead of learning a relation between the two concepts.20 To prevent such behavior,
we split HyperLex into a train and test set with zero lexical overlap. We tried to retain
roughly the same 70%/25%/5% ratio in the lexical split. Note that the lexical split
discards all “cross-set” training–test concept pairs. Therefore, the number of instances in
each subset is lower than with the random split. Statistics are again given in Table 10.

We believe that the provided standardized HyperLex data splits will enable easy and
direct comparisons of various LE modeling architectures in unsupervised and supervised
settings. Following arguments from prior work, we hold that it is important to provide
both data set splits, as they can provide additional possibility to assess differences
between models. It is true that training a model on a lexically split data set may result
in a more general model (Levy et al. 2015), which is able to better reason over pairs
consisting of two unseen concepts during inference. However, Shwartz, Goldberg, and
Dagan (2016) argue that a random split emulates a more typical “real-life” reasoning
scenario, where inference involves an unseen concept pair (X, Y), in which X and/or Y
have already been observed separately. Models trained on a random split may introduce
the model with a concept’s “prior belief” of being a frequent hypernym or a hyponym.
This information can be effectively exploited during inference.

20 For instance, if the training set contains concept pairs (dog / animal), (cow, animal), and (cat, animal), all
assigned very high LE scores or annotated as positive examples in case of ungraded LE evaluation, the
algorithm may learn that animal is a prototypical hypernym, assigning any new (X, animal) pair a very high
score, regardless of the actual relation between X and animal; additional analyses provided in Section 7.3.
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6. Evaluation Set-up and Models

Evaluation Set-up. We compare the performance of prominent models and frameworks
focused on modeling lexical entailment on our new HyperLex evaluation set now
measuring the strength of the lexical entailment relation. Because of the evident simi-
larity of the graded evaluation with standard protocols in the semantic similarity (i.e.,
synonymy detection) literature (Finkelstein et al. 2002; Agirre et al. 2009; Hill, Reichart,
and Korhonen 2015; Schwartz, Reichart, and Rappoport 2015, inter alia), we adopt the
same evaluation set-up. Each evaluated model assigns a score to each pair of words
measuring the strength of lexical entailment relation between them.21

As in prior work on intrinsic evaluations with word pair scoring evaluation sets,
all reported scores are Spearman’s ρ correlations between the ranks derived from the
scores of the evaluated models and the human scores provided in HyperLex. In this
work, we evaluate off-the-shelf unsupervised models and insightful baselines on the
entire HyperLex. We also report on preliminary experiments exploiting provided data
splits for supervised learning.

6.1 Directional Entailment Measures

Note that all directional entailment measures (DEMs) available in the literature have
“pre-embedding” origins and assume traditional count-based vector spaces (Turney and
Pantel 2010; Baroni, Dinu, and Kruszewski 2014) based on counting word-to-word corpus
co-occurrence. Distributional features are typically words co-occurring with the target
word in a chosen context (e.g., a window of neighboring words, a sentence, a document,
a dependency-based context).

This collection of models is grounded on variations of the distributional inclusion
hypothesis (Geffet and Dagan 2005): If X is a semantically narrower term than Y, then
a significant number of salient distributional features of X are included in the feature
vector of Y as well. We closely follow the work from Lenci and Benotto (2012) in the
presentation. Let FeatX denote the set of distributional features ft for a concept word
X, and let wX( ft) refer to the weight of the feature ft for X. The most common choices
for the weighting function in traditional count-based distributional models are positive
variants of pointwise mutual information (PMI) (Bullinaria and Levy 2007) and local
mutual information (LMI) (Evert 2008).

WeedsPrec (DEM1). This DEM quantifies the weighted inclusion of the features of a
concept word X within the features of a concept word Y (Weeds and Weir 2003; Weeds,
Weir, and McCarthy 2004; Kotlerman et al. 2010):

DEM1(X, Y) =

∑
ft∈FeatX∩FeatY

wX( ft)∑
ft∈FeatX

wX( ft)
(5)

WeedsSim (DEM2). It computes the geometrical average of WeedsPrec (DEM1) or any
other asymmetric measure (e.g., APinc from Kotlerman et al. [2010]) and the symmetric

21 Note that, unlike with similarity scores, the score now refers to an asymmetric relation stemming from the
question “Is X a type of Y” for the word pair (X, Y). Therefore, the scores for two reverse pairs (X, Y) and
(Y, X) should be different; see also Table 8.
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similarity sim(X, Y) between X and Y, measured by cosine (Weeds, Weir, and McCarthy
2004), or the Lin measure (Lin 1998) as in the balAPinc measure of Kotlerman et al. (2010):

DEM2(X, Y) = DEM1(X, Y) · sim(X, Y) (6)

ClarkeDE (DEM3). A close variation of DEM1 was proposed by Clarke (2009):

DEM3(X, Y) =

∑
ft∈FeatX∩FeatY

min(wX( ft), wY( ft))∑
ft∈FeatX

wX( ft)
(7)

InvCL (DEM4). A variation of DEM3 was introduced by Lenci and Benotto (2012). It
takes into account both the inclusion of context features of X in context features of Y and
non-inclusion of features of Y in features of X.22

DEM4(X, Y) =
√

DEM3(X, Y) · (1−DEM3(Y, X)) (8)

6.2 Generality Measures

Another related view towards the TYPE-OF relation is as follows. Given two semantically
related words, a key aspect of detecting lexical entailment is the generality of the
hypernym compared to the hyponym. For example, bird is more general than eagle, having
a broader intension and a larger extension. This property has led to the introduction of
lexical entailment measures that compare the entropy/semantic content of distributional
word representations, under the assumption that a more general term has a higher-
entropy distribution (Herbelot and Ganesalingam 2013; Rimell 2014; Santus et al.
2014). From this group, we show the results with the SLQS model (Santus et al. 2014)
demonstrating the best performance in prior work.

SLQS. It is an entropy-based measure which quantifies the specificity/generality level
of related terms. First, the top n most associated context features (i.e., typically context
words as in the original work of Santus et al. [2014]) are identified (e.g., using positive
PMI or LMI); for each identified context feature cn, its entropy H(cn) is defined as:

H(cn) = −
n∑

i=1

P( fti|cn) log2 P( fti|c) (9)

where fti, i = 1, . . . , n is the i-th context feature, and P( fti|cn) is computed as the ratio of
the co-occurrence frequency (cn, fti) and the total frequency of cn. For each concept word
X, it is possible to compute its median entropy EX over the N most associated context
features. A higher value EX implies a higher semantic generality of the concept word X.
The initial SLQS measure, called SLQS–BASIC, is then defined as:

SLQS(X, Y) = 1− EX
EY

(10)

22 For example, if animal is a hypernym of crocodile, one expects that (i) a number of context features of
crocodile are also features of animal, and (ii) that a number of context features of animal are not context
features of crocodile. As a broader concept, animal is also found in contexts in which also occur animals other
than crocodiles.
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This measure may be directly used in standard ungraded LE directionality experiments
because SLQS(X, Y) > 0 implies that X is a type of Y (see Table 1). Another variant of
SLQS, called SLQS–SIM, is tailored to LE detection experiments: It resembles the DEM2
measure from Equation (6); the only difference is that, because SLQS can now produce
negative scores, all such scores are set to 0.

6.3 Visual Generality Measures

Kiela et al. (2015) showed that such generality-based measures need not be linguistic
in nature, and proposed a series of visual and multi-modal models for LE directionality
and detection. We briefly outline the two best performing ones in their experiments.

Deselaers and Ferrari (2011) previously showed that sets of images corresponding
to terms at higher levels in the WordNet hierarchy have greater visual variability than
those at lower levels. They exploit this tendency, using sets of images associated with
each concept word as returned by Google’s image search. The intuition is that the set of
images returned for the broader concept animal will consist of pictures of different kinds
of animals, that is, exhibiting greater visual variability and lesser concept specificity; on
the other hand, the set of images for bird will consist of pictures of different birds, and
the set for owl will mostly consist only of images of owls.

