Turbulent flows over superhydrophobic surfaces: flow-induced capillary waves, and robustness of air-water interfaces

<table>
<thead>
<tr>
<th>Journal:</th>
<th>Journal of Fluid Mechanics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuscript ID</td>
<td>JFM-17-S-0022.R3</td>
</tr>
<tr>
<td>mss type:</td>
<td>Standard</td>
</tr>
<tr>
<td>Date Submitted by the Author:</td>
<td>06-Oct-2017</td>
</tr>
<tr>
<td>Complete List of Authors:</td>
<td>Seo, Jongmin; Stanford University, Mechanical Engineering Garcia-Mayoral, Ricardo; Cambridge University, Department of Engineering Mani, Ali; Stanford University, Department of Mechanical Engineering</td>
</tr>
</tbody>
</table>
Turbulent flows over superhydrophobic surfaces: flow-induced capillary waves, and robustness of air-water interfaces

Jongmin Seo1, Ricardo García-Mayoral1,2 and Ali Mani1 †

1Center for Turbulence Research, Stanford University, Stanford, CA 94305, USA
2Department of Engineering, University of Cambridge, Cambridge CB2 1PZ, UK

(Received ?; revised ?; accepted ?.)

Superhydrophobic surfaces can retain gas pockets within their micro-scale textures when submerged in water. This property reduces direct contact between water and solid surfaces and presents opportunities for improving hydrodynamic performance by decreasing viscous drag. In most realistic applications, however, the flow regime is turbulent and retaining the gas pockets is a challenge. In order to overcome this challenge, it is crucial to develop an understanding of physical mechanisms that can lead to the failure of superhydrophobic surfaces in retaining gas pockets when the overlying liquid flow is turbulent. We present a study of the onset of failure in gas retention by analyzing direct numerical simulations of turbulent flows over superhydrophobic surfaces coupled with the deformation of air-water interfaces that hold the gas pockets. The superhydrophobic surfaces are modeled as periodic textures with patterned slip and no-slip boundary conditions on the overlying water flow. The liquid-gas interface is modeled via a linearized Young-Laplace equation, which is solved coupled with the overlying turbulent flow. A wide range of texture sizes and interfacial Weber numbers are considered in this study. Our analysis identifies flow-induced upstream traveling capillary waves that are coherent in the spanwise direction as one mechanism for failure in retention of gas pockets. To confirm physical understanding of these waves, a semi-analytical inviscid linear analysis is developed; the wave speeds obtained from the space-time correlations in the DNS data were found to match with the predictions of the semi-analytical model. The magnitude of the pressure fluctuations due to these waves were found to increase with decreasing surface tension, and increase with much stronger dependence on the slip velocity, when all numbers are reported in wall units. Based on a fitted scaling a threshold criterion for the failure of superhydrophobic surfaces is developed that is based on estimates of the onset condition required for the motion of contact lines. The second contribution of this work is the development of boundary maps that identify stable and unstable zones in a parameter space consisting of working parameter and design parameters including texture size and material contact angle. We provide a brief description of previously identified failure modes of superhydrophobic surfaces, namely the stagnation pressure and shear driven drainage mechanisms. In an overlay map the stable and unstable zones due to each mechanism are presented. For various input conditions, we provide scaling laws that identify the most critical mechanism limiting the stability of gas retention by superhydrophobic surfaces.

† Email address for correspondence: alimani@stanford.edu
1. Introduction

Among recent progress on developments of drag-reduction methods, the slip property of superhydrophobic surfaces has been highlighted for applications involving high-Reynolds number hydrodynamic flows. Superhydrophobic surfaces can entrap a thin air-layer on the surface suggesting a remarkable potential for passive viscous drag reduction (Rothstein 2010; Golovin et al. 2016). Superhydrophobic surfaces are made of hydrophobic materials with roughness textures in a size range of nanometers to micrometers. When submerged in water, superhydrophobic surfaces hold gas bubbles in their roughness and preventing them from direct contact with water. This non-wetting state is called the Cassie Baxter state (Cassie & Baxter 1944), which is in contrast to the Wenzel state, a fully wetted state where the liquid fills roughness elements (Wenzel 1936). In the Cassie-Baxter state, the contact area between solid and liquid is partially replaced by gas-liquid interfaces. Due to the low viscosity ratio of air to liquid (e.g. $\mu_{\text{air}}/\mu_{\text{water}} \approx 2\%$), flows over gas-liquid interfaces experience “slippery” boundaries, which lead to a skin friction reduction when compared to the conventional smooth, no-slip walls. Many experiments utilized this slip effect and demonstrated drag reductions of more than 25% in laminar flows (Ou et al. 2004; Ou & Rothstein 2005; Choi & Kim 2006; Lee et al. 2008; Lee & Kim 2009, 2011). Additional experiments further extended the drag reduction capability of superhydrophobic surfaces to the turbulent flow regime. For boundary layers with fixed thickness and free-stream velocity, a given superhydrophobic surface is expected to achieve higher percentage drag reduction in the turbulent regime than in the laminar one due to the inner-versus-outer scale separation in turbulent flows as discussed by Seo & Mani (2016). The flow regime associated with applications in most naval vehicles is indeed turbulent. Significant drag reductions of about 20% have been measured in a variety of experiments on turbulent flows over superhydrophobic surfaces, consisting of either structured textures with regular arrays (Daniello et al. 2009; Woolford et al. 2009; Park et al. 2014), or randomly distributed textures (Bidkar et al. 2014; Srinivasan et al. 2015; Haibao et al. 2015; Zhang et al. 2015; Rosenberg et al. 2016). Bidkar et al. (2014) and Ling et al. (2016) showed that when the surface textures have height variation, the resulting roughness in the overlying air-water interface can contribute to drag increase due to the form drag when the roughness size becomes on the order of viscous sublayer.

Detailed analyses of turbulent flow fields have been carried out by numerical simulations that model the superhydrophobic surfaces as slip boundary conditions. Direct numerical simulations of turbulent flows over walls with a homogenized, prescribed slip length (Min & Kim 2004; Fukagata et al. 2006; Busse & Sandham 2012) investigated the effect of finite slip length on the overlying turbulent flows. Min & Kim (2004) identified that drag reduction was mainly gained by streamwise slip while any finite spanwise slip was found to lead to drag increase. Assuming that the homogenized slip length model is a valid model for textured superhydrophobic surfaces, Fukagata et al. (2006) presented a prediction model for drag reduction in terms of prescribed spanwise and streamwise slip lengths. More recently, direct numerical simulations with patterned slip boundary condition resolved detailed surface geometry and investigated the effect of geometric parameters on turbulent flows over superhydrophobic surfaces. In these simulations the slip length is a result of texture parameters such as gas fraction, texture spacing (Martell et al. 2009, 2010; Park et al. 2013; Türk et al. 2014; Jelly et al. 2014; Lee et al. 2015; Rastegari & Akhavan 2015; Seo et al. 2015; Seo & Mani 2016), or texture height (Jung et al. 2016). These studies indicate that slip lengths achieved under turbulent flows are different from nominal slip length that are obtained from Stokes flow analyses, which are solely function of surface geometry. More recently, Seo & Mani (2016) presented a scaling
relation predicting the slip length under turbulent flows for a wide range of texture size. They found that when the textures size is small compared to the overlying turbulent eddies the slip length is independent of the overlying flow, consistent with Stokes flow solutions. However, in the large texture limit, the slip length was found to decrease with flow velocity to the two-third power (Seo & Mani 2016). In the latter case, they found that homogenized slip boundary conditions are inappropriate representative of the effects of patterned boundary.

While kinematics of flows over superhydrophobic surfaces are widely investigated, only a few investigations have studied the mechanism of gas bubble depletion under turbulent flows, even though the gas depletion is a critical bottleneck toward real applications. In reality, superhydrophobic surfaces exposed to turbulent boundary layers increase drag if the surfaces lose their gas bubbles under high shear and pressure fluctuations (Aljallilis et al. 2013). As a result, successful drag reductions reported by experiments are limited to less than 30 percent (Daniello et al. 2009; Woolford et al. 2009; Bidkar et al. 2014; Srinivasan et al. 2015; Haibao et al. 2015; Zhang et al. 2015; Rosenberg et al. 2016). Most of previous computational studies assumed flat gas-liquid interfaces and stable Cassie-Baxter state under infinite surface tension; these idealized assumptions inevitably result in unrealistically large drag reductions, often more than 50%. Under the static pressure, Patankar (2010) discussed two causes of interface breakup, de-pinning transition, that occurs when the microscopic contact angle at the corner of the roughness is larger than its threshold, and sag transition, that occurs when a curved interface touches the bottom of roughness. Li et al. (2017) analytically and computationally studied the effect of gas-liquid interface on drag reduction resolving texture spacing and height in laminar channel flow over superhydrophobic surfaces. Considering laminar flow regimes, Wexler et al. (2015b) identified the shear-driven drainage mechanism as a failure mode for drag reduction by slippery surfaces. They found that when texture grooves are longer than a threshold length, the streamwise pressure difference due to the imposed shear on a lubricant fluid can overcome the stabilizing surface tension force and lead to drainage of lubricant from the surface. Similar mechanism can lead to drainage of air bubbles from superhydrophobic surfaces in both laminar and turbulent regimes. However, as we shall see, the thresholds are significantly higher in this case since air bubbles, due to their low viscosity, are exposed to much lower shear compared to slippery lubricants. The first study on the failure mechanisms of superhydrophobic surfaces in turbulent flows was introduced in Seo et al. (2015) by investigating averaged pressure fields from DNS data. Seo et al. (2015) demonstrated that the stagnation of slip flows encountering roughness elements can pressurize the gas-liquid interface eventually leading a transition to the Wenzel state, when texture size becomes large compared to near wall eddies. The deleterious effect on plastron stability by increasing texture size is consistent with a theoretical analysis by Piao & Park (2015) that considered unsteady pressure fluctuations on the gas-liquid interface in a superhydrophobic surface. However, in the analysis by Seo et al. (2015) the interface deformation was studied as a post processing of pressure data obtained from DNS of turbulence on superhydrophobic textures with flat interface. More accurate analysis requires investigations of direct coupling between the two effects where one also considers the dynamic influence of interface deformation on the overlying flow.

In this paper, we investigate DNS of turbulent flows over superhydrophobic surfaces while direct dynamic coupling between flow and interface deformation is simulated via solutions to the Young-Laplace equation. We reveal that such coupling can lead to a new failure mechanism, which we refer to as flow-induced capillary waves. For the purpose of this investigation we conducted direct numerical simulations of turbulent channel flows over superhydrophobic surfaces considering a wide range of texture size. The motion
of gas-liquid interface is modeled via realtime coupled linearized boundary conditions considering a wide range of Weber numbers. The failure onset is defined by the conditions required for the initiation of motion of the contact line. By considering a broad range of input parameters the scaling laws of flow-induced capillary waves and the resulting failure onsets are developed and verified. In this way we analyze the effect of flow and interfacial parameters on the depletion of gas bubbles.

The first objective of our investigation, is to determine whether dynamic turbulence-interface coupling can result in any effect on flow statistics, most importantly on drag reduction. While bent meniscus shapes due to pressure difference between trapped gas bubbles and overlying liquid have been observed in many experiments for laminar flows (Byun et al. 2008; Tsai et al. 2009; Karatay et al. 2013; Xue et al. 2015), the effect of interface deformation on turbulent flows has been often ignored in many computational studies that assumed flat interfaces (Martell et al. 2009, 2010; Park et al. 2013; Türk et al. 2014; Jelly et al. 2014; Rastegari & Akhavan 2015; Seo et al. 2015; Seo & Mani 2016; Jung et al. 2016). In laminar flows, the bubble deformation significantly impacts the slip property shown by theory (Davis & Lauga 2009), experiments (Karatay et al. 2013), and numerical simulations (Steinberger et al. 2007; Hyväläuma & Harting 2008; Teo & Khoo 2010, 2014). Steinberger et al. (2007) demonstrated that the protrusion angle of gas bubble, an angle created by a solid element, liquid, and gas pocket, can change a slippery surface to a sticky surface even in the Cassie-Baxter state. In agreement with Steinberger et al. (2007), Hyväläuma & Harting (2008) showed that the slip length is maximized when the gas-liquid interface is flat, and it can be negative when the interface protrudes into the liquid. Karatay et al. (2013) experimentally controlled a bubble shape by changing pressure in the gas layer and reported that the slippage was a function of meniscus curvature. Although the magnitude of deformation is expected to be small in the air-water interfaces on superhydrophobic surfaces (Martell et al. 2010), fully-coupled turbulent flow simulations with dynamics of interface should be conducted to examine the outcome of the interaction. Beyond the impact on the performance, interface deformation can critically affect the stability of the gas pockets.

