Atomic and Electronic Structure of Complex Metal Oxides during Electrochemical Reaction with Lithium

Kent Joseph Griffith

Churchill College
Department of Chemistry
University of Cambridge

This dissertation is submitted for the degree of Doctor of Philosophy
September 2017
Declaration

I hereby declare that except where specific reference is made to the work of others, the contents of this dissertation are original and have not been submitted in whole or in part for consideration for any other degree or qualification in this or any other University. Chapter 5 contains work that was published in *J. Am. Chem. Soc.* **2016**, *138*, 8888–8899 and *J. Magn. Reson.* **2017**, *275*, 127–136. Chapter 6 is primarily comprised of work published in *Inorg. Chem.* **2017**, *56*, 4002–4010. This dissertation is the result of my own work and includes nothing which is the outcome of work done in collaboration, except where specifically indicated in the text. This dissertation contains less than 60,000 words, including abstract, tables, and footnotes, but excluding table of contents, photographs, diagrams, figure captions, references, appendices and acknowledgements.

Kent Joseph Griffith
September 2017
Acknowledgements

I am thankful to Professor Clare Grey for welcoming me into her group and supervising my scientific development. She is an inspirational scientist and an example that I seek to follow throughout my academic career. Her ideas and encouragement pushed me to learn concepts and techniques that were well beyond my perceived capabilities. It has been a pleasure and an honour to work with her.

I would like to thank the entire Grey group whose collective knowledge enabled me to learn so much from my time in Cambridge. I thank Drs. John Griffin and Alex Forse for teaching me the fundamentals of NMR and how to be British. Their daily support, patience, and encouragement is appreciated. I also thank John for giving me a practical introduction to DFT and CASTEP. Drs. Ieuan Seymour and Andrew Morris have been fountains of knowledge on atomic and electronic structure. Dr. Oliver Pecher, Professor Chris Pickard, Dr. Martin Mayo, Matthew Evans, Can Kocer, Dr. Melanie Loveridge, Dr. Lauren Marbella, Roberta Pigliapochi, Dr. Gosuke Oyama, Michael Hope, and Professor Yury Gogotsi have been productive collaborators on a variety of projects. Down under, Professors Siegbert Schmid and Chris Ling are extraordinary crystallographers and helpful teachers. On the beach at UCSB, Dr. Megan Butala, Leo Lamontagne, Molleigh Preefer, Clayton Cozzan, and Professor Ram Seshadri have been friendly hosts and collaborators. Professor Kim See taught me VESTA and, by extension, everything. Beyond these collaborators, I think I have learned something from everyone in the lab over the past four years so, succinctly, I thank them all.

I am thankful to the beamlines and scientists at the Advanced Photon Source, Diamond Light Source, Heinz Maier-Leibnitz Zentrum nuclear research reactor, ISIS spallation neutron source, OPAL nuclear research reactor, Deutsches Elektronen-Synchrotron, and Japan Proton Accelerator Research Complex for their support and resources. I thank the Winston Churchill Foundation of the United States, Herchel Smith Scholarship, and Cambridge International Trust for financial support during my PhD.

Finally, I circle back to my family, to whom I owe everything – beyond the scope of this PhD. Thank you to my wife, Alisha, for her love, support, encouragement, and patience; I doubt there is anyone with as much second-hand knowledge of niobium. Thank you to my Mum and Dad who have been my biggest supporters for many years. My Mum, per tradition, has undergone a major surgery in the opening and/or closing stages of this degree; her love for her family and
will to fight for it are apparent and inspirational. Thank you to my brothers and sisters and their kids for their unique ways of bringing happiness and support ranging from sharing photos to hosting/feeding me at beamtimes and lab visits. There is no one who cares less about the stresses of a PhD than kids and pets, which is refreshingly appreciated on every visit.
Abstract

Lithium-ion batteries have transformed energy storage and technological applications. They stand poised to convert transportation from combustion to electric engines. The discharge/charge rate is a key parameter that determines battery power output and recharge time; typically, operation is on the timescale of hours but reducing this would improve existing applications and open up new possibilities. Conventionally, the rate at which a battery can operate has been improved by synthetic strategies to decrease the solid-state diffusion length of lithium ions by decreasing particle sizes down to the nanoscale. In this work, a different approach is taken toward next-generation high-power and fast charging lithium-ion battery electrode materials.

The phenomenon of high-rate charge storage without nanostructuring is discovered in niobium oxide and the mechanism is explained in the context of the structure–property relationships of Nb₂O₅. Three polymorphs, T-Nb₂O₅, B-Nb₂O₅, and H-Nb₂O₅, take bronze-like, rutile-like, and crystallographic shear structures, respectively. The bronze and crystallographic shear compounds, with unique electrochemical properties, can be described as ordered, anion-deficient nonstoichiometric defect structures derived from ReO₃. The lessons learned in niobia serve as a platform to identify other compounds with related structural motifs that apparently facilitate high-rate lithium insertion and extraction. This leads to the synthesis, characterisation, and electrochemical evaluation of the even more complicated composition–structure–property relationships in ternary TiO₂–Nb₂O₅ and Nb₂O₅–WO₃ phases. Advanced structural characterisation including multinuclear solid-state nuclear magnetic resonance spectroscopy, density functional theory, X-ray absorption spectroscopy, \textit{operando} high-rate X-ray diffraction, and neutron diffraction is conducted throughout to understand the evolution of local and long-range atomic structure and changes in electronic states.
Table of Contents

Declaration .. iii

Acknowledgements .. iv

Abstract ... vi

Table of Contents .. vii

List of Abbreviations .. xi

List of Publications .. xiv

1. Introduction .. 1
 1.1. Motivation .. 1
 1.2. Thesis Overview .. 2
 1.3. References ... 3

2. Electrochemistry and Energy Storage .. 5
 2.1. Introduction .. 5
 2.2. Redox Reactions ... 6
 2.2.1 Intercalation Electrodes ... 9
 2.2.2 Alloying and Conversion Electrodes ... 11
 2.2.3 Beyond Li-ion Batteries ... 12
 2.3. Capacitance .. 13
 2.4. Pseudocapacitance ... 15
 2.5. Electrochemical Techniques ... 18
 2.5.1 Chronoamperometry/Cyclic Voltammetry ... 18
 2.5.2 Chronopotentiometry/Galvanostatic Methods 19
 2.5.3 Effects of Charge/Discharge Conditions .. 20
 2.5.4 Electrochemical Titration Techniques ... 22
 2.6. References .. 24

3. Characterisation and Calculation Methods .. 29
 3.1. Overview .. 29
 3.2. Solid-state Nuclear Magnetic Resonance Spectroscopy 30
 3.2.1 Introduction ... 30
 3.2.2 Chemical Shielding Interaction .. 31
3.2.3 Quadrupolar Interaction ... 32
3.2.4 Studying Dynamics with NMR Spectroscopy 34
3.2.5 Exchange Spectroscopy ... 37
3.3. X-ray Absorption Spectroscopy ... 39
 3.3.1 Absorption Theory ... 39
 3.3.2 X-ray Absorption Near Edge Structure 40
 3.3.3 Extended X-ray Absorption Fine Structure 41
 3.3.4 Operando XAS ... 43
3.4. Diffraction .. 44
 3.4.1 Diffraction Theory .. 44
 3.4.2 Powder Diffraction .. 46
 3.4.3 Rietveld Analysis ... 47
 3.4.4 Operando Synchrotron Diffraction ... 49
 3.4.5 X-ray Sources .. 50
 3.4.6 Neutron Diffraction .. 50
 3.4.7 Neutron Sources ... 51
3.5. Associated Techniques ... 52
 3.5.1 Introduction .. 52
 3.5.2 Scanning Electron Microscopy .. 52
 3.5.3 Thermal Gravimetric Analysis .. 52
 3.5.4 Brunauer–Emmett–Teller Surface Area 53
3.6. Bond Valence Sum Analysis ... 53
3.7. Quantum Calculations .. 54
 3.7.1 Density Functional Theory ... 54
 3.7.2 NMR Calculations .. 56
3.8. References .. 58

4. Crystal Chemistry .. 65
 4.1. ReO$_3$ Parent Structure ... 65
 4.2. Early Transition Metal Chemistry and the SOJT 67
 4.2.1 Vibronic Coupling Theory ... 69
 4.3. Crystallographic Shear Structures ... 72
 4.4. Bronze-like Structures ... 75
 4.5. Infinitely Adaptive Structures ... 77
5. Niobium Oxides ... 87
 5.1. Abstract .. 87
 5.2. Introduction ... 88
 5.3. Experimental Methods .. 90
 5.3.1 Synthesis ... 90
 5.3.2 Electrochemistry ... 91
 5.3.3 X-Ray Diffraction ... 92
 5.3.4 Morphological Analysis .. 92
 5.3.5 17O and 91Nb Solid-state Nuclear Magnetic Resonance Spectroscopy 92
 5.3.6 6Li Solid-State Nuclear Magnetic Resonance Spectroscopy 93
 5.3.7 NMR Calculations and Powder Simulations 93
 5.4. Results .. 94
 5.4.1 Structural Characterisation of Nb$_2$O$_5$ Polymorphs 94
 5.4.2 Electrochemical Properties of Nb$_2$O$_5$ Polymorphs 109
 5.4.3 Charge Storage Kinetics of Micrometer-Sized Nb$_2$O$_5$ 110
 5.4.4 Lithium Local Structure and Dynamics 115
 5.4.5 Structure–Property Relationships 126
 5.5. Discussion ... 128
 5.6. Conclusions ... 130
 5.7. Outlook ... 131
 5.8. Acknowledgement of Contributions 132
 5.9. References .. 133

6. Titanium Niobium Oxides .. 141
 6.1. Abstract .. 141
 6.2. Introduction ... 142
 6.3. Experimental Methods .. 144
 6.3.1 Synthesis ... 144
 6.3.2 Laboratory X-ray Powder Diffraction 144
 6.3.3 High-resolution Neutron Powder Diffraction 145
 6.3.4 Scanning Electron Microscopy 145
7. Niobium Tungsten Oxides ... 175

7.1. Abstract ... 175
7.2. Introduction .. 175
7.3. Experimental Methods .. 177
 7.3.1 Synthesis ... 177
 7.3.2 Laboratory Powder X-ray Diffraction 178
 7.3.3 Thermal Gravimetric Analysis .. 178
 7.3.4 Scanning Electron Microscopy .. 179
 7.3.5 Electrochemical Characterization 179
 7.3.6 Operando Synchrotron X-ray Diffraction 180
 7.3.7 Operando and Ex Situ Synchrotron X-ray Absorption Spectroscopy 180
 7.3.8 7Li Pulsed Field Gradient NMR Spectroscopy 181
7.4. Results ... 182
 7.4.1 $\text{Nb}_{16}\text{W}_5\text{O}_{35}$ Host Structure 182
 7.4.2 Electrochemistry and Lithium Diffusion of $\text{Nb}_{16}\text{W}_5\text{O}_{35}$ 185
 7.4.3 Local Structure and Redox Chemistry 193
 7.4.4 Anisotropic Lattice Evolution .. 202
 7.4.5 Comparisons to $\text{Nb}_{16}\text{W}_{16}\text{O}_{93}$ 209
7.5. Discussion .. 214
7.6. Conclusions ... 220
7.7. Outlook .. 220
7.8. Acknowledgement of Contributions 223
7.9. References .. 224
List of Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMPIX</td>
<td>Argonne’s Multi-Purpose In Situ X-ray Cell</td>
</tr>
<tr>
<td>APES</td>
<td>Adiabatic Potential Energy Surface</td>
</tr>
<tr>
<td>BET</td>
<td>Brunauer–Emmett–Teller</td>
</tr>
<tr>
<td>BPP</td>
<td>Bloembergen–Purcell–Pound</td>
</tr>
<tr>
<td>BSE</td>
<td>Backscattered Electrons</td>
</tr>
<tr>
<td>BVEL</td>
<td>Bond Valence Energy Landscape</td>
</tr>
<tr>
<td>BVS</td>
<td>Bond Valence Sum</td>
</tr>
<tr>
<td>CASTEP</td>
<td>Cambridge Serial Total Energy Package</td>
</tr>
<tr>
<td>CCCV</td>
<td>Constant Current Constant Voltage</td>
</tr>
<tr>
<td>CE</td>
<td>Coulombic Efficiency</td>
</tr>
<tr>
<td>CP</td>
<td>Cross Polarisation</td>
</tr>
<tr>
<td>CS</td>
<td>Crystallographic Shear</td>
</tr>
<tr>
<td>CSA</td>
<td>Chemical Shift Anisotropy</td>
</tr>
<tr>
<td>CV</td>
<td>Cyclic Voltammetry</td>
</tr>
<tr>
<td>DEC</td>
<td>Diethyl Carbonate</td>
</tr>
<tr>
<td>DFT</td>
<td>Density Functional Theory</td>
</tr>
<tr>
<td>DMC</td>
<td>Dimethyl Carbonate</td>
</tr>
<tr>
<td>DTA</td>
<td>Differential Thermogravimetric Analysis</td>
</tr>
<tr>
<td>EC</td>
<td>Ethylene Carbonate</td>
</tr>
<tr>
<td>EDLC</td>
<td>Electric Double Layer Capacitance</td>
</tr>
<tr>
<td>EDX</td>
<td>Energy Dispersive X-ray Spectroscopy</td>
</tr>
<tr>
<td>EFG</td>
<td>Electric Field Gradient</td>
</tr>
<tr>
<td>EXAFS</td>
<td>Extended X-ray Absorption Fine Structure</td>
</tr>
<tr>
<td>EXSY</td>
<td>Exchange Spectroscopy</td>
</tr>
<tr>
<td>FID</td>
<td>Free Induction Decay</td>
</tr>
<tr>
<td>FT</td>
<td>Fourier Transform</td>
</tr>
<tr>
<td>FWHM</td>
<td>Full Width Half Maximum</td>
</tr>
<tr>
<td>GGA</td>
<td>Generalised Gradient Approximation</td>
</tr>
<tr>
<td>GIPAW</td>
<td>Gauge-Including Projector Augmented-Wave</td>
</tr>
<tr>
<td>GITT</td>
<td>Galvanostatic Intermittent Titration Technique</td>
</tr>
<tr>
<td>GSAS</td>
<td>General Structure Analysis System</td>
</tr>
<tr>
<td>HOMO</td>
<td>Highest Occupied Molecular Orbital</td>
</tr>
</tbody>
</table>
JT – Jahn–Teller
LDA – Linear Density Approximation
LFP – LiFePO$_4$
LISICON – Li$^+$ Superionic Conductor
LTO – Li$_4$Ti$_3$O$_12$
LUMO – Lowest Unoccupied Molecular Orbital
M – Metal Cation
MAS – Magic Angle Spinning
NASICON – Na$^+$ Superionic Conductor
ND – Neutron Diffraction
NMP – N-Methyl Pyrrolidone
NMR – Nuclear Magnetic Resonance
PBE – Perdew–Burke–Ernzerhof
PC – Propylene Carbonate
PDF – Pair Distribution Function
PFG – Pulsed Field Gradient
PITT – Potentiostatic Intermittent Titration Technique
PPM – Parts Per Million
PTFE – Poly(tetrafluoroethylene)
PVDF – Poly(vinylidene difluoride)
RDF – Radial Distribution Function
RF – Radio Frequency
SE – Secondary Electrons
SEM – Scanning Electron Microscopy
SHE – Standard Hydrogen Electrode
SOJT – Second-order Jahn–Teller
TEM – Transmission Electron Microscopy
TGA – Thermal Gravimetric Analysis
TM – Transition Metal
TOF – Time-of-Flight
μ^+-SR – Muon Spin Resonance
VOCS – Variable-Offset Cumulative Spectrum
VT – Variable Temperature
XANES – X-ray Absorption Near Edge Structure
XAS – X-ray Absorption Spectroscopy
XRD – X-ray Diffraction
List of Publications

Below is the list of published or submitted manuscripts resulting from work undertaken in my PhD.

(1) Marbella, Lauren E.; Evans, Matthew L.; Groh, Matthias F.; Nelson, Joseph; Griffith, Kent J.; Morris, Andrew J.; Grey, Clare P. (De)Sodiation via Helical Phosphorus Intermediates in High Capacity Anodes for Sodium-ion Batteries. Submitted.

(2) Griffith, Kent J.; Wiaderek, Kamila M.; Cibin, Giannantonio; Marbella, Lauren E.; Grey, Clare P. Unconventional Mechanisms in Niobium Tungsten Oxides for High-rate Lithium-ion Charge Storage. Submitted.

(3) Deng, Yue; Eames, Christopher; Nguyen, Long H. B.; Pecher, Oliver; Griffith, Kent J.; Courty, Matthieu; Fleutot, Benoît; Chotard, Jean-Noël; Grey, Clare P.; Islam, M. Saiful; Masquelier, Christian Crystal Structures, Local Atomic Environments and Ion Diffusion Mechanisms of Scandium-substituted NASICON Solid Electrolytes. Submitted.

(4) Griffith, Kent J.; Senyshyn, Anatoliy; Grey, Clare P. Structural Stability from Crystallographic Shear in TiO$_2$–Nb$_2$O$_5$ Phases: Cation Ordering and Lithiation Behavior of TiNb$_{24}$O$_{62}$. Inorg. Chem. 2017, 56, 4002–4010. DOI: 10.1021/acs.inorgchem.6b03154

(5) Cozzan, Clayton; Griffith, Kent J.; Laurita, Geneva; Hu, Jerry G.; Grey, Clare P.; Seshadri, Ram Structural Evolution and Atom Clustering in β-SiAlON: β-Si$_{6-z}$Al$_z$O$_{9-z}$N$_{8-z}$. Inorg. Chem. 2017, 56, 2153–2158. DOI: 10.1021/acs.inorgchem.6b02780

(9) Oyama, Gosuke; Pecher, Oliver; Griffith, Kent J.; Nishimura, Shin-ichi; Pigliapochi, Roberta, Grey, Clare P.; Yamada, Atsuo Sodium Intercalation Mechanism of 3.8 V Class Alluaudite Sodium Iron Sulfate. *Chem. Mater.* **2016**, 28, 5321–5328. DOI: [10.1021/acs.chemmater.6b01091](https://doi.org/10.1021/acs.chemmater.6b01091)

(10) Griffith, Kent J.; Forse, Alexander C.; Griffin, John M.; Grey, Clare P. High-Rate Intercalation without Nanostructuring in Metastable Nb₂O₅ Bronze Phases. *J. Am. Chem. Soc.* **2016**, *138*, 8888–8899. DOI: [10.1021/jacs.6b04345](https://doi.org/10.1021/jacs.6b04345)

Chapter 1

Introduction

“Whether or not one has several phases depends on the wavelength of the radiation used for the examination.” – A. David Wadsley, *The Chemistry of Extended Defects in Non-metallic Solids*

1.1 Motivation

Energy storage has fundamentally changed everyday life for much of the globe through the mobilisation of technology and, more recently, by enabling off-grid power in developing regions. The demand and array of applications for energy storage continues to grow. Increasing the energy density, enabling fast charging, and ensuring safety and sustainability are some of the most essential and daunting goals for electrochemical energy storage. High-performance materials will be required to meet the needs of next-generation mobile devices, electrification of the transportation sector, and the rising “internet of things”.

The search for high power and rapid charging electrode materials, that is, compounds that can store and release ions and electrons quickly, has been dominated by the rapidly developing field of nanotechnology. The most obvious advantage of nanostructured and nanosized materials is the decreased diffusion length for an intercalant ion such as lithium. Solid-state diffusion is typically the rate-limiting step in a battery so increasing the surface area between the liquid electrolyte and the solid particles whilst decreasing the particle size should increase the rate performance. Interesting phenomena can emerge at the nanoscale where the surface becomes important; for example, the suppression of phase transitions and variations in composition–structure stability. On the other hand, there are well-known issues with the use of nanoparticles in battery applications, including high surface area leading to increased dissolution and increased surface–electrolyte interface (SEI) formation, low packing density, toxicity, high cost, chemical waste generation, scalability issues, and often many-step synthetic complexity.

This thesis proposes that, given the appropriate host structure, nanoscale morphologies are not required for fast kinetics in lithium-ion batteries. The central principle is supported with examples across several compositions and structure families. Composition–structure–property
relationships are explored with a variety of complementary characterisation techniques to
understand the periodic and local atomic structure of the host compounds, as well as the
evolution of their atomic and electronic structures upon reaction with lithium.

1.2 Thesis Overview

Chapter 2 outlines the mechanisms of electrochemical energy storage and associated
techniques and metrics.

Chapter 3 describes the theory and practice of the advanced characterisation techniques and
calculations used in this work; specifically, solid-state nuclear magnetic resonance
spectroscopy, X-ray absorption spectroscopy, X-ray diffraction, neutron diffraction, bond
valence sum mapping, and electronic structure calculations with density functional theory.

Chapter 4 derives the crystal chemistry of crystallographic shear structures and bronze phases
from the parent ReO$_3$ structure and explores the oxide chemistry of the early transition metals.

Chapter 5 delves into the chemistry of the polymorphs of niobium oxide and their behaviour
upon reaction with lithium.

Chapter 6 explores TiNb$_{24}$O$_{62}$, a newly discovered battery material within the TiO$_2$–Nb$_2$O$_5$
phase diagram, and its relation to other crystallographic shear structures.

Chapter 7 focuses on new high-rate electrode materials with crystallographic shear and
bronze-like structures in the Nb$_2$O$_5$–WO$_3$ phase diagram.

Data supporting the work in this thesis are available from www.repository.cam.ac.uk.
1.3 References

Chapter 2

Electrochemistry and Energy Storage

“The essential feature of the intercalation reaction, and that which makes its study so exciting and profitable, is that the guest and host experience some degree, along a spectrum from subtle to extreme, of perturbation in their geometric, chemical, electronic, and optical properties.” – M. Stanley Whittingham, *Intercalation Chemistry*

2.1 Introduction

In Chapter 1, the motivation and increasing demand for energy storage was briefly summarised. Energy storage can take many forms: this work will focus on the different electrochemical mechanisms by which charge is stored, namely (i) redox reactions, (ii) capacitive charge, and (iii) so-called “pseudocapacitive” charge. A battery (Figure 2.1) is a complex device consisting of a liquid- or solid-phase ionically conducting electrolyte, an electronically conducting circuit and current collectors, and mixed ionic–electronic anode (negative electrode) and cathode (positive electrode). Adding to the complexity, the anode and cathode are each composite mixtures of redox-active material, conductive carbon, and polymeric binder.

![Diagram of a battery](Figure 2.1 – Lithium cobalt oxide (cathode) and graphite (anode) intercalation electrodes. Lithium ions are depicted as green spheres, CoO₆ shown as blue octahedra with red oxygen spheres, and carbon atoms in graphite displayed as bonded gold spheres. On discharge, electrons and lithium ions move from the anode toward the cathode.)
2.2 Redox Reactions

Broadly defined, a battery consists of a pair of coupled redox reactions, appropriately separated such that electrons flow through a load driven by a potential difference while ions flow through an electronically insulating electrolyte. One early example was the voltaic pile, described in 1800 by Alessandro Volta, which consisted of silver (or copper) and zinc disks, separated by a brine–soaked cloth. A convenient way to describe a battery is to break it into its component half–cell reactions. Oxidation occurs at the anode and reduction at the cathode; standard potentials (E^0) are referenced with respect to the standard hydrogen electrode (SHE, equation [2.2]).