The generality of a set of n images for each concept X is then computed. The first
model relies on the image dispersion measure (Kiela et al. 2014). It is the average
pairwise cosine distance between all image representations23 {−→iX,1, . . . ,

−→
iX,n} for X:

id(X) = 2
n(n− 1)

∑
j<k≤n

1− cos(
−→
iX,j,
−→
iX,k) (11)

Another similar measure instead of calculating the pairwise distance calculates the
distance to the centroid −→µX of {−→iX,1, . . . ,

−→
iX,n}:

cent(X) = 1
n

∑
1≤j≤n

1− cos(
−→
iX,j,
−→µX) (12)

Final Model. The following formula summarizes the visual model for ungraded LE
directionality and detection that we also test in graded evaluations:

sθ(X, Y) =

{
1− f (X)+α

f (Y) if cos(~X, ~Y) ≥ θ
0 otherwise

(13)

f is one of the functions for image generality given by Equations (11) and (12). The
model relying on Equation (11) is called VIS–ID, and the other is called VIS–CENT. α is a
tunable threshold which sets a minimum difference in generality for LE identification,
driven by the idea that non-LE pairs also have non-identical generality scores. To avoid
false positives where one word is more general but the pair is not semantically related,

23 As is common practice in multi-modal semantics, each image representation is obtained by extracting the
4096-dimensional pre-softmax layer from a forward pass in a convolutional neural network (Krizhevsky,
Sutskever, and Hinton 2012; Simonyan and Zisserman 2015) that has been trained on the ImageNet
classification task using Caffe (Jia et al. 2014; Russakovsky et al. 2015).
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a second threshold θ is used, which sets f to zero if the two concepts have low cosine
similarity. Finally, ~X and ~Y are representations of concept words used to compute their
semantic similarity (Turney and Pantel 2010; Kiela and Bottou 2014).

6.4 Concept Frequency Ratio

Concept word frequency ratio (FR) is used as a proxy for lexical generality: It is a
surprisingly competitive baseline in the standard (binary) LE evaluation protocols (see
Section 3.1.1 and later Section 7.2) (Weeds, Weir, and McCarthy 2004; Santus et al. 2014;
Kiela et al. 2015, inter alia). FR also relies on Equation (13); the only difference is that
f (X) = freq(X), where freq(X) is a simple word frequency count obtained from a large
corpus.

6.5 WordNet-Based Similarity Measures

A variant of Equation (13) may also be used with any standard WordNet-based similarity
measure to quantify the degree of TYPE-OF relation:

s(X, Y) = fWN(X, Y) (14)

where fWN(X, Y) returns a similarity score based on the WordNet path between two
concepts. We use three different standard measures for fWN, resulting in three variant
WN-based models:

(1) WN–BASIC: fWN returns a score denoting how similar two concepts are,
based on the shortest path that connects the concepts in the WN taxonomy.

(2) WN–LCH: Leacock–Chodorow similarity function (Leacock and Chodorow
1998) returns a score denoting how similar two concepts are, based on their
shortest connecting path (as above) and the maximum depth of the
taxonomy in which the concepts occur. The score is then
− log(path/2 · depth), where path is the shortest connecting path length and
depth the taxonomy depth.

(3) WN–WUP: Wu–Palmer similarity function (Wu and Palmer 1994; Pedersen,
Patwardhan, and Michelizzi 2004) returns a score denoting how similar two
concepts are, based on their depth in the taxonomy and that of their most
specific ancestor node.

Note that all three WN-based similarity measures are not well-suited for graded LE
experiments by their design: For example, they will rank direct co-hyponyms as more
similar than distant hyponymy–hypernymy pairs.

6.6 Order Embeddings

Following trends in semantic similarity (or graded synonymy computations, see Section 2
again), Vendrov et al. (2016) have recently demonstrated that it is possible to construct a
vector space or a word embedding model that specializes in the lexical entailment relation,
rather than in the more popular similarity/synonymy relation. The model is then applied
to a variety of tasks including ungraded LE detection and directionality.
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Figure 6
A slice of the visual–semantic hierarchy. The toy example is taken from Vendrov et al. (2016),
inspired by the resource of Young et al. (2014).

The order embedding model exploits the partial order structure of a visual–semantic
hierarchy (see Figure 6) by learning a mapping which is not distance-preserving but
order-preserving between the visual–semantic hierarchy and a partial order over the
embedding space. It learns a mapping from a partially ordered set (U,�U ) into a partially
ordered embedding space (V,�V ): the ordering of a pair in U is then based on the
ordering in the embedding space. The chosen embedding space is the reversed product
order on RN

+, defined by the conjunction of total orders on each coordinate:

~X � ~Y iff
N∧

i=1

Xi ≥ Yi (15)

for all vectors ~X and ~Y with nonnegative coordinates, where the vectors ~X and ~Y are
order embeddings of concept words X and Y.24 With a slight abuse of notation, Xi refers
to the i-th coordinate of vector ~X, the same for Yi. The ordering criterion, however, is too
restrictive to impose as a hard constraint. Therefore, an approximate order-embedding
is sought: A mapping that violates the order-embedding condition, imposed as a soft
constraint, as little as possible. In particular, the penalty L for an ordered pair (~X, ~Y) of
points/vectors in RN

+ is defined as:

L(~X, ~Y) = ||max(0, ~Y− ~X)||2 (16)

L(~X, ~Y) = 0 implies that X � Y, according to the reversed product order. If the order
is not satisfied, the penalty is positive. The model requires a set of positive pairs PP
(i.e., true LE pairs) and a set of negative pairs NP for training. To learn an approximate

24 Smaller coordinates imply higher position in the partial order. The origin is then the top element of the
order, representing the most general concept.
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mapping to an order embedding space, a max-margin loss is used. It encourages positive
examples to have zero penalty, and negatives to have penalty greater than a margin γ:∑

(X,Y)∈PP

L(~X, ~Y) +
∑

(X′,Y′ )∈NP

max(0,γ− L( ~X′, ~Y′)) (17)

Positive and negative examples are task-dependent. For the standard ungraded LE
evaluations, positive pairs for the training set PP are extracted from the WordNet
hierarchy. The set NP is obtained by artificially constructing “corrupted” pairs (Socher
et al. 2013), that is, by replacing one of the two concepts from positive examples with a
randomly selected concept. This model is called ORDEREMB.

Graded LE with Order Embeddings. Order embeddings are trained for the binary LE
detection task, but not explicitly for the graded LE task. To measure how much one such
off-the-shelf order embedding model captures LE on the continuous scale, we test three
different distance measures:

(1) ORDEREMB–COS: A standard cosine similarity is used on vector
representations.

(2) ORDEREMB–DISTALL: The sum of the absolute distance between all
coordinates of the vectors ~X and ~Y is used as a distance function:

DistAll(~X, ~Y) =
∑

i

|Yi − Xi| (18)

This measure is based on the training penalty defined by Equation (16). The
idea is that for order embeddings the space is sorted based on the degree of
hypernymy/hyponymy violation in each dimension: The absolute
coordinate distance may be used as an indicator of the LE strength.

(3) ORDEREMB–DISTPOS: This variant extends the DistAll distance by only
adding up those coordinates fulfilling the criterion defined in the reversed
product order in Equation (15):

DistPos(~X, ~Y) =
∑

i

{
|Yi − Xi|, if Xi ≥ Yi

0, otherwise
(19)

6.7 Standard (“Similarity”) Embeddings

A majority of other word embedding models available in the literature target the
symmetric relation of semantic relatedness and similarity, and the strength of the
similarity relation is modeled by a symmetric similarity measure such as cosine.

It was shown that human subjects often consider “closer” LE pairs quite semantically
similar (Geffet and Dagan 2005; Agirre et al. 2009; Hill, Reichart, and Korhonen 2015).25

For instance, pairs (assignment, task) or (author, creator) are judged as strong LE pairs
(with average scores 9.33 and 9.30 in HyperLex, respectively); they are assigned the

25 ‘Closeness’ or hypernymy level for (X, Y) may be measured by the shortest WN path connecting X and Y.
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labels hyp-1 and hyp-2, respectively, according to WordNet and are also considered
semantically very similar (their SimLex-999 scores are 8.70 and 8.02). In another example,
the WordNet syn pairs (foe, enemy) and (summit, peak) have graded LE scores of 9.72 and
9.58 in HyperLex. The rationale behind these experiments is then to test to what extent
these symmetric models are capable of quantifying the degree of lexical entailment, and
to what degree these two relations are interlinked.

We test the following benchmarking semantic similarity models: (1) Unsupervised
models that learn from distributional information in text, including the skip-gram
negative-sampling model (SGNS) (Mikolov et al. 2013b) with various contexts (BOW =
bag of words; DEPS = dependency contexts) as described by Levy and Goldberg (2014);
and (2) Models that rely on linguistic hand-crafted resources or curated knowledge
bases. We evaluate models that currently hold the peak scores in word similarity tasks:
sparse binary vectors built from linguistic resources (NON-DISTRIBUTIONAL [Faruqui
and Dyer 2015]), vectors fine-tuned to a paraphrase database (PARAGRAM [Wieting et al.
2015]), and further refined using linguistic constraints (PARAGRAM+CF [Mrkšić et al.
2016]). Because these models are not the main focus of this work, the reader is referred to
the relevant literature for detailed descriptions.