As the second objective of this study, we investigate the onset mechanism of interface breakage as texture size and Weber number increase, leading to the loss of drag-reducing effect. We characterize the dependence of the flow-induced capillary waves on texture size and Weber number, thereby suggest a failure onset by considering the pressure required to initiate the motion of contact lines from their approximate pinned condition.

The paper is organized as follows. In §2 we present the governing equations including dynamics associated with flows as well as gas-liquid interface, and discuss the key dimensions and dimensionless parameters for the problem. In §3, algorithms and computational details to numerically solve the set of equations are presented. The DNS results of our simulations are presented and discussed in §4. A semi-analytical model for the capillary waves appeared in the gas-liquid interface is proposed and compared with DNS data in §5. In §6, we present scaling laws for dynamic characteristics and fluctuations of capillary pressure. §7 provides a boundary map indicating the stable and unstable zones of operations of superhydrophobic surfaces under turbulent flow conditions. Specifically, we provide quantitative comparison with the previously identified failure mechanisms, namely the stagnation pressure mechanism and shear-driven drainage mechanism, and provide conditions determining the most critical mode of failure in terms of input parameters. Finally, our discussion and conclusions are summarized in §8.
2. Problem formulation

We study the turbulent liquid flow in a periodic channel enclosed with superhydrophobic walls that entrap gas pockets, as sketched in figure 1. The periodic roughness structure is defined by its width, w, and period, L, as shown in figure 2a. We consider the incompressible Navier–Stokes equations for fluid flow,

\begin{align}
\nabla \cdot \mathbf{u} &= 0, \quad (2.1) \\
\frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u} &= -\nabla p + \nu \nabla^2 \mathbf{u}, \quad (2.2)
\end{align}

where ν is the kinematic viscosity of liquid and the pressure p is normalized by the liquid density.

In the channel, both top and bottom walls are superhydrophobic surfaces with periodic solid roughness elements and gas pockets fully trapped in between the roughness elements. We assume no-slip on the solid surface and free-shear on gas-liquid interface. The imposed shear-free boundary condition on the gas-liquid interface is

\begin{align}
\frac{du}{dy} + \frac{dv}{dx} &= 0, \quad \frac{dw}{dy} + \frac{dv}{dz} = 0. \quad (2.3)
\end{align}

This ideal free-shear condition is standard in the literature for DNS of turbulent flows over superhydrophobic surfaces considering low viscosity ratio of air to water (Martell et al. 2009, 2010; Park et al. 2013; Jelly et al. 2014; Lee et al. 2015; Türk et al. 2014; Seo et al. 2015; Seo & Mani 2016). We assume a sufficiently large texture depth and we do not resolve the texture height. Schönecker et al. (2014) examined the ideal free-shear assumption in flows over superhydrophobic surfaces and showed this treatment to be essentially correct for the air-water system if the texture height is larger than a threshold comparable to L. We consider the wall normal velocity terms in equation (2.3) since the interface is allowed to deform so that the wall-normal velocity on the wall, $v(y=0)$, can be non-zero. We assume viscous effect by the gas layer is negligible (See appendix A).

We define η as the interface height, measured from the plane that contains the no-slip, flat top of the posts, $y = 0$, as sketched in figure 2. The deformation of the interface is obtained via the linearized Young-Laplace equation,

\begin{align}
\nabla^2 \eta &\approx \frac{P_{\text{liquid}} - P_{\text{gas}}}{\sigma}, \quad (2.4)
\end{align}

where σ is the surface tension. Within the gas pockets, we assume P_{gas} is uniform, and
The gas-liquid interface is assumed to be effectively pinned to the post edges, as in figure 2. The pinned interface assumption is widely adopted in simulations of flows over superhydrophobic surfaces with curved interface (Steinberger et al. 2007; Hyväläuma & Harting 2008; Teo & Khoo 2010, 2014; Seo et al. 2015). As discussed by Seo et al. (2015), the pinned assumption is an asymptotic model for contact line moving on a round corner, in the limit that the corner radius is much smaller than L, and the microscopic contact angle is within the advancing and receding contact angles.

We assume that η is small, and model its fluctuations through a linearized boundary condition for the wall-normal velocity at $y^+=0$. The motion of the interface generates a non-zero wall-normal velocity at the interface,

$$v(x, y = \eta, z, t) = \frac{D\eta}{Dt} = \frac{\partial \eta}{\partial t} + u \frac{\partial \eta}{\partial x} + w \frac{\partial \eta}{\partial z}. \quad (2.6)$$

The Taylor expansion of (2.6) at $y = 0$, combined with the continuity equation, leads to

$$v(x, y = 0, z, t) = \frac{\partial \eta}{\partial t} + \frac{\partial (\eta u)}{\partial x} + \frac{\partial (\eta w)}{\partial z}. \quad (2.7)$$

This non-zero wall-normal velocity is imposed as a boundary condition for the overlying, turbulent, liquid flow. The validity and outcome of linearization of the boundary conditions is discussed in appendix B.

2.1. Dimensionless parameters

In this problem we consider three key dimensionless parameters on scales relevant to turbulence, superhydrophobic surface, and surface tension of gas-liquid interface. The first dimensionless parameter is the friction Reynolds-number $Re_\tau = u_\tau \delta / \nu$, which measures the separation of length scales from the boundary layer thickness, δ, to the viscous unit length $\delta = \nu / u_\tau$, where u_τ is friction velocity defined by $\sqrt{\tau_w / \rho}$ and τ_w is wall shear stress. τ_w is the mean shear averaged over the entire interface area (including solid zones and shear-free air zones). This mean shear can be computed from mean pressure gradient, using a momentum balance leading to $2\tau_w = \frac{dP}{dx}(2\delta)$. In this work we run our simulations...
at $\text{Re}_T \approx 200 - 400$. These Reynolds numbers are much lower than realizable numbers in practical applications for naval applications, typically $\text{Re}_T \gtrsim 4000$, for example, a free stream velocity of $\sim 5 \text{ m s}^{-1}$ over a plate $\sim 1 \text{ m}$ long.

However, since superhydrophobic surfaces only modify the inner region of turbulent wall-bounded flows, their effects can be studied using low $\text{Re}_T \approx 180 - 200$ as long as the dimensionless quantities based on the inner scale match application of interest (Martell et al. 2010; Seo et al. 2015). Martell et al. (2010) first showed that the mean velocity profiles with two different Re_T are collapsed when L^+ is fixed. Seo et al. (2015) showed that the effects of superhydrophobic surfaces to turbulent flows are confined to the near wall region, $y^+ \lesssim 80$, as long as the SHS texture scale is smaller than the outer scale of the flow. They concluded that this modification to the inner region of the flow can be captured insensitive to the Reynolds number down to about $\text{Re}_T \approx 200$. Increasing Reynolds number only modifies the outer flow in the same fashion as in the boundary layer over smooth wall. In other words, the Reynolds number effects can be well captured by extending the log-layer in turbulent wall bounded flows.

Another important dimensionless parameter is the size of the texture in viscous units $L^+ = L/\delta_v$, a measure of how large is the texture compared to the near wall eddies. Many computational (Martell et al. 2010; Park et al. 2013; Lee et al. 2015; Türk et al. 2014; Seo et al. 2015; Rastegari & Akhavan 2015; Seo & Mani 2016) and experimental (Daniello et al. 2009; Park et al. 2014) investigations show that the slip length and thus drag reduction increase with larger L^+ when solid fraction is fixed. Seo & Mani (2016) showed that the slip length followed a linear scaling of texture size, and matched with the analytical solution from Stokes flow (Ybert et al. 2007; Davis & Lauga 2010) that obtained from the same geometry, when texture size in wall unit is smaller than approximately 10 for isotropic posts. When the texture size becomes larger, the slip length in wall unit increases non-linearly with a scaling exponent less than 1 (Park et al. 2013; Türk et al. 2014; Rastegari & Akhavan 2015; Seo & Mani 2016). For small L^+ flows with superhydrophobic surfaces preserve the behavior of canonical smooth wall flows, while for large L^+ the effect of superhydrophobic surfaces completely disrupts the buffer layer similar to the behavior of flows over rough walls. Recent direct numerical simulations (Türk et al. 2014; Rastegari & Akhavan 2015; Seo et al. 2015) reached L^+ down to the size relevant to practical applications $L^+ \approx 6 - 8$, comparable to typical experimental values of the texture period $L^+ \approx 0.5 - 5$ (Daniello et al. 2009; Woolford et al. 2009; Park et al. 2014). In the present work, we have investigated textures with sizes $L^+ \approx 13 - 155$ where the smallest texture size is close to the realistic texture size. The texture size order of hundreds is not considered in our study since the gas pockets would be destroyed due to high momentum of turbulent shear and slip flows.

Another texture-related dimensionless parameter is the solid fraction, which is equal to $\phi_s = u^2/L^2$ in the case of isotropic posts. This parameter is typically in the range $10\% - 20\%$ and does not vary by order of magnitude. In the present study we considered $\phi_s = 1/9$ which is in the range of practical scenarios. We considered one case for streamwise ridge with a solid fraction of $\phi_s = w/L = 1/3$.

The last dimensionless number is Weber number, which measures the relative importance of the surface tension to the momentum. Using inner scalings, Weber number could be defined as $We^+ = \rho u^2 \delta_v / \sigma$. Noting $u, \delta_v = \nu$, this parameter can be also presented as a Capillary number $We^+ = Ca^+ = \mu u_T / \sigma$. When discussing the DNS results, we will use an alternative Weber number defined based on the texture size, $We_L = \rho u^2 L/\sigma = W e^+ L^+$. In our simulations we use $We_L = 10^{-3} - 8 \times 10^{-3}$. Another Weber number can be defined based on the slip velocity, U_s, as $We_s = \rho U_s^2 L / \sigma$. We will show that this definition leads to collapse of data related to the flow-induced capillary waves. However, since We_s is not...
known \textit{a priori}, we prefer to keep \(\text{We}_L\) (or \(\text{We}^+\)) as an input dimensionless parameter, and to provide explicit relations leading to \(\text{We}_s\) after investigating DNS data.

In §7, we will discuss the parameter space and regions of stable design. In this case, it is beneficial to use \(\text{We}^+\) as the dimensionless parameter instead of \(\text{We}_L\). This is because \(\text{We}^+\) is solely dependent on the imposed flow, and independent of superhydrophobic surface design choices (e.g., \(L^+\) and advancing and receding contact angles). For channel flows with pre-specified pressure gradient, \(u_\tau\) is known \textit{a priori} and so is \(\text{We}^+\). For boundary layers, \(U_\infty\) is known instead of \(u_\tau\), and thus \(\text{We}^+\) is not exactly independent of texture parameters. As a useful rough approximation, however, one can write \(\text{We}^+\) in terms of the free stream velocity as
\[
\text{We}^+ \approx \frac{\mu U_\infty}{25\sigma}.
\]
This approximation can be justified given that the ratio \(U_\infty/u_\tau\) is in the range 22 to 30 in boundary layers over practical ranges of Reynolds numbers, \(\text{Re}_\tau \approx 1000 - 20000\), with a weak logarithmic dependence on the Reynolds number. In situations with slip velocity, one can use the shifted-TBL model (Seo & Mani 2016) and find that the same approximation holds as long as drag reduction is much less than the drag itself. In other words, in a design problem, a reasonable approximation of \(\text{We}^+\) is available prior to the decision on the design details, while one can easily improve on these approximations \textit{a posteriori} via algebraic relations provided for the shifted-TBL model and slip length in Seo & Mani (2016). These small corrections are expected to converge very rapidly with small number of iterations.

