PCSK9 inhibition and type 2 diabetes

Dr Luca A Lotta

Professor Simon Griffin 1,2

1 MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine
Box 285 Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge
CB2 0QQ

2 The Primary Care Unit, Institute of Public Health, University of Cambridge School of Clinical Medicine, Box 113 Cambridge Biomedical Campus, Cambridge, CB2 0SR

The focus of cardiovascular disease prevention has shifted from normalisation of risk factors to absolute risk reduction. Reducing low-density lipoprotein cholesterol (LDL-C) concentration by 1 mmol/L for around 5 years is consistently associated with a 23-25% lower risk of major cardiovascular events, for statin and non-statin therapies alike, regardless of the baseline LDL-C level. In high and middle income countries, statins are now routinely recommended as first line LDL-C-lowering therapy for people with 10 year modelled risk above somewhat arbitrary, country-specific thresholds defined by economic and clinical considerations. This high-risk category includes most patients with type 2 diabetes. Statins achieve similar reductions in relative risk among people with and without diabetes. However, even among patients on maximum doses, with LDL-C levels in the normal range, further reductions in LDL-C and modelled risk are possible.

Proprotein convertase subtilisin/kexin type 9 (PCSK9) enzyme catalyses the degradation of the LDL receptor, thereby reducing LDL-C uptake by cells and increasing circulating levels. In this issue, Sabatine and colleagues report the efficacy and safety of PCSK9 inhibition in people with and without diabetes. They undertook a pre-specified secondary analysis of data from FOURIER, a randomised controlled trial of subcutaneous injections of the monoclonal antibody Evolocumab or placebo every 2 or 4 weeks, in 27,564 patients with atherosclerotic disease and prescribed statin therapy. The effect of Evolocumab on LDL-C concentration (~1.5 mmol/L reduction at 48 weeks) and risk of the composite cardiovascular endpoint over 2.2 years (hazard ratio 0.83; 95%CI:0.75 to 0.93) was similar in participants with diabetes compared to those without. Consideration of adverse effects is particularly important given the historical controversy over statins. Evolocumab was well tolerated. The frequency of adverse effects (for example muscle-related and neurocognitive) was similar in the two study arms,
as was drug discontinuation, which occurred less often (5.7%/year) than in the IMPROVE-IT trial of
the addition of once daily oral Ezetimibe to statin therapy (7%/year).4

One concern related to statins is the increased risk of type 2 diabetes,5 albeit the net effect on risk of
cardiopulmonary disease, the most burdensome complication of diabetes, strongly justifies their use.
Meta-analyses of statin trials including over 90,000 patients followed for 4.2 years, and Mendelian
randomisation studies of LDL-C lowering variants near the gene encoding the HMG-coenzyme A
reductase protein (the target for statins) confirm an adverse effect of statins on weight (0.24kg higher)
and incidence of diabetes (12% higher).5 Genetic studies including data from more than half a million
individuals have demonstrated associations between PCSK9 variants and weight (1.03kg higher),
fasting glucose (0.09 mmol/L higher) and odds of diabetes (19 to 29% higher).6,7 The FOURIER
investigators report no evidence of an association between Evolocumab and weight, glycated
haemoglobin and incidence of diabetes (hazard ratio 1.05; 95% CI:0.94 to 1.17). These results reassure
us that PCSK9 inhibition is unlikely to have a major impact on diabetes risk. FOURIER was adequately
powered to detect effect sizes observed in genetic studies. However, estimates from genetic studies are
scaled to a 1mmol/l lower LDL-C concentration and reflect a life-long exposure to differences in
PCSK9 function in the general population. By contrast, FOURIER investigated pharmacological
PCSK9 inhibition reducing LDL-C by 1.5mmol/l over 2.2 years of follow-up, in the setting of a high-
risk population previously exposed to statin treatment. Hence, a small to moderate effect of Evolocumab
on diabetes risk will only be excluded by pooling of data from several trials, as undertaken for statins.
The consistency of results of genetic studies and trials highlights as yet unexplained mechanisms in the
aetiology of diabetes that merit further investigation. The discrepancy in effect sizes between genetic
studies and trials raises the possibility that cardiovascular risk reductions of greater than 25% could be
achieved through longer term treatment from an earlier age. As the rationale for basing prescribing
decisions on absolute risk assumes a consistent effect size, perhaps we should consider incorporating
age-sex standardised rather than absolute risk into guidelines and shared decision-making.

Ezetimibe is the recommended additional LDL-C lowering therapy for patients prescribed maximum
tolerated dose statin. While considerably cheaper than Evolocumab, it has a smaller effect on LDL-C.
In IMPROVE-IT, adding Ezetimibe to statins achieved a reduction of 0.43 mmol/L in LDL-C compared
to placebo, and was associated with a greater reduction in relative risk of cardiovascular events among
people with diabetes than those without. FOURIER data suggest that Evolocumab is an effective and
safe option for patients with diabetes and atherosclerotic disease. If PCSK9 inhibitors, or other emerging
therapies, have few adverse effects, including minimal impact on diabetes risk, this might influence
prescribing decisions. However, for the vast majority of the half a billion people with type 2 diabetes
worldwide, access to PCSK9 inhibitors is likely to be limited for the foreseeable future by their cost.8
Conflict of interest

Simon Griffin receives an honorarium and reimbursement of travel expenses from Eli Lilly associated with membership of an independent data monitoring committee for a randomised cardiovascular endpoint trial of a medication to lower blood glucose. He received an honorarium from Janssen for speaking at an educational meeting in 2015 and from Astra Zeneca for speaking at an educational meeting in 2017.

Luca Lotta declared no conflicts of interest.

References