6.8 Gaussian Embeddings

An alternative approach to learning word embeddings was proposed by Vilnis and
McCallum (2015). They represent words as Gaussian densities rather than points in
the embedding space. Each concept X is represented as a multivariate K-dimensional
Gaussian parameterized as N (µX,σX), where µX is a K-dimensional vector of means,
and σX in the most general case is a K× K covariance matrix.26

Word types are embedded into soft regions in space: The intersection of these regions
could be straightforwardly used to compute the degree of lexical entailment. This allows
a natural representation of hierarchies using, for example, the asymmetric Kullback–
Leibler (KL) divergence. KL divergence between Gaussian probability distributions is
straightforward to calculate, naturally asymmetric, and has a geometric interpretation as
an inclusion between families of ellipses.

To train the model, they define an energy function that returns a similarity-like
measure of the two probabilities. It is possible to train the model to better capture
“standard semantic similarity” (see Section 6.7) by using expected likelihood (EL) as
the energy function. On the other hand, KL divergence is a natural energy function for
representing entailment between concepts—a low KL divergence from X to Y indicates
that we can encode Y easily as X, implying that Y entails X. This can be interpreted
as a soft form of inclusion between the level sets of ellipsoids generated by the two
Gaussians—if there is a relatively high expected log-likelihood ratio (negative KL), then
most of the mass of Y lies inside X.

We refer the reader to the original work (He et al. 2015; Vilnis and McCallum 2015)
for a detailed description and low-level modeling steps. We evaluate two variants of the
model on the graded LE task following Vilnis and McCallum (2015): (i) WORD2GAUSS–
EL–COS and WORD2GAUSS–EL–KL use EL in training, but the former uses cosine
between vectors of means as a measure of similarity between concepts, and the latter

26 Vilnis and McCallum (2015) use a simplification where σX is represented as a K-dimensional vector
(so-called diagonal Gaussian embeddings) or a scalar (spherical embeddings).
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Vulić et al. HyperLex: A Large-Scale Evaluation of Graded Lexical Entailment

relies on the (asymmetric) KL divergence between full Gaussians; (ii) WORD2GAUSS–
KL–COS and WORD2GAUSS–KL–KL use KL divergence as the energy function.

7. Results and Discussion

7.1 Training Data and Parameters

Because we evaluate a plethora of heterogeneous models and architectures on the graded
LE task, we first provide a quick overview of their training set-up regarding training
data, their parameter settings, and other modeling choices.

DEMs and SLQS. Directional entailment measures DEM1–DEM4 and both SLQS variants
(i.e., SLQS–BASIC and SLQS–SIM) are based on the cleaned, tokenized, and lowercased
Polyglot Wikipedia (Al-Rfou, Perozzi, and Skiena 2013). We have used two set-ups
for the induction of word representations, the only difference being that in Set-up 1
context/feature vectors are extracted from the Polyglot Wiki directly based on bigram
co-occurrence counts, whereas in Set-up 2, these vectors are extracted from the TYPEDM
tensor (Baroni and Lenci 2010) as in the original work of Lenci and Benotto (2012).27

Both set-ups use the positive LMI weighting calculated on syntactic co-occurrence links
between each word and its context word (Gulordava and Baroni 2011): LMI(w1, w2) =

C(w1, w2) ∗ log2
C(w1,w2 )∗Total

C(w1 )C(w2 ) , where C(w) is the unigram count in the Polyglot Wiki for
the word w, C(w1, w2) is the dependency based co-occurrence count of the two tokens
w1 and w2, namely (w1, (dep_rel, w2)), and Total is the number of all such tuples. The
Polyglot Wiki was parsed with Universal Dependencies (Nivre et al. 2015) as in the work
of Vulić and Korhonen (2016).28 The context vocabulary (i.e., words w2) is restricted
to the 10K most frequent words in the Polyglot Wiki. The same two set-ups were used
for the SLQS model. We also use frequency counts collected from the Polyglot Wiki
for the frequency ratio model. WordNet-based similarity measures rely on the latest
WordNet 3.1 release.

Word Embeddings. We use 300-dimensional pre-trained order embeddings of Vendrov
et al. (2016), available online.29 For the detailed description of the training procedure,
we refer the reader to the original paper. Gaussian embeddings are trained on the
Polyglot Wiki with the vocabulary of the top 200K most frequent single words. We train
300-dimensional representations using the online tool and default settings suggested
by Vilnis and McCallum (2015):30 spherical embeddings trained for 200 epochs on a
max-margin objective with margin set to 2.

We also use pre-trained standard “semantic similarity” word embeddings available
online from various sources. 300-dimensional SGNS–BOW/DEPS vectors are also trained
on the Polyglot Wiki: these are the same vectors from Levy and Goldberg (2014).31 The

27 TypeDM is a variant of the Distributional Memory (DM) framework, where distributional info is
represented as a set of weighted word–link–word tuples 〈〈w1, l, w2〉, δ〉 where w1 and w2 are word tokens,
l is a syntactic co-occurrence link between the words (e.g., a typed dependency link), and δ is a weight
assigned to the tuple (e.g., LMI or PMI).

28 We have also experimented with the TypeDM scores directly and negative LMI values. We do not report
these results as they are significantly lower than the reported results obtained by the other two set-ups.

29 https://github.com/ivendrov/order-embedding.
30 https://github.com/seomoz/word2gauss.
31 https://levyomer.wordpress.com/2014/04/25/dependency-based-word-embeddings/.
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300-dimensional PARAGRAM vectors are the same as those published by Wieting et al.
(2015),32 and their extension using a retrofitting procedure (PARAGRAM+CF) has been
made available by Mrkšić et al. (2016).33 Sparse NON-DISTRIBUTIONAL vectors of Faruqui
and Dyer (2015) are also available online.34

7.2 Results

Because of a wide variety of models and a large space of results, it is not feasible to
present all results at once or provide detailed analyses across all potential dimensions
of comparison. Therefore, we have decided to make a gradual selection of the most
interesting experiments and results, and stress (what we consider to be) the most
important aspects of the HyperLex evaluation set and models in our comparisons.

Experiment I: Ungraded LE Approaches. First, we evaluate a series of state-of-the-art
traditional LE modeling approaches in the graded LE task on the entire HyperLex
evaluation set. The models are described in Sections 6.1–6.5. A summary of the results
is provided in Table 11. Comparing model scores with the inter-annotator agreements
suggests that the graded LE task, although well-defined and understandable by average
native speakers, poses a challenge for current ungraded LE models. The absolute
difference in scores between human and system performance indicates that there is vast
room for improvement in future work. The gap also illustrates the increased difficulty
of the graded LE task compared with previous ungraded LE evaluations (see also
Experiment IV). For instance, the best unsupervised LE directionality and detection
models from Table 11 reach over 70% and up to 90% in precision scores (Santus et al.
2014; Kiela et al. 2015, inter alia) on BLESS and other data sets discussed in Section 3.1.2.

Previous work on ungraded LE evaluation also detected that frequency is a surpris-
ingly competitive baseline in LE detection/directionality experiments (Herbelot and
Ganesalingam 2013; Weeds et al. 2014; Kiela et al. 2015). This finding stems from an
assumption that the informativeness of a concept decreases and generality increases as
frequency of the concept increases (Resnik 1995). Although the assumption is a rather
large simplification (Herbelot and Ganesalingam 2013), the results based on simple
frequency scores in this work further suggest that the FR model may be used as a very
competitive baseline in the graded LE task.

The results also reveal that visual approaches are competitive to purely textual
distributional ones. In Table 11, we have set the parameters according to Kiela et al.
(2015). Varying the α parameter leads to even better results—for example, the VIS–ID
model scores ρ = 0.229 and VIS–CENT scores ρ = 0.228 withα = 1. This finding supports
recent trends in multi-modal semantics and calls for more expressive multi-modal LE
models, as discussed previously by Kiela et al. (2015).

To our own surprise, the FR model was the strongest model in this first comparison,
whereas directional measures fall short of all other approaches, although prior work
suggested that they are tailored to capture the LE relation in particular. As we do not
observe any major difference between two set-ups for DEMs and SLQS, all subsequent
experiments use Set-up 1. The observed strong correlation between frequency and graded

32 http://ttic.uchicago.edu/∼wieting/.
33 https://github.com/nmrksic/counter-fitting.
34 https://github.com/mfaruqui/non-distributional.
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LE supports the intuition that prototypical class instances will be more often cited in text,
and therefore are simply more frequent.

Even WN-based measures do not lead to huge improvements over DEMs and fall
short of FR. Because WordNet lacks annotations pertinent to the idea of graded LE,
such simple WN-based measures cannot quantify the actual LE degree. The inclusion
of the basic “semantic relatedness detector” (as controlled by the parameter θ) does not
lead to any significant improvements (e.g., as evident from the comparison of SLQS–
SIM vs. SLQS–BASIC, or DEM2 vs. DEM1). In summary, the large gap between human
and system performances along with the FR superiority over more sophisticated LE
approaches from prior work unambiguously calls for the next generation of distributional
models tailored for graded lexical entailment in particular.