In §7 we will discuss additional parameters relating to design including the advancing contact angle that is related to the surface chemistry and determines the onset of failure. Another design consideration is use of barriers in between the texture grooves to keep air regions in form of isolated pockets. However, for the majority of the paper, where the physics of flow-induced capillary waves are discussed, we only need \(L^+\) and \(\text{We}^+\) as the key controlling parameters.

3. Numerical method

The Navier-Stokes equations are numerically discretized and solved with the code of Seo et al. (2015), modified to simulate deformable interface on superhydrophobic surfaces. In each time step, the motion of turbulent flow is fully coupled with the Young-Laplace equation and the kinematic conditions on the interface. The code uses the second-order finite-difference scheme on a staggered, Cartesian mesh with uniform grid size in the streamwise (\(x\)) and spanwise (\(z\)) directions, and non-uniform in the wall-normal (\(y\)) direction (Morinishi et al. 1998). The time discretization scheme for liquid flow is the second-order Adams-Bashforth method. The domain size is \(2\pi\delta \times \pi\delta \times 2\delta\) in streamwise, spanwise and wall normal direction, respectively. All simulations were run under a constant mean pressure gradient condition, which ensured fixed \(\text{Re}_\tau\) and thereby predefined \(L^+\). We mainly use \(\text{Re}_\tau \approx 200\) for computational cost and add one simulation at \(\text{Re}_\tau \approx 400\) to examine the Reynolds number dependence. We study two types of pattern geometries with a finite period \(L\) sketched in figures 1(a), isotropically distributed posts, and figure 1(b), streamwise-aligned ridges. The width of the pattern is fixed to \(w = L/3\), which leads to \(1/3\) solid fraction for isotropic posts and \(1/3\) for streamwise ridges. All simulation parameters are summarized in table 1. Though not specified, results with flat interface (\(\text{We}^+ = 0\)) from Seo et al. (2015) are used.

The spatial resolution in the wall-parallel direction is restricted by texture size, as even the grid size for largest texture is finer than a resolution requirement for DNS of turbulent flows, \(\Delta x^+ \approx 6.4\), \(\Delta z^+ \approx 3.2\). The non-uniform grid in the wall-normal direction has a minimum size \(\Delta y^+ = 0.15\) at the wall, and a maximum \(\Delta y^+ = 12\) at the center of
We converged statistics. Specifically, for this case we refined the computational mesh from comparison of statistics for posts geometries at Figure 3. rms fluctuations. showed grid converged results within 4% error. The wavelength of capillary wave obtained by space-time correlations was within 0.7% difference between the two calculations and the slip velocity was within statistics are not affected with the change in grid size. Specifically, the mean flow rate interface at $L = 2$ to Δx and $\Delta z = 3.2$ for streamwise, spanwise, and wall-normal direction respectively. The grid size is given by the computational domain size and number of grid points. $\text{DR} = (C_{f,\text{smooth}} - C_{f,\text{SHS}})/C_{f,\text{smooth}}$.

<table>
<thead>
<tr>
<th>Case</th>
<th>Surface type</th>
<th>L^+</th>
<th>$W e_L$</th>
<th>Re_{x}</th>
<th>D^+_x</th>
<th>D^+_z</th>
<th>$N_x \times N_y \times N_z$</th>
<th>DR</th>
</tr>
</thead>
<tbody>
<tr>
<td>P13W8</td>
<td>Posts</td>
<td>12.93</td>
<td>8×10^{-3}</td>
<td>197.5</td>
<td>1240.9</td>
<td>620.5</td>
<td>1152 \times 576 \times 128</td>
<td>13%</td>
</tr>
<tr>
<td>P26W4</td>
<td>Posts</td>
<td>25.85</td>
<td>4×10^{-3}</td>
<td>197.5</td>
<td>1240.9</td>
<td>620.5</td>
<td>576 \times 288 \times 128</td>
<td>36%</td>
</tr>
<tr>
<td>P26W8</td>
<td>Posts</td>
<td>25.85</td>
<td>8×10^{-3}</td>
<td>197.5</td>
<td>1240.9</td>
<td>620.5</td>
<td>576 \times 288 \times 128</td>
<td>36%</td>
</tr>
<tr>
<td>P39W2</td>
<td>Posts</td>
<td>38.78</td>
<td>2×10^{-3}</td>
<td>197.5</td>
<td>1240.9</td>
<td>620.5</td>
<td>768 \times 384 \times 128</td>
<td>42%</td>
</tr>
<tr>
<td>P39W4</td>
<td>Posts</td>
<td>38.78</td>
<td>4×10^{-3}</td>
<td>197.5</td>
<td>1240.9</td>
<td>620.5</td>
<td>768 \times 384 \times 128</td>
<td>42%</td>
</tr>
<tr>
<td>P78W1</td>
<td>Posts</td>
<td>77.56</td>
<td>1×10^{-3}</td>
<td>197.5</td>
<td>1240.9</td>
<td>620.5</td>
<td>384 \times 192 \times 128</td>
<td>55%</td>
</tr>
<tr>
<td>P78W2</td>
<td>Posts</td>
<td>77.56</td>
<td>2×10^{-3}</td>
<td>197.5</td>
<td>1240.9</td>
<td>620.5</td>
<td>384 \times 192 \times 128</td>
<td>55%</td>
</tr>
<tr>
<td>P78W4</td>
<td>Posts</td>
<td>77.56</td>
<td>4×10^{-3}</td>
<td>197.5</td>
<td>1240.9</td>
<td>620.5</td>
<td>384 \times 192 \times 128</td>
<td>55%</td>
</tr>
<tr>
<td>P87W5</td>
<td>Posts</td>
<td>77.56</td>
<td>5×10^{-3}</td>
<td>197.5</td>
<td>1240.9</td>
<td>620.5</td>
<td>384 \times 192 \times 128</td>
<td>55%</td>
</tr>
<tr>
<td>P155W1</td>
<td>Posts</td>
<td>155.1</td>
<td>1×10^{-3}</td>
<td>197.5</td>
<td>2481.9</td>
<td>620.5</td>
<td>384 \times 192 \times 128</td>
<td>69%</td>
</tr>
<tr>
<td>P155W2</td>
<td>Posts</td>
<td>155.1</td>
<td>2×10^{-3}</td>
<td>197.5</td>
<td>2481.9</td>
<td>620.5</td>
<td>192 \times 192 \times 128</td>
<td>69%</td>
</tr>
<tr>
<td>P155W4</td>
<td>Posts</td>
<td>155.1</td>
<td>4×10^{-3}</td>
<td>197.5</td>
<td>2481.9</td>
<td>620.5</td>
<td>192 \times 192 \times 128</td>
<td>69%</td>
</tr>
<tr>
<td>P155W2Re</td>
<td>Posts</td>
<td>155.1</td>
<td>2×10^{-3}</td>
<td>305.0</td>
<td>2481.9</td>
<td>1240.9</td>
<td>384 \times 192 \times 128</td>
<td>69%</td>
</tr>
<tr>
<td>R155W2</td>
<td>Ridges</td>
<td>155.1</td>
<td>2×10^{-3}</td>
<td>197.5</td>
<td>1240.9</td>
<td>620.5</td>
<td>192 \times 192 \times 128</td>
<td>59%</td>
</tr>
</tbody>
</table>

Figure 3. Comparison of statistics for posts geometries at $L^+ \approx 155$, $Re_x \approx 200$, and $W e_L = 2 \times 10^{-3}$. (a) Mean streamwise velocity profile; (b) velocity rms fluctuations; (c) pressure rms fluctuations. $-\circ-$, posts with $\Delta x^+ = 6.4$, $\Delta z^+ = 3.2$ $-\bullet-$, posts with $\Delta x^+ = 3.2$, $\Delta z^+ = 1.6$

the channel. The grid resolutions and the number of grid points per a texture period are sufficient to provide grid-converged statistics with finer resolutions within 1% error, when interface is flat. We have conducted a resolution test for a simulation with deformable interface at $L^+ \approx 155$, $Re_x \approx 200$, and $W e_L = 2 \times 10^{-3}$ and the results showed grid-converged statistics. Specifically, for this case we refined the computational mesh from $\Delta x^+ = 6.4$, $\Delta z^+ = 3.2$ to $\Delta x^+ = 3.2$, $\Delta z^+ = 1.6$. Figure 3 confirms that the velocity statistics are not affected with the change in grid size. Specifically, the mean flow rate was within 0.7% difference between the two calculations and the slip velocity was within 0.8% difference. The wavelength of capillary wave obtained by space-time correlations showed grid converged results within 4% error.

On gas-liquid interfaces, the coupling among pressure $p_i(x, z, t)$, velocity at the gas-liquid interface, $\mathbf{u}_i(x, z, t)$, and deformation of interface, $\eta(x, z, t)$, is resolved explicitly using the second order Adams-Bashforth scheme consistent with that used for the over-
lying flows, where the subscript \(i \) denotes the location at the first computational cells right above the interface. The first step for the coupling is to advance interface location through equation (2.7).

\[
\eta^{n+1} = \eta^n + \Delta t \left(\frac{3}{2} \left(v_i^n - \frac{\partial (\eta u_i)}{\partial x} \right)^n - \frac{1}{2} \left(v_i^{n-1} - \frac{\partial (\eta u_i)}{\partial x} \right)^{n-1} - \frac{\partial (\eta w_i)}{\partial z} \right) \right), (3.1)
\]

where the superscript “\(n \)” denotes the information at the current time step, “\(n + 1 \)” denotes the information at the next time step, and “\(n - 1 \)” denotes the information at the previous time step. The spatial discretization of equation (3.1) is second order finite difference scheme. The resulting \(\eta^{n+1} \) is used in the Young-Laplace equation, Eq. (2.4), to find the pressure in the cells right above the interface, \(p_i^{n+1} = \sigma \nabla^2 \eta^{n+1} \). Then \(p_i^{n+1} \) is used as boundary conditions in the Poisson system for continuity of the overlying fluid equations, \(\nabla^2 p^{n+1} = \nabla u^{(n+1)/2} / \Delta t \), in which \(u^{(n+1)/2} \) is the intermediate velocity fields before the projection in the fractional step method (Kim & Moin 1985). In this case, solving the Poisson system satisfies the continuity of overlying fluid, except for the cells right above the interface. For those cells, instead of solving the Poisson system, the continuity is satisfied by determining the \(\nu \)-component of the velocity on the interface. The wall normal velocity determined in this way, \(v_i^{n+1} \), is used to advance interface deformation in the next time step in equation (3.1). The implementation of this coupling in the code is verified through an analytical solution of perturbation problem under uniform velocity, in which one wall is fully covered by an initially perturbed gas-liquid interface with finite surface tension. The code verification against the analytical solution is confirmed by matching the time frequency of a single spatial wave mode as well as corresponding velocity and pressure fields. Details of this verification are described in appendix C.

Fast Fourier Transform (FFT) of the Poisson system in periodic directions can be exploited to significantly save the computational cost by forming a tri-diagonal matrix system, \((-k_x^2 - k_y^2 + \partial_x^2) \tilde{p}^{n+1} = \tilde{S} \), where \(\tilde{p} \) is the Fourier transformed pressure fields, \((k_x, k_y) \) are the modified wave numbers for spatial discretization operators in \(x \) and \(z \) direction, and \(\tilde{S} \) is the Fourier transformed right hand side of the Poisson system (Kim & Moin 1985). However, the above-mentioned coupled algorithm results in an inhomogeneous boundary treatment for the Poisson system since the treatment on the gas-liquid interface is different from those on solid-liquid boundaries, i.e. on posts. This prevents us from taking advantage of FFT when solving the Poisson system. To remedy this, we model the solid texture using a method consistent with the air-water interface. Specifically, we assumed very high but finite stiffness for the solid post in the \(y \)-direction. The solid stiffness is selected to be much larger than any other stiffness in the system, and we have verified independence of DNS result to the choice of stiffness by comparing statistics of turbulent channel flows over the wall with finite stiffness against a smooth-wall channel of Moser et al. (1998). Over the solid posts, the non-deformation of the boundary is imposed such as

\[
P_{\text{solid}} \approx k_s \eta, \quad (3.2)
\]

where \(k_s \) is the artificial spring constant, \(k_s^+ = k_s / (\rho u^1_\tau / \delta_y) = 4000 \), chosen so that both the interface deformation and its time derivative remain negligible, \(\eta_{\text{max}}^+ = 0.005 \) and \(v_{\eta=0,\text{max}} = 0.003 \). Both values are much smaller than deformations observed in the gas-liquid interface. This approach leads to limitation on our time step but significant time saving, about an order of magnitude, is gained due to the use of FFT for the Poisson system.