Anode: $\text{Zn}^{2+} + 2 \text{e}^- \rightarrow \text{Zn}^0$; $E^0 = -0.76 \text{ V vs. SHE}$ \[2.1\]

Cathode: $2 \text{H}^+ + 2 \text{e}^- \rightarrow \text{H}_2$; $E^0 = 0 \text{ V vs. SHE}$ \[2.2\]

Cell Reaction: $\text{Zn}^0 + 2 \text{H}^+ \rightarrow \text{Zn}^{2+} + \text{H}_2$; $E^0_{\text{cell}} = +0.76 \text{ V}$ \[2.3\]

The Gibbs free energy of the cell reaction ($\Delta G^0_{\text{cell reaction}}$) is:

$$\Delta G^0_{\text{cell reaction}} = \Delta G^0_{\text{products}} - \Delta G^0_{\text{reactants}} = \Delta G^0_{\text{cathode}} - \Delta G^0_{\text{anode}} = -nF E^0_{\text{cell}}$$ \[2.4\]

where n is the number of electrons transferred and F is Faraday’s constant (C·mol$^{-1}$) and the half-reactions are written as standard reduction potentials. Thus a positive cell potential indicates a thermodynamically favourable reaction. The reverse reaction may be driven by an applied potential, which is the charging mechanism in a reversible battery. A more modern battery reaction is that of lithium cobalt oxide and graphite:

Anode: $\text{C}_6\text{graphite} + \text{Li}^+ + \text{e}^- \rightarrow \text{LiC}_6$; $E^0 = 0.1 \text{ V vs. Li}^+/\text{Li}$ \[2.5\]

Cathode: $2 \text{Li}_{0.5}\text{CoO}_2 + \text{Li}^+ + \text{e}^- \rightarrow 2 \text{LiCoO}_2$; $E^0 = 4.0 \text{ V vs. Li}^+/\text{Li}$ \[2.6\]

Cell Reaction: $2 \text{Li}_{0.5}\text{CoO}_2 + \text{LiC}_6 \leftrightarrow 2 \text{LiCoO}_2 + \text{C}_6\text{graphite}$; $E^0_{\text{cell}} = +3.9 \text{ V}$ \[2.7\]

where standard reduction half-cell reactions are given versus the reduction potential of Li$^+/\text{Li}$, which is -3.04 V vs. SHE. When the reaction is reversed on charge, there will be an associated overpotential, η, that depends on factors such as electronic resistance and kinetics.
In addition to the cell potential E^0_{cell}, another fundamental battery property is the theoretical capacity. For a given material, the theoretical gravimetric capacity, Q (C·g$^{-1}$), can be determined by the relationship:

$$Q = \frac{F \cdot n}{M}$$ \[2.8\]

where M is the mass per mole (g·mol$^{-1}$) of formula unit. This metric is more commonly presented in the battery literature in mA·h·g$^{-1}$ than C·g$^{-1}$; the two terms are related via 1 mA·h·g$^{-1}$ is equivalent to 3.6 C·g$^{-1}$. The energy (E) that a battery can supply upon discharge and the power (P) deliverable are related by the discharge time, (t), via the expressions:

$$E = Q \cdot V = \int_0^t I \cdot V \cdot dt$$ \[2.9\]

and

$$P = \frac{\partial E}{\partial t} = \frac{\partial Q}{\partial t} \cdot V = I \cdot V,$$ \[2.10\]

where V is the potential and I is the current. Though less directly quantifiable, volumetric energy density is an equally if not more important metric for most energy storage applications. As a first approximation, one could simply multiply the gravimetric density by the crystal density of the active material. This ignores the difference in density between a single crystal and a polycrystalline powder, which might be a factor of several for a μm-scale powder or well over an order-of-magnitude for a nm-scale powder. Further complications result from the presence of conductive carbon and polymeric binder that are added to the active material to form a composite electrode. For most materials, these additives are relatively standardised and their quantities fixed. Therefore, a reasonable approximation to volumetric energy density can be derived from the tap density of an active material. Tap density is a simple, standard, industrial method for calculating density while accounting for microstructure. It essentially involves tapping a powder under gravity until it is fully settled without applying external pressure. For a given material, differences in particle size and hierarchical structure will then yield different values of tap density.

Voltage, capacity, energy, and power, normalised by mass, volume, or surface area, are only a partial representation of the performance metrics relevant for energy storage materials. The various parameters also include coulometric efficiency, energy efficiency, and cycle life. Most
of these factors are reported for a given rate or current density. The C/x convention is widely adopted for rate where x is the number of hours required to charge or discharge a cell to some defined theoretical capacity (i.e. a rate of C/5 means the cell would fully discharge in five hours and complete one full discharge/charge cycle in ten hours). Cost and availability of materials as well as scalability of processing must also be taken into account if practical devices are to be realised. As a cautionary note, from the literature it could be difficult to select optimal battery materials even for a well-defined application. This complexity arises for several reasons: i) a range of electron storage/transfer chemistries spanning nearly every element in the first four rows of the periodic table and some elements beyond, ii) the statistical number of combinations of cathodes, anodes, electrolytes, solvents, separators, packaging, and cycling procedures, and iii) selective representation of favourable metrics at favourable conditions, which are not always clearly defined. In the field of high-rate energy storage, where cell operation is far from thermodynamic equilibrium, these factors only become more important.

For context, the theoretical capacity of a LiCoO₂ cathode is 273.9 mA·h·g⁻¹ based on the complete removal and re-intercalation of lithium in the structure but in practice only about half this value is obtained. Since lithium forms a complete layer within LiCoO₂ (Figure 2.1), it cannot be entirely removed without destabilising the structure so a practical cell cycles between approximately Li₀.₅CoO₂ and LiCoO₂ [equations 2.6–7]. On the anode side, the theoretical capacity of graphite is 371.9 mA·h·g⁻¹ and roughly this value is obtained in practice. However, it is not possible to use graphite anodes in high-rate devices due to the low potential of lithium intercalation into graphite and the inherent risk of forming dendrites on the surface, which create a short circuit between the electrodes and lead to rapid heating, cell death, and fires in batteries. As an alternative, Li₄Ti₅O₁₂ spinel, with a theoretical capacity of 175 mA·h·g⁻¹ based on the reaction to Li₇Ti₅O₁₂, represents the state-of-the-art in high-rate anode materials. The Li₄Ti₅O₁₂ reaction potential with lithium is 1.55 V, which means that it is safer and will avoid lithium dendrites but also that a full cell with a cathode material will have a lower overall voltage [equations 2.5–7].
2.2.1 Intercalation Electrodes

The first commercial lithium-ion battery technologies were based on intercalation electrodes; this mechanism still dominates the field. A set of intercalation electrodes (Figure 2.1, equations [2.5–2.7]), also known as a rocking-chair battery, involves topotactic reactions at the cathode and anode where the intercalant (e.g. Li⁺) moves in and out of the structure without significant atomic rearrangement of the host. Intercalation reactions can be solid-solution (i.e. continuous, second-order phase transitions) or two-phase (i.e. discontinuous, first-order phase transitions) in nature (Figure 2.2), or some complex intermediate, and this often changes as a function of particle size, current density, temperature, and/or doping.

![Figure 2.2 – Electrochemical voltage vs. composition/capacity discharge profiles for (a) the two-phase mechanism in LiₓTiO₂ and (b) the solid-solution mechanism in LiₓTiS₂. Figure modified with permission from refs. 4, 5.](image)

The fundamental difference between a solid-solution versus two-phase intercalation mechanism is the relative stability of intermediate phases. When intermediate compositions are unstable, as in rutile LiₓTiO₂ (0 < x < ca. 0.5) (Figure 2.2a), a stoichiometric quantity of a discrete phase is formed with composition ca. Li₀.₅TiO₂; the phase separation may occur via several mechanisms³. This results in a characteristic plateau in the electrochemical discharge curve. Conversely, if the intermediate phases are stable, or at least metastable on the timescale of the reaction, a continuous composition series can occur. This is observed in LiₓTiS₂ (Figure 2.2b) and produces a sloping electrochemical discharge curve. The origin of the different discharge curves is due to the effective reaction occurring at each state-of-charge. Following
the titanium dioxide/disulfide example, at 0.25 Li\(^+\) per transition metal (Li\(^+\)/TM), the respective reactions are:

\[
4 \text{TiO}_2 + 1 \text{Li}^+ + 1 \text{e}^- \rightarrow 2 \text{TiO}_2 + 2 \text{Li}_{0.5}\text{TiO}_2,
\]

[2.11]

and

\[
4 \text{TiS}_2 + 1 \text{Li}^+ + 1 \text{e}^- \rightarrow 4 \text{Li}_{0.25}\text{TiS}_2,
\]

[2.12]

with the next incremental reactions being:

\[
\text{TiO}_2 + \delta \text{Li}^+ + \delta \text{e}^- \rightarrow \delta/2 \text{TiO}_2 + \delta/2 \text{Li}_{0.5}\text{TiO}_2,
\]

[2.13]

and

\[
\text{Li}_{0.25}\text{TiS}_2 + \delta \text{Li}^+ + \delta \text{e}^- \rightarrow \text{Li}_{0.25+\delta}\text{TiS}_2.
\]

[2.14]

This behaviour can also be rationalised by consideration of the phase diagrams. \text{TiO}_2 (Figure 2.3) exhibits a two-phase region (at all particle sizes above a few nm) where Li\(_x\)\text{TiO}_2 is unstable from ca. 0.05 < \(x\) < 0.55. Li\(_x\)\text{TiS}_2 does not have any instability region up to \(x = 1\) and thus the room temperature phase diagram would not show any phases between the end members.

![Phase diagram of TiO\(_2\) as a function of lithium fraction.](image)

Figure 2.3 – Phase diagram of TiO\(_2\) as a function of lithium fraction. Figure modified with permission from ref. 4.

The subtle yet significant difference is that every reaction in the TiO\(_2\) case is between TiO\(_2\) and Li while each reaction in the TiS\(_2\) case, excluding the initial reaction, is between lithiated Li\(_x\)TiS\(_2\) and Li. By example, it is clear that reactions [2.11] and [2.13] are the same reaction.
and must occur at the same potential. On the other hand, reaction [2.12] is between TiS$_2$ and Li while reaction [2.14] is between a different reactant, Li$_{0.25}$TiS$_2$, and Li and will therefore have a different free energy.

2.2.2 Alloying and Conversion Electrodes

Redox reactions need not be topotactic; large structural rearrangements can occur and enable far greater charge storage capacity (Figure 2.4). Alloying, like intercalation, is an addition reaction. The most promising battery alloying reactions occur between lithium and silicon6,7 or sodium and phosphorus$^{8-10}$, which reach theoretical capacities of 3579 mA·h·g$^{-1}$ for Li$_{15}$Si$_4$ and 2596 mA·h·g$^{-1}$ for Na$_3$P. Of note is the alloying reaction between lithium and aluminium11, which occurs at 0.3 V vs. Li$^+$/Li, and is the reason that low voltage anodes must be deposited on copper, rather than aluminium, current collectors. The main drawback of alloying electrodes is the large volume expansion, often several hundred percent, which pulverises the electrode particles and results in poor reversibility associated with loss of electrical contact and electrolyte consumption. Many strategies are being developed to manage the volume expansion at the atomic, microstructural, and electrode level.

Conversion reactions represent a further battery mechanism. In a typical conversion reaction, a transition metal compound (MX) reacts with an alkali metal (A) to produce a lithium compound and metal nanoparticles:

$$MX + A^0 \rightarrow AX + M^0.$$ \[2.15\]

Like in alloying reactions, the capacities may be large but there are volume expansion issues. Additionally, conversion reactions involve the complex situation of forming two discrete products that must maintain sufficient contact to react reversibly. Alloying and conversion do not occur in the materials in this thesis within the explored voltage regions and thus further discussion falls outside the scope of this work.
2.2.3 Beyond Li-ion Batteries

Lithium is the lightest and most electropositive metal; these factors contribute to long cycle life, high charge density, and high discharge potential plateaus. As a result, lithium has been the major player for modern battery chemistries. Nevertheless, low natural abundance, geopolitical origins, and the rising cost of lithium are driving research into alternatives. Rock forming elements (Table 2.1) such as sodium, potassium, magnesium, calcium, and aluminum could, in principle, replace lithium in rechargeable batteries and all these elements are two to three orders-of-magnitude more abundant and therefore significantly cheaper and more environmentally friendly than lithium. These elements are heavier and will have lower potentials and correspondingly lower energy than lithium analogues; however, there is the possibility of multivalent charge transfer per atom (e.g. Mg, Ca, Al) and the advantages in abundance and cost may offset the decreased performance. The search for suitable anodes, cathodes, and electrolytes for these new chemistries is the subject of intensive research though it will not be discussed further here.
Table 2.1 – Properties of Lithium and Beyond Lithium Species for Rechargeable Batteries.

<table>
<thead>
<tr>
<th>Ion</th>
<th>Electrons per Atom</th>
<th>Ionic Radius (Å, octahedral)</th>
<th>Weight (g·mol⁻¹)</th>
<th>Standard Reduction Potential (V, vs. SHE)²</th>
<th>Natural Abundance (ppm)³,⁴</th>
</tr>
</thead>
<tbody>
<tr>
<td>Li⁺</td>
<td>1</td>
<td>0.76</td>
<td>6.94</td>
<td>-3.04</td>
<td>30</td>
</tr>
<tr>
<td>Na⁺</td>
<td>1</td>
<td>1.02</td>
<td>22.99</td>
<td>-2.71</td>
<td>29,000</td>
</tr>
<tr>
<td>K⁺</td>
<td>1</td>
<td>1.38</td>
<td>30.10</td>
<td>-2.92</td>
<td>16,000</td>
</tr>
<tr>
<td>Mg²⁺</td>
<td>2</td>
<td>0.72</td>
<td>24.31</td>
<td>-2.37</td>
<td>11,000</td>
</tr>
<tr>
<td>Ca²⁺</td>
<td>2</td>
<td>1.00</td>
<td>40.08</td>
<td>-2.76</td>
<td>14,000</td>
</tr>
<tr>
<td>Al³⁺</td>
<td>3</td>
<td>0.54</td>
<td>26.98</td>
<td>-1.71</td>
<td>50,000</td>
</tr>
</tbody>
</table>

2.3 Capacitance

Capacitors, unlike batteries, store charge electrostatically. A simple example is a pair of oppositely charged metallic plates separated by a dielectric, e.g. air. In practice, electrochemical capacitors rely on a related mechanism with an electrolyte solution between the electrodes, which leads to electric double-layer capacitance (EDLC). One figure-of-merit for capacitors is the capacitance (C) given by:

$$ C = \frac{Q}{V} = \frac{I}{\nu}, $$

where ν is the sweep rate (dV/dt). Ideal capacitance is independent of applied potential corresponding only to the electrode area (A), charge separation distance (d), dielectric constants (free space, ε₀, and inter-electrode material, εᵣ) and geometry. For a set of parallel plates:

$$ C = \frac{\varepsilon_0 \varepsilon_r A}{d}. $$

The corresponding energy of a capacitor can be defined in terms of a potential window and capacitance or charge:

$$ E = \frac{1}{2} C \cdot V^2 = \frac{1}{2} Q \cdot V. $$

For a capacitor, power is limited by the cell resistance (Rₛ) according to the formula:

$$ P_{max} = \frac{\nu^2}{4Rₛ}. $$
EDLC supercapacitors represent an important class of energy storage materials for high power applications. Double-layer capacitance arises when an electrode in solution is charged and ions from the electrolyte coordinate at the surface. Thus, capacitance is realised from electronic charge storage at the electrode surface as well as ionic charge storage at the electrode–electrolyte interface. In the Gouy–Chapman–Stern model, a concentrated region of ions, known as the Helmholtz layer, is present near the surface in series with an exponentially decreasing diffuse region of ions at further distances.15 The most studied materials for EDLC device design have been high-surface area porous “activated” carbon allotropes such as carbide-derived carbon16, coconut-derived carbon17, carbon nanotubes18, carbon onions19, carbon nanohorns20, graphitic carbon21, and others22. Porous carbons may contain multiple domains of pore sizes, spanning micropores (< 2 nm) to mesopores (2–50 nm) to macropores (> 50 nm), named according to the IUPAC definitions. Analogous to the increase in capacitance obtained from decreasing the distance between two oppositely charged parallel plates, capacitance increases as electrode–counter-ion distance decreases. Electrode design for EDLC supercapacitors was revamped when it was demonstrated that ions in solution can (partially) lose their solvation shell to coordinate more closely in micropores (< 2 nm).23 After this discovery, it became clear that the highest capacitance values are realised when the electrolyte ion size and pore size are matched.24,25 In the context of this work, it is important to realise that EDLC contributes to charge storage in all electrochemical energy storage materials. While it is the only mechanism in supercapacitors, it competes with redox charge storage in batteries. The relevance of EDLC to the total charge storage in a battery is primarily a function of surface area. In commercial carbon materials with surface areas of 1000–2000 m2·g−1 in organic electrolytes, capacitance values can reach 100 F·g−1,26 which translates to around 75 mA·h·g−1. Therefore, EDLC certainly must be considered in high surface area electrode materials (> \textit{ca.} 100 m2·g−1) while it is generally negligible in bulk electrode materials with low surface areas (< \textit{ca.} 10 m2·g−1).
2.4 Pseudocapacitance

The definition of pseudocapacitance was first applied to surface phenomena but has since been extended to intercalation events as well. Generally, pseudocapacitance is ascribed to a system where “the voltage is approximately linear with charge withdrawn or added” for galvanostatic conditions and for cyclic voltammetric conditions where “on subjecting the system to a linear change of voltage with time… a constant or almost constant capacitative charging current… arises”.27 Pseudocapacitance was described in 196228 and is currently categorised into three different mechanisms. Adsorption pseudocapacitance29 as observed in the underpotential deposition of H at Pt30 or Pb at Au31. Surface redox pseudocapacitance29 is best known in RuO₂32,33 and MnO₂34–37. A third type, intercalation pseudocapacitance, was previously described as transitional behaviour between capacitance and intercalation in battery materials.29 The definition has since been stated as the reversible intercalation of ions without a corresponding phase change and with apparent surface kinetics, rather than bulk linear diffusion kinetics.38,39 A graphic representation of the three mechanisms of pseudocapacitance, in modern definition, with examples, is shown (Figure 2.5).

![Proposed mechanisms of pseudocapacitance](image)

Figure 2.5 – Proposed mechanisms of pseudocapacitance. (a) Underpotential deposition of lead on a gold surface, (b) surface redox reactions involving ruthenium(II) oxide and aqueous protons, and (c) intercalation of lithium into niobium(V) oxide can all be described as types of pseudocapacitance. Figure reproduced with permission from ref. 38.

The change of potential with state-of-charge (SOC) in pseudocapacitor materials resembles a surface-controlled mechanism, taking the form of an adsorption/desorption isotherm.40
\[E \approx E^0 - \frac{RT}{nF} \cdot \ln \left(\frac{x}{1-x} \right). \]

[2.20]

Pseudocapacitance-like properties can emerge in nanoscaled materials that exhibit different characteristics in the bulk. This phenomenon, exhibited in materials such as LiCoO_2 \(^{41}\) and V_2O_5 \(^{42}\) has been termed “extrinsic” pseudocapacitance. \(^{43}\) In contrast, intrinsic pseudocapacitors possess the aforementioned properties over a range of particle sizes and morphologies. \(^{38}\) A recent review \(^{38}\) cited RuO_2·nH_2O, MnO_2, and Nb_2O_5 as intrinsic pseudocapacitors; however, it should be kept in mind that the former two oxides store charge in surface or near-surface reactions. This means that although they maintain pseudocapacitive electrochemical features in bulk electrodes, their gravimetric capacity suffers due to the inaccessibility of interior metal sites.

Modern applications of “pseudocapacitance”, especially the newly coined “intercalation pseudocapacitance” \(^{44-46}\) appear to be overused and lack a meaningful physical basis. The main issue concerns the deconvolution of charge contributions. The procedure, put forth by Trasatti\(^{47}\), to determine “inner” and “outer” surfaces, proposed to separate diffusion-limited charge from surface capacitive charge, respectively,

\[Q_{\text{total}} = Q_{\text{inner surface}} + Q_{\text{outer surface}}. \]

[2.21]

The total charge would be observed at infinitely slow potential sweeps and the outer surface charge from infinitely fast potential sweeps. Assuming fast electron transfer, in a cyclic voltammogram (cf. Section 2.5) the current response of a diffusion–controlled reaction scales with the square root of scan rate \((\nu^{1/2})\) while surface-controlled capacitive processes scale linearly with \(\nu\) (equation [2.16]). \(^{2,15}\) Thus, the outer surface charge would be independent of \(\nu\) (the charge as \(\nu\) approaches \(\infty\)) and the total charge would be the charge as \(\nu\) approaches 0. Then, the total current at a given potential can be divided into two contributions: \(^{39,47,48}\)

\[i (V) = k_1 \cdot \nu + k_2 \cdot \nu^{1/2}, \]

[2.22]

where \(k_1\) and \(k_2\) are the relative contributions of surface-like or diffusion-like processes, respectively. Dividing both sides by \(\nu^{1/2}\) gives the equation:

\[\frac{i(V)}{\nu^{1/2}} = k_1 \cdot \nu^{1/2} + k_2, \]

[2.23]
which, from a plot of \(i/v^{1/2} \) vs. \(v^{1/2} \) yields a slope of \(k_1 \) and a y-intercept of \(k_2 \). In the past, Vogt\(^{49}\) showed that this linear extrapolation was neither mathematically possible nor experimentally observed. Much more recently, the group of Saveánt\(^{50}\) also showed this fitting procedure to be an impossible oversimplification. This problem is exemplified for a widely-cited example on Nb\(_2\)O\(_5\) (Figure 2.6).\(^{46}\)

Figure 2.6 – \(Q \) vs. \(v^{-1/2} \) for a thin-film of T-Nb\(_2\)O\(_5\). Figure reproduced with permission from ref. 46.

In order to apply the Trasatti analysis, this curve must be linear. In practice, this means a linear section must be selected from a curve which is clearly non-linear\(^{46}\) or that only a selected linear region of \(v \) is measured/reported\(^{51}\). The choice of capacitive contribution is arbitrary. From the dashed line in Figure 2.6 with y-intercept of ca. 0.77, the electrode may be said to be 77% capacitive. One could just as easily draw a line that intercepts the y-axis (as \(v \) approaches \(\infty \)) anywhere from 0 to 1. Certainly there are other factors such as ohmic contributions at higher scan rate that make it impossible to measure a true capacity as \(v \) approaches \(\infty \) but this only highlights the issue. Another extension of this analysis is to calculate the exponential \(b \)-factor that relates current to sweep rate:

\[
i = a v^b
\]
[2.24]
with the premise that $b = 1$ for capacitive contributions and $b = 1/2$ for semi-infinite linear diffusion. Intuitively, it does not seem reasonable that the semi-infinite linear diffusion defined by $I \propto v^{1/2}$ in the Cottrell or Randles–Sevcik equations could be trivially extrapolated from (a) a species diffusing in a concentrated supporting electrolyte toward a planar surface2,15 to (b) a charged species without supporting electrolyte drifting toward a heterogeneous porous electrode. Notions that charge stored quickly is capacitive and charge stored slowly is diffusive44 also seem to be oversimplifications. In summary, this type of analysis enables calculation of a host of metrics for capacitive charge storage; however, it is not clear that these metrics have a physical basis or practical utility. In the absence of bulk kinetics, pseudocapacitance can be a useful description to underpin that the phenomenon obeys the thermodynamic relationship of (interacting) adsorbates on a surface, i.e. equation [2.20].

2.5 Electrochemical Techniques

2.5.1 Chronoamperometry/Cyclic Voltammetry

Chronoamperometric techniques involve the application of a potential and the observation of the evolution of current over time. Cyclic voltammetry (CV) is perhaps the most common application of chronoamperometry as it facilitates the identification of thermodynamic and kinetic properties from peak potentials and peak currents.2 In a cyclic voltammetric experiment (Figure 2.7), the potential is ramped at a sweep rate (v), which is usually constant. After a certain period of time (λ) – corresponding to a desired potential window, λv – the sign of v is reversed.