Experiment II: Word Embeddings. In the next experiment, we evaluate a series of state-of-
the-art word embedding architectures, covering order embeddings (Section 6.6), standard
semantic similarity embeddings optimized on SimLex-999 and related word similarity
tasks (Section 6.7), and Gaussian embeddings (Section 6.8). A summary of the results
is provided in Table 12. The scores again reveal the large gap between the system
performance and human ability to consistently judge the graded LE relation. The scores
on average are similar to or even lower than scores obtained in Experiment I. One
trivial reason behind the failure is as follows: Word embeddings typically apply the
cosine similarity in the Euclidean space to measure the distance between X and Y. In
practice, this leads to the symmetry: dist(X, Y) = dist(Y, X) for each pair (X, Y), which is
an undesired model behavior for graded LE in practice, as corroborated by our analysis

Table 11
Results in the graded LE task over all HyperLex concept pairs obtained by the sets of most
prominent LE models available in the literature (see Section 6.1–Section 6.5). SET-UP 1 and
SET-UP 2 refer to different training set-ups for DEMs and SLQS. All results are Spearman’s ρ
correlation scores. IAA ρ scores are provided to quantify the upper bound for the graded LE task.

Model Set-up 1 Set-up 2

FR (α = 0.02,θ = 0.25) 0.279 0.240
FR (α = 0,θ = 0) 0.268 0.265

DEM1 0.162 0.162
DEM2 0.171 0.180
DEM3 0.150 0.150
DEM4 0.153 0.153

SLQS–BASIC 0.225 0.221
SLQS–SIM 0.228 0.226

WN–BASIC 0.207 0.207
WN–LCH 0.214 0.214
WN–WUP 0.234 0.234

VIS–ID (α = 0.02,θ = 0) 0.203 0.203
VIS–CENT (α = 0.02,θ = 0) 0.209 0.209

IAA—1 0.854 0.854
IAA—2 0.864 0.864
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Table 12
Results (Spearman’s ρ correlation scores) in the graded LE task on HyperLex using a selection of
state-of-the-art pre-trained word embedding models (see Section 6.6-Section 6.8). All word
embeddings, excluding sparse NON-DISTRIBUTIONAL vectors, are 300-dimensional.

Model All Nouns Verbs

FR (α = 0.02,θ = 0.25) 0.279 0.283 0.239
FR (α = 0,θ = 0) 0.268 0.283 0.091

SGNS–BOW (win=2) 0.167 0.148 0.289
SGNS–DEPS 0.205 0.182 0.352

NON-DISTRIBUTIONAL 0.158 0.115 0.543
PARAGRAM 0.243 0.200 0.492
PARAGRAM+CF 0.320 0.267 0.629

ORDEREMB–COS 0.156 0.162 0.005
ORDEREMB–DISTALL 0.180 0.180 0.130
ORDEREMB–DISTPOS 0.191 0.195 0.120

WORD2GAUSS–EL–COS 0.192 0.171 0.207
WORD2GAUSS–EL–KL 0.206 0.192 0.209
WORD2GAUSS–KL–COS 0.190 0.179 0.160
WORD2GAUSS–KL–KL 0.201 0.189 0.172

IAA–1 0.854 0.854 0.855
IAA–2 0.864 0.864 0.862

of asymmetry in human judgments (see Tables 7 and 8). This finding again calls for a
new methodology capable of tackling the asymmetry of the graded LE problem in future
work.

Dependency-based contexts (SGNS–DEPS) seem to have a slight edge over ordinary
bag-of-words contexts (SGNS–BOW), which agrees with findings from prior work
on ungraded LE (Roller and Erk 2016; Shwartz, Santus, and Schlechtweg 2017). We
observe no clear advantage with ORDEREMB and WORD2GAUSS, two word embedding
models tailored for capturing the hierarchical LE relation naturally in their training
objective. We notice slight but encouraging improvements with ORDEREMB when
resorting to more sophisticated distance metrics, for example, moving from the symmetric
straightforward COS measure to DISTPOS with ORDEREMB, or using KL instead of COS
with WORD2GAUSS.

As discussed in Section 6.6, the off-the-shelf ORDEREMB model was trained for the
binary ungraded LE detection task: Its expressiveness for graded LE thus remains limited.
One line of future work might utilize the ORDEREMB framework with a true graded LE
objective, and investigate new ORDEREMB-style representation models fully adapted to
the graded LE setting.

Lexical Entailment and Similarity. Hill, Reichart, and Korhonen (2015) report that there
is strong correlation between hyp-N word pairs and semantic similarity as judged by
human raters. For instance, given the same [0, 10] continuous rating scale in SimLex-999,
the average similarity score in SimLex-999 for SimLex-999 hyp-1 pairs is 6.62; it is 6.19
for hyp-2 pairs, and 5.70 for hyp-3 and hyp-4. In fact, the only group scoring higher than
hyp-N pairs in SimLex-999 are syn pairs with the average score of 7.70. Therefore, we also
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evaluate state-of-the-art word embedding models obtaining peak scores on SimLex-999,
some of them even obtaining scores above the SimLex-999 IAA–1. The rationale is to test
whether HyperLex really captures the fine-grained and subtle notion of graded lexical
entailment, or whether the HyperLex annotations were largely driven by decisions at the
broader level of semantic similarity.

Another look into Table 12 indicates an evident link between the LE relation and
semantic similarity. Positive correlation scores for all models reveal that pairs with
high graded LE scores naturally imply some degree of semantic similarity (e.g., author /
creator). However, the scores with similarity-specialized models are much lower than
the human performance in the graded LE task, which suggests that they cannot
capture intricacies of the task accurately. More importantly, there is a dramatic drop in
performance when evaluating exactly the same models in the semantic similarity task
(i.e., graded synonymy) on SimLex-999 vs. the graded LE task on HyperLex. For instance,
two best performing word embedding models on SimLex-999 are PARAGRAM and
PARAGRAM+CF, reaching Spearman’s ρ correlation of 0.685 and 0.742, respectively, with
SimLex-999 IAA–1 = 0.673, IAA–2 = 0.778. At the same time, the two models score 0.243
and 0.320 on HyperLex, respectively, where the increase in scores for PARAGRAM+CF
may be attributed to its explicit control of antonyms through dictionary-based constraints.

A similar decrease in scores is observed with other models in our comparisons, for
example, SGNS–BOW falls from 0.415 on SimLex-999 to 0.167 on HyperLex. To further
examine this effect, we have performed a simple experiment using only the intersection
of the two evaluation sets comprising 111 word pairs in total (91 nouns and 20 verbs)
for evaluation. The results of selected embedding models on the 111 pairs are shown in
Figure 7. It is evident that all state-of-the-art word embedding models are significantly
better at capturing semantic similarity.

In summary, the analysis of results with distributed representation models on SimLex-
999 and HyperLex suggests that the human understanding of the graded LE relation
is not conflated with semantic similarity. Human scores assigned to word pairs in both
SimLex-999 and HyperLex reflect truly the nature of the annotated relation: semantic
similarity in case of SimLex-999 and graded lexical entailment in case of HyperLex.

Experiment III: Nouns vs. Verbs. Next, given the theoretical likelihood of variation in model
performance across POS categories mentioned in Section 4.1, we assess the differences

SGNS-BOW SGNS-DEPS Non-Distributional Paragram Paragram+CF
Representation model
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Figure 7
Results on the intersection subset of 111 concept pairs annotated both in SimLex-999
(for similarity) and in HyperLex (for graded LE).
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Table 13
Results in the graded LE task over all HyperLex noun and verb pairs separately. All DEM and
SLQS model variants are using Set-up 1.

Model Nouns Verbs

FR (α = 0.02,θ = 0.25) 0.283 0.239
FR (α = 0,θ = 0) 0.283 0.091

DEM1 0.180 0.018
DEM2 0.170 0.047
DEM3 0.164 0.108
DEM4 0.167 0.109

SLQS–BASIC 0.224 0.247
SLQS–SIM 0.229 0.232

WN–BASIC 0.240 0.263
WN–LCH 0.214 0.260
WN–WUP 0.214 0.269

VIS–ID (α = 1,θ = 0) 0.253 0.137
VIS–CENT (α = 1,θ = 0) 0.252 0.132

IAA–1 0.854 0.855
IAA–2 0.864 0.862

in results on noun (N) and verb (V) subsets of HyperLex. The results of “traditional”
LE models (Experiment I) are provided in Table 13. Table 12 shows results of word
embedding models. IAA scores on both POS subsets are very similar and reasonably
high, implying that human raters did not find it more difficult to rate verb pairs. However,
we observe differences in performance over the two POS-based HyperLex subsets. First,
DEMs obtain much lower scores on the verb subset. It may be attributed to a larger
variability of context features for verbs, which also affects the pure distributional models
relying on the distributional inclusion hypothesis. WN-based approaches, relying on
an external curated knowledge base, do not show the same pattern, with comparable
results over pairs of both word classes. Visual models also score better on nouns, which
may again be explained by the increased level of abstractness when dealing with verbs.
This, in turn, leads to a greater visual variability and incoherence in visual concept
representations.