The simulations were run with constant time step, and the CFL number is variable.
Flow-induced capillary wave in turbulent flows over superhydrophobic surfaces

Figure 4. Comparison of statistics at $L^+ \approx 155, w^+ \approx 52$ at $Re_\tau \approx 200$. (a, d) Mean streamwise velocity profile; (b, e) three components of velocity root-mean-square (rms) fluctuations; (c, f) pressure rms fluctuations. •: P155, posts with $We_L = 0$ (Seo et al. 2015); ○: P155W2, posts with $We_L = 2 \times 10^{-3}$; ––: R155, streamwise ridges with $We_L = 0$ (Seo et al. 2015); ⊲: R155W2, streamwise ridges with $We_L = 2 \times 10^{-3}$; ⋐: smooth walls, $Re_\tau \approx 200$ (Seo et al. 2015).

but restricted below 0.2,

$$\frac{\Delta t}{CFL} = \min \left\{ \left(\frac{|u|}{2\Delta x} + \frac{|v|}{2\Delta y} + \frac{|w|}{2\Delta z} + \frac{4}{Re} \left(\frac{1}{\Delta x^2} + \frac{1}{\Delta z^2} \right) \right)^{-1}, \sqrt{\frac{\rho \Delta x^3}{\sigma}}, \sqrt{\frac{\rho \Delta x}{k_x}} \right\}. \quad (3.3)$$

The first requirement is the usual restriction for the stability of the time integration of the viscous and convective terms, while the other two are restrictions for the deformation of the gas-liquid interfaces and solid-liquid interfaces. All deformable interface simulations take the initial fields from flow snapshots of flat interface simulations (Seo et al. 2015). When the interface is allowed to deform, there is an initial transient period for the interface to evolve to a statistically steady state. The simulations were run for at least $20\delta/u_\tau$ after the initial snapshot, where δ/u_τ is the characteristic turnover time for the largest turbulent eddies. The first $3\delta/u_\tau$ interval was left out of the statistical sampling, to avoid contamination by initial transients from the simulation with flat interfaces.

4. DNS Results

4.1. Effects of interface deformation

4.1.1. Turbulence statistics

First, we investigate the impact of the deformability of the gas-liquid interface on turbulence statistics. Figure 4 presents comparison of flow statistics between simulations with flat gas-liquid interfaces ($We^+ = 0$) and those with deformable interfaces. It is apparent that the kinematic statistics, including mean flow and root-mean-square (rms) of velocity fluctuations are not affected by the interface deformability, while pressure
fluctuations are significantly affected in the cases that the surface texture consisted of isotropic posts. The drag reduction is thus unchanged by deformability of interface as shown in table 1. The fact that the mean flow is not affected by the interface deformability implies that the slip velocity can be estimated from the relations proposed by Seo & Mani (2016). Using DNS of flows over flat but patterned interfaces, Seo & Mani (2016) identified two scaling regimes for the slip velocity U_s^+, which is also equal to the slip length, b_s^+, when reported in wall units. For small textures they found $U_s^+ \sim L^+ / \sqrt{\phi_s}$, while for large textures $U_s^+ \sim L^+ (1/3) / \sqrt{\phi_s}$. We will later use these relations to approximate $W e_s$.

Figure 4 indicates that, even in cases with flat interface, there is a significant difference between pressure fluctuations in post versus ridge geometry. This difference is shown to be due to stagnation pressure induced by slipping flow in the streamwise direction that encounters the leading edge of solid posts (Seo et al. 2015). However, here we show that interface deformability further increases the near wall pressure fluctuations. This increase is significant in the case of surfaces with distributed posts, which are better representative of realistic scenarios where superhydrophobic surfaces are manufactured by sprayed coatings and/or etching processes compared to streamwise ridges.

4.1.2. Interface deformations

We show deformations of gas-liquid interface in viscous unit η^+, for the isotropic posts and the streamwise ridges with $L^+ \approx 155$ and $W e_L = 2 \times 10^{-3}$ in figure 5. For the isotropic posts, the time-averaged statistics of the maximum magnitude of interface deformation is $|\eta|_{\text{max}} = 0.30$ and the rms of the interface fluctuation (in time and space) is $\eta_{\text{rms}} = 0.09$. For the streamwise ridges, the interface deformation is much smaller than the isotropic posts, $|\eta|_{\text{max}} = 0.06$, $\eta_{\text{rms}} = 0.01$. The maximum η^+ and minimum η^+ is 0.9 and −0.9 in wall units and the max of interface angle in streamwise direction is 1.8 degree for case of $L^+ = 155$ and $W e_L = 4 \times 10^{-3}$. All of these interface fluctuations are very small compared to either channel height or viscous lengths, and therefore, the effect of surface deformation does not alter mean and fluctuations of velocity profiles in turbulent statistics.

4.1.3. Pressure fluctuations on gas-liquid interfaces

To better understand the augmented pressure fluctuations near the wall, we plot instantaneous wall pressure snapshots with flat and deformable interfaces in figure 6. A comparison of wall pressure fluctuations (figure 6) with a corresponding interface defor-
nformation (figure 5) shows that the positive pressure loads deflect the interface downward and negative pressure loads deflect it upward.

The pressure fluctuations on deformable interface on isotropic posts have distinct spanwise-coherent structures, which can be seen best in figure 6(b) and figure 7. The stagnation pressure induced by slipping flows as in case with flat interface (Seo et al. 2015), still remains on the deformable interface and the spanwise-coherent pressure appears superposed on top of the stagnation pressure. The phase-shift relation between wall deformation and pressure, and spanwise-coherent pressure waves have been observed for turbulent flows over compliant walls, in which the wall is responding to the overlying pressure fluctuations (Kim & Choi 2014), although in that case the compliant wall has zero tangential velocities. Streamwise ridges have no notable changes on wall pressure fluctuations. Therefore, in the remaining portion of the paper, we focus on the analysis of flow interactions with post textures. Compared to streamwise ridges, post structures better represent practically scalable superhydrophobic surfaces, such as those manufactured by sprayed coatings.

4.1.4. Space-time characteristics of the pressure wave

A remarkable feature of the detected spanwise-coherent pressure, which we will refer to as flow-induced capillary wave, is upstream propagation. Successive time snapshots of the pressure fluctuations on deformable interface are portrayed in figure 7 (Supplementary movies are available online). In figure 7, the spanwise-coherent pressure travels upstream, with a rough wavelength in streamwise direction $\lambda^+_x \approx 2L^+$. While the pressure patches sporadically break and reform as time progresses, they sustain coherent structures indicated by same sign of pressure bands across the spanwise direction. In figure 7, a time period for a coherent structure is roughly $T \approx 10\delta_v/u_\tau$. This propagation
Figure 7. Successive instantaneous snapshots of wall pressure fluctuations, p^+, in time for P155W2 with $Re_{\tau} \approx 200$, $L^+ \approx 155$ and $WeL = 2 \times 10^{-3}$. From (a) to (f), $t = t_0 + [0 : 2 : 10] \Delta t$, where $\Delta t = \delta_{r}/u_{\tau}$. The main flow direction is left to right. From blue to yellow, the fluctuations range between -10 and 10 wall units.

Figure 8. Comparison of space-time correlations of dynamic pressure signals, p^+ at $y^+ = 0$, for cases with $Re_{\tau} \approx 200$ and $L^+ \approx 155$. From black to white, the correlation ranges between -1 and 1. (a) $WeL = 2 \times 10^{-3}$, (b) $WeL = 0$. The solid lines represent the mean advection of the turbulent eddies, $U_{c_1}^+ \approx 24$. The dashed line represents the phase velocity of the upstream-traveling, spanwise-coherent structures, $U_{c_2}^+ \approx -38$.

Quantitative representations of the upstream-traveling wave are obtained through space-time correlations of the wall pressure signal plotted in figure 8. To obtain space-time correlations for only “dynamic” components of the pressure fluctuations, excluding stagnation pressure, we subtract the mean stationary pressure from the instantaneous pressure data. In figure 8(a), the correlation for the deformable interface case distinctively shows two separate motions at the interface, one aligned to the flow direction ($U_{c_1}^+ > 0$), and another opposed to the flow direction ($U_{c_2}^+ < 0$). This contrasts to the space-time correlation of pressure from the simulation with flat interface in figure 8(b), which has unidirectional convection in the direction of the mean flow. The first velocity component, $U_{c_1}^+ \approx 24$, is the advection of near-wall turbulence, which is equivalent to the value from the simulation with flat interface. Due to slippage on the wall, $U_s^+ = 21$, this convec-
Flow-induced capillary wave in turbulent flows over superhydrophobic surfaces

Figure 9. Comparison of statistics for posts geometries with $L^+ \approx 155$, $W e_L = 2 \times 10^{-3}$ at $Re_\tau \approx 200$ and $Re_\tau \approx 400$. (a) Mean streamwise velocity profile subtracted by slip velocity; (b) velocity rms fluctuations; (c) pressure rms fluctuations. ----: smooth walls, $Re_\tau \approx 200$; - - - - : P155W2, posts at $Re_\tau \approx 200$; --- : P155W2$_{Re}$, posts at $Re_\tau \approx 400$; --- : smooth walls, $Re_\tau \approx 400$

Figure 10. (a) Instantaneous pressure contours, p^+, at $y^+ = 0$ for P155W2$_{Re}$ case with $L^+ \approx 155$, $W e_L = 2 \times 10^{-3}$ at $Re_\tau \approx 400$. Inset figure in the one quarter of figure is an overlay of instantaneous pressure contours at $Re_\tau \approx 200$. From blue to yellow, the fluctuations range between -10 and 10 wall units. (b) space-time correlations of dynamic pressure signals at $Re_\tau \approx 400$. -- -: $U_{c1}^+ \approx 24$; - - - - : $U_{c2}^+ \approx -38$. From black to white, the correlation ranges between -1 and 1.

The upstream-traveling pressure is solely an outcome of the interface deformability. For the considered case, the spanwise-coherent upstream-traveling waves have convection velocity of $U_{c2}^+ \approx -38$. The wavelength in streamwise direction is roughly twice of texture wavelength, $\lambda_x \approx 380 \delta_v$, and the time period is $T \approx 10 \delta_v / u_\tau$. λ_x and T can be quantified from the intercept of the correlation ridge (dashed line) with the axis in figure 8(a).

4.2. Reynolds number dependence

Next, we examine the dependence of the upstream-traveling capillary waves on system parameters in wall units. We first change the friction Reynolds number from $Re_\tau \approx 200$ to $Re_\tau \approx 400$ and investigate the effect of Re_τ. In figure 9, turbulence statistics show that the near wall behavior of superhydrophobic surfaces with deformable interface is essentially Reynolds number independent when other parameters are fixed in wall units. The mean quantities at the wall, for instance the slip velocity or the wall pressure, are well collapsed to the same values at two Reynolds numbers. The statistics away from the wall
are identical to the outer region of smooth-wall channel flows and consistent with previous studies. The investigation of wall pressure in figure 10(a) qualitatively confirms that the structure of the flow-induced capillary waves remains essentially unmodified. Space-time correlation of the pressure signal in figure 10(b) further confirms that convection velocity of higher Reynolds number, $U_x^+ \approx -38$, is unaltered from the lower Reynolds number simulation. Therefore, we believe our current results near the gas-liquid interface can be extended to higher Reynolds numbers, and the characteristics of pressure fluctuations are mainly governed by L^+ and We_L.