![Cyclic Voltammetry](image)

Figure 2.7 – Cyclic Voltammetry. (a) The potential as a function of time and (b) current response as a function of potential for a generic reversible one-electron reaction. Figure reproduced from ref. 15.
Peak height analysis from CV with varied sweep rates can be used to deconvolute concurrent electrochemical processes only under strictly controlled conditions that are not generally met in a composite device such as a battery.2 The curve of a battery material undergoing two-phase reaction contains sharp peaks at the potential of the redox couple in the system but peak separation can be large due to overpotentials and sluggish kinetics. A supercapacitor exhibits a nearly rectangular wave while pseudocapacitors are also characterised by the presence of rectangular waves or broad peaks with small peak-to-peak separation.38

2.5.2 Chronopotentiometry/Galvanostatic Methods

Chronopotentiometry refers to the application of a current, usually constant (\textit{i.e.} galvanostatic), and the observation of potential as a function of time. In battery cycling, three very simple chronopotentiometric techniques are commonly applied (Figure 2.8).15 Constant-current chronopotentiometry corresponds to a single charge or discharge of an EES device. Current reversal chronopotentiometry is equivalent to one full cycle. Cyclic chronopotentiometry, appropriately named, is a procedure to cycle through several charge–discharge cycles. By convention, positive current corresponds to charge (increase in potential difference) and negative current to discharge (decrease in potential difference). It is common in the battery literature to report the derivative of charge with respect to potential as a function of potential. This derivative plot, dQ/dV vs. V, is related to a cyclic voltammogram, i vs. V, normalised by the sweep rate, ν:

\[
\frac{dq}{dV} \text{ vs. } V \leftrightarrow \frac{i}{\nu} \text{ vs. } V. \tag{2.25}
\]

In potential vs. capacity plots, two-phase battery materials exhibit a plateau under chronopotentiometric cycling. Most of the charge transfer occurs at a fixed voltage corresponding to a given redox reaction potential. In contrast, supercapacitors exhibit a linearly sloping profile according to [2.16].
2.5.3 Effects of Charge/Discharge Conditions

For an electrode in contact with a solution, there will always be a capacitive contribution, C_d, to total charge storage from charging of the electric double-layer described earlier in reference to supercapacitors. If the electrode–electrolyte interfacial area is small, the charge storage effect of C_d can be neglected; however, the charging current associated with this double-layer may be significant. This configuration can be described as an RC circuit where an electrode with internal resistance (R_s) is in series with double-layer capacitance (C_d). In this circuit, the total potential (E) is the sum of the potential difference across the resistor (E_R) and capacitor, (E_C) which can be expressed as follows: \(^\text{15}\)

$$E = E_R + E_C = i \cdot R_s + \frac{q}{C_d}$$

[2.26]
In a potential sweep experiment – cyclic voltammetry is one example – the linearly increasing potential translates to a current that increases with time toward a steady-state value (i_s),

$$i_s = v \cdot C_d,$$ \hspace{1cm} [2.27]

where v represents the potential ramp rate. During the transient period before i_s is attained, the current as a function of time (t) is given by:\[1.5]

$$i = v \cdot C_d \cdot \left[1 - e^{-\frac{t}{R_s C_d}}\right]$$ \hspace{1cm} [2.28]

Under galvanostatic conditions, the current is fixed and thus the potential takes the form:\[1.5]

$$E = i \cdot \left(R_s + \frac{t}{C_d}\right)$$ \hspace{1cm} [2.29]

These two charge/discharge methodologies are described pictorially (Figure 2.9) where it can be observed that galvanostatic techniques are associated with an instantaneous ohmic jump while voltammetric techniques incorporate the ohmic loss over time.

Figure 2.9 – Effect of Charge/Discharge Conditions. When (a) a ramped potential is applied to an electrode as a function of time, (b) the current associated with charging the double-layer increases exponentially until reaching a steady-state value. (c) An ohmic jump is observed followed by a linearly changing potential when (d) a constant-current is applied to an electrode. Figure modified with permission from ref. 15.
The difference in electrochemical methodology becomes more significant under high-rate cycling conditions because the ohmic jump scales linearly with current. Consider the situation where the current and cell resistance are such that the ohmic jump is greater than the potential window for a given redox process. In this situation, it is possible to observe no charge transfer under galvanostatic charging while passing charge under voltammetric charging. If the time constant, RC, is large, this effect becomes more pronounced. Thus, while cyclic voltammetric experiments are informational, they are not appropriate for all applications and yield electrochemical metrics that should be extrapolated with care toward charge storage devices.

2.5.4 Electrochemical Titration Techniques

The determination of a wealth of kinetic and thermodynamic quantities, as well as phase relationships, is possible through the application of the electrochemical galvanostatic or potentiostatic intermittent titration technique (GITT/PITT).11,52 The general principle of these methods is to apply a transient current pulse or potential step and measure the response potential or current, respectively, as a function of time as the system relaxes from its transient state toward its thermodynamic state. The relaxation process is a probe of ionic diffusion as the chemical potential in the system equilibrates. In this work, the GITT experiment was favoured as it enables the separation of the electronic ohmic drop from the total response (Figure 2.10).

The chemical diffusion (\bar{D}_i) of the mobile species (i) can be extracted from GITT according to:

$$\bar{D}_i = \frac{4}{\pi \times \tau} \cdot L^2 \cdot \left(\frac{\Delta E_i}{\Delta E_{t1}}\right)^2,$$

where τ is the duration of the current pulse, L is the diffusion length, ΔE_s is the change in steady-state potential, and ΔE_t is the change in transient potential after removing the ohmic loss (Figure 2.10).52 The main uncertainty in [2.30] is the value of L, which has been interpreted differently by various authors, leading to significantly different values of \bar{D}_i even for the same material.53,54 One complication is that a battery electrode is a heterogeneous system. First, it is a composite of active redox material, porous carbon, and polymeric binder. Within this composite, there will be a distribution of particle sizes unless single crystals55 or well-defined particles are employed but even then the diffusion varies with lattice direction. Furthermore, different regimes of diffusion must exist as there are solid/liquid interfaces and a porous electrode structure. In the literature, the interpretation of L has varied from particle size to
Figure 2.10 – Galvanostatic intermittent titration technique (GITT). (a) The application of a current pulse at t_0 for a period τ elicits (b) an ohmic (IR) drop followed by a smoothly evolving potential E_t. After time $(t_0 + \tau)$, the cell voltage is allowed to relax until equilibrium has been reached or, in practice, until dE/dt is below some threshold value. After the long relaxation period, the new potential E_1 represents the steady-state change of ΔE_s from E_0. By convention, a positive current corresponds to a charging step, as shown here. Figure modified with permission from ref. 52.

electrode thickness53,54. Nevertheless, in an electrode that does not undergo severe pulverization (e.g. an intercalation electrode), L is a fixed quantity throughout the experiment. Therefore, in this work I propose an extracted proxy for lithium diffusion, $D_{Li}L^{-2}$, which removes the uncertainty in L and enables self-consistent analysis of a single electrode and electrodes prepared under identical conditions. The caveat regarding a distribution of particle sizes and different types of diffusion remains. Thus, while a physically meaningful diffusion coefficient may not be extracted, a relative measure of diffusion is readily obtained that is internally semi-quantitative as an average value.
2.6 References

(22) François Béguin; Frąckowiak, E. Carbons for Electrochemical Energy Storage and Conversion Systems.

Chapter 3

Characterisation and Calculation Methods

“The nuclear sensors provided by nature are extremely well localized, with a diameter of a few femtometers, and can report on local affairs in their immediate vicinity. It is thus possible to explore molecules and matter in great detail.” – Richard R. Ernst, Nobel Lecture: Nuclear Magnetic Resonance Fourier Transform Spectroscopy

3.1 Overview

Lithium-ion batteries are multicomponent devices that cover length-scales from Ångstroms to millimetres. Key to understanding the underlying chemistry is the combined application of experiment and theory to investigate the various sources and scales (e.g. long-range or short-range/local) of information available. The electrode materials explored herein are by no means model systems; however, they are of significant scientific and technological interest so an approach was taken to understand their behaviour through the application of complementary characterisation methods. In addition to the electrochemical methods introduced in Chapter 2, this work involved insight from solid-state nuclear magnetic resonance spectroscopy, X-ray absorption spectroscopy, X-ray and neutron diffraction, analytical methods to study particle size and morphology, the bond valence sum approach, and computational electronic structure techniques.

One of the recent developments in battery research is the growth of in situ and operando methods of characterisation. Ex situ investigations involve cycling a cell, stopping it at a certain state of charge, extracting the electrode, and performing a measurement. During in situ measurements, the data collection is performed without disassembling the cell—with the components in their appropriate positions within the battery—hence, the connection to the Latin expression in situ meaning “in position”. Note that in some in situ experiments, where the measurement is performed on the intact cell but after charging to a specific state of charge, reactions (such as self-discharge mechanisms and relaxation processes) can continue to occur after the electrochemistry stops. On the other hand, for operando measurements, where data collection is simultaneous with electrochemical cycling, there is generally less time for side-reactions to occur. Both in situ and operando measurements, where the latter may be considered a special case of in situ, allow insights into fundamental chemical and structural
properties under working conditions including dynamics and metastable/intermediate phases to be obtained. Since reaction pathways in a battery may be influenced by kinetics, the analysis of materials derived ex situ from cycled batteries is more representative of the thermodynamic state but may not capture metastable processes.

Both ex situ and operando characterisation have been employed in this work. There are pros and cons for each strategy. For time-sensitive processes and metastable intermediates, operando may be the only option. Additionally, operando methods are generally much more efficient, gathering a full dataset from a single battery whereas detailed ex situ studies require perhaps ten or more electrodes to be made and cycled then disassembled, washed, dried, and otherwise prepared in a glovebox and loaded for measurement. With operando data, one has less concern about factors such as degradation over time, exposure to air, or self-discharge. On the other hand, ex situ data is typically higher resolution – this is particularly true for nuclear magnetic resonance spectroscopy where in situ/operando cells cannot yet be coupled with high-resolution magic angle spinning techniques. Ex situ cell preparation is also more flexible in that electrodes can be prepared in advance of the measurement. For low rate battery materials, ex situ data collection can be much faster, particularly where instrument time is limited such as at synchrotron and neutron facilities. With nearly all in situ techniques, special cell designs are required and one has to ensure that the reactions occurring in the in situ cell are reflective of the processes occurring in the usual device since pressure and conductivity may differ. This issue extends further to devices with windows where care must be taken to check that the reaction occurring in the window, and thus being measured, is the same as the rest of the cell; otherwise the electrochemistry and the in situ data will not reflect the same situation.

3.2 Solid-state Nuclear Magnetic Resonance Spectroscopy

3.2.1 Introduction

Nuclear magnetic resonance (NMR) spectroscopy probes local chemical environments via the resonant frequencies of spin-active nuclei in a static magnetic field, which are sensitive to interactions with other nuclei, the local electron density, and the electric field gradient at the nucleus.1-8 The field of NMR is extremely wide with applications in all areas of science; the following sections will focus specifically on the interactions most relevant to the solid inorganic compounds in this thesis. The fundamental NMR quantity of a given nucleus is its
Larmor frequency \((\nu_L) \), which, from the Zeeman interaction, relates the gyromagnetic ratio \((\gamma)\) to the static magnetic field strength \((B_0)\) for a bare nucleus

\[
\nu_L = \frac{\gamma B_0}{2\pi}.
\]

[3.1]

In addition to the Zeeman interaction, there are a number of NMR interactions that are described in the following sections. In general, most NMR interactions are anisotropic with respect to the applied magnetic field. In a liquid, rapid molecular reorientation averages such interactions to their isotropic value but this is not the case in solid samples. Magic angle spinning (MAS) is used extensively in solid-state NMR to (partially) average certain interactions. MAS involves rotating the sample, typically from a few kHz to tens of kHz, at an angle of 54.74° relative to \(B_0 \). This angle corresponds to the body diagonal of a cube, which enables averaging of some NMR interactions \((\text{vide infra})\). The practical effects of MAS and \(B_0 \) will be discussed in the context of these interactions.

3.2.2 Chemical Shielding Interaction

The chemical shielding \((\sigma)\) interaction describes the magnetic shielding of the nucleus by the surrounding electron density. Physically, chemical shielding describes the process where, in an applied magnetic field, an induced field is set up via microscopic currents in the electrons surrounding the nuclei (atoms). Chemical shielding is an absolute quantity that differentiates the frequency observed for a specific chemical environment from the Larmor frequency. In parts per million (ppm), the chemical shift is given by:

\[
\delta = \frac{\nu_{\text{sample}} - \nu_{\text{reference}}}{\nu_{\text{reference}}} \times 10^6,
\]

[3.2]

where \(\nu_{\text{sample}} \) is the observed resonance frequency and \(\nu_{\text{reference}} \) is defined as the Larmor frequency. In general, the chemical shift is anisotropic with respect to the applied magnetic field and can be described by the second-rank chemical shift anisotropy (CSA) tensor. In the principal axis system, the CSA tensor contains diagonal elements \(\delta_{XX}, \delta_{YY}, \) and \(\delta_{ZZ}, \) which are described by NMR measurements of an isotropic chemical shift \((\delta_{iso})\):

\[
\delta_{iso} = \frac{\delta_{XX} + \delta_{YY} + \delta_{ZZ}}{3},
\]

[3.3]

where \(\delta_{ZZ} \geq \delta_{YY} \geq \delta_{XX} \). The magnitude of the chemical shift anisotropy \((\Delta\sigma)\) is given by:
\[\Delta \sigma = \delta_{ZZ} - \frac{1}{2} (\delta_{YY} + \delta_{XX}) , \]

which is sometimes expressed as the reduced anisotropy (\(\delta_{\text{CSA}} \)):

\[\delta_{\text{CSA}} = \delta_{ZZ} - \delta_{\text{iso}} . \]

The chemical shift anisotropy values are related according to:

\[\Delta \sigma = \frac{3}{2} \delta_{\text{CSA}} . \]

A dimensionless asymmetry parameter (\(\eta \)) is defined by:

\[\eta = \frac{\delta_{YY} - \delta_{XX}}{\delta_{\text{CSA}}} . \]

The chemical shift anisotropy arises because the electron distribution around a nucleus is nonspherical. This is averaged by rapid molecular motion in solution but persists in solids. Under sufficiently rapid MAS, the CSA can be eliminated. At intermediate MAS rates, spinning sidebands will appear, the intensities of which trace out the static CSA powder lineshape. The CSA of a given system is constant in ppm and the magnitude of the interaction therefore scales linearly with magnetic field. Thus measurement at a higher magnetic field strength will not improve resolution from CSA broadening.

3.2.3 Quadrupolar Interaction

Nearly all the nuclei in the bulk of the materials studied in this thesis, namely \(^{6/7}\text{Li} \), \(^{47/49}\text{Ti} \), \(^{93}\text{Nb} \), have a nuclear spin \(I > \frac{1}{2} \) and thus are quadrupolar. Whilst \(^{183}\text{W} \) is spin\(-\frac{1}{2} \), its low natural abundance and extremely low Larmor frequency limit its usefulness. In quadrupolar nuclei with non-zero electric field gradient at the nucleus, the energy levels, which were split by the Zeeman interaction, are further split by first- and second-order quadrupolar coupling (Figure 3.1). The interaction strength of quadrupolar coupling, the nuclear quadrupolar coupling constant (\(\chi \) or \(C_\text{Q} \)) depends on the nuclear electric quadrupole moment (eQ) and the largest principal component of the traceless electric field gradient tensor (\(V_{ZZ} \)) at the nucleus:

\[\chi = C_\text{Q} = \frac{V_{ZZ} \cdot \text{eQ}}{h} \]

where \(h \) is Planck’s constant, with an asymmetry parameter:
where V_{YY} and V_{XX} are the remaining principal components of the electric field gradient tensor with $|V_{ZZ}| \geq |V_{YY}| \geq |V_{XX}|$.

Figure 3.1 – Energy level splitting of an $I = 5/2$ nucleus due to coupling between the nuclear electric quadruple moment and the electric field gradient at the nucleus. Reproduced with permission from ref. 3.

In terms of experimental NMR spectra, quadrupolar coupling has many implications. Since the nuclear electric quadrupole moment is a constant nuclear property, variations in χ and η correspond directly to variations in the electric field gradient due to the local structural environment and thus quadrupole coupling provides detailed structural information. For example, χ for a perfect octahedral site with cubic symmetry is zero and η for a site with axial symmetry is zero; non-zero values indicate deviations in local symmetry. On the other hand, the quadrupolar interaction is anisotropic and can be hundreds of kHz to hundreds of MHz in magnitude and can severely broaden a spectrum. First-order quadrupolar effects neither broaden nor shift the central ($-\frac{1}{2}$ to $+\frac{1}{2}$) transition; however, second-order effects are often
sufficiently strong to lead to a second-order quadrupolar lineshape and a \mathbf{B}_0-dependent, MAS-independent quadrupolar contribution $(\nu^{Q}_{+\frac{1}{2},-\frac{1}{2}})$ to the observed central transition shift given by:

$$\nu^{Q}_{+\frac{1}{2},-\frac{1}{2}} = -\left(\frac{X}{4I(2I-1)}\right)^2 \frac{1}{10v_L} (3 - 4I(I + 1))(3 + \eta^2).$$

MAS can typically reduce but not fully remove the effects of quadrupolar broadening. Second-order quadrupolar broadening depends on second- and fourth-order Legendre polynomials, which cannot be simultaneously averaged to zero by sample rotation at any single angle. Therefore, even an infinite MAS rate would only partially remove the second-order quadrupolar broadening. As a result of incomplete powder averaging, quadrupolar NMR spectra typically contain large spinning sideband manifolds from first-order satellite transitions $(m$ to $m+1)$ with spin angular momentum $m \neq -\frac{1}{2}$. In the case of very large quadrupolar interactions, it can be more useful to record a static “wideline” spectrum than a fast MAS spectrum that does not sufficiently separate the sidebands from the central transition. Unlike the CSA, χ is a constant in frequency and the severity of central transition broadening can be reduced by performing the same measurement at higher \mathbf{B}_0.

Unlike the vast majority of quadrupolar nuclei, 6Li has an integer spin ($I = 1$) and therefore has no central transition. Fortunately, the nuclear electric quadrupole moment of 6Li is sufficiently small that the splitting of the two satellite transitions is usually not observed. 7Li ($I = 3/2$), 17O ($I = 5/2$), 47Ti ($I = 5/2$), 49Ti ($I = 7/2$), and 93Nb ($I = 9/2$) are all non-integer nuclei but with considerably different nuclear electric quadrupole moments. As a result, in general, 7Li can be treated as a high-resolution, approximately $I = \frac{1}{2}$ case; 17O is substantially broadened but individual sites can be resolved in favourable circumstances; and 47Ti and 93Nb are broadened to the extent that sites are typically not well-resolved and wideline techniques may be required.

3.2.4 Studying Dynamics with NMR Spectroscopy

In addition to structural information, NMR is capable of measuring (structurally-resolved) dynamics across many timescales that match the magnitude of the interactions present. Therefore, the central transition linewidth, satellite transition linewidth, spin–lattice (T_1) relaxation, and spin–spin (T_2) relaxation are all interaction-dependent, sensitive probes of ionic motion on a range of different timescales. By measuring the kinetics as a function of temperature, it is possible to extract activation energies for different motional processes.
exhibiting Arrhenius behaviour. Kinetics information is particularly valuable in the evaluation of fast ionic conductors as in high-rate battery materials. This section focuses on NMR relaxometry; Section 3.2.5 describes two-dimensional exchange spectroscopy.

Atomic motion influences nuclear relaxation due to fluctuations in the local field around the nucleus. The specific relaxation mechanisms most relevant for this work include a fluctuating dipolar magnetic field and/or quadrupolar electric field. A quantitative framework for the analysis of spin–lattice relaxation has been developed by Bloembergen, Purcell, and Pound in the frequently employed BPP model assuming uncorrelated 3D diffusion, though adaptations for correlation and dimensionality have been introduced. This theory has several consequences for experimental NMR relaxometry. First, the relaxation time is related to a correlation time (τ_c), which is approximately the time between successive atomic jumps. Abragam derived relationships between T_1 and τ_c for different relaxation mechanisms. Dipolar relaxation follows:

$$\left(\frac{1}{T_1}\right)_D = \frac{2}{5} (\gamma_I \gamma_J)^2 h^2 I (I + 1) r_{ij}^{-6} \left[\frac{\tau_c}{1 + v^2 \tau_c} + \frac{4\tau_c}{1 + 4v^2 \tau_c} \right],$$

[3.11]

where γ_I is the gyromagnetic ratio of the relaxing species, γ_J is the gyromagnetic ratio of the paired spin, and r_{ij} is the distance between the two spins. N.b. $I = J$ in the case of homonuclear coupling and $I \neq J$ in the case of heteronuclear coupling. Quadrupolar relaxation follows:

$$\left(\frac{1}{T_1}\right)_{Q} = \frac{3}{200} \left(\frac{e^2 q Q}{h} \right)^2 \left(1 + \frac{\eta Q}{2} \right) \left(\frac{2I+3}{I^2(2I-1)} \right) \left[\frac{\tau_c^2}{1 + v^2 \tau_c^2} + \frac{4\tau_c^2}{1 + 4v^2 \tau_c^2} \right].$$

[3.12]

Thus, measurement of relaxation time as a function of temperature (Figure 3.2a) can be converted into an analogous plot of correlation times (Figure 3.2b) as shown in this reference example on Li$_{0.7}$TiS$_2$. From the BPP theory, and in the experimental figure, a T_1 minimum is observed. The T_1 minimum occurs where:

$$v_h \tau_c \approx 1.$$
Figure 3.2 – (a) Relaxation rates and (b) correlation times as a function of temperature for the model system Li$_{0.7}$TiS$_2$. Modified with permission from ref. 10,11.

In order to measure T_1 values, a saturation recovery pulse sequence was applied (Figure 3.3) where a train of closely-spaced 90° pulses is applied to eliminate any net magnetisation, the longitudinal magnetisation is allowed to recover during a variable delay time (t_d), then a 90° pulse is applied and the recovered signal is measured. As t_d is increased, a magnetisation build-up curve can be plotted and fit to the expression:

$$M_z(t_d) = M_0 (1 - e^{-t_d/T_1}).$$ \[3.14\]

Figure 3.3 – Saturation recovery pulse sequence for the determination of spin–lattice (T_1) relaxation times. A longitudinal magnetisation-destroying 90° pulse train is followed by a variable delay period before the recovered magnetisation is recorded.
In practice, [3.11] and [3.12] can be used to fit values of τ_c while model-free determination is possible when a T_1 minimum is observed. Temperature-dependent correlation times follow an Arrhenius equation10:

$$\tau_c = \tau_{c,0} e^{-E_a/k_BT},$$

[3.15]

where $\tau_{c,0}$ is the attempt frequency, E_a is the activation energy, k_B is the Boltzmann constant, and T is the absolute temperature. In addition to an activation energy and attempt frequency, the correlation time can be used to determine the self-diffusion coefficient (D) via the Einstein–Smoluchowski relation for uncorrelated diffusion:

$$D = \frac{r^2}{6\tau_c},$$

[3.16]

where r is the jump distance. In the case of ionic motion, the conductivity (σ^{dc}) can be extracted from the Nernst–Einstein relation:

$$D = H_R \frac{k_BT}{Nq^2} \sigma^{dc},$$

[3.17]

where H_R is the Haven ratio and N and q are number density and charge, respectively, of the charge carrier.