For word embedding models, we notice that scores for the V subset are significantly
higher than for the N subset. To isolate the influence of test set size, we have also
repeated experiments with random subsets of the N subset, equal to the V subset in
size (453 pairs). We observe the same trend even with such smaller N test sets, leading
to the conclusion that difference in results stems from the fundamental difference in
how humans perceive nouns and verbs. Human raters seem to associate the LE relation
with similarity more frequently in case of verbs, and they do it consistently (based on
the IAA scores). We speculate that it is indeed easier for humans to think in terms of
semantic taxonomies when dealing with real-world entities (e.g., concrete nouns), than
with more abstract events and actions, as expressed by verbs. Another reason could be
that, when humans make judgments over verb semantics, syntactic features become
more important and implicitly influence the judgments. This effect is supported by the
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Table 14
Results in the ungraded LE directionality task (precision) using a subset of 940 HyperLex pairs
converted to the ungraded directionality data set. Graded LE results (Spearman’s ρ correlation) on
the same subset are also provided for comparison purposes, using the best model configurations
from Tables 11 and 12.

Model Directionality Graded LE

All Nouns Verbs All Nouns Verbs

FR (α = 0,θ = 0) 0.760 0.778 0.636 0.089 0.104 0.032

DEM1 0.700 0.696 0.726 − 0.072 − 0.102 − 0.071
DEM2 0.700 0.696 0.726 − 0.070 − 0.050 − 0.042
DEM3 0.696 0.684 0.777 0.036 0.063 0.115
DEM4 0.696 0.684 0.777 0.036 0.064 0.110

SLQS–BASIC 0.747 0.734 0.835 0.088 0.121 − 0.036
SLQS–SIM 0.749 0.734 0.851 0.163 0.126 − 0.012

ORDEREMB 0.578 0.578 0.571 0.048 0.068 0.029

research on automatic acquisition of verb semantics, in which syntactic features have
proven particularly important (Kipper et al. 2008; Korhonen 2010, inter alia).

We leave the underlying causes at the level of speculation. A deeper exploration here
is beyond the scope of this work, but this preliminary analysis already highlights how
the principal word classes integrated in HyperLex are pertinent to a range of questions
concerning distributional, lexical, and cognitive semantics.

Experiment IV: Ungraded vs. Graded LE. We also analyze the usefulness of HyperLex as a
data set for ungraded LE evaluations and study the differences between graded LE and
one ungraded LE task: hypernymy/LE directionality (see Section 3.1.1). First, we have
converted a subset of HyperLex into a data set for LE directionality experiments similar
to BLESS by retaining only hyp-N pairs from HyperLex (as indicated by WordNet) with
the graded LE score≥ 7.0. The subset contains 940 (X, Y) pairs in total (of which 121 pairs
are verb pairs), where Y in each pair may be seen as the hypernym. Following that, we
run a selection of ungraded LE models from Section 6 tailored to capture directionality,
and compare the scores of the same models in the graded LE task on this HyperLex
subset containing “true hyponymy–hypernymy” pairs.

The frequency baseline considers the more frequent concept as the hypernym in the
pair. For DEM1-DEM4 models (Section 6.1), the prediction of directionality is based on
the asymmetry of the measure: If DEMi(X, Y) > DEMi(Y, X), it means that the inclusion
of the features of X within the features of Y is higher than the reverse, which in turn
implies that Y is the hypernym in the pair. Further, SLQS(X, Y) > 0 implies that Y is a
semantically more general concept and is therefore the hypernym (see Section 6.2).35

With ORDEREMB, smaller coordinates mean higher position in the partial order: We

35 Following the same idea, also discussed by Lazaridou, Pham, and Baroni (2015) and Kiela et al. (2015),
a concept with a higher word embedding standard deviation or embedding entropy could be considered
semantically more general and therefore the hypernym. However, we do not report the scores with word
embeddings as they were only slightly better than the random baseline with the precision of 0.5.
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compute and compare DistPos(~X, ~Y) and DistPos(~Y, ~X) scores to find the hypernym. The
results provided as binary precision scores are summarized in Table 14. They reveal that
frequency is a strong indicator of directionality, but further improvements, especially
for verbs, may be achieved by resorting to asymmetric and generality measures. The
reasonably high scores observed in our ungraded directionality experiments are also
reported for the detection task in prior work (Shwartz, Santus, and Schlechtweg 2017).
The graded LE results on the HyperLex subset are prominently lower than the results
with the same models on the entire HyperLex: This shows that fine-grained differences
in human ratings in the high end of the graded LE spectrum are even more difficult to
capture with current statistical models.

The main message conveyed by the results from Table 14 is that the output from the
models built for ungraded LE indeed cannot be used as an estimate of graded LE. In
other words, the relative entropy or the measure of distributional inclusion between two
concepts can be used to reliably detect which concept is the hypernym in the directionality
task, or to distinguish between LE and other relations in the detection task, but it leads
to a poor global estimate of the LE strength for graded LE experiments.

7.3 Supervised Settings: Regression Models

We also conduct preliminary experiments in supervised settings, relying on the random
and lexical splits of HyperLex introduced in Section 5 (see Table 10). We experiment
with several well-known supervised models from the literature. They typically represent
concept pairs as a combination of each concept’s embedding vector: concatenation ~X⊕ ~Y
(Baroni et al. 2012), difference ~Y− ~X (Roller, Erk, and Boleda 2014; Weeds et al. 2014; Fu
et al. 2014), or element-wise multiplication ~X� ~Y (Levy et al. 2015). Based on state-of-
the-art word embeddings such as SGNS–BOW or PARAGRAM, these methods are easy
to apply, and show very good results in ungraded LE tasks (Baroni et al. 2012; Weeds
et al. 2014; Roller, Erk, and Boleda 2014). Using two standardized HyperLex splits, the
experimental set-up is as follows: We learn a regression model on the TRAINING set,
optimize parameters (if any) on DEV, and test the model’s prediction power on TEST. We
experiment with two linear regression models: (1) standard ordinary least squares (OLS),
and (2) ridge regression or Tikhonov regularization (RIDGE) (Myers 1990).

Ridge regression is a variant of least squares regression in which a regularization
term is added to the training objective to favor solutions with certain properties. The
regularization term is the Euclidean L2-norm of the inferred vector of regression
coefficients. This term ensures that the regression favors lower coefficients and a smoother
solution function, which should provide better generalization performance than simple
OLS linear regression. The RIDGE objective is to minimize the following:

||~aQ−~s||22 + ||ΓΓΓ~a||22 (20)

where~a is the vector of regression coefficients, and Q is a matrix of feature representations
for each concept pair (X, Y) obtained using concatenation, difference, or element-wise
multiplication. ~s is the vector of graded LE strengths for each concept pair, and ΓΓΓ is
some suitably chosen Tikhonov matrix. We rely on the most common choice: It is a
multiple of the identity matrix ΓΓΓ = βI. The effect of regularization is thus varied via the
β hyperparameter, which is optimized on the DEV set. Setting β = 0 reduces the model
to the unregularized OLS solution.
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Vulić et al. HyperLex: A Large-Scale Evaluation of Graded Lexical Entailment

SGNS-BOW SGNS-DEPS Paragram+CF OrderEmb
Representation model

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Sp
ea

rm
an

’s
ρ

~Y− ~X (ols)
~Y− ~X (ridge)
~X� ~Y (ols)

~X� ~Y (ridge)
~X⊕ ~Y (ols)

~X⊕ ~Y (ridge)
Unsupervised

(a) Random Split

SGNS-BOW SGNS-DEPS Paragram+CF OrderEmb
Representation model

0.0

0.1

0.2

0.3

0.4

0.5

Sp
ea

rm
an

’s
ρ

~Y− ~X (ols)
~Y− ~X (ridge)
~X� ~Y (ols)

~X� ~Y (ridge)
~X⊕ ~Y (ols)

~X⊕ ~Y (ridge)
Unsupervised

(b) Lexical Split

Figure 8
Spearman’s ρ correlation scores using two different HyperLex data splits: (a) random and
(b) lexical (see Section 5). Two linear regression models are used: ordinary least squares (OLS)
and ridge regression (RIDGE), both trained on the training subset of each split, and tested
on the test subset. Three typical feature transformations from prior work on LE detection/
directionality in supervised settings have been tested: feature vector difference (~Y− ~X),
element-wise multiplication (~X� ~Y), and concatenation (~X⊕ ~Y). We also report baseline ρ
correlation scores obtained by simply computing cos(~X, ~Y) on each test subset directly, without
any model learning (UNSUPERVISED). Performance ceilings are 0.849 (IAA–1), 0.862 (IAA–2)
for the random split, and 0.846 (IAA–1), 0.857 (IAA–2) for the lexical split.