4.3. Effect of surface tension

In DNS, we systematically change We_L and investigate how the dynamic characteristics of pressure changes. In figure 11, we plot instantaneous realizations of wall pressure with three different Weber numbers for $L^+ \approx 77$. As We_L increases, the spanwise-coherent
Flow-induced capillary wave in turbulent flows over superhydrophobic surfaces

Figure 12. Instantaneous interface deformation, η^+, for cases with $Re_\tau \approx 200$ and $L^+ \approx 77$. (a) $We_L = 10^{-3}$, (b) $We_L = 2 \times 10^{-3}$, (c) $We_L = 4 \times 10^{-3}$. The dashed lines represent the baseline wall location $y^+ = 0$. Snapshots are taken at the same instance in which the pressure snapshots in figure 11 are taken. The dashed lines are the baseline wall location $y^+ = 0$. The axis for η^+ is 300 times magnified for visualization purpose.

Figure 13. Comparison of space-time correlations of dynamic wall pressure signals, p^+, for cases with $Re_\tau \approx 200$ and $L^+ \approx 77$. (a) $We_L = 10^{-3}$, $U_{c_2}^+ \approx -42$; (b) $We_L = 2 \times 10^{-3}$, $U_{c_2}^+ \approx -78$, (c) $We_L = 4 \times 10^{-3}$, $U_{c_1}^+ \approx 21$ for all cases.

Pressure becomes dominant and its magnitude intensifies. In addition, it is visually shown that the wavelength λ^+_e changes with We_L. For instance, wavelength becomes shortened roughly from $\lambda^+_e \approx 3L^+$ to $\lambda^+_e \approx 2L^+$ as We_L increases from 2×10^{-3} to 4×10^{-3}.

The consequent interface fluctuations in figure 12 intensify with larger We_L in response to the increased spanwise-coherent pressure. The large deformation of interface implies that the gas-liquid interface becomes less stable when We_L increases.

In figure 13, the space-time correlations of the pressure signal show that for the larger We_L, λ^+_e becomes shorter, the wave period, T^+ becomes longer, and thus U^+_e becomes slower. The advection of turbulence remains unchanged, $U_{c_1}^+ \approx 21$, regardless of the change of We_L since slip velocity is the same for same L^+. That is, the advection of turbulence is not affected by pressure fluctuation imposed by deformability of interface while the upstream-traveling wave is strongly dependent on Weber number.

4.4. Dependence on the texture size

Next, we investigate the effect of texture size by reducing the texture size down to $L^+ \approx 13$. In figure 14, we portray wall pressure snapshots with texture size spanning $L^+ \approx 26 - 77$ at fixed $We_L = 4 \times 10^{-3}$ and $Re_\tau \approx 200$. At texture size $L^+ \approx 26$, the stagnation pressure and the footprint from overlying turbulence, which scales $\sim 100\delta_\nu$, are dominant components of the total pressure fluctuations, and the pressure due to
Figure 14. Instantaneous wall pressure contours, p^+ with (a) $L^+ \approx 26$, (b) $L^+ \approx 38$, (c) $L^+ \approx 77$ at $We_L = 4 \times 10^{-3}$ and $Re_\tau \approx 200$. From blue to yellow, the fluctuations range between -10 and 10 wall units.

The phase velocity, wavelength, and time scale of the capillary wave covering a wide range of L^+ and We_L are summarized in figure 15. The wavelength and time period are calculated from space-time correlations of the capillary pressure. The averaged data from at least four different uncorrelated time windows are plotted with error bars. The results show that λ^+_c is comparable to several times of L^+, and becomes longer for increasing L^+ under the same We_L. With larger L^+ for fixed We_L, the time scale of capillary wave...
increases, and the convection speed decreases. In the present form, the data does not show collapse on any of the measure quantities.

4.5. Data collapse with $W e_s$

So far we have reported the capillary wave speed, wavelength, and period in wall units, i.e. u_τ, δ_ν, for length and velocity scales. The friction Reynolds number independence shown in Sec 4.2 indicates that the interfacial phenomena would not be directly connected to the overlying outer turbulence scales. Since the interface deformation is small and its effect is confined to the near wall region, we hypothesize that the interfacial phenomena are separable from the scales associated with the overlying turbulence. In this case, a more suitable set of reference dimensions would be the texture size, L, and the flow slip velocity, U_s.

In figure 16, we rescale the wavelength, time frequency, and convection velocity with L and U_s. As a result, the dimensionless time $T^+ = T U_s / L$ and velocity $U_c^+ = U_c / U_s$ show excellent collapse when scaled with $W e_s = \rho U_s^2 L / \sigma$. The dimensionless wavelength $\lambda^+ = \lambda x / L$ show reasonable collapse. This data collapse reveals that the main parameter governing the interfacial flow is $W e_s$. This result supports the hypothesis that the ob-
served coherent pressure waves are capillary waves that develop as modes of oscillation of the interface as a membrane.

5. A semi-analytical model for the induced capillary waves

In this section we study the dynamics of interfacial waves by a simple analytical model to better understand the observed phenomena from DNS. We have developed a simplified model for prediction of natural frequency modes associated with flexible, free slip interfaces in between solid posts.

5.1. Model formulation

We consider an inviscid flow of density \(\rho \) slipping over a superhydrophobic surface with posts separated a distance \(L \), with uniform mean velocity \(U \), and with small fluctuations \((u, v, w; p) \) on the mean flow induced by deformable interface with finite surface tension \(\sigma \). This problem is analogous to the wave propagation in liquid films (Squire 1953; Taylor 1959), except for the presence of the solid posts, which make the film discontinuous. The base state involves a uniform streamwise velocity, with no interface deformation, which trivially satisfies the Euler equation, continuity, and the no-penetration condition on the interface. The fluctuating velocity field can be described in terms of a potential \(\psi(x, y, z) \), which satisfies

\[
\nabla^2 \psi = 0. \tag{5.1}
\]

Using Fourier decomposition along the wall-parallel directions \((x \text{ and } z) \), the above Poisson equation adopts the form \((-k_x^2 - k_z^2 + \partial_y^2) \hat{\psi} = 0\) for each \((k_x, k_z)\) mode, where \(\hat{\psi}\) means Fourier coefficient of \(\psi\). For vanishing \(\hat{\psi}\) at \(y \to \infty\), the solution is \(\hat{\psi}(y) = \hat{\psi}_{y=0} \exp(-\sqrt{k_x^2 + k_z^2} y)\). This allows us to establish a relationship at \(y = 0\) between the potential and its \(y\)-derivative,

\[
(\partial_y \psi)_{y=0} = F^{-1} K F \psi_{y=0}, \tag{5.2}
\]

where \(F\) and \(F^{-1}\) denote discrete direct and inverse discrete Fourier transform operators, and \(K\) is the diagonal matrix formed by the derivative eigenvalues \(-\sqrt{k_x^2 + k_z^2}\). Note that, by the definition of the potential, \(\partial_y \psi = v\). Therefore, we are interested only in the restriction of equation (5.2) that also satisfies \((\partial_y \psi)_{y=0} = v_{y=0} = 0\) over the solid posts.

The potential \(\psi\) can also be related to the fluctuating pressure through the linearized inviscid momentum equation,

\[
(\partial_t + U \partial_x) \psi = -\frac{1}{\rho} p, \tag{5.3}
\]

which can be particularized at \(y = 0\). Let us also note that the fluctuating deformation of the interface, satisfies the Young-Laplace equation

\[
(\partial_x^2 + \partial_z^2) \eta = \frac{1}{\sigma} p, \tag{5.4}
\]

where \(\eta\) is connected to the wall-normal velocity through the material derivative,

\[
(\partial_t + U \partial_x) \eta = (\partial_y \psi)_{y=0}. \tag{5.5}
\]

We are interested in wave solutions of the fully coupled system of equations (5.2)-(5.5). Using the corresponding transformation \(\partial_t = i \omega\), the problem can be written in the
Flow-induced capillary wave in turbulent flows over superhydrophobic surfaces

Figure 17. Successive instantaneous realizations of the pressure at \(y = 0 \) for the model problem with \(\lambda = 2L \) and \(\omega \approx 6.1U/L \). From (a) to (f), \(t = t_0 + 2\pi/\omega \times [0 : 0.2 : 1] \).

<table>
<thead>
<tr>
<th>(a)</th>
<th>(b)</th>
<th>(c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(d)</td>
<td>(e)</td>
<td>(f)</td>
</tr>
</tbody>
</table>

frequency-\(\omega \) domain,

\[
A(\omega) \psi_{y=0} = 0,
\]

where the dependence of \(A \) on \(\omega \) is quadratic. The problem then reduces to finding values of \(\omega \) for which the determinant of \(A \) is zero, and the corresponding eigen-solutions in the null subspace. The above system of equations are non-dimensionalized based reference scales of length, \(L_r = L \), velocity \(U_r = U \), which lead to subsequent scales of time, \(T_r = L/U \), pressure, \(p_r = \rho U^2 \), and surface tension \(\sigma_r = \rho U^2 L \). In the end, the dimensionless system of equation requires only one physical input parameter that is Weber number, \(We = \rho U^2 L/\sigma \). Solutions exist only for a discrete set of frequencies \(\omega^* = \omega L/U \), and take the form of either upstream- or downstream-traveling waves with a phase velocity \(U_c \) that can be several times larger than the flow velocity \(U \).

5.2. Methodology

To solve problem (5.6) numerically, we have used a second-order, central finite difference scheme on a uniform grid to discretize equations (5.3)-(5.5), with \(\Delta x = L/24 \) and \(\Delta z = L/24 \). The domain is periodic box in \(x \) and \(z \). The domain size is integer number of \(L \).

This semi-analytical approach is used to predict the natural frequency of capillary wave observed in DNS. The first solution for \(\omega^* \) spans the full domain considered, thus the wavelength associated with the first frequency mode must be determined \textit{a priori} for the model prediction. We provide the analytical model with wavelengths from several cases observed from DNS, mostly close to integer number of \(L \). For establishing a corresponding \(U \), the most reasonable choice is to use \(U_s^* \) from those DNS cases. In that case, note that \(We \) is actually Weber number based on slip velocity, \(We_s = \rho U_s^2 L/\sigma \).

5.3. Results

We find that the first solution, that of smallest \(\omega^* \), is always an upstream-traveling, spanwise-coherent wave. A solution corresponding to the DNS case \(P155W2 \) when using \(U_s^* \) to estimate \(We_s \) is portrayed as an example in figure 17. The qualitative structure and behavior of traveling pressure is similar to the DNS case, though the DNS case shows more complex behavior. In DNS, the random nature of overlying turbulence changes the pressure fluctuations in time and space as opposed to simple periodic analytical solutions. DNS is also likely to contain multiple modes of capillary waves while only the most dominant mode is detected in the space-time correlation analysis. Though an explanation of the mechanism energizing these modes is yet to be provided.
To capture the solutions observed in our DNS with \(\lambda_x \approx 2L - 4L \) over a wide range of \(L^+ \) and \(WeL \), we seek solutions for equation (5.6) in a domain of length \(\lambda_x \). The values of the dimensionless \(We_x = \rho U^2 L/\sigma \) for the model are chosen to match our DNS setups. Table 2 compiles solutions for \(We_x \) values estimated using \(U_s^+ \), and for values of \(\lambda_x/L \) close to those observed in the DNS. The results of convective speed, \(U_c^+ \), predicted by the semi-analytical model agree reasonably well with those measured from space-time correlation of the DNS data. The model can predict not only the direction of propagation of these modes, but also the magnitude of the propagation velocity versus \(We_x \).

5.4. A dispersion relation of semi-analytical capillary waves

In order to develop some intuition about the prediction of the semi-analytical model, in this section we present a comparison between the results of this model and phenomenological scaling laws of the frequency versus wavelength relations. We note however, this comparison is made in simplifying limits and regimes that do not necessarily represent the considered turbulent flow scenarios. We first recall that in the small capillary wavelength limit, \(\lambda^* = \lambda/L \ll 1 \), the texture would not affect the capillary wave and the standard theory would be capable of predicting the dispersion relation.