When performing variable temperature (VT) NMR measurements, the signal intensity will vary due to changes in the Boltzmann population of ground state spins. In the example of a two-state energy system (spin−$\frac{1}{2}$), the number of spins in the ground state (I_α) at thermal equilibrium will vary with temperature according to:

$$I_\alpha = 1 - e^{-\hbar v/(k_BT)}$$

[3.18]

where \hbar is the Planck constant, v is the frequency, k_B is the Boltzmann constant, and T is absolute temperature. Consequently, to good approximation, the NMR signal varies linearly as a function of absolute temperature in VT measurements.

3.2.5 Exchange Spectroscopy

Whether one or two resonances are observed from two magnetically inequivalent nuclei depends on their separation in frequency and their exchange frequency. In the fast exchange
regime, when the exchange frequency between nuclei is much greater than their frequency separation, a single resonance with a weighted-average shift is observed. Under slow or no exchange, one would expect to see two distinct resonances. At intermediate exchange rates, the lineshape becomes more complicated. In the case of quadrupolar nuclei, the situation is further complicated by the evolution of the quadrupolar powder lineshape. In the event of sites in the slow exchange regime, structurally-resolved two-dimensional exchange can be measured via NMR exchange spectroscopy (EXSY). This extends the NMR timescale from separation in frequency space (μs–ms) to exchange on the order of ms–s.

In EXSY, the spins are excited into the transverse plane, allowed to evolve for a period t_1, stored along z whilst interacting or exchanging with other spins for a period t_{mixing}, returned to the transverse plane and recorded (Figure 3.4). Under MAS, rotor-synchronised EXSY is performed such that t_{mixing} is an integral number of rotor periods, which facilitates the phasing of two-dimensional data. During t_1, the spins precess at a frequency v_1. If the spins do not exchange, their precession frequency during the t_2 period, v_2, will be equivalent to v_1. If, on the other hand, exchange occurs, v_2 will differ from v_1, which manifests as off-diagonal intensity in the two-dimensional spectrum. In principle, spin can be transferred via dipolar coupling or chemical exchange. The two mechanisms can be differentiated by examining the cross-peak intensity as a function of temperature, magnetic field strength, or, in the case of lithium, isotope; chemical exchange is strongly temperature-dependent while dipolar coupling is not, chemical exchange does not depend on magnetic field strength while the dipolar interaction does, and ^6Li exhibits much weaker dipolar coupling than ^7Li.

![Figure 3.4 – Exchange spectroscopy (EXSY) pulse sequence. Magnetisation is excited to the transverse plane to evolve for a period t_1, stored along z during an interaction period t_{mixing}, and returned to the transverse plane for measurement.](image-url)
3.3 X-ray Absorption Spectroscopy

3.3.1 Absorption Theory

Absorption is one of several events that can occur when an X-ray is incident on a sample. X-ray absorption spectroscopy (XAS) takes advantage of this phenomenon to reveal details of local atomic and electronic structure. In its most basic form, XAS involves subjecting a sample to an X-ray beam and measuring the absorption coefficient (μ) as a function of photon energy (Figure 3.5). In transmission geometry, the absorption coefficient is extracted via the Beer–Lambert Law:

$$\mu(E) = \ln \left(\frac{I_0}{I_T} \right),$$ \hspace{1cm} [3.19]

where I_0 is the incident intensity and I_T is the transmitted intensity. In fluorescence geometry, absorption is calculated with the form

$$\mu(E) = \left(\frac{I_F}{I_0} \right),$$ \hspace{1cm} [3.20]

where I_F is the fluoresced intensity. Briefly, transmission geometry is generally simpler and used when possible. When transmission is not possible, namely when not enough photons interact with the element of interest or pass through the sample, fluorescence geometry may be used. Regardless of how it is measured, the absorption spectra (Figure 3.5) contains the same data: (a) a decreasing background, (b) a jump in absorption at the absorption edge, (c) oscillations at energies above the absorption edge, and, in some cases, (d) a pre-edge feature containing peaks at energies just below the absorption edge. The slowly decreasing background comes from the fact that the absorption probability decreases as energy increases and is not of practical utility here; it is removed before analysis. The region around the edge and above the edge contain rich structural information and are termed the X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) regions, respectively.
3.3.2 X-ray Absorption Near Edge Structure

An absorption edge corresponds to a specific electronic transition within an atom whereby an electron is excited from an inner shell to an unoccupied outer shell, leaving a core-hole. K-edges are $1s$ to np, L_I-edges are $2s$ to np, L_II-edges are $2p_{1/2}$ to nd, and L_III-edges are $2p_{3/2}$ to nd where n is the first empty shell. The absorption edge energy, like the Larmor frequency in NMR, is a singular quantity for a given transition (nuclide in NMR). It is the variation in edge energy (analogous to NMR shifts) that yields chemical information. In XANES, the edge energy is sensitive to the oxidation state of the absorbing atom. As a species is reduced, the nucleus is better shielded and the effective nuclear charge (Z_{eff}) decreases. As Z_{eff} decreases, it becomes easier to excite an inner shell electron and the absorption energy decreases. This relationship is used extensively to characterise the oxidation state of species in redox reactions such as battery cycling.

In transition metals in non-centrosymmetric environments, symmetry-forbidden $p-d$ mixing can occur. As these empty d-orbitals are lower in energy than the empty p-orbitals, the transition will occur at lower energy and manifest as a pre-edge feature. The pre-edge is therefore sensitive to local geometry and has been widely used e.g. to identify the presence of tetrahedral transition metal sites.13–15 Additionally, quadrupole transitions at the K-edge of
transition metal compounds correspond to 1s to nd transitions and are lower in energy than the
dipole transitions. According to the dipolar selection rule, transitions must obey Δl ± 1.
Quadrupole transitions with Δl ± 2 contribute intensity at the K-edge according to

\[\frac{\mu_Q}{\mu_D} \approx \left(Z \times \frac{\alpha}{\bar{Z}} \right)^2, \]

[3.21]

where \(\mu_Q \) and \(\mu_D \) are the quadrupolar and dipolar transition probability, respectively, \(Z \) is the
atomic number, and \(\alpha \) is the hyperfine constant.\(^{16} \) Thus, quadrupole transitions will also appear
in the pre-edge region but only weakly.\(^{17–19} \)

The actual absorption edge and background will vary from sample to sample depending on the
amount of sample in the beam and background contributions. To compare datasets, a
normalisation step is performed where the edge jump is set to unity. Normalisation, and later
EXAFS analysis, is aided by subtracting the smooth background. In this work, all data
processing was performed with Athena and Artemis within the Demeter suite of packages.\(^{20} \)

3.3.3 Extended X-ray Absorption Fine Structure

The EXAFS region involves excited photoelectrons with relatively high kinetic energy and
thus lower mean free path than the photoelectrons around the absorption edge (Figure 3.6).\(^{17,21} \)
As a result, EXAFS photoelectrons primarily interact with the electron cloud of atoms within
one nm. The frequency of the oscillations in absorption in the EXAFS region is related to the
distance between the excited and scattering atoms. The amplitude of these oscillations is a
function of the number and identity of the scattering atoms as well as dampening effects such
as disorder and thermal motion.\(^{12,16,17} \) After appropriate background subtraction (cf. 3.3.1) the
EXAFS oscillations in energy can be converted in terms of the photoelectron wavevector (\(k \))
via:

\[k = \frac{2\pi}{\lambda} = \sqrt{\frac{2m_e(E-E_0)}{\hbar^2}}, \]

[3.22]

where \(\lambda \) is the electron wavelength, \(m_e \) is the electron mass, \(E \) is the incident photon energy,
and \(E_0 \) is the threshold energy. Taking the Fourier transform (FT) of the data in \(k \)-space yields
an EXAFS spectrum in real-space. The resolution in real-space depends on the measured
energy range and the coherence length of the photoelectron scattering, which may be limited
by the structure, thermal fluctuations, or the presence of another absorption edge at higher energy. It is important to keep in mind that FT EXAFS data are related to, but not truly, a radial distribution function from the scattering atom. First, though single scattering processes often dominate the EXAFS region, multiple scattering pathways are possible whereby the photoelectron wave scatters off more than one neighbouring atom before returning to the absorbing atom. Thus, some FT EXAFS intensity corresponds to multiple scattering pathways that may or may not match an interatomic distance within the sample. Second, the photoelectron does not scatter elastically and thus experiences a phase shift. This phase shift is not accounted for in the FT EXAFS spectrum as the scattering neighbour is unknown (at this stage) though it can be accounted for in EXAFS data fitting with calculated scattering paths. EXAFS can be approximately considered an element-specific version of the pair distribution function (PDF) from total scattering methods.

![Graph](image)

Figure 3.6 – Photoelectron mean free path (λ_e) as a function of energy above the threshold energy (E_0) with data and a solid line to guide the eye. Modified with permission from ref. 12.

Scattering paths and EXAFS spectra are modelled with the EXAFS equation:

$$\chi_{\gamma}(k) = \frac{(NF\sigma^2F_{\gamma})}{kR_{\gamma}^2} e^{i(2kR_\gamma + \phi_R)} e^{(-2\sigma^2 + k^2)} e^{(-2R_{\gamma}/\lambda)}$$ \[3.23\]
where $\chi_t(k)$ is the contribution from a particular scattering path (I), N is the path multiplicity, S_0 is the amplitude reduction factor, F is the effective scattering amplitude, R is the half path length, Φ is the phase shift, σ is the mean-squared displacement, and λ is the energy-dependent mean free path.12,16,17 Unlike diffraction methods (Section 3.4), EXAFS is a local probe and contains few independent data points (N_{ind}):

$$N_{\text{ind}} \approx \frac{2\Delta k \Delta r}{\pi} + 1, \quad [3.24]$$

where Δk and Δr are the useful data range in k and r, respectively. For a high-quality dataset with $\Delta k = 15$ Å$^{-1}$ and $\Delta r = 6$ Å, N_{ind} would be ca. 49. For a structure with a small asymmetric cell and high point group symmetry, this might be sufficient for a refinement of all parameters. On the other hand, the structures investigated in this work do not meet these criteria. Instead of perfect octahedral sites with O_h symmetry, the octahedra are distorted and the point group symmetry lowered to typically C_s or C_1. Taking H-Nb$_2$O$_5$ as an example, the 15 unique Nb sites – 14 octahedral sites and 1 tetrahedral site – correspond to nearly 100 Nb–O single scattering paths before even considering Nb–Nb single scattering paths, multiple scattering, or other parameters in the EXAFS equation [3.23]. Though a full EXAFS fit to the data may not be feasible, the evolution of the EXAFS region as a function of some external parameter such as lithium content may still yield valuable information.

3.3.4 Operando XAS

Operando X-ray absorption was employed in this work to track oxidation state and local geometry during lithiation. The main factors to consider for operando XAS are resolution, beam time, measurement time, and sample stability. A typical shift in absorption edge energy for a transitional metal K-edge is about 1–2 eV per oxidation state. The core-hole lifetime and data resolution lead to uncertainties of at least ca. 0.1 eV meaning that about ten spectra per unit change in oxidation state is sufficient. Similar frequency is reasonable to observe the changes in the pre-edge or EXAFS regions as well. Several trade-offs are involved when considering time. Synchrotron time is quite limited, the sample may degrade in the beam over time, the beam may go down, or the beam may shift, which all encourage rapid measurements. On the other hand, scanning the incident energy in sub-eV steps over a keV range usually requires at least several minutes and longer scans or multiple scans are preferred for improved signal-to-noise. As a result, operando XAS is not the best technique for high-rate testing; however, it works well on the conventional battery timescale of hours for charge/discharge.
cycling. Similarly, since relatively fast single scans are normally collected, *operando* XAS is more appropriate for tracking changes in the XANES region or perhaps qualitative EXAFS analysis. All *operando* measurements in this work were performed in the AMPIX cell developed at Argonne National Laboratory.22 The AMPIX design uses a relatively thick glassy carbon window that may be less X-ray transparent than Kapton tape or a Be window but ensures high and equivalent pressure and conductivity across the electrode.22

3.4 Diffraction

3.4.1 Diffraction Theory

Diffraction is a general phenomenon where waves of light or matter pass through an aperture with a spacing similar to the incident wavelength. In X-ray diffraction, electromagnetic radiation is scattered by the electrons on atoms. Neutron diffraction occurs via the scattering of neutrons by atomic nuclei. If there exist repeating evenly spaced atomic layers, as in a crystal, the constructive and destructive interference of waves will occur and yield information on atomic spacing (Figure 3.7).14 In the figure, a beam of monochromatic X-rays enter the crystal and elastically scatter from the electrons, which act as a secondary source of X-rays. Two parallel waves, A and D, are scattered from two parallel hkl planes at atoms B and F, respectively, separated by a distance d_{hkl}. The difference in path length of these two waves is the distance EF plus FG, which is also equal to $2d_{hkl}$ times sine of the angle, θ, of the incident X-ray beam. If this path length difference is equal to the wavelength, λ, of the incoming X-rays, or any integral, n, multiple thereof, constructive interference will occur and cause a peak in intensity at the detector whereas other path lengths will lead to destructive interference. This gives rise to the Bragg equation,

$$n\lambda = 2d_{hkl}\sin\theta.$$ \[3.25\]

N.b. to sample a range of d_{hkl} spacings in angle dispersive mode, the X-ray source and detector may be synchronously rotated in reflection mode with Bragg–Brentano geometry or transmission mode with Debye–Scherrer geometry.23
Figure 3.7 – Bragg formulation of X-ray diffraction. Constructive interference occurs when the difference in path length between two waves (DFH–ABC = EF + FG = 2dsinθ) is equal to an integral number of wavelengths (nλ) of the incoming beam. Figure adapted from ref. 14.

In a perfect crystal, diffraction from a given hkl plane is described by the structure factor F_{hkl}, which is a vector quantity containing an amplitude F_{hkl} and phase φ_{hkl}:

$$ F_{hkl} = F_{hkl} \cdot e^{i\varphi_{hkl}}. \quad [3.26] $$

In kinematic diffraction, intensity (I_{hkl}), not amplitude, is measured. The measured intensity is related to the structure factor amplitude by:

$$ I_{hkl} \propto |F_{hkl}|^2, \quad [3.27] $$

such that amplitudes can be determined accurately while phase information is effectively lost. Structure factors are calculated assuming a model of point scatterers (N atoms in unit cell, labelled as nth atom) whose (x, y, z) position with respect to the unit cell is smeared by thermal motion (B_n):

$$ F_{hkl} = \sum_n^N f_n \cdot e^{-2\pi i (h x_n + k y_n + l z_n)} \cdot e^{-B_n \times \sin^2 \theta / \lambda^2}, \quad [3.28] $$
where f_n is the scattering factor of the nth atom. The atomic scattering factor in X-ray diffraction is a measure of the scattering power of an atom relative to a single electron. Due to the similar size of an atom and typical X-ray wavelengths, destructive interference occurs among waves scattered from individual electrons within an atom, which becomes more significant as the scattering angle increases and leads to a decrease in scattering factor with angle.24 The structure factor is the Fourier transform of scattering density $\rho(x, y, z)$ over the unit cell:

$$F_{hkl} = \int_0^a \int_0^b \int_0^c \rho(x, y, z) \cdot e^{(-2\pi i (hx + ky + lz))} dx dy dz. \quad [3.29]$$

Therefore, the scattering density can be calculated from the Fourier transform of the structure factors with magnitude measured and phase estimated:

$$\rho(x, y, z) = \sum_{hkl} F_{hkl} \cdot e^{(-2\pi i (hx + ky + lz))}/V \quad [3.30]$$

where V is the volume of the unit cell. A Fourier difference map can be calculated by subtracting the calculated structure factors $F_{hkl}(\text{calc})$ from the observed structure factors $F_{hkl}(\text{obs})$ with observed phase set equal to calculated phase for each hkl:

$$\rho_{\text{diff}}(x, y, z) = \sum_{hkl} (F_{hkl}(\text{obs}) - F_{hkl}(\text{calc})) \cdot e^{(-2\pi i (hx + ky + lz))}/V. \quad [3.31]$$

3.4.2 Powder Diffraction

Whilst single-crystal diffraction is more powerful for crystal structure solution, in many practical applications, including the lithium-ion battery electrode materials in this thesis, the functional material is polycrystalline. Thus, powder diffraction is exclusively used in this work. Two key assumptions are made with powder diffraction samples: (a) an infinite number of crystallites and (b) perfectly random orientation of the crystallites in the sample.25 Clearly, neither of these assumptions is ever met; however, their relative validity depends heavily on the sample and sample preparation. If the absorption coefficient of the sample is large, common for dense compounds consisting of heavier elements, and there is ample powder volume then the incident beam is likely fully absorbed and the first assumption satisfactorily fulfilled. Random orientation is not a major problem for roughly cubic or spherical particles; however, bladed, platy, and acicular particles tend to exhibit preferred orientation. Even with careful sample preparation, non-equant particles are likely to orient and lead to missing or weakened reflections. Another important consideration for powder diffraction is particle size.
As a very general rule, an optimal particle size may be roughly 1-5 µm in order to maximise the number of crystallites without leading to significant particle size broadening, which results from incomplete destructive interference.

3.4.3 Rietveld Analysis

For powder diffraction patterns with complex overlapping reflections or multiple components present, the Rietveld method can be used to refine detailed structural models. Parameters to be refined via the Rietveld method depend on the sample but some common considerations include cell parameters, atomic positions, phase fractions, scale factor, peak shape, crystallite size broadening, strain broadening, sample displacement and transparency, low-angle asymmetry, and the background. The Rietveld method involves a non-linear least squares fit to minimise the function (Δ):

$$\Delta = \sum_i w_i (y_{i,obs} - y_{i,calc})^2,$$

[3.32]

where w_i is the weight of the ith term (the inverse of the y_i), $y_{i,obs}$ is the observed intensity of the ith point, and $y_{i,calc}$ is the calculated intensity of the ith point. It is an iterative process that includes contributions from the crystal structure model, microstructure, and the diffractometer/geometry. Several factors can be calculated to evaluate the fit of a Rietveld analysis to experimental data. These include the profile R-factor (R_p),

$$R_p = \frac{\sum_i |y_{i,obs} - y_{i,calc}|}{\sum_i y_{i,obs}} \times 100\%,$$

[3.33]

the weighted profile R-factor (R_{wp}),

$$R_{wp} = \sqrt{\frac{\sum_i w_i (y_{i,obs} - y_{i,calc})^2}{\sum_i w_i y_{i,obs}^2}} \times 100\%$$

[3.34]

and the goodness-of-fit (χ),

$$\chi = \frac{R_{wp}}{R_{exp}},$$

[3.35]

where the expected R-factor (R_{exp}), a measure of data quality, is given by:
\[R_{exp} = \sqrt{\frac{N-P+C}{\sum w_d Y_{d,obs}^2}} \times 100\%, \quad [3.36] \]

where \(N \) is the number of observations, \(P \) is the number of refined parameters, and \(C \) is the number of constraints used in the refinement. One should carefully evaluate the pattern itself in addition to considering these values as there is not necessarily good agreement between fitting factors and structural reality.\(^{28}\)

The number of independent data points in a diffraction pattern is not readily determinable\(^{29}\) but is related to the number of resolvable Bragg peaks and is generally several times higher than EXAFS data of similar quality for a crystalline solid. The maximum number of structural parameters to refine is approximately \(4n + 6 \) resulting from the \((x, y, z)\) position and \(B_{iso} \) thermal factor for each of the \(n \) atoms in the asymmetric unit cell plus the six lattice parameters \(a, b, c, \alpha, \beta, \) and \(\gamma \). Conveniently, as the symmetry of the system decreases and the number of parameters to refine increases, so too does the number of reflections and thus independent data points. A consideration for Rietveld analysis is variable-counting time, which is especially important for precise refinements of X-ray data where, due to the scattering factor and Lorentz polarisation effects, the errors at low angle are incorrectly estimated with linear time counting.\(^{30}\)

Applications of the Rietveld method include the refinement of lattice parameters and crystal structures as well as quantitative phase analysis on a powder containing several compounds or polymorphs.\(^{31}\) The first application of the Rietveld method was to neutron diffraction data, as shown in Figure 3.8, but the technique is also applicable to data from an X-ray source.
Figure 3.8 – Rietveld analysis of neutron data. Experimental (solid) and fitted (dotted) curves of the compound CaUO$_4$. This pattern is the original example of Rietveld least-squares refinement in the literature. Reproduced with permission from ref. 27.

Many computational programs exist for the analysis of crystal structures and diffraction data. In this thesis, Rietveld analyses were performed with the General Structure Analysis System (GSAS)32 and the graphical user interface EXPGUI33, aided by the toolkit CMPR34 as well as the progeny GSAS-II35.

3.4.4 Operando Synchrotron Diffraction

Lithium insertion and extraction operando diffraction measurements have been applied to a wide range of battery materials.$^{36-41}$ The intensity of synchrotron X-rays, in combination with two-dimensional area detectors, enable extremely rapid collection of high-quality diffraction patterns on the timescale of seconds. This enables experiments capturing short-lived metastable phases, phase transitions, and electrode heterogeneity.36 Even the fastest high-rate batteries take approximately 60 s to discharge, which is within the range of operando diffraction. Of course, the background scattering contribution from any in situ cell will be higher than a diffraction-optimised sample holder and the signal-to-noise and angular resolution are lower in an experiment designed to optimise time-resolution. One significant
issue with high-rate *operando* measurements – though not inherent to diffraction cells – is optimisation of the electrochemistry such that the behaviour in the *operando* cell, and specifically in the beam, is the same as in standard laboratory cells. The *operando* diffraction measurements in this work were performed with the AMPiX cell with a hard, conductive glassy carbon window and tested against standard electrochemical coin cells (*cf.* Chapters 5–7) to ensure reproducibility.

3.4.5 X-ray Sources

X-rays are easily produced in the laboratory via X-ray tubes containing a cathode source and anode target. Electrons flow across a high-voltage from the tungsten cathode to the anode. When energetic electrons strike the target, one possible interaction is the excitation of inner shell electrons followed by the radiative jumps of outer shell electrons to fill the core states – the X-radiation being characteristic of the target element. The laboratory diffraction in this work used a Cu anode with an acceleration voltage of 40 kV and a current of 40 mA. A Ni filter was in place to absorb undesired Cu K_β radiation and the white “Bremsstrahlung” radiation while transmitting most of the lower energy Cu $K_{\alpha1,2}$ X-rays.

Synchrotron radiation, while not as readily available, can produce X-rays of high energy/short wavelength, tuneable energy/wavelength, and very high intensity. High-energy X-rays are useful for avoiding absorption issues, especially as required by transmission *operando* cells with thick specimens. Tuneable energy is useful for diffraction but absolutely necessary for X-ray absorption studies, which is one reason XAS is almost exclusively a synchrotron technique. A high flux of X-rays enables faster measurements, which in turn enables high-rate diffraction studies in sync with *operando* high-rate electrochemistry. A high-intensity, continuous “Bremsstrahlung” spectrum of synchrotron X-rays is produced by the deflection of relativistic electrons that are being accelerated around a wide-perimeter polygonal loop. The long path length and advanced beamline optics also mean that higher resolution is available at a synchrotron than with a laboratory diffractometer.