Results. Following related work, we rely on the selection of state-of-the-art word
embedding models to provide feature vectors ~X and ~Y. The results of a variety of tested
regression models are summarized in Figure 8(a) (random split) and Figure 8(b) (lexical
split). As another reference point, we also report results with several unsupervised
models on the two smaller test sets in Table 15.

821



Computational Linguistics Volume 43, Number 4

Table 15
Results on the two TEST sets of HyperLex splits with a selection of unsupervised LE models.
Lower scoring model variants are not shown.

Model Random Lexical

FR (α = 0.02,θ = 0.25) 0.299 0.199

DEM1 0.212 0.188
DEM2 0.220 0.142
DEM3 0.142 0.177
DEM4 0.145 0.178

SLQS–SIM 0.223 0.179

WN–BASIC 0.189 0.255
WN–WUP 0.212 0.261

VIS–ID (α = 1,θ = 0) 0.203 0.201
VIS–CENT (α = 1,θ = 0) 0.207 0.209

IAA–1 0.849 0.846
IAA–2 0.862 0.857

The IAA scores from Table 15 again indicate that there is firm agreement between
annotators for the two test sets, and that automatic systems still display a large gap to
the human performance. The scores on the smaller test sets follow patterns similar to
those on the entire HyperLex. We see a slight increase of performance for similarity-
specialized models (e.g., WN-based models or PARAGRAM+CF) on the lexical split. We
attribute this increase to the larger percentage of verb pairs in the lexical test set, shown
to be better modeled with similarity-oriented embeddings in the graded LE task. Verb
pairs constitute 17.3% of the entire random test set, the same percentage as in the entire
HyperLex, whereas the number is 26.4% for the lexical test set.

We reassess that supervised distributional methods indeed perform worse on a
lexical split (Levy et al. 2015; Shwartz, Goldberg, and Dagan 2016). Besides operating
with a smaller training set in a lexical split, the finding is also explained by the effect of
lexical memorization with a random split: if high scores are systematically assigned to
training pairs (X1, animal) or (X2, appliance), the model will simply memorize that each
pair (Y1, animal) or (Y2, appliance) should be assigned a high score during inference. The
impact of lexical memorization is illustrated by Table 16, using a sample of concept pairs
containing “prototypical hypernyms” (Roller and Erk 2016) such as animal: The regression
models assign high scores even to clear negatives such as (plant, animal). However, the
effect of lexical memorization also partially explains the improved performance of all
regression models over UNSUPERVISED baselines for a random split, as many (Xt, animal)
pairs are indeed assigned high scores in the test set.

On the other hand, we also notice that almost all OLS regression models and a large
number of RIDGE models in a lexical split cannot beat unsupervised model variants
without any model learning. This suggests that the current state-of-the-art methodology
in supervised settings is indeed limited in such scenarios and cannot learn satisfying
generalizations regarding the type-of relation between words in training pairs. We
suspect that another reason behind strong results with the semantically specialized
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Table 16
The effects of lexical memorization on the output of regression models when dealing with typical
hypernymy concepts higher in the taxonomy (e.g., animal, plant): HYPERLEX denotes the score
assigned to the pair by humans in HyperLex, and OLS and RIDGE refer to the predicted output of
the two tested regression models. We use SGNS–DEPS with concatenation (~X⊕ ~Y, see Figure 8);
similar trends are observed with other sets of vectors and feature transformations.

Concept pair HYPERLEX OLS RIDGE

(plant, animal) 0.13 6.95 7.39
(mammal, animal) 10.0 7.14 7.43
(animal, mammal) 1.25 6.61 4.99
(rib, animal) 0.35 6.94 7.08
(reader, person) 7.43 7.47 6.97
(foot, plant) 0.42 7.86 6.05
(fungus, plant) 4.75 7.94 7.51
(dismiss, go) 3.97 4.22 4.29
(dinner, food) 4.85 9.36 8.63

PARAGRAM+CF model in the unsupervised setting for the lexical split is the larger
percentage of verbs in the lexical test set as well as explicit handling of antonymy, as
mentioned earlier. The model explicitly penalizes antonyms through dictionary-based
constraints (i.e., pushes them away from each other in the vector space), a property that
is desired both for semantic similarity and graded LE (see the low scores for the ant
relation in Table 7).

The variation in results across the tested supervised model variants also indicates
that the performance of a regression model is strongly dependent on the actual choice
of the underlying representation model, feature transformation, as well as the chosen
regression algorithm. First, the results on a random split reveal that the best unsuper-
vised representation model does not necessarily yield the best supervised model (e.g.,
higher results are observed with SGNS–DEPS than with PARAGRAM in that setting).
ORDEREMB is by far the weakest model in our comparison. Second, there is no clear
winner in the comparison of three different feature representations. Whereas vector
difference (~Y− ~X) and concatenation (~Y⊕ ~X) seem to yield higher scores overall for
a majority of models, element-wise multiplication obtains highest scores overall in a
lexical split with PARAGRAM and PARAGRAM+CF. The variation clearly suggests that
supervised models have to be carefully tuned in order to perform effectively on the
graded LE task.

Finally, consistent improvements of RIDGE over OLS across all splits, models, and
feature transformations reveal that the choice of a regression model matters. This
preliminary analysis advocates the use of more sophisticated learning algorithms in
future work. Another path of research work could investigate how to exploit more
training data from resources other than HyperLex to yield improved graded LE models.

7.4 Further Discussion: Specializing Semantic Spaces

Following the growing interest in word representation learning, this work also touches
upon the ideas of vector/semantic space specialization: A desirable property of repre-
sentation models is their ability to steer their output vector spaces according to explicit
linguistic and dictionary knowledge (Yu and Dredze 2014; Astudillo et al. 2015; Faruqui
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et al. 2015; Liu et al. 2015; Wieting et al. 2015; Mrkšić et al. 2016; Vulić et al. 2017, inter
alia). Previous work showed that it is possible to build vector spaces specialized for
capturing different lexical relations (e.g., antonymy [Yih, Zweig, and Platt 2012; Ono,
Miwa, and Sasaki 2015]) or distinguishing between similarity and relatedness (Kiela, Hill,
and Clark 2015). Yet, it is to be seen how to build a representation model specialized for
the graded LE relation. An analogy with (graded) semantic similarity is appropriate here:
It was recently demonstrated that vector space models specializing for similarity and
scoring high on SimLex-999 and SimVerb-3500 are able to boost performance of statistical
systems in language understanding tasks such as dialogue state tracking (Mrkšić et al. 2016,
2017; Vulić et al. 2017). We assume that the specification of what the degree of LE means
for each individual pair may also boost performance of statistical end-to-end systems
in another language understanding task in future work: natural language inference
(Bowman et al. 2015; Parikh et al. 2016; Agić and Schluter 2017).

Owing to their adaptability and versatility, representation architectures inspired by
neural networks (e.g., Mrkšić et al. 2016; Vendrov et al. 2016) seem to be a promising
avenue for future modeling work on graded lexical entailment in both unsupervised and
supervised settings, despite their low performance on the graded LE task at present.

8. Application Areas: A Quick Overview

The proposed data set should have an immediate impact in the cognitive science
research, providing means to analyze the effects of typicality and gradience in concept
representations (Hampton 2007; Decock and Douven 2014). Besides this, a variety of
other research domains share interest in taxonomic relations, automatic methods for their
extraction from text, completion of rich knowledge bases, and so on. Here, we provide a
quick overview of such application areas for the graded LE framework and HyperLex.

Natural Language Processing. As discussed in depth in Section 3, lexical entailment
is an important linguistic task in its own right (Rimell 2014). Graded LE introduces
a new challenge and a new evaluation protocol for data-driven distributional LE
models. In current binary evaluation protocols targeting ungraded LE detection and
directionality, even simple methods modeling lexical generality are able to yield very
accurate predictions. However, our preliminary analysis in Section 7.2 demonstrates
their fundamental limitations for graded lexical entailment.

In addition to the use of HyperLex as a new evaluation set, we believe that the
introduction of graded LE will have implications on how the distributional hypothesis
(Harris 1954) is exploited in distributional models targeting taxonomic relations in
particular (Rubinstein et al. 2015; Shwartz, Goldberg, and Dagan 2016; Roller and Erk
2016, inter alia). Further, a tight connection of LE with the broader phrase-/sentence-level
task of recognizing lexical entailment (Dagan, Glickman, and Magnini 2006; Dagan et al.
2013) should lead to further implications for text generation (Biran and McKeown 2013),
metaphor detection (Mohler et al. 2013), question answering (Sacaleanu et al. 2008),
paraphrasing (Androutsopoulos and Malakasiotis 2010), and so forth.