This scaling can be obtained by combining a system of equations from Eq. (5.3) to Eq. (5.5), providing \(\omega \psi \sim P/\rho, \eta/\lambda^2 \sim P/\sigma \), and \(\omega \eta \sim \psi/\lambda^* \), therefore \(\omega \sim \sqrt{\sigma/(\rho \lambda^* \psi)} \). When scaled with \(L \) and \(U_s \), the time frequency associated with this wave, \(\omega^* \equiv \omega L/U_s \), would be,

\[
\omega^* \sim We_s^{0.5} \lambda^*^{-1.5}.
\]

In the large wavelength limit \(\lambda \gg L \), however, this scaling should be modified. When the wavelength is sufficiently larger than texture size, one can assume that dependence of pressure on the amplitude would scale as \(p \sim \sigma \eta/L^2 \). This is because the dominant spatial variation of the capillary wave would depend on \(L \). This relation combined with \(\omega \psi \sim P/\rho \), and \(\omega \eta \sim \psi/\lambda^* \), results in \(\omega \sim \sqrt{\sigma/(\rho \lambda \lambda^*)} \). The consequent dimensionless frequency of the wave is

\[
\omega^* \sim We_s^{0.5} \lambda^*^{-0.5}.
\]

In this analysis in addition to large wavelength limit, we also assume that the capillary speed, \(U_c \sim \sqrt{\sigma \lambda/\rho L^2} \), is much larger than the slip velocity, \(U_s \), and thus the effect of the background advection can be ignored (i.e., small \(We_s \)). In figure 18, we show log-log plots of time frequency of the interface from semi-analytical solution for the range of \(0.1 \leq We_s \leq 2.0 \) and \(2^2 \leq \lambda/L \leq 2^4 \). In figure 18(a), the semi-analytical model shows
the expected inverse square root scaling for \(\lambda^* \) for all range of \(We_s \). In figure 18(b), the frequency is rescaled with \(w^* \sqrt{\lambda^*} \). As \(\lambda^* \) becomes large, \(\lambda^* \gg 1 \), the whole range of \(We_s \) exhibit the inverse square root scaling with respect to \(We_s \) as expected from equation (5.8).

While this phenomenological scaling provides an understanding of the dispersion relations in the induced capillary waves, the DNS data does not necessarily fall in the assumed simplified regimes considered here. Therefore the prediction of dispersion relations in the DNS results requires comparison with the full semi-analytical model. Another shortcoming is that the provided scalings do not predict which capillary wavelength(s) are most energized by the overlying turbulent flow, neither predict the amplitude of these waves in the statistically stationary condition. In the next section we use DNS data directly to infer scaling laws predicting the capillary wavelength and amplitude in terms of input conditions. In the discussion section we suggest possible methods for physics-based explanation of these observations.

6. On the scaling of capillary pressure and interface deformation

6.1. Amplitude of capillary pressure and interface deformation

To assess the magnitude of flow-induced capillary pressure fluctuations, we decompose the spatio-temporal pressure fields. We have identified three separate phenomena contributing to pressure fluctuations: the overlying turbulent flow, stagnation phenomena, and capillary waves. First, we exclude the effect of stagnation pressure by a decomposition of the total signal to obtain an unsteady signal, \(p'' \), so that

\[
p''(x, z, y, t) = p(x, z, y, t) - \bar{p}(y) - \bar{p}(\tilde{x}, \tilde{z}, y),
\]

where \(\bar{p}(y) \) is averaged pressure over wall-parallel domain and time, and \(\tilde{x} = \text{modulo}(x, L_x) \) and \(\tilde{z} = \text{modulo}(z, L_z) \) are the periodic streamwise and spanwise coordinates within each pattern unit. The stagnation component \(\bar{p} \) is averaged over time and over the number of periodic units. The above decomposition method first introduced by Reynolds & Hussain (1972) and is used to analyze turbulent flows over stagnation wall modifications (Choi et al. 1993; García-Mayoral & Jiménez 2011; Jelly et al. 2014; Türk et al. 2014; Seo et al. 2015). The resulting pressure fluctuation \(p'' \) is a sum of the two time-dependent effects from overlying turbulence, \(p''_t \) and flow-induced capillary pressure, \(p''_c \). We assume the capillary pressure is statistically uncorrelated from the stagnation pressure and overlying
turbulence. Therefore, rms fluctuation of capillary pressure is obtained by

\[p_{c,rms}'' = \sqrt{p_{t,rms}''^2 - p_{s,rms}''^2} \] \hspace{1cm} (6.2)

where \(p_{c,rms}'' \) is the wall pressure fluctuation from overlying turbulence when interface is flat. \(p_{c,rms}'' \) is calculated from the DNS data by Seo et al. (2015). The total wall pressure fluctuation, \(p_{t,rms}' \) and each pressure components from stagnation pressure \(p_{s,rms}' \), capillary pressure \(p_{c,rms}'' \), and turbulence pressure \(p_{t,rms}'' \) are plotted in figure 19.

We do not apply this decomposition method to extract capillary contribution from \(\eta^+ \) fluctuation, since decomposition of turbulence contribution to interface deformation requires solution of Young-Laplace equation over smooth wall, in a one-way coupled fashion. This is a more cumbersome postprocessing step than decomposing the pressure data.

Figure 20 presents \(\eta_{c,rms}^+ \) and \(p_{c,rms}''^+ \) against the input Weber number \(We_L \) for different texture sizes. In figure 20(a) \(\eta_{c,rms}^+ \) includes all interfacial response to pressure fluctuations from stagnation, capillary, and turbulence, while in figure 20(b) \(p_{c,rms}''^+ \) includes only the flow-induced capillary pressure fluctuation. The error bars in figure 20(b) are obtained from standard error of mean (SEM) of each \(p_{c,rms}''^+ \) and \(p_{c,rms}''^+ \) sampling mean values in subdivided time intervals. Both interface deformations and capillary pressure fluctuations increase with increasing \(We_L \) for a fixed \(L^+ \), however do not collapse for different texture sizes.

Similar to §4.5, we reconsider what is the most relevant physical quantities for the capillary wave. Again, \(We_s \) should be used instead of \(We_L \). Considering input variables \(We_s \), \(L^+ \), and \(U_s^+ \), we report the best collapsed fit of data to seek the power law for each input variables. We use linear least square fit for finding coefficients, \(a_i \), of \(\log(p_{c}''^+) = a_0 + a_1 \log(We_s) + a_2 \log(L^+) + a_3 \log(U_s^+) \), in which \(We_s \), \(L^+ \), and \(U_s^+ \) values are used for corresponding \(p_{c}''^+ \) data. As a result, a fitting law for capillary wave is

\[p_{c,rms}''^+ \approx 0.06 We_s^{0.57} U_s^{+2.8} L^+^{-0.74} \] \hspace{1cm} (6.3)

as shown in figure 21. We note that the pre-factor 0.06 is specifically obtained for \(\phi_s = 1/9 \). For SHS design purposes, using \(We^+ \) is more suitable than using \(We_s \), since it is dependent only on the imposed flow and independent of texture size. Noting that \(We_s \) is simply a combination of the non-dimensional parameters of the system, \(We_s = We^+ L^+ U_s^{+2} \), the equation (6.3) can be rewritten in terms of wall units as

\[p_{c,rms}''^+ \approx 0.06 We^{+0.57} U_s^{+3.9} L^+^{-0.17} \] \hspace{1cm} (6.4)

Equation (6.4) is one of the key results of this study. This equation shows that
capillary pressure has a strong dependency on slip velocity. For cases that the working flow and the flow conditions are pre-specified, \(\text{We}^+ \) would be fixed. However, if the texture size increases, the slip velocity increases accordingly and the capillary pressure rapidly increases corresponding to the slip velocity.

6.2. Scaling of wavelength and phase speed

We report scalings as well as fitting coefficients for the estimation of expected behavior of capillary waves. The log-log scale of data presented in figure 22 reveals that \(\lambda^* \) scales with \(\text{We}_s^{-0.5} \), and \(U_c^* \) scales with \(\text{We}_s^{-1} \). The best fit for \(\lambda^* \) is

\[
\lambda^* \approx 1.9 \text{We}_s^{-0.5}.
\]

The best fit for phase speed \(U_c^* \) measured from DNS data is

\[
U_c^* \approx 1.2 \text{We}_s^{-1}.
\]

Both Eq. (6.5) and Eq. (6.3) are plotted in figure 22.

While \(\text{We}_s \) is directly measured from DNS in the presented plots, we note that \(\text{We}_s \) can
be predicted \textit{a priori}, given the texture parameters, flow conditions, and fluid properties, from the relation introduced by Seo \& Mani (2016), that is $U_s^+ = U_s^+(L^+, \phi_s)$. Specifically they predicted $U_s^+ \sim L^+$ in small texture size limit, and $U_s^+ \sim L^{1/3}$ for large texture size limit.

7. Implications on design

7.1. Onset of failure by capillary pressure

We compare the pressure fluctuations from the stagnation pressure versus capillary pressure as a function of slip velocity in wall unit in figure 23(a). While previous analysis by Seo \textit{et al.} (2015) suggested a linear scaling of the stagnation pressure with respect to slip velocity, $\tilde{p}_{0,rms}^+ \approx 0.28U_s^+ + 1.26$, the pressure load imposed by flow-induced capillary waves is $p_{c,rms}^+ \approx 0.06We^+ 0.57U_s^+ 3.9 L^{0.17}$. Therefore, the capillary pressure becomes dominant over stagnation pressure shortly after $U_s^+ > 10^{-3} - 10^{-2}$.

Similar to Seo \textit{et al.} (2015), we define the onset of failure as the conditions resulting in microscopic contact angles leading to the onset of motion for contact lines. A proper dimensional analysis of the Young-Laplace equation leads to the following scaling law for this failure criterion for interface breakage (Seo \textit{et al.} 2015),

$$p_{0}^+ We^+ L^+ \sim O(1).$$

The order one coefficient in the right hand side of the equation is determined by the failure criteria that the contact angle of gas-liquid interface, $\theta_L = \frac{\pi}{2} + \tan^{-1}\left(\frac{\partial \eta}{\partial x}\right)_L$, exceeds the advancing contact angle, θ_{adv}, where $\frac{\partial \eta}{\partial x}$ is the slope of the gas-liquid interface at the leading edge of the post as shown in figure 23(b). Seo \textit{et al.} (2015) used the self-similar stagnation pressure fields to obtain $O(1)$ constant in the right hand side of equation (7.1) for $\theta_{adv} = 100^\circ$ and 120°. For instance, the resulting relationship for stagnation pressure is $0.28U_s^+ We^+ L^+ = f(\theta_{adv})$, where f is computed to be equal to 1.7 for $\theta_{adv} = 120^\circ$ and equal to 0.5 for $\theta_{adv} = 100^\circ$. U_s^+ is a known function of L^+ obtained by the scaling introduced in Seo \& Mani (2016) as:

$$\frac{(U_s^+ \sqrt{\phi_s})}{(0.325 - 0.44\sqrt{\phi_s})} + 0.328(U_s^+ \sqrt{\phi_s})^3 = L^+. $$
We repeated the same procedure for the capillary waves. Given that the capillary waves observed in DNS have wavelength larger than the texture size, L, we used a uniform pressure on the textured interface to approximate $f(\theta_{adv}) = O(1)$ constant on the right hand side of equation (7.1) for this mechanism. The f constant is computed by measuring the uniform \tilde{p}^+ that leads to deformation angle equal to advancing contact angle. With this simplification the right-hand-side constant is computed to be equal to 0.6 and 0.2 respectively for $\theta_{adv}=120^\circ$ and 100° considering square patterns with $\phi_s = 1/9$. In order to consider the worst case scenario we used the peak of the capillary pressure estimated as $P_{peak} \approx \sqrt{2}p_{c,rms}''$. The resulting equation for capillary wave with $\theta_{adv} = 120^\circ$ is

$$0.06\sqrt{2}We^{1.57}U_s^{3.9}L^{+0.83} = 0.6,$$

where the coefficient 0.06 is subject to change with ϕ_s, and U_s^+ can be estimated from equation (7.2). In appendix B, we discuss the validity of linearization of the Young-Laplace equation to obtain the coefficient in the right hand side.