3.4.6 Neutron Diffraction

Neutrons have a wavelength given by the de Broglie relationship:

\[\lambda = \frac{h}{p} = \frac{h}{mv}, \]

[3.37]
where h is the Planck constant, p is momentum, m is mass, and v is velocity. Thus, the wavelength of a neutron is an inverse function of its velocity. Like in X-ray diffraction, the neutrons best suited for diffraction experiments are those with a wavelength on the order of the interplanar spacing of crystals (Å). As aforementioned, neutrons scatter off atomic nuclei. The difference in neutron wavelength (Å) and nuclear radius (fm) means that nuclei behave as true point scatterers. Consequentially, unlike X-ray scattering factors, neutron scattering factors do not decrease as a function of angle. Neutron diffraction enables higher refinement precision of atomic coordinates and lattice parameters due to the point scattering of neutrons by nuclei and the related feasibility to measure data to high angle (often $\geq 150^\circ$). Neutrons are complementary to X-rays in that they have different relationships between scattering factor and atomic number (Z). While X-ray scattering factors are positive and increase monotonically with Z, neutron scattering factors can be negative and do not depend in an ordered way on Z. Some neighbouring atoms, which would not be differentiable by X-rays, have significant contrast to neutrons. Similarly, heavy elements dominate the scattering in X-ray diffraction and can prevent the location of light elements such as lithium, which is obviously a critical problem for lithium-ion battery materials. On the other hand, the neutron scattering length of a vast majority of elements is within a factor of two so all atoms are likely to contribute more equally to the diffraction pattern. A relevant comparison where neutrons would be useful is a compound containing Li and W, which have a Li:W Z ratio of 3:74 but a neutron scattering ratio of $-1.90:4.83$. The disadvantage of neutron diffraction, besides the limited availability of beamtime, is the large quantity of sample and long measurement times required due to the weak interaction of neutrons with matter. For these reasons, operando neutron diffraction is much less common than operando X-ray diffraction but, while not used here, it is being developed and applied on more conventional and commercial electrode materials.43–45

3.4.7 Neutron Sources

Neutrons can only be produced at large-scale central facilities. The two types of neutron production facility are (i) reactor sources and (ii) time-of-flight (TOF) spallation sources. A reactor source (\textit{e.g.} MLZ in Germany) produces a continuous beam of neutrons via nuclear fission, usually of highly-enriched uranium.46 A spallation source (\textit{e.g.} ISIS in the United Kingdom) produces a pulsed beam of neutrons via collision of a particle beam into a target material (\textit{e.g.} protons from a synchrotron into a tungsten target at ISIS).46 Whereas neutrons from a reactor source are typically filtered to a narrow constant wavelength much like
synchrotron sources, the time-resolved nature of a pulsed neutron source means that all wavelengths can be measured simultaneously with a fixed detector bank by measuring the neutron TOF. Both methods are amenable to diffraction; the neutron diffraction data in this thesis are from the reactor source at MLZ.

3.5 Associated Techniques

3.5.1 Introduction

In addition to the atomic-scale experimental characterisation techniques employed in this work (vide supra), several other techniques were used to determine basic information about the synthesised materials. They are presented briefly.

3.5.2 Scanning Electron Microscopy

Scanning electron microscopy (SEM) is used here to determine the morphology and particle size of metal oxide electrode materials and topology of composite electrode films. The operating principle involves directing an electron beam through a series of lenses and apertures onto the sample. The electrons may scatter elastically or inelastically, which leads to a range of measurement options including secondary electrons (SE), backscattered electrons (BSE), Auger electrons, and characteristic X-rays that form the basis of several techniques. For SEM, the primary interest is in SE or BSE. SE are only able to escape from within a few nm of the surface and are most useful for surface topology whereas BSE probe a larger sample volume and provide Z contrast. Energy-dispersive X-ray spectroscopy (EDX) from emitted X-rays is also used frequently, particularly in heterogeneous systems.

3.5.3 Thermal Gravimetric Analysis

Thermal gravimetric analysis (TGA) is a technique to determine the change in mass of a sample as a function of the change in temperature. TGA can be performed under different atmospheres and is often applied in the fields of gas separation, CO₂ looping, and hydrogen energy storage. In this thesis, TGA is used primarily as a synthetic tool. Reactions are performed with partially reduced precursors and their thermal oxidation under air is probed with TGA.
3.5.4 Brunauer–Emmett–Teller Surface Area

Brunauer–Emmett–Teller (BET) surface area analysis is another complementary technique that finds applications in porous materials for gas separation and storage as well as topological characterisation. The BET technique is based on the physics of adsorption and, in addition to a quantitative determination of surface area, different adsorption phenomena can be distinguished based on the shape of the isotherm.\(^{48}\) Since this thesis focuses on materials from solid-state synthesis, the specific gas sorption phenomena are not the focus, rather the technique serves to determine BET surface areas that can be compared to related materials from nanoparticle and nanostructure synthesis methods.

3.6 Bond Valence Sum Analysis

The bond valence sum (BVS) method\(^ {49}\) can be applied to determine the oxidation state of an atom within a structure, to predict the properties of a structure, and to validate proposed structures.\(^ {50}\)\(^ {51}\) The bond valence model is a development of the ionic model of bonding. As defined in the model, the bond valence, \(s_{ij}\), is equal to the bond flux, which is equal to the ionic charge between atoms \(i\) and \(j\).\(^ {49}\) The valence on an atom, \(V_i\), is then equal to the sum of its bond valences. This relationship is expressed as:

\[
V_i = \sum_j s_{ij}. \tag{3.38}
\]

In order to determine the experimental bond valence between two atoms in a crystal structure (\(S_{ij}\)), equation [3.39] is employed. This formula incorporates the observed bond length, \(R_{ij}\); the nominal bond length, \(R_{0,ij}\); and the softness of the interaction between the atoms, \(b_{ij}\).\(^ {49}\) \(R_{0,ij}\) and \(b_{ij}\) are known as bond valence parameters and are tabulated for most bonds.

\[
S_{ij} = \exp \left(\frac{(R_{0,ij} - R_{ij})}{b_{ij}} \right) \tag{3.39}
\]

With these straightforward formulae, a table of bond valence parameters, and a list of observed bond distances for a given structure, bond valences can be readily calculated.

An extension of the BVS method is bond valence energy landscape (BVEL) analysis.\(^ {52}\) BVEL calculations add a coulombic repulsion term and a scaling term to convert oxidation state mismatch to an approximate energy.\(^ {52}\)\(^ {53}\) In the program 3DBVSMAPPER\(^ {53}\), a test ion is placed at individual points over a fine grid within the unit cell to compute a BVEL map. In the
event that the test ion (e.g. Li⁺) is found within the structure, it is removed prior to calculation. The result of this process is a map indicating predicted ionic positions and diffusion pathways within the structure. While the 3DBVSMAPPER program authors demonstrated that results correspond well to ion pathways and sites from molecular dynamics and diffraction,⁵³,⁵⁴ BVS mapping is qualitative and susceptible to the usual caveats of the ionic model so it will not give true activation barriers or account for phenomena such as rotations or movement of “host” atoms that may be important in the diffusion process. As long as the limitations are understood, BVS mapping is a good starting point to analyse new/complex structures where ionic positions/diffusion pathways are not known.

3.7 Quantum Calculations

3.7.1 Density Functional Theory

Ab initio calculations of NMR observables are a powerful resource for understanding solid-state NMR spectra of complex battery materials.⁵⁵–⁵⁹ Quantum mechanical computational methods involve finding approximate solutions to the time-independent, many-body Schrödinger equation:

\[\hat{H} \Psi = E \Psi, \]

where \(\hat{H} \) is the Hamiltonian operator, \(\Psi \) is the many-body wavefunction, and \(E \) is the total energy. In order to simplify this equation, the Born–Oppenheimer approximation is invoked, which assumes that the electrons respond instantaneously to changes in nuclear position owing to the difference in mass between the electrons and nuclei. The Hamiltonian for an \(N \) electron, \(m \) nuclei system consists of kinetic (\(\hat{T} \)) and potential (\(\hat{V} \)) energy terms with the form:

\[\hat{H} = \hat{T} + \hat{V} = -\frac{1}{2} \sum_{i=1}^{N} \nabla_{i}^{2} + \sum_{j<i}^{N} \frac{1}{|r_{j} - r_{i}|} - \sum_{i=1}^{N} v(r_{i}) + \sum_{m<n} \sum_{m<n} \frac{Z_{m}Z_{n}}{r_{m} - r_{n}}, \]

where \(\nabla \) is the Laplace operator, \(r_{i} \) and \(r_{j} \) describe the positions of the electrons, \(v(r_{i}) \) describes the electron–nuclear Coulomb potential, \(Z_{m} \) and \(Z_{n} \) are the charges of the nuclei, and \(r_{m} \) and \(r_{n} \) describe the positions of the nuclei. The four terms represent the electronic kinetic energy, the Coulombic interaction between electrons, the Coulombic interaction between electrons and nuclei, and the Coulombic interaction between nuclei. An analytical solution to the exact many-body Schrödinger equation is not possible for a multielectron system; however,
mathematical methods have been developed to circumvent this fundamental issue and compute the approximate ground state energy.

Density functional theory (DFT) enables the examination of the large, periodic systems in this thesis. DFT is based on the principle that the electronic energy can be described by an electron density $\rho(r)$. Hohenberg and Kohn61 reformulated the many-body wave function, a $3N$-dimensional (spatial) function for a system of N electrons, into a description invoking $\rho(r)$, a 3-dimensional function, and proved that the total energy of the system is a unique (yet unknown) functional of the density. Kohn and Sham62 then provided a framework for calculating the total energy as a function of $\rho(r)$ despite the exact form of the functional being unknown:

$$E(\rho(r)) = E^T(\rho(r)) + E^V(\rho(r)) + E^I(\rho(r)) + E^{XC}(\rho(r)), \quad [3.42]$$

where $E^T(\rho(r))$ is the kinetic energy functional of non-interacting electrons, $E^V(\rho(r))$ is the electron–nuclei and nuclei–nuclei functional, $E^I(\rho(r))$ is the electron–electron repulsion functional, and $E^{XC}(\rho(r))$ is the exchange–correlation functional defining the kinetic energy difference between the non-interacting electrons in the reference system and the interacting electrons in the real system. The major caveat of DFT is that the exact form the exchange–correlation functional is unknown and must be approximated. The $E^{XC}(\rho(r))$ term describes electron–electron interactions between electrons with the same spin (exchange interaction) and opposite spin (electronic correlation). The simplest approximation of the exchange–correlation functional is the local density approximation (LDA)60:

$$E^{XC}(\rho(r)) = \int \varepsilon^{XC}(\rho(r)) \rho(r) d^3r, \quad [3.43]$$

where $\varepsilon^{XC}(\rho(r))$ is the exchange–correlation energy per unit volume of a homogeneous electron gas of the same density $\rho(r)$ as the real system. Generalised gradient approximations (GGA) go one step beyond the LDA and add a term in the gradient of the electron density. Many GGA functionals exist; in this work the Perdew–Burke–Ernzerhof (PBE) GGA is used, which is one of the most widely studied.63

Two approaches to decrease the computational cost of studying many-electron systems are the use of (i) pseudopotentials and (ii) periodic boundary conditions. Pseudopotentials are smoothly-varying functions that replace the full electron–nuclear Coulomb potentials by
accurately modelling the valence region with the same potential as the true wavefunction and approximating the core region with a smoother potential. In this work, ultrasoft Vanderbilt pseudopotentials64 are used, which are much cheaper for transition metal systems that norm-conserving pseudopotentials65,66. For crystalline systems, the introduction of periodic boundary conditions takes advantage of translational symmetry to approximate an infinite system with its primitive unit repeated in three dimensions. Along those lines, with a periodic system, discrete plane wave basis set are better suited than localised wavefunctions. The electronic wavefunction under periodic boundary conditions is expanded in terms of the plane wave basis set, and the expansion can be truncated to include only the plane waves with kinetic energy smaller than the energy cut-off, \(E_{\text{cut}} \):

\[
E_{\text{cut}} \geq \frac{1}{2} |\mathbf{k} + G|^2,
\]

where \(\mathbf{k} \) is the wavenumber and \(G \) is a set of reciprocal lattice vectors.55 Convergence of a given parameter of interest should be tested with respect to \(E_{\text{cut}} \), which primarily depends on the atomic species present.55 Convergence should also be tested with respect to the sampling of the Brillouin zone.67

3.7.2 NMR Calculations

The NMR tensor properties that one might measure include chemical shift, quadrupolar coupling, and J-coupling. Magnetic shielding and the electric field gradient are ground-state properties that can be directly computed with DFT. J-coupling is not typically observed for quadrupolar nuclei due to the relative strength of the interactions but, when relevant, it can be treated as a small perturbation and calculated within the DFT framework.68 Since the form of the wavefunction is explicitly neglected near the nucleus, pseudopotentials work well for valence properties like bonding but they present a problem for the calculation of NMR parameters, which depend on the behaviour of the electrons near the nucleus. The electric field gradient tensor is a function of the ground-state charge density, which is straightforward with all-electron calculations but not so with pseudopotentials.55 Additionally, in the presence of an external magnetic field, a first-order current is induced, and the chemical shielding is defined as the ratio between the induced and the applied field. As a consequence to the external perturbation, the induced current, as well as the pseudo-wavefunctions, are no longer invariant with respect to translation.55 In order to restore translational invariance, Pickard and Mauri introduced the gauge-including projector augmented-wave (GIPAW) method69, as
implemented in the plane wave DFT CASTEP code70. This approach extends the method derived by Bloch to evaluate the expectation values of all-electron operators in terms of pseudo-wavefunctions, and it further recovers translational invariance of the wavefunctions in the presence of an external magnetic field by including a field-dependent phase-modulating transformation operator. The GIPAW approach hence enables the calculation of chemical shieldings and electric field gradients from pseudopotentials.

NMR parameters are extraordinarily sensitive to local atomic structure, which is an indicator of the analytical power of NMR. As a result, structure models from diffraction data are often not sufficient starting models for the calculation of NMR parameters. To improve the structural model, a geometry optimisation can be performed, which relaxes the force on each atom to below a desired threshold. Geometry optimisation is critical for defect calculations or when the structural model is an average picture \textit{e.g.} due to the presence of mixed or partial occupancy on a given crystallographic site. All NMR calculations in this work were performed on structures that were geometry optimised (both lattice dimensions and atomic coordinates) until the force on each atom was less than or equal to 0.01 eV·Å-1. CASTEP was used for all geometry optimisation and NMR calculations in this work.
3.8 References

(32) A. C, Larson; Von Dreele, R. B. General Structure Analysis System (GSAS); LAUR 86-748; Los Alamos National Laboratory, 2000.

(41) Blidberg, A.; Gustafsson, T.; Tengstedt, C.; Björefors, F.; Brant, W. R. Monitoring Li$_x$FeSO$_4$F ($x = 1, 0.5, 0$) Phase Distributions in Operando to Determine Reaction Homogeneity in Porous Battery Electrodes. *Chem. Mater.* **2017** *29*, 7159–7169.

(44) Bianchini, M.; Leriche, J. B.; Laborier, J.-L.; Gendrin, L.; Suard, E.; Croguennec, L.; Masquelier, C. A New Null Matrix Electrochemical Cell for Rietveld Refinements of In-

Solid-State NMR to Characterize Atomic Environments in Paramagnetic Materials.

Chapter 4

Crystal Chemistry

“The pseudo-Jahn–Teller effect is the only source of instability and distortions of high-symmetry configurations of any polyatomic system in nondegenerate states.” – Isaac B. Bersuker, *The Jahn–Teller Effect*

4.1 ReO₃ Parent Structure

Local coordination environments and long-range crystallography of the crystallographic shear (cs) and bronze-like compounds in this work are often represented by idealised formulae and structural models to overcome the real complications that will be discussed in Sections 4.3 and 4.4. Nevertheless, the basic structure of both families can be derived from the simple ReO₃ parent structure. Cubic ReO₃ (*Pm̅3m*) is comprised of corner-sharing regular, ReO₆ octahedra (Figure 4.1).¹ The asymmetric unit contains a single rhenium site and a single oxygen site with 1.867(4) Å Re–O bonds and 3.734(7) Å Re–Re interatomic distances. Perovskite compounds with the formula ABX₃, ubiquitous amongst functional inorganic materials, can be considered as an extension of the ReO₃-type with a filled twelve-coordinate A-site cation.

![Crystal structure of cubic ReO₃ (*Pm̅3m*)](image)

Figure 4.1 – Crystal structure of cubic ReO₃ (*Pm̅3m*). Rhenium and oxygen ions are depicted as dark red and orange spheres, respectively; rhenium ions are centred in the dark red ReO₆ octahedra.
Before moving on to the more complex Cs and bronze phases, it is natural to start with an understanding of how the parent structure evolves as a function of lithium insertion. The reaction of ReO$_3$ with lithium was investigated with powder neutron diffraction in a series of papers by authors from Bell Laboratories and the U.S. National Bureau of Standards in the period around 1980 (Figure 4.2).$^{2-6}$ Lithium is too small to occupy the centre of the large cuboctahedral cavity in ReO$_3$; this was initially known and supported by the fact that at least 2.0 lithium ions per transition metal (Li$^+$/TM) could be incorporated.2 At low lithium concentrations, Li$_x$ReO$_3$ ($x \leq 0.35$) ($Im\bar{3}$), the octahedra become distorted and the unit cell dimensions double but the cubic host structure is retained and lithium is found to occupy square planar sites with ca. 2.2 Å Li–O distances.6 Although these square planar sites could hold up to $x = 0.75$ Li, the cubic phase is not stable at this composition and a phase transition occurs beyond $x = 0.35$ first to rhombohedral LiReO$_3$ ($R3c$)5 and finally to Li$_x$ReO$_3$ ($1.8 \leq x \leq 2.0$) ($R3c$)3 as summarised in Reaction [4.1].

\[
\text{ReO}_3 (Pm\bar{3}m) \rightarrow \text{Li}_x\text{ReO}_3 (x \leq 0.35) (Im\bar{3}) \rightarrow \text{LiReO}_3 (R3c) \\
\rightarrow \text{Li}_x\text{ReO}_3 (1.8 \leq x \leq 2.0) (R3c) \quad [4.1]
\]

In both LiReO$_3$ and Li$_2$ReO$_3$, the framework becomes severely distorted by octahedral rotation but without breaking bonds. As a result, the twelve-coordinate perovskite-like cavity of ReO$_3$ is converted into two face-sharing octahedral cavities. These new lithium coordination environments are half occupied in an ordered manner in LiReO$_3$ and fully occupied in Li$_2$ReO$_3$. LiReO$_3$ is quite similar to ferroelectric LiNbO$_3$ ($R3c$)7.

Figure 4.2 – Crystal structure evolution of (a) ReO$_3$ ($Pm\bar{3}m$) upon lithiation to (b) Li$_x$ReO$_3$ ($x \leq 0.35$) ($Im\bar{3}$), (c) LiReO$_3$ ($R3c$), and (d) Li$_x$ReO$_3$ ($1.8 \leq x \leq 2.0$) ($R3c$). Oxygen ions and partially occupied lithium ions are represented with orange and light green/white spheres, respectively. Fully occupied rhenium and lithium octahedra are depicted in dark red and light green, respectively. Unit cells are outlined in black (overlaid by bonds in ReO$_3$).

4.2 Early Transition Metal Chemistry and the SOJT

Following ReO$_3$, it is informative to consider the MO$_3$ structures of the Group 6 transition metals (M = Cr, Mo, W) and their underlying crystal chemistry. The Group 6 metal trioxides contain formally d^0 M$^{6+}$ metal cations and, moving down the group, their thermodynamic structures under ambient conditions vary from tetrahedral corner-shared chains in (CrO$_3$)$_c$ ($C2cm$)8 to edge-shared double-chains of octahedra in α-MoO$_3$ ($Pbnm$)9 to distorted corner-shared octahedra in γ-WO$_3$ ($P2_1/n$)10 (Figure 4.3). The similarity to the ReO$_3$ structure increases down the group. Whilst γ-WO$_3$ is monoclinic, it differs from cubic ReO$_3$ only by slight octahedral distortions of the metal and oxygen sites. Both Mo$^{6+}$ and W$^{6+}$ are stable in octahedral sites, albeit the cations are out-of-centre; on the other hand, Cr$^{6+}$ exclusively occupies four-coordinate environments.
Figure 4.3 – Crystal structures of (a) $(\text{CrO}_3)_{\alpha} \ (\text{C}2\text{cm})$, (b) α-$\text{MoO}_3 \ (\text{Pbnm})$, (c) γ-$\text{WO}_3 \ (P2_1/n)$, and (d) $\text{ReO}_3 \ (Pm\overline{3}m)$. Oxygen ions are drawn as orange spheres. Fully occupied chromium, molybdenum, tungsten, and rhenium polyhedra are depicted in blue, purple, grey, and dark red, respectively. Unit cells are outlined in black (overlaid by bonds in ReO_3).

Underlying the local distortions in these d^0 metal oxides is the second-order Jahn–Teller (SOJT) effect, also known as the pseudo-Jahn–Teller effect. Furthermore, this is the dominant local structure effect in all the host oxide compounds investigated herein. The original Jahn–Teller (JT) phenomenon describes distortions that are attributable to degenerate electronic ground states. The energy of octahedral transition metal complexes can be lowered with a symmetry/degeneracy-breaking distortion when the electronic configuration is d^1, d^2, d^4 d^6, high-spin d^8, or low-spin d^9 where there would otherwise be degenerate filled and empty d-orbitals. The SOJT effect is a related phenomenon that can occur in d^0 and d^{10} complexes as a result of pseudo-degeneracy between the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO). The early transition metals – from Group 3 to Group 6 – can all form d^0 complexes. In these structures, the ground-state oxygen p-orbitals and excited-state metal d-orbitals constitute the HOMO and LUMO, respectively; the strength of SOJT distortion is related to the degree of
p–d mixing and generally increases with oxidation state to the right across a period as the HOMO–LUMO gap decreases. The SOJT strength also decreases down a group as the energy of the d-orbitals is raised relative to the oxygen p-orbitals. Trends in relative SOJT distortion and the ionic radii of octahedral Group 4–6 transition metal cations are summarised in Table 4.1. As the transition metal is reduced from d^0 to d^4, the pseudodegeneracy is broken and no SOJT displacement occurs. In this context, the distortions of Group 6 metal trioxides away from the regular ReO$_3$ octahedra (Re$^{6+}$ = d^3) can be understood. Note that there is little change in ionic radius within a group from 4d to 5d cations due to the lanthanide contraction from the poor nuclear shielding of the 4f-orbitals. From Table 4.1, one might expect similar behaviour in the oxides of titanium, niobium, and tungsten, which will be explored for the remainder of this work.

Table 4.1 – Ionic Radii and SOJT Strength of the Group 4–6 d^0 Metal Cations in Octahedral Coordination. Note that six-coordinate Cr$^{6+}$ is not stable; the common four-coordinate ionic radius is given. Ionic radii are taken from ref. 22.

<table>
<thead>
<tr>
<th>Group 4</th>
<th>Group 5</th>
<th>Group 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ti$^{4+}$</td>
<td>V$^{5+}$</td>
<td>Cr$^{6+}$</td>
</tr>
<tr>
<td>VI – 0.605 Å</td>
<td>VI – 0.54 Å</td>
<td>(IV – 0.26 Å)</td>
</tr>
<tr>
<td>intermediate SOJT</td>
<td>int.–strong SOJT</td>
<td>(very strong SOJT)</td>
</tr>
<tr>
<td>Zr$^{4+}$</td>
<td>Nb$^{5+}$</td>
<td>Mo$^{6+}$</td>
</tr>
<tr>
<td>VI – 0.72 Å</td>
<td>VI – 0.64 Å</td>
<td>VI – 0.59 Å</td>
</tr>
<tr>
<td>very weak SOJT</td>
<td>intermediate SOJT</td>
<td>strong SOJT</td>
</tr>
<tr>
<td>Hf$^{4+}$</td>
<td>Ta$^{5+}$</td>
<td>W$^{6+}$</td>
</tr>
<tr>
<td>VI – 0.71 Å</td>
<td>VI – 0.64 Å</td>
<td>VI – 0.60 Å</td>
</tr>
<tr>
<td>very weak SOJT</td>
<td>weak–int. SOJT</td>
<td>int.–strong SOJT</td>
</tr>
</tbody>
</table>

4.2.1 Vibronic Coupling Theory

A more quantitative understanding of atomic positions requires consideration of the interaction between nuclear vibrations and the electronic field. This is known as vibronic coupling; it is formally excluded by the Born–Oppenheimer approximation but can be re-included. The SOJT results from the vibronic mixing of nondegenerate electronic states under nuclear displacements. Following the derivation of Bersuker, the minimum of the
adiabatic potential energy surface (APES) represents the equilibrium geometry of a polyatomic system in nondegenerate states. At this minimum, the first derivative of energy (E) with respect to displacement (Q) will be zero and the second derivative (K) will be positive:

$$\frac{\partial E}{\partial Q} = 0,$$ \hspace{1cm} [4.2]

$$K = \frac{\partial^2 E}{\partial Q^2} > 0.$$ \hspace{1cm} [4.3]

For the nondegenerate ground state with wavefunction (ψ):

$$E = \langle \psi | H | \psi \rangle$$ \hspace{1cm} [4.4]

where H is the Hamiltonian. Substituting E in equation [4.3] yields:

$$K = \langle \psi | \left(\frac{\partial^2 H}{\partial Q^2} \right) | \psi \rangle + 2 \langle \psi | \left(\frac{\partial H}{\partial Q} \right) | \psi' \rangle$$ \hspace{1cm} [4.5]

where:

$$\psi' = \frac{\partial \psi}{\partial Q}$$ \hspace{1cm} [4.6]

Equation [4.4] can be simplified to:

$$K = K_0 + K_v$$ \hspace{1cm} [4.7]

where K_0 is the former term from equation [4.5] and K_v is the latter term. It has been shown that K_0 is always positive for a high-symmetry polyatomic system23,24 so K_v, the vibronic contribution, is the only source of destabilisation of the high symmetry configuration of a polyatomic system with nondegenerate states.