Representation Learning. Prior work in representation learning has mostly focused on the
relations of semantic similarity and relatedness, as evidenced by the surge in interest in
evaluation of word embeddings on data sets such as SimLex-999, WordSim-353, MEN
(Bruni, Tran, and Baroni 2014), Rare Words (Luong, Socher, and Manning 2013), and so
on. This strong focus towards similarity and relatedness means that other fundamental
semantic relations such as lexical entailment have been largely overlooked in the
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representation learning literature. Notable exceptions building word embeddings for LE
have appeared only recently (see the work of Vendrov et al. [2016] and a short overview
in Section 7.4), but a comprehensive evaluation resource for intrinsic evaluation of such
LE embeddings is still missing. There is a pressing need to improve, broaden, and introduce
new evaluation protocols and data sets for representation learning architectures (Schnabel
et al. 2015; Tsvetkov et al. 2015; Batchkarov et al. 2016; Faruqui et al. 2016; Yaghoobzadeh
and Schütze 2016, inter alia).36 We believe that one immediate application of HyperLex
is its use as a comprehensive, wide-coverage large evaluation set for representation-
learning architectures focused on the fundamental TYPE-OF taxonomic relation.

Data Mining: Extending Knowledge Bases. Ontologies and knowledge bases such as
WordNet, Yago, or DBPedia are useful resources in a variety of applications such as
text generation, question answering, information retrieval, or for simply providing
structured knowledge to users. Because they typically suffer from incompleteness and a
lack of reasoning capability, a strand of research (Snow, Jurafsky, and Ng 2004; Suchanek,
Kasneci, and Weikum 2007; Bordes et al. 2011; Socher et al. 2013; Lin et al. 2015) aims
to extend existing knowledge bases using patterns or classifiers applied to large text
corpora. One of the fundamental relations in all knowledge bases is the TYPE-OF/
INSTANCE-OF/IS-A LE relation (see Table 2 in Section 3.1.2). HyperLex may be again
used straightforwardly as a wide-coverage evaluation set for such knowledge
base extension models: It provides an opportunity to evaluate statistical models that
tackle the problem of graded LE.

Cognitive Science. Inspired by theories of prototypicality and graded membership,
HyperLex is a repository of human-graded LE scores that could be exploited in cognitive
linguistics research (Taylor 2003) and other applications in cognitive science (Gärdenfors
2004; Hampton 2007). For instance, reasoning over lexical entailment is related to analog-
ical transfer: Transferring information from the past experience (the source domain) to
the new situation (the target domain) (Gentner 1983; Holyoak 2012)—for example, seeing
an unknown animate object called wampimunk or huhblub which resembles a dog—one
is likely to conclude that such huhblubs are to a large extent types of animals, although
definitely not prototypical instances such as dogs.

Information Search. Graded LE may find application in relational Web search (Cafarella,
Banko, and Etzioni 2006; Kato et al. 2009; Kopliku, Pinel-Sauvagnat, and Boughanem
2011). A user of a relational search engine might pose the query: “List all animals with four
legs” or “List manners of slow movement.” A system aware of the degree of LE would be
better suited to relational search than a simple discrete classifier; the relational engine
could rank the output list so that more prototypical instances are cited first (e.g., dogs,
cats, or elephants before huhblubs or wampimunks). This has a direct analogy with how
standard search engines rank documents or Web pages in descending order of relevance
to the user’s query. Further, taxonomy keyword search (Song et al. 2011; Liu et al. 2012;
Wu et al. 2012) is another prominent problem in information search and retrieval where
such knowledge of lexical entailment relations may be particularly useful.

36 The need for finding better evaluation protocols for representation learning models is further exemplified
by the initiative focused on designing better evaluations for semantic representation models (RepEval):
https://sites.google.com/site/repevalacl16/
https://repeval2017.github.io/.
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Beyond the Horizon: Multi-Modal Modeling. From a high-level perspective, autonomous
artificial agents will need to jointly model vision and language in order to parse the
visual world and communicate with people. Lexical entailment, textual entailment, and
image captioning can be seen as special cases of a partial order over unified visual–
semantic hierarchies (Deselaers and Ferrari 2011; Vendrov et al. 2016), see also Figure 6.
For instance, image captions may be seen as abstractions of images, and they can be
expressed at various levels in the hierarchy. The same image may be abstracted as, for
example, A boy and a girl walking their dog, People walking their dog, People walking, A boy,
a girl, and a dog, Children with a dog, Children with an animal. LE might prove helpful in
research on image captioning (Hodosh, Young, and Hockenmaier 2013; Socher et al.
2014; Bernardi et al. 2016) or cross-modal information retrieval (Pereira et al. 2014) based
on such visual–semantic hierarchies, but it is yet to be seen whether the knowledge of
gradience and prototypicality may contribute to image captioning systems.

Image generality is closely linked to semantic generality, as is evident from recent
work (Deselaers and Ferrari 2011; Kiela et al. 2015). The data set could also be very useful
in evaluating models that ground language in the physical world (Silberer and Lapata
2012, 2014; Bruni, Tran, and Baroni 2014, inter alia). Future work might also investigate
attaching graded LE scores to large hierarchical image databases such as ImageNet
(Deng et al. 2009; Russakovsky et al. 2015).

9. Conclusions

Although the ultimate test of semantic models is their usefulness in downstream
applications, the research community is still in need of wide-coverage comprehensive
gold standard resources for intrinsic evaluation (Camacho-Collados, Pilehvar, and
Navigli 2015; Schnabel et al. 2015; Tsvetkov et al. 2015; Gladkova and Drozd 2016;
Hashimoto, Alvarez-Melis, and Jaakkola 2016, inter alia). Such resources can measure
the general quality of the representations learned by semantic models, prior to their
integration in end-to-end systems. We have presented HyperLex, a large wide-coverage
gold standard resource for the evaluation of semantic representations targeting the
lexical relation of graded lexical entailment (LE), also known as hypernymy-hyponymy
or TYPE-OF relation, a relation which is fundamental in construction and understanding
of concept hierarchies, that is, semantic taxonomies. Given that the problem of concept
category membership is central to many cognitive science problems focused on semantic
representation, we believe that HyperLex will also find its use in this domain.

The development of HyperLex was principally inspired and motivated by several
factors. First, unlike prior work on lexical entailment in NLP, it focuses on the relation
of graded or soft lexical entailment at a continuous scale: The relation quantifies the
strength of the TYPE-OF relation between concepts rather than simply making a binary
decision as with the ungraded LE variant surveyed in Section 3. Graded LE is firmly
grounded in cognitive linguistic theory of class prototypes (Rosch 1973, 1975) and graded
membership (Hampton 2007), stating that some concepts are more central to a broader
category/class than others (prototypicality) or that some concepts are only within the
category to some extent (graded membership). For instance, basketball is more frequently
cited as a prototypical sport than is chess or wrestling. One purpose of HyperLex is to
examine the effects of prototypicality and graded membership in human judgments, as
well as to provide a large repository (i.e., HyperLex contains 2,616 word pairs in total) of
concept pairs annotated for graded lexical entailment. A variety of analyses in Section 5
show that the effects are indeed prominent.
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Second, whereas existing gold standards measure the ability of models to capture
similarity or relatedness, HyperLex is the first crowdsourced data set with the relation of
(graded) lexical entailment as its primary target. As such, it will serve as an invaluable
evaluation resource for representation learning architectures tailored for the principal
lexical relation, which has plenty of potential applications, as indicated in Section 8.
Analysis of the HyperLex ratings from more than 600 annotators, all native English
speakers, showed that subjects can consistently quantify graded LE, and distinguish it
from a broader notion of similarity/relatedness and other prominent lexical relations (e.g.,
cohyponymy, meronymy, antonymy) based on simple non-expert intuitive instructions.
This is supported by high inter-annotator agreement scores on the entire data set, as well
as on different subsets of HyperLex (e.g., POS categories, WordNet relations).

Third, because we wanted HyperLex to be wide-coverage and representative, the
construction process guaranteed that the data set covers concept pairs of different POS
categories (nouns and verbs), at different levels of concreteness, and concept pairs
standing in different relations according to WordNet. The size and coverage of HyperLex
makes it possible to compare the strengths and weaknesses of various representation
models via statistically robust analyses on specific word classes, and investigate human
judgments in relation to such different properties. The size of HyperLex also en-
ables supervised learning, for which we provide two standard data set splits (Levy
et al. 2015; Shwartz, Goldberg, and Dagan 2016) into training, test, and development
subsets.