7.2. Boundary map for stable SHS design

Using the failure mode described in §7.1, we provide boundary maps for stable drag reduction of SHS. The boundary map consists of two independent design parameters, the texture size in wall unit, L_c^+ and Weber number in wall unit, $We^+ = \mu u_r/\sigma$. We will consider multiple contributions to the failure mode, so thus using L^+ and We^+ in design space is suitable while We_s is the controlling parameter only for the capillary pressure. In figure 24(a), both criteria from stagnation pressure and capillary pressure fluctuations are represented together. In most of the practical applications of hydrodynamic flows, $We^+ = 10^{-3} - 10^{-2}$, and texture size regime of interest for noticeable drag reduction is $L^+ > 1$. In this regime, the capillary pressure sets more restrictive boundary than the criterion imposed by the stagnation pressure. The change of slope in each plot indicates transition from $U_{s}^+ \sim L^+$ to $U_{s}^+ \sim L^{+1/3}$ respectively for small and large texture sizes as discussed by Seo & Mani (2016) and indicated in equation (7.2). The error bar, indicated by the dashed dotted line in figure 24(a), is computed from the error
We + = \mu u_\tau \sigma is Weber number based on inner scaling. The gray area is unstable region and the white area is stable region. (a) shows the stability criteria imposed by stagnation pressure and capillary pressure. The dashed dot lines are error bounds of the estimation of stability boundary for capillary pressure. (b) shows the effect of texture randomness on the total stability region. Dashed lines are stability criteria imposed by stagnation pressure and capillary pressure for aligned posts. (c) shows the effect of turbulence pressure on the total stability region. Dashed line is the solid curve in figure (b). Three different lines are plotted from different confidence intervals for pressure variation: 95%(right), 99%(middle), 99.99%(left). The area below the dotted lines indicates the region where DR is less than 1%. All analyses use the advancing contact angle \theta_{adv} = 120^\circ with the solid fraction of \phi_s = 0.11.

of the fit in figure 21. The 95% confidence interval of the fit in figure 21 is computed from \(1.96 \sqrt{\text{mean}[(0.06W e_s^{0.57}U_s^{-2.8} L^{-0.74} - p''_{t,rms})^2 + \text{SEM}(p''_{t,rms})^2]}\). This error, translated in the stability diagram, leads to 45% error in the \(L_c^+\) for \(W e^+ = 10^{-4}\) and 35% error in the \(L_c^+\) for \(W e^+ = 10\).

Next, we include more practical considerations to the presented analysis to make it more relevant to realistic applications. Our recent finding on the effect of texture randomness (Seo & Mani 2017) indicates that the maximum deformation angle of the randomly distributed textured SHS is about twice of the perfectly aligned posts considered in this study. For randomly distributed textured SHS, by spray coating or etched process, this geometric randomness will push the boundaries imposed by our analysis from aligned, periodic textured SHS as shown in figure 24(b).

Moreover, the stability region will be further shrunk when we consider unsteady, intermittent turbulence pressure fluctuations in addition to the stagnation pressure and capillary pressure. The worst scenario for the interface stability can occur instantaneously when some of traveling turbulence pressure with high intensity encounters interface. An instantaneous local turbulence pressure fluctuation can be estimated by multiplication of 1.96 on \(p''_{t,rms}\) with 95% confidence. We consider the multiplier 2.58 for 99% confidence and 4.0 for 99.99% confidence and the effect of using different confidence interval is shown in figure 24(c). Here we avoid higher number of digits in the confidence interval since the extremely rare high pressure events are locally space in time (unlike capillary waves that have large features). Therefore, although they can cause instant deformation of the interface, it is unclear whether they lead to failure as they may not persist long enough over significant portion of a texture. In this analysis we use \(p''_{t,rms} \approx 3\) which has been observed in DNS of turbulent channel flow up to \(Re_\tau \approx 5000\) (Lee & Moser...
Flow-induced capillary wave in turbulent flows over superhydrophobic surfaces 29

2015). Our previous analysis has shown that the turbulence pressure fluctuation from overlying turbulent flows in the presence of texture, \(p_{t,rms}'' \), is marginally modified from a conventional smooth channel flow (Seo et al. 2015). Higher Reynolds number involves slightly higher \(p_{t,rms}'' \) with logarithmic dependence on \(Re \). As an example, a case with extremely large \(Re = 5 \times 10^5 \) would lead to \(p_{t,rms}'' \approx 4.5 \) (Farabee & Casarella 1991). This modification is smaller than the uncertainty associated with the discussed precision of the confidence interval. With these considerations, the boundary map, between stable and unstable designs, in figure 24(c) shows the stable design spaces, considering all of the aforementioned effects.

In summary, we recap the design criteria for stable drag reduction in figure 25. If the speed of overlying flow, \(U \), increases for fixed design parameters and fluid properties \((L, \phi_s, \sigma, \rho, \mu) \), the viscous length, \(\delta_v \), decreases leading to proportional increase in both \(L^+ \) and \(We^+ \), and thus the state in the design map would move along the 45 degree to the up and right side as indicated by the arrows in the figure 25. The maximum allowable drag reduction can estimated by the shifted-TBL model and a phenomenological model for slip length suggested by Seo & Mani (2016) for the critical texture size in figure 25. We note that drag reduction is not only a function of slip length, but subject to change with Reynolds number. In this particular case we consider a scenario when solid fraction is \(\phi_s = 1/9 \) and \(Re \approx 5000 \) for the estimation of drag reduction. The critical texture length in figure 25 shows that the maximum allowable drag reduction in a realistic SHS with flow condition \(We^+ = 10^{-3} - 10^{-2} \) would be approximately from 15% to 45% for the best chemically coated SHS with the maximum microscopic contact angle of \(\theta_{adv} = 120^\circ \). If a SHS has different chemistry which lowers the advancing contact angle, e.g. \(\theta_{adv} = 100^\circ \), the boundary would be further pushed downward, limiting the maximum allowable drag reduction from \(\approx 45\% \) to \(30\% \) at \(We^+ \approx 10^{-3} \). The overall prediction of the maximum stable drag reduction by our analysis is consistent with current experimental observations, in which most successful drag reductions were limited to be approximately less than 30% (Bidkar et al. 2014; Srinivasan et al. 2015; Haibao et al. 2015; Zhang et al. 2015).

7.3. Considerations of failure due to shear-driven drainage

An additional failure mechanism for superhydrophobic surfaces is shear-driven drainage (Wexler et al. 2015b; Liu et al. 2016). Wexler et al. (2015a) proposes a remedy for the shear-driven drainage, by installing barriers with finite periodicity which should be smaller or equal to a threshold length, \(L_\infty \), that can retain the enclosed fluid. Two examples of such barriers with different barrier periodicity defined by \(N_p = L_\infty / L \), are portrayed in figure 26(a) and (b). According to Wexler et al. (2015b), the threshold length for shear-driven drainage is \(\sim O(1) \sigma \gamma h / \tau_{yx} \), where \(h \) is height of the texture, \(\tau_{yx} \) is imposed shear on top of the cavity, and \(\gamma \) is curvature of the interface. Assuming the texture height is \(\sim L \), the shear-driven pressure that can balance the capillary pressure, \(\sigma \gamma \), would be then \(p_{shear} \sim O(1) \mu_{air} U_s \, N_p / L \). Considering the stagnation pressure scales as \(p_{stagnation} \sim 0.28 \mu_{water} U_s / \delta_v \) (Seo et al. 2015), the ratio between the shear-driven pressure to the stagnation is

\[
\frac{p_{shear}}{p_{stagnation}} \sim \frac{\mu_{air} N_p}{\mu_{water} L^+}.
\]

For SHS, due to low viscosity ratio of air to water, \(\mu_{air} / \mu_{water} \approx 2\% \), this ratio remains small if \(N_p \) is order 10 or smaller. When \(N_p \) is comparable to the viscosity ratio, the shear-driven pressure will dominate the stagnation pressure.

In figure 26(c), we show the rough estimate of the change of stability boundary according to the ratio between shear-driven pressure and stagnation pressure. When the
number of periods within barriers, \(N_p \), becomes large, the shear driven failure will be the dominant mechanism for the interface breakage. The optimal choice of \(N_p \) is required since small \(N_p \) ensures stable gas pockets from shear-driven drainage, but it also suppresses the drag reduction due to additional solid-liquid contact area. For example, an extremely small \(N_p = 1 \) formulates shear-free holes with periodicity, \(L \), which separately contain air pockets. While this configuration may consist a highly robust design for SHSs, the drag reduction is significantly impacted. Our preliminary results show isolated holes can lead to twice less drag reduction compared to posts with same \(\phi_s = 1/9 \). Based on the scaling analysis of equation (7.4) we estimate that \(N_p \sim O(10) \) provides a good compromise between robustness and drag reduction for SHSs subject to turbulent flows.

8. Summary and conclusion

We presented an investigation of dynamic behavior of gas-liquid interface on a super-hydrophobic surface in response to hydrodynamic turbulence in an overlying flow. Direct numerical simulations of turbulent channel flows over a wide range of parameters were developed to perform this investigation. The DNSs take into account the physics of super-hydrophobic surface via patterned slip/no-slip boundary conditions on the overlying flow, and deformability of the air-water interface via a linearized Young-Laplace equation. Our investigations identified flow-induced capillary waves as a mechanism where turbulence can energize capillary modes in form of streamwise coherent waves that travel upstream. While kinematic statistics, such as slip length are not sensitive to the presence of capillary waves, the pressure fields are strongly affected by these modes. Via various analyses,
including identification of scalings for data collapse and semi-analytical linear inviscid analysis, we developed insights into the behavior of flow-induced capillary waves.

The knowledge gained from investigation of DNS data led to the development of threshold criteria for the failure of superhydrophobic surfaces under realistic conditions. To this end, the onset of contact line movement was used to quantify a failure condition, leading to the boundary maps between stable and unstable zones in We^{+} versus L^{+} parameter space, considering various contact angle scenarios. A major contribution of this paper is presentation of an overview of other failure modes that are identified in recent literature in the context of the developed parameter maps. Namely, we considered failure due to stagnation pressure (studied by Seo et al. (2015)), and found that this mode is the critical limiter of stability only in the very large We^{+} limit; for typical We^{+} values robustness air pocket retention is more critically limited by the capillary pressure modes discussed in the present study. However a direct evidence of these failure modes should be provided by experiment. Additionally, we presented an overview of the shear-driven drainage mechanism (Wexler et al. 2015b) and identified the conditions under which this mechanism may compete with the other two mechanisms for limiting the robustness of air retention. Specifically, the shear driven drainage is not the limiting mechanism as long as the height of the posts is not small compared to the pattern wavelength, and as long as gas pockets are kept isolated with barriers distancing within tens of pattern wavelengths.

Considering solid fraction of $\phi_s \approx 0.11$, and including the overall contribution of all identified mechanisms of failure, we estimate that the maximum possible drag reduction in the turbulent flow regime to be in the range 45 to 15 percent for Weber numbers from 10^{-3} to 10^{-2} in wall unit for surface microscopic contact angle of 120°. The maximum drag reduction decreases from 45 to 30 percent in the case of the surface microscopic contact angle of 100° for $We^{+} = 10^{-3}$. This result is consistent with the experimental measurements of drag reduction by superhydrophobic surfaces. While increasing ϕ_s is likely to shrink the unstable zones in the developed design maps, surfaces with larger ϕ_s result in less drag reduction; the impact of varying ϕ_s on the pre-factor of the developed scalings should be studied in a future investigation.
A number of extensions and improvements to the present work can be envisioned.

- While reasonable understanding of the dispersion relation governing the induced capillary waves are provided, it is still unclear how turbulence decides which capillary modes to excite. It is also unclear why this excitement dominantly involves a compact representation of capillary modes. To this end, various analysis techniques such as the resolvent technique (McKeon & Sharma 2010; McKeon et al. 2013) or its variants adopted for non-rigid surfaces (Luhar et al. 2015, 2016) may be the most suitable technique to consider.