The SOJT effect is inherently, at least, a two-level problem between the ground state and excited state(s).11 As long as the energy difference (2Δ) between the ground and excited state meets the criterion:
\[\Delta > \frac{F^2}{K_0} \]

[4.8]

defined by the vibronic coupling constant \(F \):

\[F = \langle \psi | \left(\frac{\partial H}{\partial Q} \right) | \psi_n \rangle \]

[4.9]

where \(\psi_n \) is the excited-state wavefunction, then no nuclear displacement will occur. This is known as the weak SOJT effect. In the case where the inequality [4.8] is reversed, the ground state becomes unstable with respect to nuclear displacement. The APES of these two scenarios are depicted in Figure 4.4. The stabilisation energy of the SOJT (\(E_{SOJT} \)) is given by equation [4.10]:

\[E_{SOJT} = \frac{F^2}{2K_0} - \Delta \left(1 - \frac{\Delta K_0}{2F^2} \right). \]

[4.10]

Figure 4.4 – Adiabatic potential energy surfaces in the case of the (a) weak SOJT effect and (b) strong SOJT effect. Dashed lines indicate the energy levels without vibronic coupling; solid lines include vibronic coupling. In the case of (b), the ground state is destabilised with respect to nuclear displacement (Q) and the atoms will distort. Figure reproduced with permission from ref. 20.
4.3 Crystallographic Shear Structures

While the MO$_3$ structures of the early transition metals have been discussed, what of the structures with composition between MO$_2$ and MO$_3$? Anion-deficient oxides relative to MO$_{3-x}$ (e.g. TiO$_2$, V$_6$O$_{13}$, NbO$_{2.5-x}$, MoO$_{3-x}$, WO$_{3-x}$) with metal valence less than M(VI) cannot form the perfect ReO$_3$-type arrangement and thus they adopt a defect structure. One common motif to account for anion-deficient nonstoichiometry is crystallographic shear (cs). At a cs plane, point defects are eliminated by condensation of the structure with shear motion and conversion of corner-shared octahedra to edge-shared octahedra (e.g. reduced WO$_{3-x}$, Figure 4.5). A single defect plane or random set of planes of this type is known as a Wadsley defect after A. David Wadsley. However, these planes can cooperatively order as in the Magnéli phases of WO$_{3-x}$ (0 < x ≤ 0.13) (e.g. WO$_{2.90}$, Figure 4.6).

Figure 4.5 – Crystallographic shear (cs), a condensation mechanism in anion-deficient nonstoichiometric oxides. (a) Corner-sharing octahedra shown in grey in the ReO$_3$ structure become (b) edge-sharing along a crystallographic shear plane; oxygen coordination increases from two to three whilst metal coordination remains unchanged. Figure reproduced with permission from ref. 28.
A consequence of the formation of ordered Wadsley defects (i.e. \(cs\) planes), is well-defined stoichiometry. While point defects or random Wadsley defects underlie true non-stoichiometry, ordered phases derived from ReO\(_3\) have a composition \((M_nO_{3n-a})\) defined by the spacing between successive \(cs\) planes \((n)\) and number of anion sites eliminated \((a)\).\(^{29}\) The Miller indices \(\{hkl\}\) of the parent ReO\(_3\) structure can be used to define the shear plane. The structures defined by \(n, a,\) and \(\{hkl\}\) form a homologous series of stoichiometric phases, albeit with sometimes “grotesque stoichiometry”\(^{30}\). For example, the Magnéli phase W\(_{20}\)O\(_{58}\) in Figure 4.6 is the \(n = 20\) member of the homologous series W\(_n\)O\(_{3n-2}\) and is derived from \(\{\bar{1}30\}_{ReO_3}\) shear.

![Figure 4.6 – Magnéli phase WO\(_{2.90}\), also known as W\(_{20}\)O\(_{58}\), formed from ordered Wadsley defects (\(cs\) planes) of the type shown in Figure 4.5.\(^{25}\) Tungsten octahedra are depicted in grey; all tungsten and oxygen sites are fully occupied. The unit cell is outlined in black.](image)

Reduced oxides are not a prerequisite for crystallographic shear. Fully oxidized niobium oxide (NbO\(_{2.5}\)) is another example of a nonstoichiometric oxide with respect to ReO\(_3\). In order to compensate for this level of off-stoichiometry, crystallographic shear occurs in two nearly orthogonal directions (Figure 4.7a). These intersecting planes define the edges of an area \(m \times n\) block of octahedra.\(^{31}\) The resulting structure—referred to variously as a \(cs\),
double cs, Wadsley–Roth, block, or column phase—consists of blocks connected in infinite ribbons ($p = \infty$), split into pairs ($p = 2$), or isolated ($p = 1$), usually by tetrahedra. These tetrahedral columns form when the ReO$_3$-blocks are not edge-shared within a plane. The nomenclature $(m \times n)_p$ then fully describes the assembly of structural units though the description may be further complicated by the presence of multiple block sizes and intergrowths even within ordered “ideal” phases. From these principles, like in the Magnéli phases, the composition of a block is dictated by the crystal structure. The metal oxide formula can be calculated from a summation over all combinations of block size and connectivity:

$$\sum M_{mnp+1}O_{3mnp-(m+n)p+4}$$ \[4.11\]

where interconnected ribbons may be represented by:

$$\lim_{p \to \infty} M_{mnp+1}O_{3mnp-(m+n)p+4} = M_{mn}O_{3mn-(m+n)}$$ \[4.12\]

Figure 4.7 – Double crystallographic shear mechanism of block formation. From (a) the ReO$_3$ structure, (b) crystallographic shear down and over in the ab-plane retains the planar
topology while (c) crystallographic shear along the c-axis results in the characteristic $\frac{1}{2}$ octahedra offset of layers in the block structures. Figure reproduced with permission from ref. 28.

H-Nb$_2$O$_5$ [(3 × 4)$_1$ + (3 × 5)$_n$] (Figure 4.8) is an example of a block structure exhibiting multiple block sizes and tetrahedral columns.31,33 Though it contains two block sizes, it is not an intergrowth structure (cf. Section 4.6.1).

![Figure 4.8 – Crystal structure of H-Nb$_2$O$_5$ (P2/m) with (3 × 4) blocks of octahedra separated by tetrahedral columns and (3 × 5) blocks of octahedra infinitely connected along c. The unit cell is outlined in black.](image)

4.4 Bronze-like Structures

Alternatively to the cs motif, a bronze-like framework can also be found in many structures with composition MO$_{3(\sim x)}$. The bronze structure, originally observed in Na$_x$WO$_3$ by Wöhler34, is also derived from ReO$_3$ by rotation of octahedra to convert cross-sectionally square tunnels to a variety of three-, four-, and five-sided tunnels (Figure 4.9). True bronzes are typified by a composition M'$_y$M''$_z$O$_{3(\sim x)}$ where M' is an intercalant ion with variable stoichiometry y and M'' is a redox-active transition metal cation with fixed stoichiometry z. Bronzes show high electrical conductivity, intense colour, and metallic lustre.35,36 A bronze
in the absence of intercalant M’, the M’\textsubscript{3}O\textsubscript{3–x} is simply a host structure with M” typically in its highest oxidation state with a different structure than the intercalated bronze (e.g. WO\textsubscript{3} (Figure 4.3c) versus Na\textsubscript{x}WO\textsubscript{3} (Figure 4.9b)).

Figure 4.9 – From (a) the ReO\textsubscript{3} structure, 45° rotation of a group of octahedra (circled and drawn with heavier lines) converts cross-sectionally square tunnels to (b) the bronze host structure with a variety of three-, four-, and five-sided tunnels. Filled circles represent the lattice sites that can typically be occupied in the bronze structure; open circles show the origin of these sites in the parent ReO\textsubscript{3} structure. Figure reproduced with permission from ref. 37.

The structure in Figure 4.9b represents the tetragonal tungsten bronze featuring only corner-shared octahedra and thus a host composition of MO\textsubscript{3}. Rotation of the octahedra has not changed the transition metal (MO\textsubscript{6}) or oxygen (OM\textsubscript{2}) coordination. It is also possible to form bronze structures with anion deficient nonstoichiometry. In the case of the bronze structure, the condensation mechanism is to fill transition metal cations into the pentagonal tunnels rather than to shift octahedra as in cs. Oxygen is also introduced inside the tunnels; \textendash M\textendash O\textendash M\textendash \textendash chains form. This mechanism results in pentagonal bipyramidal (MO\textsubscript{7}) coordination geometry inside the tunnels, OM\textsubscript{2} at the apices of the pentagonal bipyramid, and OM\textsubscript{3} oxygen ions at equatorial sites in the pentagonal plane.

In this work, the term bronze-like will be used to describe structures in the Nb\textsubscript{2}O\textsubscript{5}–WO\textsubscript{3} family that are closely related to the tetragonal tungsten bronzes but with several key distinctions. Note that these structures are variously referred to in the literature as bronze,
bronze-like, tunnel, and pentagonal column structures. First and foremost, the structures herein are prepared and stable as insulating d^0 oxides without the presence of the M’ intercalant ion. When they are electrochemically lithiated they may become true bronzes. The structures herein are also typically not tetragonal though they are essentially superstructures with $b \approx 3a$ (Figure 4.10).

Figure 4.10 – Comparison of (a) the tetragonal tungsten bronze (TTB) framework and (b) the bronze-like phase Nb$_8$W$_9$O$_{47}$ in the Nb$_2$O$_5$–WO$_3$ family with an orthorhombic cell $b \approx 3a$ and partially filled pentagonal tunnels (black circles). Both the octahedra and filled tunnel sites are mixed Nb/W occupancy. Figure reproduced with permission from ref. 38.

4.5 Infinitely Adaptive Structures

A further complication that can affect both crystallographic shear and bronze-like phases is the concept of infinitely adaptive structures introduced by Anderson:

“A class of crystalline substances is recognized in which changes of chemical composition are accompanied neither by forming a step-wise succession of phases nor by forming nonstoichiometric or solid solution phases with disordered, defect structures. Instead, every composition orders into a superlattice and the diffraction patterns invariably show only a single set of superstructure lines which is, however, different at every composition. The true superlattice multiplicity is that of a large unit cell, built up by the ordered repetition of a set of sub-units, which differ in compositions but are structurally closely related and readily interconvertible with a minimum of adjustment of atomic positions. Infinitesimal changes of total
composition can then be accommodated in a fully ordered structure by a change in the relative numbers of these sub-units and a consequential change in total multiplicity.39

Infinitely adaptive structures are known involving both \textit{cs} (e.g. Ti\textsubscript{n}O\textsubscript{2n-1}, 10 \leq n \leq 14)29,39,40 and bronze-like phases (e.g. Ta\textsubscript{2}O\textsubscript{5–11}Ta\textsubscript{2}O\textsubscript{5·4}WO\textsubscript{3})41–45. In the \textit{cs} phase, the shear vector swings continuously from (\textbar{1}21) to (\textbar{1}32).40,29 In the tantalum oxide–tungsten oxide phases, the subunit is a UO\textsubscript{3}-type cell; chains of these subunits join together and distort to form structures with octahedral and pentagonal bipyramidal coordination geometry. A more recent example of an infinitely adaptive series is the transition metal oxylalcogenides (Ce\textsubscript{1-x}La\textsubscript{x})\textsubscript{2}O\textsubscript{2}MnSe\textsubscript{2}46 where the size mismatch between the cerium oxide and manganese selenide layers leads to incommensurate structures. The block and bronze-like phases of Nb\textsubscript{2}O\textsubscript{5}, TiO\textsubscript{2– Nb\textsubscript{2}O\textsubscript{5}, and Nb\textsubscript{2}O\textsubscript{5– WO\textsubscript{3}} are believed to form homologous series of discrete compounds—essentially line phases—but one can begin to imagine how defects might accommodate a range of stoichiometries to fill the gaps between these lines and/or how infinitely adaptive structures might be considered the limit of a series of infinitesimally closely spaced line phases.

4.6 Defects and Intergrowths

As discussed, the discrete line phases within \textit{cs} and bronze-like phases can be thought of as long-range ordered defect structures. In a further complication, random defects surely occur within these ordered structures. In the \textit{cs} phases, random Wadsley defects, twins, and intergrowths of different block sizes are common47–52 though point defects are also known53–55. Of note is the apparent ability of the tetrahedral columns to accommodate a small amount of nonstoichiometry of a given block structure based on the ideal composition from equation [4.11]. The compound GeO\textsubscript{2·9}Nb\textsubscript{2}O\textsubscript{5} is comprised of (3 \times 3)\textsubscript{l} blocks of octahedra; therefore, it is apparently isostructural with P\textsubscript{2}O\textsubscript{5·9}Nb\textsubscript{2}O\textsubscript{5} despite being anion-deficient even relative to the already anion-deficient block motif.56,57 After thorough investigation, a suitable model to the data was found with disorder and occupancy of interstitial octahedral sites within the tetrahedral columns.55,57 In the bronze-like structures, defects often take the form of changes in the pattern of tunnel occupancy or ReO\textsubscript{3}-type intergrowths at different orientations.55,58
4.6.1 Intergrowth Phases

Intergrowth phases are a special subclass within the cs and bronze-like families because they occur frequently and further blur the phase space. Given that blocks have integer width (n) and length (m) in units of octahedra and that both n and m are typically 3–5, there are many ways to imagine arranging the blocks without a significant perturbation to the motifs present ($i.e.$ corner-sharing blocks of octahedra, tetrahedral linkers, edge-sharing cs planes). Disordered intergrowths are well known. Examples may be blatantly disordered (Figure 4.11) but subtler disordered intergrowths can be imagined—and have been found—that may simply interrupt the parent structure for a few isolated blocks or a narrow plane of blocks.

![Figure 4.11](image)

Figure 4.11 – (a) TEM image of a disordered intergrowth of various block sizes in a sample of niobium oxide with a minor amount of tungsten oxide and (b) a model of the block sizes and connectivities corresponding to the outlined square in (a). The square is approximately 11 nm in length; a scale bar is given in (b). Figure reproduced with permission from ref. 60.

In addition to the myriad variety of disordered intergrowths, it is possible to form new crystalline phases via ordered intergrowths. Perhaps the best example of this is $\text{Nb}_{26}\text{W}_4\text{O}_{77}$ (Figure 4.12)—an ordered intergrowth of $\text{Nb}_{12}\text{WO}_{33}$ and $\text{Nb}_{14}\text{W}_3\text{O}_{44}$. $\text{Nb}_{12}\text{WO}_{33}$ comprises $(3 \times 4)_1$ blocks of octahedra and $\text{Nb}_{14}\text{W}_3\text{O}_{44}$ comprises $(4 \times 4)_1$ blocks ($cf.$ Chapter 7). The observed phase of $\text{Nb}_{26}\text{W}_4\text{O}_{77}$ is then the simplest possible intergrowth with alternating ABAB slabs of each end member $[(3 \times 4)_1 / (4 \times 4)_1]$. An intergrowth is distinguished from a block structure formed of two types of block in that the former contains multiple block sizes within a single layer while the latter consists of only one block size within a single layer.
While Nb$_{26}$W$_4$O$_{77}$ can be synthesised as a single crystal, most intergrowth phases are observed in domains via electron microscopy. Though not a strict definition, this metastability is also a distinguishing feature of intergrowths.

![Ordered intergrowth structure](image)

Figure 4.12 – Ordered intergrowth structure Nb$_{26}$W$_4$O$_{77}$ $[(3 \times 4)_1 / (4 \times 4)_1]$ from alternate stacking of slabs of Nb$_{12}$WO$_{33}$ $(3 \times 4)_1$ and Nb$_{14}$W$_3$O$_{44}$ $(4 \times 4)_1$. Figure reproduced with permission from ref. 61.

Beyond this simple example, far more complex intergrowth structures can be found such as intergrowths of H-Nb$_2$O$_5$ and Nb$_{12}$WO$_{33}$. Beyond the complexity of having two different block types in H-Nb$_2$O$_5$, these intergrowths arise from more complex stacking sequences. Nevertheless, these structures are capable of long-range order and thus represent possible crystalline phases. In practice, the situation is more complicated as these unit cells are so large (e.g. ac plane = 91.7 Å × 19.1 Å in Nb$_{68}$WO$_{173}$) that, given the structural metastability and closely related structures, the number of repeating unit cells is not likely to be large.
Figure 4.13 – Slabs of (a) type A and both type A and (b) type B are found in the block structures (c) Nb$_{12}$WO$_{33}$ and (d) H-Nb$_2$O$_5$, respectively. Intergrowth structures between these end members can be derived from different slab sequences as in (e) Nb$_{26}$WO$_{68}$, (f) Nb$_{40}$WO$_{103}$, and (g) Nb$_{68}$WO$_{173}$. Large slab letters and bold octahedra are $\frac{1}{2}$ octahedra offset in b. Figure reproduced with permission from ref. 63.
4.7 References

(61) Andersson, S.; Mumme, W. G.; Wadsley, A. D. Multiple Phase Formation in the Binary System Nb$_2$O$_5$–WO$_3$. The Structure of W$_4$Nb$_{26}$O$_{77}$, an Ordered Intergrowth of the Adjoining Compounds WNb$_{12}$O$_{33}$ and W$_3$Nb$_{14}$O$_{44}$. *Acta Crystallogr.* **1966**, *21*, 802–808.

Chapter 5

Niobium Oxides

“Structurally the chemistry of Nb$_2$O$_5$ is more complex than any other binary transition metal oxide.” – John B. Goodenough, *Physics of Non-Tetrahedrally Bonded Binary Compounds III*

5.1 Abstract

Nanostructuring and nanosizing have been widely employed to increase the rate capability in a variety of energy storage materials. While nano-processing is required for many materials, we show here that both the capacity and rate performance of low temperature bronze-phase TT- and T- polymorphs of Nb$_2$O$_5$ are inherent properties of the bulk crystal structure. Their unique “room-and-pillar” NbO$_6$/NbO$_7$ framework structure provides a stable host for lithium intercalation; bond valence sum mapping exposes the degenerate diffusion pathways in the sites (rooms) surrounding the oxygen pillars of this complex structure. Electrochemical analysis of thick films of micrometer-sized, insulating niobia particles indicates that the capacity of the T-phase, measured over a fixed potential window, is limited only by the Ohmic drop up to at least 60°C (12.1 A·g$^{-1}$), while the higher temperature (Wadsley–Roth, crystallographic shear structure) H-phase shows high intercalation capacity (> 200 mA·h·g$^{-1}$) but only at moderate rates. High-resolution 6/7Li solid-state nuclear magnetic resonance (NMR) of T-Nb$_2$O$_5$ revealed two distinct spin reservoirs, a small initial rigid population and a majority-component mobile distribution of lithium. Variable temperature NMR showed lithium dynamics for the majority lithium characterized by very low activation energies of 58(2) to 98(1) meV. The fast rate, high density, good gravimetric capacity, excellent capacity retention, and safety features of bulk, insulating Nb$_2$O$_5$ synthesized in a single step at relatively low temperatures suggest that this material is not only structurally and electronically exceptional but merits consideration for a range of further applications. In addition, the realisation of high rate performance without nanostructuring in a complex insulating oxide expands the field for battery material exploration beyond conventional strategies and structural motifs.
5.2 Introduction

There is a growing need for high-power, high-capacity energy storage materials for applications that require faster rate performance than traditional battery materials can offer, along with higher charge storage capability than can be achieved with supercapacitor systems. Unless nanosized, conversion materials and two-phase intercalation compounds commonly used in lithium-ion batteries generally do not deliver high power due to the kinetics associated with major structural transformations. Electric double-layer capacitors (EDLCs) can deliver high rate performance but are limited to relatively low volumetric and areal energy densities as redox reactions offer the opportunity for 10–100 times greater charge storage than the electrostatic mechanism of EDLCs.\(^{1,2}\) In lithium-ion batteries, realisation of the maximum capacity of an electrode material in a given potential window is inherently dependent upon the ability of lithium to reach the particle interior. This has generally limited high rate performance to materials with short diffusion distances typically achieved via nanoscaling or nanostructuring of the particles.

The disadvantages of the synthesis and use of nanoparticles and nanoarchitectures for battery applications are well known: high surface area leading to increased dissolution and increased surface–electrolyte interface (SEI) formation, low packing density, toxicity, high cost, chemical waste generation, scalability issues, and often many-step synthetic complexity.\(^{3-5}\) Preparation of energy-dense materials with high capacity and good rate performance through a simple and efficient synthetic route is clearly desirable but evidence from e.g. Li\(_4\)Ti\(_5\)O\(_12\), LiFePO\(_4\), and TiO\(_2\) suggests that this is not generally observed.

Niobium(V) oxides, in the potential window ca. +2.0 to +1.0 V vs. Li\(^+\)/Li, have shown impressive rate and capacity as intercalation electrodes. In this voltage range, safety and stability issues from SEI formation associated with electrolyte instability below +1.0 V vs. Li\(^+\)/Li, as well as lithium dendrite formation, can be avoided.\(^{6-8}\) Furthermore, as lithium does not alloy with aluminium until 300 mV vs. Li\(^+\)/Li\(^9\), copper foil can be substituted with significantly cheaper and lighter aluminium foil as the anode current collector. The phase stability of Nb\(_2\)O\(_5\) is complex and at ambient temperature and pressure many metastable polymorphs exist that depend on heating conditions, precursors, and synthesis procedures.\(^{10}\) In this study, we examine four polymorphs: TT-Nb\(_2\)O\(_5\),\(^{11-13}\) T-Nb\(_2\)O\(_5\) (\(Pbam\), Figure 5.1a,b),\(^{14}\) B-Nb\(_2\)O\(_5\) (\(C2/c\), Figure 5.1c),\(^{15}\) and H-Nb\(_2\)O\(_5\) (\(P2/m\), Figure 5.1d).\(^{16}\) Regarding nomenclature, the T designation comes from the German \textit{tief}, which means low, as in low temperature; the B
polymorph was named for its crystal habit (blätter or bladed); and the H designates high as it is the high temperature phase.10 T-Nb\textsubscript{2}O\textsubscript{5} is structurally similar to the tungsten bronzes but composed of primarily highly distorted octahedral and pentagonal bipyramidal Nb environments rather than regular octahedra. Partially occupied niobium sites (totalling 0.8 of the 16.8 niobium atoms per Nb\textsubscript{16.8}O\textsubscript{42} unit cell) with high coordination and long Nb–O interatomic distances are proposed in the crystal structure to balance the charge from 42 oxygen atoms per unit cell.14 The TT-phase is another metastable compound, whose structural details are not fully understood but are apparently similar to T-Nb\textsubscript{2}O\textsubscript{5}.11 On the basis of diffraction data, TT-Nb\textsubscript{2}O\textsubscript{5} has been described as a disordered modification of T-Nb\textsubscript{2}O\textsubscript{5}, the disorder being related to modulation of niobium atoms above and below the mirror plane at (x, y, 0.5) in T-Nb\textsubscript{2}O\textsubscript{5}.11 Monoclinic B-Nb\textsubscript{2}O\textsubscript{5} possesses a TiO\textsubscript{2}(B)-like structure. H-Nb\textsubscript{2}O\textsubscript{5}, another monoclinic polymorph and the phase which is not known to convert to any other polymorph as a function of temperature, fits into the Wadsley–Roth family of crystallographic shear structures with (3 × 4)\textsubscript{1} and (3 × 5)\textsubscript{∞} ReO\textsubscript{3}-like blocks of octahedra. Shared octahedral edges along shear planes at the periphery of the blocks account for the oxygen:metal ratio of 2.5. The blocks are infinite parallel to b and the subscripts 1 and \infty denote block connectivity in the ac plane17.