To dissect the key properties of HyperLex, we conducted a spectrum of experiments
and evaluations with most prominent state-of-the-art classes of lexical entailment and
embedding models available in the literature. One clear conclusion is that current lexical
entailment models optimized for the ungraded LE variant perform very poorly in general.
There is clear room under the inter-rating ceiling to guide the development of the next
generation of distributional models: The low performance can be partially mitigated by
focusing models on the graded LE variant, and developing new and more expressive
architectures for LE in future work. Even analyses with a selection of prominent
supervised LE models reveal the huge gap between the human and system performance
in the graded LE task. Future work thus needs to find a way to conceptualize and encode
the graded LE idea into distributional models to tackle the task effectively. Despite their
poor performance at present, we believe that a promising step in that direction are neural
net–inspired approaches to LE proposed recently (Vilnis and McCallum 2015; Vendrov
et al. 2016), mostly because of their conceptual distinction from other distributional
modeling approaches complemented with their modeling adaptability and flexibility. In
addition, in order to model hierarchical semantic knowledge more accurately, in future
work we may require algorithms that are better suited to fast learning from few examples
(Lake et al. 2011), and have some flexibility with respect to sense-level distinctions
(Reisinger and Mooney 2010b; Neelakantan et al. 2014; Jauhar, Dyer, and Hovy 2015;
Šuster, Titov, and van Noord 2016).

Despite the abundance of reported experiments and analyses in this work, we have
only scratched the surface in terms of the possible analyses with HyperLex and use of
such models as components of broader phrase-level and sentence-level textual entailment
systems, as well as in other applications, as quickly surveyed in Section 8. Beyond
the preliminary conclusions from these initial analyses, we believe that the benefits of
HyperLex will become evident as researchers use it to probe the relationship between
architectures, algorithms, and representation quality for a wide range of concepts. A
better understanding of how to represent the full diversity of concepts (with LE grades
attached) in hierarchical semantic networks should in turn yield improved methods for
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encoding and interpreting the hierarchical semantic knowledge that constitutes much of
the important information in language.
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Vulić et al. HyperLex: A Large-Scale Evaluation of Graded Lexical Entailment

Pulman, Stephan Guy. 1983. Word Meaning
and Belief . Routledge.

Quillian, Ross M. 1967. Word concepts: A
theory and simulation of some basic
semantic capabilities. Behavioral Science,
12(5):410–430.

Rei, Marek and Ted Briscoe. 2014. Looking for
hyponyms in vector space. In Proceedings of
CoNLL, pages 68–77, Baltimore, MD.

Reisinger, Joseph and Raymond J. Mooney.
2010a. A mixture model with sharing for
lexical semantics. In Proceedings of EMNLP,
pages 1173–1182, Cambridge, MA.

Reisinger, Joseph and Raymond J. Mooney.
2010b. Multi-prototype vector-space
models of word meaning. In Proceedings
of NAACL-HLT, pages 109–117,
Los Angeles, CA.

Resnik, Philip. 1995. Using information
content to evaluate semantic similarity
in a taxonomy. In Proceedings of IJCAI,
pages 448–453, Montreal.

Riedel, Sebastian, Limin Yao, Andrew
McCallum, and Benjamin M. Marlin.
2013. Relation extraction with matrix
factorization and universal schemas. In
Proceedings of NAACL-HLT, pages 74–84,
Atlanta, GA.

Rimell, Laura. 2014. Distributional lexical
entailment by topic coherence. In
Proceedings of EACL, pages 511–519,
Gothenburg.

Roller, Stephen and Katrin Erk. 2016.
Relations such as hypernymy: Identifying
and exploiting Hearst patterns in
distributional vectors for lexical
entailment. In Proceedings of EMNLP,
pages 2163–2172, Austin, TX.

Roller, Stephen, Katrin Erk, and Gemma
Boleda. 2014. Inclusive yet selective:
Supervised distributional hypernymy
detection. In Proceedings of COLING,
pages 1025–1036, Dublin.

Rosch, Eleanor H. 1973. Natural categories.
Cognitive Psychology, 4(3):328–350.

Rosch, Eleanor H. 1975. Cognitive
representations of semantic categories.
Journal of Experimental Psychology,
104(3):192–233.

Rubinstein, Dana, Effi Levi, Roy Schwartz,
and Ari Rappoport. 2015. How well do
distributional models capture different
types of semantic knowledge? In
Proceedings of ACL, pages 726–730,
Beijing.

Russakovsky, Olga, Jia Deng, Hao Su,
Jonathan Krause, Sanjeev Satheesh, Sean
Ma, Zhiheng Huang, Andrej Karpathy,
Aditya Khosla, Michael S. Bernstein,
Alexander C. Berg, and Fei-Fei Li. 2015.

ImageNet large scale visual recognition
challenge. International Journal of Computer
Vision, 115(3):211–252.

Sacaleanu, Bogdan, Constantin Orasan,
Christian Spurk, Shiyan Ou, Oscar
Ferrandez, Milen Kouylekov, and Matteo
Negri. 2008. Entailment-based question
answering for structured data. In
Proceedings of COLING, pages 173–176,
Manchester.

Santus, Enrico, Alessandro Lenci, Qin Lu, and
Sabine Schulte im Walde. 2014. Chasing
hypernyms in vector spaces with entropy.
In Proceedings of EACL, pages 38–42,
Gothenburg.

Santus, Enrico, Frances Yung, Alessandro
Lenci, and Chu-Ren Huang. 2015.
EVALution 1.0: An evolving semantic
dataset for training and evaluation of
distributional semantic models. In
Proceedings of the 4th Workshop on Linked
Data in Linguistics: Resources and
Applications, pages 64–69, Beijing.

Schnabel, Tobias, Igor Labutov, David M.
Mimno, and Thorsten Joachims. 2015.
Evaluation methods for unsupervised word
embeddings. In Proceedings of EMNLP,
pages 298–307, Lisbon.

Schwartz, Roy, Roi Reichart, and Ari
Rappoport. 2015. Symmetric
pattern based word embeddings for
improved word similarity prediction.
In Proceedings of CoNLL, pages 258–267,
Beijing.

Shwartz, Vered, Yoav Goldberg, and
Ido Dagan. 2016. Improving hypernymy
detection with an integrated path-based
and distributional method. In Proceedings of
ACL, pages 2389–2398, Berlin.

Shwartz, Vered, Omer Levy, Ido Dagan, and
Jacob Goldberger. 2015. Learning to exploit
structured resources for lexical inference.
In Proceedings of CoNLL, pages 175–184,
Beijing.

Shwartz, Vered, Enrico Santus, and Dominik
Schlechtweg. 2017. Hypernyms under siege:
Linguistically-motivated artillery for
hypernymy detection. In Proceedings of
EACL, pages 65–75, Valencia.

Silberer, Carina and Mirella Lapata. 2012.
Grounded models of semantic
representation. In Proceedings of EMNLP,
pages 1423–1433, Jeju.

Silberer, Carina and Mirella Lapata. 2014.
Learning grounded meaning
representations with autoencoders. In
Proceedings of ACL, pages 721–732,
Baltimore, MD.

Simonyan, Karen and Andrew Zisserman.
2015. Very deep convolutional networks for

833



Computational Linguistics Volume 43, Number 4

large-scale image recognition. In Proceedings
of ICLR, San Diego, CA.
http://arxiv.org/abs/1409.1556

Snow, Rion, Daniel Jurafsky, and Andrew Y.
Ng. 2004. Learning syntactic patterns for
automatic hypernym discovery. In
Proceedings of NIPS, pages 1297–1304,
Vancouver.

Snow, Rion, Daniel Jurafsky, and Andrew Y.
Ng. 2006. Semantic taxonomy induction
from heterogenous evidence. In Proceedings
of ACL, pages 801–808, Sydney.

Socher, Richard, Danqi Chen, Christopher D.
Manning, and Andrew Y. Ng. 2013.
Reasoning with neural tensor networks
for knowledge base completion.
In Proceedings of NIPS, pages 926–934,
South Lake Tahoe, NV.

Socher, Richard, Andrej Karpathy,
Quoc V. Le, Christopher D. Manning,
and Andrew Y. Ng. 2014. Grounded
compositional semantics for finding
and describing images with sentences.
Transactions of the ACL, 2:207–218,
Baltimore, MD.

Song, Yangqiu, Haixun Wang, Zhongyuan
Wang, Hongsong Li, and Weizhu Chen.
2011. Short text conceptualization
using a probabilistic knowledgebase. In
Proceedings of AAAI, pages 2330–2336,
San Francisco, CA.

Suchanek, Fabian M., Gjergji Kasneci, and
Gerhard Weikum. 2007. Yago: A core of
semantic knowledge. In Proceedings of
WWW, pages 697–706, Banff.

Tanon, Thomas Pellissier, Denny Vrandečić,
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