- Considering realistic surfaces that typically involve random posts, it is useful to extend the present DNS investigations to the case of surfaces with randomly distributed posts. In the limit of flat interface, Seo & Mani (2017) investigated the effects of randomness and quantified their impact on increased maximum stagnation pressure and deterioration of drag reduction performance. In the figures presented in Section 7, same trends were hypothesized for the capillary wave mechanism, but confirming this hypothesis requires a thorough and original investigation.

- The presented analysis is based on linearized interface model which is only useful for prediction of onset of non-linear events. Extension of DNSs to fully coupled two-phase flows with appropriate contact line models can shed light into processes that lead to full bubble drainage and perturbations beyond the discussed early onsets.

- The analysis presented here, considers an ideal scenario where all texture posts have the same height; realistic surfaces are likely to introduce rough interfaces, even in the complete Cassie-Baxter state. The form drag induced by interfacial roughness further lower the performance in drag reduction (Ling et al. 2016) and may also affect the instability threshold. An extension of the presented analysis to rough superhydrophobic surfaces can provide useful insights in the competition between performance and robustness under such conditions.

- The effect of static pressure and mean pressure gradient were not considered in current analysis. We assumed a scenario of applications of SHS that within each block between barriers, the air pressure balances the static pressure of the overlaying fluid. The variation of streamwise pressure due to mean pressure gradient is assumed negligible, if the barrier size is smaller than the boundary layer thickness, such as $p'_{+}\approx \left(\frac{dp}{dz}\right)^+L_+^{+}\omega^{+}\lesssim 1$ which is less than pressure fluctuations from overlying turbulence.

This work was supported by the Office of Naval Research under grant 3002451214. The program officer is Ki-Han Kim. The authors greatly appreciate the Kwanjeong Educational Foundation for the funding support for Jongmin Seo.

Appendix A. Energy absorption by viscous effects in the gas layer

For textures whose height is on the order of their width, the ratio of energy absorption by the gas layer to that absorbed by the surface tension scales as

$$\epsilon_g \sim \frac{\mu_{\text{gas}}}{\mu_{\text{liquid}}} W e^{+} L^{+} \omega^{+}, \quad (A1)$$

where ω^{+} is the frequency of capillary waves. In the settings considered here $W e^{+} L^{+}$ is much less than unity and always less than $O(1)$, and ω^{+} is either $O(1)$ or mostly smaller than one as shown in figure 15(b) for capillary wave period in wall units. Given that $\mu_{\text{air}}/\mu_{\text{water}}$ is much smaller than one, the viscous effects in the gas is negligible.
Appendix B. Linearization on the gas-liquid interface

B.1. Accuracy of linearization of the Young-Laplace equation

We discuss the validity of linearized boundary condition for gas-liquid interface in our study and report errors of using it against the Young-Laplace equation without linearization. The non-linear Young-Laplace equation is equating pressure difference across the interface and curvature of the interface,

$$\frac{\partial^2 \eta}{\partial x^2}(1 + \frac{\partial \eta}{\partial z}) + \frac{\partial^2 \eta}{\partial z^2}(1 + \frac{\partial \eta}{\partial x}) - 2\frac{\partial \eta}{\partial x} \frac{\partial \eta}{\partial z} \frac{\partial^2 \eta}{\partial x \partial z} \frac{(1 + \left(\frac{\partial \eta}{\partial x}\right)^2 + \left(\frac{\partial \eta}{\partial z}\right)^2)}{2} \approx \frac{P_{\text{liquid}} - P_{\text{gas}}}{\sigma}. \quad (B1)$$

The linearized Young-Laplace equation (2.4) is the first-order approximation of equation (B1) if the slope of the interface is assumed smaller than unity, \(\left(\frac{\partial \eta}{\partial x}, \frac{\partial \eta}{\partial z}\right) \ll 1 \).

We additionally conducted a simulation resulting in the largest deformation \(P_{155W4} \) in table 1 by using the Young-Laplace equation without linearization. The simulation was run more than 15 eddy turnover time, and the last 12 eddy turnover time data were used and averaged for statistics. The error of DNS results using the linearized Young-Laplace equation against the Young-Laplace without linearization for mean convection velocity \((U \pm c) \), time period \((T \pm t) \), and wavelength of capillary wave \((\lambda \pm \theta) \) are 2.6%, 0.3% and 2.7%. Root-mean-square error for pressure fluctuation is less than 3% and error for rms interface deformation is 3.3%. Since all errors associated with linearization are under 4% for the largest deformation case, we expect all other cases with smaller \(We_s \) are not affected by the linearization.

We examined error of using the linearized Young-Laplace equation to determine the onset condition of failure by capillary wave, introduced in §7.1. In the case that the moving contact angle of 120 degree, Young-Laplace equation without linearization predicts 11% smaller critical texture size than a prediction from linearized Young-Laplace equation. The right hand side coefficient of the equation 7.3 is then reduced by 11%. For the system that the moving contact angle is 100 degree this error reduces to less than 1 percent. The remaining conclusion on design map is marginally changed by this correction for linearization since the key factor for determining onset is rapid increase of slip velocity and order one change with respect to \(We^+ \).

B.2. Accuracy of linearization of the kinematic condition

The leading error associated with linearization of kinematic boundary condition, equation (2.7) is second order \(O(\eta^2) \), neglecting the leading \(\frac{\eta^2}{2} \frac{\partial^2 \eta}{\partial y^2} \big|_{y = \eta} \) term. The most deformed case is simulation \(P155W4 \) in table 1, where the rms deformation is 0.1 in wall unit and in this case the leading order error term is on the order of \(10^{-2} \). The resulting error is less than 10 percent for wall normal velocities.

B.3. Regime of parameters in current study

We note that current simulations are conducted in a stable operation of SHS keeping gas pockets safe. The predicted onset failure used projection of scalings from well collapsed DNS data. In figure 27 we plot our simulation parameters on a design map. Although \(We^+ \) in current study is smaller than practical regime of interest, the range of \(We_s \) considered in this study, \(0.2 \lesssim We_s \lesssim 1.7 \) matches with realistic cases. Plugging in values in a realistic operating condition, \(\rho = 1000 \text{kg/m}^3, L \approx 50 \mu \text{m}, \sigma = 0.071 \text{N/m}, U_s \approx 3u_\tau, \) where \(u_\tau \approx 0.3 \text{m/s for } U_\infty = 10 \text{m/s}, \) \(We_s \) would be approximately 0.7 which is in the middle of span for \(We_s \) in this study. In practice \(L^+ \) tends to be smaller (requiring expensive DNS) and \(We^+ \) tends to be larger, leading to similar \(We_s \) ranges as those considered here.
Appendix C. Verification of the code with a perturbation problem with deformable interface

We consider a perturbation problem where one wall is fully covered by a gas-liquid interface with a finite surface tension. We use normal modes which consists of introducing sinusoidal disturbances on a basic state. In this way we compare simulations against analytical solutions for different modes of perturbation. On the base state described by $U = (U, 0, 0)$, we superpose a disturbance of the form

$$q(x, y, z, t) = \hat{q}(y) \exp(\omega t + i k_x x + i k_z z), \quad (C 1)$$

where q represents perturbed quantities $(u, v, w; p)$. We consider all real wavenumbers (k_x, k_z) in a periodic $x-z$ domain. The physical solutions described by equation (C 1) can be obtained by computing the real part of the complex fields. We assume the perturbation amplitude is much smaller than the background velocity, $u, v, w \ll U$. The continuity equation (2.1) is then

$$D \cdot \hat{u} = 0, \quad (C 2)$$

where $D = (i k_x, \partial_y, i k_z)$, and momentum equation (2.2) becomes

$$(\omega + i k_x U) \hat{u} = -\frac{1}{\rho} D \hat{p} + \nu \left(-\ddot{k}^2 + \partial_y^2\right) \hat{u}, \quad (C 3)$$

where $\ddot{k} = \sqrt{k_x^2 + k_z^2}$. At the boundary, we use the linearized Young-Laplace equation,

$$\hat{p}_{y=0} = -\sigma \ddot{k}^2 \hat{\eta}, \quad (C 4)$$

and the kinematic condition on the interface (2.7),

$$v_{y=0} = (\omega + i k_x U) \hat{\eta}, \quad (C 5)$$

as boundary conditions at $y = 0$, where $\eta(x, z) = \eta \exp(\omega t + i k_x x + i k_z z)$. Note that the velocity and pressure fields are fully coupled with the deformation of interface. By solving the equations from (C 1) to (C 5) together with the shear-free condition (2.3), a solution for time frequency is obtained as

$$\omega = -i k_x U - \nu \ddot{k}^2 \pm \sqrt{\nu^2 \ddot{k}^4 - \sigma \ddot{k}^3}, \quad (C 6)$$

where the first term in the time frequency represents the advection of the solution with background velocity. The remaining real part of the solution is the decaying rate while
Flow-induced capillary wave in turbulent flows over superhydrophobic surfaces

the imaginary part of the solution is oscillation due to the surface tension effect. The real form of the solution is

\[q(x, y, z, t) = \hat{q}(y) \exp \left(-\nu \tilde{k}^2 \pm \sqrt{\nu^2 \tilde{k}^4 - \sigma \tilde{k}^3} \right) t \cos(k_x(x - Ut)) \cos(k_z z), \] (C 7)

when \(\nu^2 \tilde{k}^2 - \sigma \geq 0, \)

\[q(x, y, z, t) = \hat{q}(y) \exp(-\nu \tilde{k}^2 t) \cos(\sqrt{\sigma \tilde{k}^3 - \nu^2 \tilde{k}^4}) \cos(k_x(x - Ut)) \cos(k_z z) \] (C 8)

when \(\nu^2 \tilde{k}^2 - \sigma < 0. \)

The full solution fields for \(\hat{q}(y) \) are

\[\hat{u} = \frac{\nu k_z (m^2 + \tilde{k}^2)}{i k} \left(e^{-ky} - \left(\frac{2m \tilde{k}}{m^2 + \tilde{k}^2} \right) e^{-my} \right) \hat{\eta}, \] (C 9)

\[\hat{v} = \nu (m^2 + \tilde{k}^2) \left(e^{-ky} - \left(\frac{2 \tilde{k}^2}{m^2 + \tilde{k}^2} \right) e^{-my} \right) \hat{\eta}, \] (C 10)

\[\hat{p} = -\rho \sigma \tilde{k}^2 e^{-ky} \hat{\eta}, \] (C 11)

and \(\hat{w} = (k_z/k_x) \hat{u} \), where \(m = (\tilde{k}^4 - \sigma \tilde{k}^3/\nu^2)^{1/4} \).

We verified our code against the above analytical solution of the diffusion-oscillation-advection problem, in which the interface responds to the overlying fluid motion. Our numerical scheme for deformable interface fully coupled with the overlying flow can capture the motion of an interface with the given surface tension. We compare our numerical results with analytical solutions when \(\sigma = U = 1, k_x = k_z = 8, \nu = 0.1 \) in Figure 28 and 29.

REFERENCES

Figure 28. Streamwise velocity (first row) and pressure (second row) snapshots in $z/\delta = 0$ at time $tU/\delta = 0, 0.02, 0.04$. Blue and red solid lines are from numerical simulations, and black dashed lines are analytical solutions (C9, C11). Blue line is for negative values, and red line is for positive values.

Figure 29. Time evolution of interface location normalized by its initial magnitude. (a) Oscillation-diffusion-advection of gas-liquid interface. From blue to red, the lines are from time snapshots in $tU/\delta = 0 - 1.5$ with a time interval 0.1 (b) A trace of a peak point in the initial condition. The solid magenta line is numerical solution. For both plots, dashed-dot lines are analytical solutions.

Haibao, H., Peng, D., Feng, Z., Dong, S. & Yang, W. 2015 Effect of hydrophobicity on
Flow-induced capillary wave in turbulent flows over superhydrophobic surfaces

Flow-induced capillary wave in turbulent flows over superhydrophobic surfaces