Figure 5.1 – Crystal structures of (a–b) T-Nb\textsubscript{2}O\textsubscript{5} (Pbam), (c) B-Nb\textsubscript{2}O\textsubscript{5} (C2/c), (d) H-Nb\textsubscript{2}O\textsubscript{5} (P2/m). Niobium and oxygen ions are depicted as dark blue and orange spheres, respectively; niobium ions are centred in the blue NbO\textsubscript{6} polyhedra.
Recent studies on the TT- and T-polymorphs have shown excellent rate and cycle life performance on a variety of nanoscaled and nanostructured morphologies. Examples include nanobelts, nanofibers, nanosheets, nanoparticles/nanocrystals, templated mesoporous nanoparticles, nanocrystalline Nb$_2$O$_5$/carbon nanotube nanocomposites, nanocrystalline Nb$_2$O$_5$/graphene nanocomposites, nanocrystalline Nb$_2$O$_5$/carbide-derived carbon nanocomposites, and Nb$_2$O$_5$@carbon core–shell nanocrystals. While some electrochemical and structural aspects of bulk TT-, T-, and H-Nb$_2$O$_5$, prepared from solid-state methods have been investigated, their rate behaviour has evidently not been characterised. In this work, we examine the electrochemical properties of a family of Nb$_2$O$_5$ polymorphs synthesised via oxidation of niobium(IV) oxide. This simple solid-state route enables access to the low temperature metastable phases and has been used to produce TT-, T-, B-, and H-Nb$_2$O$_5$ previously; however, few details were given in the earlier study and to the best of our knowledge, (i) no systematic synthetic procedure has been reported; (ii) no electrochemistry of Nb$_2$O$_5$ phases from NbO$_2$ has been reported; and (iii) the electrochemistry of B-Nb$_2$O$_5$, irrespective of precursor, has not been previously discussed. Along with the ease of synthesis relative to nanostructuring, solid-state methods produce larger particles with decreased contributions from electric double-layer capacitance, surface and near-surface phenomena, and non-bulk-like local atomic structure environments, facilitating a study of the inherent properties of Nb$_2$O$_5$. Lithium environments and dynamics from 67Li solid-state NMR and bond valence sum maps performed as part of this study aid the understanding of the structural origin of the anomalous electrochemical performance in micrometer-sized metal oxides. These tools show degenerate diffusion pathways with a very low activation energy for Li motion on the order of a few $k_B T$ (ca. 60–100 meV). Through this investigation, we find that the accessible capacity and rate performance of the low temperature Nb$_2$O$_5$ polymorphs is a general feature of the structure type and not a function of nanoscaling or nanostructuring.

5.3 Experimental Methods

5.3.1 Synthesis

Nb$_2$O$_5$ polymorphs were synthesised by heating separate ~1 g aliquots of NbO$_2$ (Alfa Aesar, 99.5+%) in alumina crucibles in air for 24 hours at 19 temperature points between 200 and 1100 °C spaced at 50 °C increments. The samples were heated at a ramp rate of 10 °C·min$^{-1}$ until the desired temperature was attained; the temperature was then held for 24 hours before ambient cooling. Thermal gravimetric analysis (TGA) was performed on a Mettler Toledo 90
TGA/SDTA 851 thermobalance. Samples were placed in a tared 100 µL alumina crucible and the mass was recorded from 50 °C to 1000 °C in steps of 1 °C·min⁻¹ under constant air flow (50 mL·min⁻¹). A blank, with an empty crucible, was recorded under the same heating conditions and subtracted from the sample data. The data were numerically differentiated to obtain differential thermogravimetric analysis (DTA) curves.

5.3.2 Electrochemistry

Cathodes (in half-cell configuration) were prepared by agate mortar and pestle grinding of Nb₂O₅, Super P carbon (Timcal), and Kynar® polyvinylidene difluoride (PVDF, Arkema) in an 8:1:1 mass ratio with N-methyl-2-pyrrolidone (NMP, Sigma-Aldrich, 99.5%, anhydrous) to form a viscous slurry. High-carbon proof-of-concept electrodes were prepared in a similar manner but with an active material:carbon:binder ratio of 3:6:1. The slurry was tape cast onto an aluminium foil current collector with a 150–200 µm doctor blade. After drying for at least 12 h at 60 °C, 1 cm² circular cathodes were cut via a punch press. Unless otherwise noted, mass loadings were 4–6 mg Nb₂O₅·cm⁻². Coin cell batteries were constructed in an argon-filled glove box with O₂ and H₂O levels < 1 ppm. The electrolyte–solvent system consisted of 1 M LiPF₆ dissolved in a 1:1 volume ratio of ethylene carbonate/dimethyl carbonate (EC:DMC, Merck). The aforementioned cathode, a glass microfiber (Whatman) separator saturated with electrolyte–solvent, a lithium metal foil anode (Sigma-Aldrich, 99.9%) on a stainless steel current collector, and a wave spring were compressed within a standard 2032-type coin cell casing. All electrochemical measurements were performed with a Bio-Logic potentiostat/galvanostat instrument running EC-Lab® software. In each coin cell, the niobium oxide/carbon/binder film served as the working electrode and the lithium metal as both the counter electrode and reference electrode. Discharge/charge took place within the range +3.0 V to +1.2 V or +1.0 V with respect to Li⁺/Li. Galvanostatic charge/discharge data were numerically differentiated to give differential voltage curves. Specific cycling conditions are denoted in the text for each experiment. For the preparation of samples for NMR analysis, thick (2–3 mm; 150–750 mg) pellets of pure Nb₂O₅ powder were cold pressed at 5 MPa and assembled into coin cells as above. These pellets were discharged at 100–500 µA·cm⁻² until a desired degree of lithiation was reached. For clarity, in this article C rate refers to inverse hours required to reach the theoretical capacity of 201.7 mA·h·g⁻¹ Nb₂O₅ (e.g. C/5 implies a current of 40.34 mA·g⁻¹ Nb₂O₅) and discharge refers to lithium insertion into the Nb₂O₅ structure.
Theoretical capacity for a one electron reduction from Nb$^{5+}$ to Nb$^{4+}$ is 201.7 mA·h·g$^{-1}$ based on the mass of Nb$_2$O$_5$; equation [5.1]:

\[
Nb_2O_5 + xLi^+ + xe^- \rightarrow Li_xNb_2O_5
\]

[5.1]

5.3.3 X-Ray Diffraction

Laboratory powder x-ray diffraction (XRD) patterns were recorded at room temperature on a Panalytical Empyrean diffractometer with an X-ray tube emitting Cu K$_{\alpha 1,2}$ radiation (1.540598 Å, 1.544426 Å). Patterns were recorded from 5–80° 2θ in steps of 0.017° 2θ in Bragg–Brentano geometry with flat-plate sample rotation. Rietveld analysis was performed in GSAS35 and GSAS-II36 with the aid of the CMPR toolkit37. Crystal structures and isosurfaces (with bond valence energy level cut-off set to 2.0 eV, see Discussion) were visualised in VESTA 3.038.

5.3.4 Morphological Analysis

Brunauer–Emmett–Teller (BET) surface areas were obtained from nitrogen adsorption isotherms at 77 K. BET data were collected on a TriStar 3000 gas adsorption analyser (Micromeritics Instrument Corp., V6.08). Scanning electron microscopy (SEM) images were taken with a Sigma VP microscope (Zeiss) in secondary electron mode at 3 keV. Tap density was recorded on an AutoTap (Quantachrome Instruments) instrument operating at 257 taps·min$^{-1}$. The tap densities were measured according to ASTM international standard B527-15 modified to accommodate a 10 cm3 graduated cylinder.

5.3.5 17O and 93Nb Solid-State Nuclear Magnetic Resonance Spectroscopy

One-dimensional 17O and 93Nb solid-state NMR experiments were performed in a 1.3 mm probehead on a 700 MHz Bruker Avance III spectrometer at the 17O Larmor frequency of 94.9 MHz and 93Nb Larmor frequency of 171.1 MHz. Static and magic angle spinning (MAS) of 45–60 kHz experiments were performed; the specific rotational frequency is denoted for each experiment. One-dimensional spectra were recorded with a Hahn-echo pulse sequence for 17O and a single $\pi/2$ pulse for 93Nb; the applied $\pi/6$ pulse length for 17O and “$\pi/2$” pulse length for 93Nb were 1.13 µs and 1.0 µs, respectively. N.b. Given the effect of strong quadrupolar coupling on 93Nb nutation, the rf pulse was directly optimised on the B-Nb$_2$O$_5$ sample, yielding an effective $\pi/2$ pulse length of 1.0 µs. CeO$_2$, with an isotropic shift of
–877 ppm vs. H₂O was used as a secondary ¹⁷O shift reference. LiNbO₃, with an isotropic shift of –1004 ppm vs. NbCl₅ in ACN, was used as a secondary ⁹³Nb shift reference.³⁹

5.3.6 ⁶/⁷Li Solid-state Nuclear Magnetic Resonance Spectroscopy

One- and two-dimensional solid-state NMR experiments were performed in a 4.0 mm probehead on a 200 MHz Bruker Avance III spectrometer at the ⁷Li Larmor frequency of 77.7 MHz and on a 700 MHz Bruker Avance III spectrometer at the ⁶Li Larmor frequency of 103.0 MHz and ⁷Li Larmor frequency of 272.0 MHz. MAS up to 14 kHz was applied; the specific rotational frequency is denoted for each experiment. One-dimensional spectra were recorded with a single π/2 pulse or Hahn-echo pulse sequence; the applied π/2 pulse lengths for ⁶Li and ⁷Li were 7.00 µs and 2.60–3.75 µs, respectively. Two-dimensional exchange spectroscopy (EXSY) measurements were performed with a rotor-synchronised π/2 – t₁ – π/2 – t_mixing – π/2 – t₂ pulse sequence where t_mixing is a variable mixing period during which the nuclei are allowed to interact via chemical and/or spin diffusion. Spectra were collected as a function of temperature for 1D, 2D, spin–lattice (T₁), and spin–spin (T₂) relaxation measurements of selected samples. A saturation recovery pulse sequence was employed for T₁ measurements: a series of π/2 pulses was first applied to eliminate bulk magnetisation (M₀) along z and then the z-magnetisation was allowed to relax during a recovery time (t) before recording the magnetisation (Mₜ) over a range of recovery times. A variable-delay spin echo sequence was used to measure T₂. All samples were ground with an agate mortar and pestle and packed into 4.0 mm ZrO₂ rotors in an Ar-filled glovebox with < 1 ppm O₂ and < 1 ppm H₂O; lithiated samples were washed with dimethyl carbonate (3 × 3 mL) to remove any residual LiPF₆ and dried in vacuo before being ground and packed. The ⁶/⁷Li spectra were referenced with a secondary reference, (⁶/⁷Li 1:1 at./at.) Li₂CO₃, at +1.1 ppm versus the 1.0 M LiCl (aq.) primary reference at 0.0 ppm.

5.3.7 NMR Calculations and Powder Simulations

First principles, periodic density functional theory (DFT) calculations of the NMR parameters of the host structures were performed in the plane wave code CASTEP (v. 8.0) with ultrasoft pseudopotentials generated ‘on-the-fly’.⁴⁰–⁴³ The magnetic shielding tensor was calculated within the gauge-including projector augmented-wave (GIPAW) approach while the quadrupolar parameters were calculated directly from the principal components of the electric field gradient at the nucleus. Electron exchange and correlation were treated with the Perdew–
Burke–Ernzerhof (PBE) functional within the generalised gradient approximation (GGA). Calculations were performed with a plane-wave kinetic energy cut-off of 600 eV and \(k \)-point sampling of the Brillouin zone with a Monkhorst–Pack grid\(^{45} \) finer than \(2\pi \times 0.06 \ \text{Å}^{-1} \). Convergence of isotropic shielding and quadrupolar coupling were checked with respect to both basis-set energy cut-off and \(k \)-point sampling. Extraction of the Euler angles between the chemical shielding and electric field gradient tensors was performed using MagresView.\(^{46} \) LiNbO\(_3\), with an experimental isotropic shift of \(-1004 \ \text{ppm}\),\(^{39} \) was used to determine the reference shielding for \(^{93}\)Nb. Powder simulations of the calculated NMR tensors were performed in SIMPSON\(^{47} \) with \(B_0 \) and the MAS frequency set equivalent to the experimental conditions.

5.4 Results

5.4.1 Structural Characterisation of Nb\(_2\)O\(_5\) Polymorphs

Thermal gravimetric analysis of NbO\(_2\) and Nb (Figure 5.2) showed that the onset of oxidation for NbO\(_2\) occurs at a temperature significantly below that for oxidation of Nb metal—290 °C versus 420 °C—allowing a greater range of metastable phases to be prepared with the former starting material. A systematic X-ray diffraction investigation of thermal oxidation of NbO\(_2\) revealed that four polymorphs with a nominal composition of Nb\(_2\)O\(_5\) could be observed upon elevated-temperature oxidation of NbO\(_2\) (Figure 5.3). While some changes are apparent after 24 h at 250 °C, NbO\(_2\) does not oxidise to Nb\(_2\)O\(_5\) until \(ca. 300 \ \text{°C} \) in air, TT-Nb\(_2\)O\(_5\) being the first oxidised phase that is observed. Three further irreversible phase transitions are observed at higher temperature: nearly phase-pure T-Nb\(_2\)O\(_5\) is found from approximately 550–600°C, B-Nb\(_2\)O\(_5\) is observed from 700–850 °C, and H-Nb\(_2\)O\(_5\) is observed at and above 900 °C (Figure 5.3). Rietveld analysis (Figure 5.4) revealed minor impurities from the reactant or other polymorphs in all but the H-phase.

A colour change is observed from deep blue, \(d^1 \), niobium(IV) to white, \(d^0 \), niobium(V) for all samples heated above 400 °C. This is an indication that the oxidation is complete for the T-, B-, and H-phases. The TT-phase is a pale-grey blue and thus may retain a small (\(ca. <0.5\% \))\(^{10} \) fraction of niobium(IV). The observed colour changes are in accordance with the colour change from white, through grey-blue, toward dark blue observed as lithium is inserted into any of the Nb\(_2\)O\(_5\) structures in this study and elsewhere\(^{48} \).
Figure 5.2 – Mass and differential mass versus temperature curves of (a) Nb metal and (b) NbO$_2$ obtained under flowing air in a TGA.

Figure 5.3 – XRD patterns of phases observed upon heating NbO$_2$ in air. The patterns dominated by NbO$_2$, TT-Nb$_2$O$_5$, T-Nb$_2$O$_5$, B-Nb$_2$O$_5$, and H-Nb$_2$O$_5$ are shown in orange, black, red, blue, and green, respectively. Curves with more than one colour indicate a temperature where a significant amount of more than one phase was present.
Figure 5.4 – Rietveld refinement of NbO$_2$ calcined at (a) 300 °C, (b) 600 °C, (c) 850 °C, and (d) 1100 °C for 24 h. Black crosses are observed data, solid red line is the calculated fit, lower solid blue line is the difference curve. In (a), tick marks indicate expected (hkl) reflections for
T-Nb$_2$O$_5$ (pink), B-Nb$_2$O$_5$ (light blue), H-Nb$_2$O$_5$ (black), and NbO$_2$ (brown). Structural data for the TT-phase are unavailable so a fit to the T-phase was performed. Phase analysis determined 91(5)% T-Nb$_2$O$_5$, 3(5)% NbO$_2$, 3(5)% B-Nb$_2$O$_5$, and 3(5)% H-Nb$_2$O$_5$. Note that the phase analysis errors here and in the following models, taken from the Rietveld refinement, are sometimes larger than the estimated amount of a given phase. This is likely due to the moderate crystallinity of the low temperature phases and the uncertainty in the models. Nevertheless, some peaks of impurity phases are visibly present so the phase analysis and error estimates suggest that some amount of these secondary phases are present but that the percentage cannot be precisely quantified at such low values and at this data quality. R factors: $R_p = 0.0626$, $wR_p = 0.0806$. $\chi = 2.644$. In (b), tick marks indicate expected (hkl) reflections for T-Nb$_2$O$_5$ (pink), H-Nb$_2$O$_5$ (light blue), and B-Nb$_2$O$_5$ (black). Phase analysis determined 92(5)% T-Nb$_2$O$_5$, 5(5)% B-Nb$_2$O$_5$, and 3(5)% H-Nb$_2$O$_5$. R factors: $R_p = 0.0677$, $wR_p = 0.0867$. $\chi = 3.232$. In (c), tick marks indicate expected (hkl) reflections for B-Nb$_2$O$_5$ (pink) and H-Nb$_2$O$_5$ (light blue). Phase analysis determined 98(4)% B-Nb$_2$O$_5$ and 2(4)% H-Nb$_2$O$_5$. R factors: $R_p = 0.0578$, $wR_p = 0.0754$. $\chi = 2.226$. In (d), tick marks indicate expected (hkl) reflections for H-Nb$_2$O$_5$ (pink). Even with other structures present, phase analysis determined 100% H-Nb$_2$O$_5$. R factors: $R_p = 0.0875$, $wR_p = 0.1275$. $\chi = 7.803$. The relatively poor fit of H-Nb$_2$O$_5$ may be related to the fact that the space group is H-Nb$_2$O$_5$ could be $P2$ rather than $P2/m$. A recent high-resolution neutron powder diffraction study49 reported an improved fit in $P2$ but the single crystal-derived space group $P2/m$ was retained in this work as further elucidation of subtle crystallographic details is beyond the scope of the lab X-ray diffraction data collected for phase identification in this study.

Unlike the step changes in crystal structure from NbO$_2$ to orthorhombic and then through two distinct monoclinic Nb$_2$O$_5$ polymorphs, the surface and particle morphology, as viewed by SEM (Figure 5.5), transformed more smoothly upon heating. After treatment at 300°C in the TT-phase, anhedral particles (*i.e.* without well-formed crystal faces) with cracked-mud-like topology dominated which, at 600 °C in the T-phase, had partially annealed. The samples heated to 850 °C yielded rounded steps on interconnected subhedral particles of the B-phase, which, after 1100 °C treatment crystallised further to capped euhedral particles of several micrometers with distinctly striated edges in the H-phase. In addition to the smaller primary particle features, a larger secondary particle size can be considered which corresponds to discrete particles composed of interconnected primary particles; this secondary particle size is of the order of tens of micrometers. BET surface area measurements revealed a quite small
surface area, on the order of 1–2 m$^2\cdot$g$^{-1}$, for all phases. For further particle characterisation, tap density was measured and is reported with BET surface area in Table 5.1. As volumetric, rather than gravimetric, energy density dictates many applications, the tap density of Nb$_2$O$_5$ from solid-state synthesis is noteworthy at 1.2–1.8 g·cm$^{-3}$. By comparison, commercial TiO$_2$ nanopowders of 5–20 nm have almost an order of magnitude smaller tap density (0.12 to 0.24 g·cm$^{-3}$)50. The Nb$_2$O$_5$ phases examined in this study differ in structure and morphology but all are µm-scale, dense, and extremely low surface area.

Figure 5.5 – SEM images showing the particle sizes and morphologies of the Nb$_2$O$_5$ polymorphs obtained from oxidation of NbO$_2$; phase and synthesis temperature are denoted. Images of the polymorphs at (a) higher magnification and (b) lower magnification are shown.
Table 5.1 – Physical properties of micrometer-sized Nb$_2$O$_5$. BET surface area, as determined from fitting N$_2$ adsorption isotherms at 77 K, and tap density of four polymorphs of Nb$_2$O$_5$ synthesised from NbO$_2$ via thermal oxidation. Error estimates for surface area and tap density result from the isotherm fits and standard error propagation, respectively.

<table>
<thead>
<tr>
<th>Phase</th>
<th>Synthesis Temperature (°C)</th>
<th>BET Surface Area (m2.g$^{-1}$)</th>
<th>Tap Density (g.cm$^{-3}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TT-Nb$_2$O$_5$</td>
<td>300</td>
<td>1.8 ± 0.1</td>
<td>1.4 ± 0.1</td>
</tr>
<tr>
<td>T-Nb$_2$O$_5$</td>
<td>600</td>
<td>1.9 ± 0.1</td>
<td>1.4 ± 0.1</td>
</tr>
<tr>
<td>B-Nb$_2$O$_5$</td>
<td>850</td>
<td>1.5 ± 0.1</td>
<td>1.2 ± 0.1</td>
</tr>
<tr>
<td>H-Nb$_2$O$_5$</td>
<td>1100</td>
<td>0.7 ± 0.1</td>
<td>1.8 ± 0.1</td>
</tr>
</tbody>
</table>

The niobia polymorph host structures contain two NMR active quadrupolar nuclei – 93Nb and 17O. The crystalline polymorphs T-, B-, and H-Nb$_2$O$_5$ contain 7, 1, and 15 crystallographically distinct niobium sites and 11, 3, and 36 crystallographically distinct oxygen sites, respectively.

To further analyse the local structure, these NMR spectra were experimentally measured and compared to NMR parameters calculated from first principles based on the crystal structure models.

The 93Nb MAS spectrum of the low temperature polymorphs TT- and T-Nb$_2$O$_5$ reveals broad and indistinct lineshapes (Figure 5.6). T-Nb$_2$O$_5$ consists of 4 fully occupied Nb sites and 3 sites at very low occupancies (ca. 1-2%) that were added during structure solution from a single crystal X-ray study14 to charge compensate the fully occupied oxygen sublattice. DFT cannot be performed on partially occupied sites. In many cases, this issue is handled by the creation of a supercell with some ordered arrangement that averages the partial (or mixed) occupancy over several cells; different supercell configurations are then tested and compared.

In the case of T-Nb$_2$O$_5$ with very dilute atoms in a large unit cell, this method is not feasible. As a first approximation, Nb5-7 sites were deleted and O11 was removed to maintain charge neutrality. Though a rough approximation, the calculated C_Q values for this configuration of the T-phase ranged from 97 to 140 MHz, which are very large and not inconsistent with the observed broad spectrum. This indicates a highly distorted local environment for niobium, again consistent with the distorted octahedra and pentagonal bipyramidal sites in the crystal structure. B-Nb$_2$O$_5$ is a far simpler case with a single, less distorted Nb site and a calculated C_Q value of 42 to 39 MHz based on the ICSD and geometry optimised structures, respectively.
To probe this compound further, a wideline static 93Nb NMR spectrum was recorded (Figure 5.7). The spectral features spanned over 7 MHz, which is far greater than the excitation bandwidth of a single pulse. To facilitate the measurement, an automated tuning/matching robot was used to sweep across a wide frequency range without tedious manual intervention that is normally required to retune and match the probe at each excitation frequency. Fitting the static lineshape (Table 5.2) showed excellent agreement between the experimental chemical shift and quadrupolar coupling parameters and the DFT chemical shielding and electric field gradient tensors. The impact of geometry optimisation on the calculated NMR parameters was minor and did not necessarily agree better with the experimentally fit values, indicating that the crystal structure model of B-Nb$_2$O$_5$ is already very accurate. Finally, the 93Nb NMR of H-Nb$_2$O$_5$ represents a case that is more complicated than B-Nb$_2$O$_5$ but more promising than the low temperature polymorphs in terms of lineshape analysis and comparison to DFT, likely related to its high synthesis temperature and good crystallinity. The 93Nb lineshape of H-Nb$_2$O$_5$ exhibits several distinct peaks (Figure 5.6), which comparison to DFT immediately reveals to come from superimposed quadrupolar lineshapes of the individual sites. Of the fifteen Nb sites in the asymmetric unit, fourteen are octahedral and one is tetrahedral. From the calculated NMR tensors, the tetrahedral site is the least magnetically shielded; however, the dominant factor in site resolution is the degree of second-order quadrupolar broadening. The large C_Q of the tetrahedral site (81 MHz) relative to many of the octahedral sites (ca. 30 MHz) suppresses it in the overall spectrum. The largest visible outlier is site Nb14, in the $(4 \times 3)_1$ block subunit with a small C_Q of ca. 11 MHz, which appears as the largest peak in the 93Nb NMR spectrum. The most distorted site, according to DFT but inherently not readily visible in the experimental spectrum, is site Nb2, which is at the centre of the $(5 \times 3)_\infty$ block subunit.
Figure 5.6 – 93Nb NMR Spectra of Nb$_2$O$_5$ Polymorphs at 16.4 T and 60 kHz MAS. Experimental spectra are shown for TT- and T- H-Nb$_2$O$_5$. Experimental and calculated spectra are shown for B-Nb$_2$O$_5$ and H-Nb$_2$O$_5$. The MAS powder patterns were simulated in SIMPSON; B-Nb$_2$O$_5$ contains a single Nb site whereas the 15 distinct Nb sites in H-Nb$_2$O$_5$ are shown in colour below the summed spectrum.
Figure 5.7 – 93Nb static NMR spectrum of B-Nb$_2$O$_5$ at 16.4 T ($\omega_L = 171.3$ MHz). The overall spectrum (black trace) is the summation of 41 individual sub-spectra (multicoloured traces). DFT calculations of NMR tensors and Euler angles were performed to guide the fit (red trace, see main text), using parameters of $C_Q = 46(1)$ MHz and $\eta_Q = 0.62(3)$ (Table 5.2). The sub-spectra were acquired via spin-echo mapping with an rf carrier frequency step size of 1000 ppm (170 kHz); the overall spectrum spans ca. 7 MHz.
Table 5.2 – Calculated and experimental 93Nb NMR parameters of B-Nb$_2$O$_5$. The isotropic shift (δ) is obtained from the calculated isotropic shielding (σ_{calc}) via an absolute reference shielding (σ_{ref}) for 93Nb from the expression $\delta = \sigma_{\text{ref}} - \sigma_{\text{calc}}$. Comparison of the experimental vs. calculated shielding from LiNbO$_3$ ($\delta = -1004$ ppm) has been used to determine the reference shielding ($\sigma_{\text{ref}} = -614.3$ ppm) for 93Nb.

<table>
<thead>
<tr>
<th>DFT Calculationa</th>
<th>ICSD/Relaxed structureb</th>
<th>Experimental Fit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shift (δ, ppm)</td>
<td>$-1140 / -1104$</td>
<td>$-1105(10)$</td>
</tr>
<tr>
<td>Chemical shift anisotropy (CSA, ppm)</td>
<td>177.1 / 174.0</td>
<td>177(10)</td>
</tr>
<tr>
<td>Chemical shift asymmetry (η_{CSA})</td>
<td>0.76 / 0.48</td>
<td>0.4(2)</td>
</tr>
<tr>
<td>Quadrupolar coupling (C_Q or χ, MHz)</td>
<td>$-42.25 / -39.1$</td>
<td>$(\pm)46(1)^c$</td>
</tr>
<tr>
<td>Quadrupolar asymmetry (η_Q)</td>
<td>0.60 / 0.47</td>
<td>0.62(3)</td>
</tr>
<tr>
<td>Euler angle alpha ($^\circ$)</td>
<td>9.4 / 64.1</td>
<td>9d</td>
</tr>
<tr>
<td>Euler angle beta ($^\circ$)</td>
<td>4.1 / 48.8</td>
<td>4d</td>
</tr>
<tr>
<td>Euler angle gamma ($^\circ$)</td>
<td>37.2 / 6.9</td>
<td>37d</td>
</tr>
</tbody>
</table>

a The Rose convention is used for Euler angles. Shielding and quadrupolar tensors are described in the Haeberlen convention with reduced anisotropy.

b NMR parameters have been calculated directly from the ICSD structure, and after relaxing the lattice and atomic coordinates, respectively.

c Only the absolute value of the quadrupolar coupling constant is obtained experimentally.

d Experimental fit performed with Euler angles directly from DFT.

Though also a quadrupolar nucleus, the nuclear electric quadrupole moment of 17O ($-0.0256(2)$ barn) is 12.5 times smaller than the nuclear electric quadrupole moment of 93Nb ($-0.32(2)$ barn).52 As a consequence, 17O spectra commonly exhibit second-order quadrupole lineshapes – unless motionally averaged in an oxide-ion conductor – that can be resolved into coordination environment. Due to the low natural abundance of 17O (0.037%), enrichment is required to record 17O NMR spectra in a time-efficient manner. An important aspect of subsequent structural characterisation is the enrichment strategy. Commercially available 17O sources are typically 17O$_2$ gas or H$_2^{17}$O water and the incorporation strategy may be synthetic or post-synthetic (exchange). Unless selective enrichment is desired, post-synthetic (exchange) strategies rely on oxygen diffusion through the structure, which is aided by heating for hours to weeks. In this work, we took advantage of the use of NbO$_2$ as a precursor to directly synthesise TT-, T-, B-, and H-Nb$_2$O$_5$ in the presence of 70%-enriched 17O$_2$ at 300, 600, 850, and 1000 °C, respectively, for 24 h.
17O NMR spectra of the series of polymorphs (Figure 5.8) showed resonances around 600 ppm assigned to two-coordinate oxygen (ONb_2) and around 400 ppm assigned to three-coordinate oxygen (ONb_3) on the basis of the calculated shift ranges and previous work53. In T-Nb_2O_5 and the diffraction-related structure of TT-Nb_2O_5, two-coordinate oxygen sites are located at the (x, y, $\frac{1}{2}$) positions while three-coordinate oxygen sites are expected at (x, y, 0) positions within the unit cell. Interestingly, the ONb_2:ONb_3 ratio of TT- and T-Nb_2O_5 are significantly different. Several complications may arise in the quantitation of these sites: (i) the different quadrupolar coupling constants nutate differently, which in principle is compensated by a short excitation pulse, (ii) intermediate intensity between the two sites, which could arise from second-order quadrupolar shifts and/or the indeterminate nature of the actual coordination of a given oxygen atom with varying interatomic distances, (iii) sites with significantly larger quadrupolar coupling can be broadened to the extent they disappear into the baseline54, and (iv) the relatively poorly crystalline nature of these low temperature phases. Nevertheless, the evidence from 17O NMR provides an indication that the local structure is significantly different in these two phases and warrants further investigation beyond the scope of this work. The 17O spectrum of B-Nb_2O_5 similarly exhibits resonances assignable to two- and three-coordinate oxygen sites and in a ONb_2:ONb_3 ratio near the 3:2 ratio expected from the crystal structure. The ONb_3 resonance of H-Nb_2O_5 was weaker than expected and the ONb_4 resonance that should be present according to the structural model was not observed ($N.b.$ frequency region outside Figure 5.8) at this level of signal-to-noise ($cf.$ Figure 5.11 and discussion $vide$ $infra$).
Figure 5.8 – 17O NMR spectra of Nb$_2$O$_5$ polymorphs at 16.4 T and 60 kHZ MAS. The central transition frequency region is displayed.

In a second iteration of the 17O NMR work, T-Nb$_2$O$_5$ and H-Nb$_2$O$_5$ were synthesised directly from Nb metal powder in a 70%-enriched 17O$_2$ atmosphere at 600 and 1000 °C, respectively, for 24 h. Nb0 oxidises at ca. 420 °C, too high to yield TT-Nb$_2$O$_5$ (Figure 5.2–3) and B-Nb$_2$O$_5$ was inexplicably not observed in its NbO$_2$-derived stability window when Nb0 was used as the precursor. T-Nb$_2$O$_5$ converted directly to H-Nb$_2$O$_5$ from 600–800 °C. This is surprising but not unknown for niobia, where polymorphism depends on the precursor source and purity – impurities play a role in structure stabilisation that is not well understood. From this synthetic method, all the oxygen in the structure must come from the enriched gas, ensuring homogeneous 70% enrichment. The better enrichment enabled a detailed nutation study of T-Nb$_2$O$_5$ (Figure 5.9–10), revealing expected sine wave behaviour for the ONb$_2$ resonance but more complex intensity evolution for the ONb$_3$ resonance. This latter behaviour indicates a broader distribution of quadrupolar coupling constants for the ONb$_3$ resonance.
Figure 5.9 – 17O NMR spectra of T-Nb$_2$O$_5$ at 16.4 T and 45 kHz MAS as a function of excitation pulse length. Peaks not marked as ONb$_2$ or ONb$_3$ are rotational sidebands from satellite transitions.

Figure 5.10 – Nutation build-up curves of the 17O resonance(s) of T-Nb$_2$O$_5$ at 610 ppm (ONb$_2$) and 410 ppm (ONb$_3$) at 16.4 T and 45 kHz MAS.
The high signal-to-noise in the 17O NMR spectra of H-Nb$_2$O$_5$ from Nb0 (Figure 5.11) is able to resolve ONb$_2$, ONb$_3$, and ONb$_4$ resonances. The ONb$_4$ resonance is assigned to O16 based on both the crystal structure and the DFT calculated shift. O16 is in the $(4 \times 3)_1$ block subunit at the corners of the block that are connected to two $(5 \times 3)_6$ blocks offset along b; this connection to two $(5 \times 3)_6$ blocks gives rise to the unique coordination environment and 17O NMR shift. The ONb$_2$ features are remarkably well matched between computation and experiment while the high frequency ONb$_3$ region indicates a difference between the structural model and experiment though the overlap of several resonances in this region hinders further deconvolution without additional data.

Figure 5.11 – 17O NMR spectra of H-Nb$_2$O$_5$ at 16.4 T and 55 kHz MAS. (a) Calculated and (b) experimental spectra exhibit baseline-resolved oxygen coordination environments.
5.4.2 Electrochemical Properties of Nb$_2$O$_5$ Polymorphs

Electrochemical lithiation of NbO$_2$ and the four Nb$_2$O$_5$ polymorphs revealed a range of structure-driven mechanisms. Chronopotentiometric discharge and charge were performed at a rate of C/10 where kinetic limitations should be minor. The results (Figure 5.12a), demonstrate (i) a high intercalation capacity and three distinct regions for H-Nb$_2$O$_5$; (ii) a close-to-linear sloping voltage profile for T- and TT-Nb$_2$O$_5$; (iii) a very small capacity for B-Nb$_2$O$_5$ and NbO$_2$ and (iv) a low overpotential between charge and discharge for all phases in the electrochemical window 3.0 to 1.2 V vs. Li$^+$/Li. Cycling studies (Figure 5.12b) were performed with galvanostatic discharge and charge at 1C for T- and TT-Nb$_2$O$_5$ and C/10 for B- and H-Nb$_2$O$_5$ with an additional constant voltage charge step (CCCV charging) at 3.0 V that is widely employed to optimise charging while preventing overcharge. H-Nb$_2$O$_5$ showed a first cycle capacity of 235 mA·h·g$^{-1}$ but dropped to 175 mA·h·g$^{-1}$ after 100 cycles. Conversely, B-Nb$_2$O$_5$ stored only 20 mA·h·g$^{-1}$ on first discharge but retained that capacity with no diminution over the recorded cycle range. After a first cycle loss of ~25 mA·h·g$^{-1}$, TT- and T-Nb$_2$O$_5$ exhibited reversible capacities of 165 and 160 mA·h·g$^{-1}$, respectively, for 100 cycles with the capacity of the TT-phase edging slightly upward after the initial capacity loss. Differential capacity plots (Figure 5.12c) reveal the (de)lithiation behaviour in more detail. H-Nb$_2$O$_5$ exhibits reversible peaks centred at 2.05 V, 1.67 V, 1.42 V, and 1.22 V with a significant amount of charge stored at intermediate potentials between the peaks. B-Nb$_2$O$_5$ and NbO$_2$ exhibit only one small peak at 1.68 V and 1.71 V, respectively; however, the cathodic–anodic peak separation in NbO$_2$ is much greater, indicating a kinetic limitation even at C/10. To the best of our knowledge, bulk NbO$_2$ intercalation has not been reported but is evidently not significant between 3.0 and 1.2 V vs. Li$^+$/Li. NbO$_2$ electrochemical behaviour is unlike that seen for the 2H layered transition metal dichalcogenide phase LiNbO$_2$, though both involve the Nb$^{4+}$/Nb$^{3+}$ redox couple. In LiNbO$_2$ the reversible delithiation from LiNbO$_2$ to Li$_{0.5}$NbO$_2$ occurs from 2.5–3.0 V. TT- and T-Nb$_2$O$_5$ store charge nearly evenly across the potential range 1.9 V to 1.2 V with minor peaks at 1.68 V. Accounting for the minor quantity of B- and H-Nb$_2$O$_5$ present in the lower temperature phases, these small dQ/dV peaks may be related to one of the higher temperature polymorphs. Note that although the capacity of the TT- and T-phases in Figure 5.12 corresponds to ca. 0.8 Li per Nb, one full equivalent of lithium can be intercalated if the potential cut-off is moved below 1.0 V. The limit of 1.2 V was chosen because a lower cut-off voltage resulted in decreased cycle life at least in part due to SEI formation. The discharge profile features, cycle life, and capacity for TT-, T-, and H-Nb$_2$O$_5$ at
low current density (slow rate) are in agreement with previous work from solid-state33 and nanostructured19,25,57 synthesis methods.

Figure 5.12 – Galvanostatic discharge-charge curves for the Nb$_2$O$_5$ polymorphs from 3.0 to 1.2 V (a) Electrochemical discharge/charge profiles obtained at a rate corresponding to C/10. (b) Cycle tests at either 1C (T, TT) or C/10 discharge/charge with a constant voltage charge step (B, H). (c) Differential capacity plots derived from the discharge/charge profiles in (a); solid lines are on the same scale while the dashed green line is shown at 1/20th scale to reveal the peak positions in H-Nb$_2$O$_5$

5.4.3 Charge Storage Kinetics of Micrometer-Sized Nb$_2$O$_5$

Charge storage kinetics, \textit{i.e.} rate dependences, are contingent upon a range of interrelated factors such as atomic structure, electronic structure, particle size, particle geometry, and intra- and inter-particle porosity. Numerous studies have focused on the latter, microstructural,
aspects of Nb$_2$O$_5$ by designing creative synthetic strategies to attain nanocrystals28,29, nanowires38, nanosheets20,21, and even hierarchical structures of nanoparticles containing nanoscale porosity22,59. To determine whether the high rate properties discussed in the literature for Nb$_2$O$_5$ are limited to nanoscale or nanostructured analogues, a rate performance study (Figure 5.13) was conducted on thick (4–6 mg·cm$^{-2}$) electrodes of the micrometer-sized Nb$_2$O$_5$ particles. Under these conditions, the capacity of H-Nb$_2$O$_5$ is highly correlated with discharge rate; a change from C/10 to 1C causes a 50% decrease in capacity and no charge storage is observed beyond 10C. The capacity of B-Nb$_2$O$_5$ is only weakly rate dependent but a maximum value of 20 mA·h·g$^{-1}$ means that only 10% of the niobium sites are reduced; this suggests that a surface or near-surface redox process is occurring and thus a weak structure–rate relationship might be expected. Significantly, T- and TT-Nb$_2$O$_5$ retain much of their initial capacity under fast discharge conditions: 150 mA·h·g$^{-1}$ at 5C and 100–120 mA·h·g$^{-1}$ at 10C (3.5 minute discharge for a capacity of 120 mA·h·g$^{-1}$). A plot of discharge potential vs. capacity as a function of current (Figure 5.14) for (a) T-Nb$_2$O$_5$ and (b) H-Nb$_2$O$_5$ displays fundamental differences between the lithiation of these polymorphs. At the initial discharge current pulse, both phases show a potential drop down to the niobium redox potential with a superimposed IR drop associated with the total resistance from the electrode and cell components. From this stage, under a small current with a consequently small Ohmic contribution, T-Nb$_2$O$_5$ shows an approximately linear relationship between potential and charge while H-Nb$_2$O$_5$ contains distinct shoulders and a plateau. At higher rates, the initial intercalation voltage of T-Nb$_2$O$_5$ decreases, as expected due to the increased Ohmic contribution; however, not only does the Q–V relationship remain linear but the slope of that line is nearly parallel across more than three orders of magnitude of current. Thus, it seems that, over a very wide range of current, the amount of charge stored in T-Nb$_2$O$_5$ is determined by the Ohmic potential loss that effectively narrows the potential window for charge storage. Conversely, intercalation into H-Nb$_2$O$_5$ was severely rate limited even at relatively low currents. This evidence suggests a structural (i.e. Li$^+$ transport) limitation such that, even when Ohmic effects are not significant, H-Nb$_2$O$_5$ cannot intercalate lithium rapidly. For example, at C/3 the initial intercalation potential of H-Nb$_2$O$_5$ was approximately 2.1 V but the shoulder normally at 2.05 V and plateau at 1.67 V were still dampened. In order to test the hypothesis that the electrode/cell resistance is capacity limiting in T-Nb$_2$O$_5$, proof-of-concept 1–2 mg electrodes with additional conductive carbon were constructed and tested under high rate conditions (Figure 5.15). When the initial potential drop is decreased, the trend in linear intercalation with constant slope is found to extend to even higher rates. Capacities of
119 mA·h·g⁻¹ and 85 mA·h·g⁻¹ were achieved in 71 s at 6.05 A·g⁻¹ (30C) and 25 s at 12.1 A·g⁻¹ (60C), respectively. Again, the discharge capacity appears to be limited by the IR drop rather than particle size to at least 60C despite the fact that this is a bulk material governed by solid-state diffusion and not surface/near-surface reactions. At the high rates and currents required (>10 mA), coin cell resistance, Li⁺ transport in the electrolyte (particularly between the particles within the electrode film), and lithium anode kinetics all become significant; it is clear that advanced cell design and decreasing the total resistance of the cell/electrode configuration, through e.g. carbon coating or calendaring is important to reach the limits of Nb₂O₅.

Figure 5.13 – Relationship between discharge rate and capacity for thick films (4-6 mg·cm⁻²) of bulk H-, B-, T-, and TT-Nb₂O₅ between 3.0 and 1.2 V vs. Li⁺/Li.
Figure 5.14 – Discharge behaviour of (a) T-Nb$_2$O$_5$ and (b) H-Nb$_2$O$_5$ over ca. three orders of magnitude of current density. After five cycles, cells were cycled between 3.0 and 1.2 V vs. Li$^+$/Li at the rate shown. The charging step is rate limiting for T-Nb$_2$O$_5$; discharge was examined after CCCV charging so as to always examine the discharge behaviour of the fully delithiated material.

Figure 5.15 – Discharge and charge curves of T-Nb$_2$O$_5$ at current densities ranging from 1C (0.2 A·g$^{-1}$) to 60C (12.1 A·g$^{-1}$). A high conductive carbon ratio (2:1) was used to study the discharge profiles at extremely high rates where Ohmic losses are significant. After five cycles,
cells were cycled between 3.0 and 1.2 V vs. Li+/Li at the rate shown. The charging step is rate limiting for T-Nb$_2$O$_5$; discharge was examined after CCCV charging for uniform comparison.

Further characterisation of the high rate phases was performed to study the effects of charge-limitation on reversible capacity at different potential windows and rates (Figure 5.16). Upon cycling in a wider potential window (3.0 V – 1.0 V), a trade-off is observed between capacity and long-term capacity retention. Electrochemical cycling without CCCV charging is unable to remove as much lithium from the Nb$_2$O$_5$ framework, resulting in a ca. 25% lower reversible capacity. Even without a potentiostatic charging step, the capacity retention is current-independent and stable throughout 300 cycles.

![Graph](image)

Figure 5.16 – Effects of the voltage window and charging conditions on cycle performance. (a) At 1C, both T- and TT-Nb$_2$O$_5$ stably (de)intercalated 120 mA·h·g$^{-1}$ from 3.0–1.2 V, 25% lower than under CCCV charging conditions. At the same rate but with a larger electrochemical window of 3.0–1.0 V, both phases showed a higher but less stable capacity. An increase in the capacity of TT-Nb$_2$O$_5$ over the first ten cycles was observed in all tests at both potential windows. (b) The capacity of T-Nb$_2$O$_5$ was stable over 300 cycles and, in all cases, the charge at a given current was the limiting step. The asymmetric charge–discharge behaviour may be electronic and/or ionic in nature.
5.4.4 Lithium Local Structure and Dynamics

In order to quantify the lithium transport that appears to be inherent to T-Nb$_2$O$_5$, 6Li and 7Li MAS NMR were investigated. Paramagnetic compounds can exhibit lithium resonances shifted over a range of many hundred ppm60,61, due to the Fermi contact interaction, yet, despite containing d^1 niobium(IV), Li$_x$Nb$_2$O$_5$ shows 7Li NMR resonances (Figure 5.17) within a small frequency range for all values of x and longer T_1 relaxation values (\sim 1s) than expected for 7Li in paramagnetic solids. These values are, however, similar to those observed for Ti$^{3+}$-containing paramagnetic materials62. The spectra shown in Figure 5.17 and Figure 5.18 show the presence of two discrete environments for intercalated lithium. The sharp feature in Figure 5.17a comes from residual LiPF$_6$ from the electrolyte, and as seen in Figure 5.18 disappears entirely upon rinsing with dimethyl carbonate; washing has no observable effect on the peaks from intercalated lithium. The 6Li spectra at high magnetic field strength (Figure 5.17b) should in principle give the best resolution. This is a result of reduced dipolar broadening from the smaller gyromagnetic ratio of 6Li vs. 7Li as well as reduced quadrupolar broadening due to both the smaller nuclear quadrupole moment of 6Li and the higher magnetic field. Despite all this, only a moderate reduction in line width is observed between the 7Li spectra at a low magnetic field and 6Li spectra at high magnetic field, which suggests that the peak widths are dominated by the range of shifts caused by a distribution of local environments.

![Figure 5.17 – 6/7Li MAS NMR of T-Li$_x$Nb$_2$O$_5$.](image)

(a) 7Li spectra at 9 kHz MAS and 4.7 T (b) 6Li spectra at 9 kHz MAS and 16.4 T. The high-resolution 6Li spectra suggest a distribution of similar lithium local environments. Spectra are shown in true relative intensity.
Figure 5.18 – ^7Li MAS NMR of T-Li$_{0.32}$Nb$_2$O$_5$ before and after washing in dimethyl carbonate. Spectra were recorded at 9 kHz MAS, 300 K, and magnetic field strength $B_0 = 4.7$ T. Central transition fitting parameters for both peaks from intercalated lithium (*i.e.* Peak 1 and Peak 2) were identical between the washed and unwashed sample. These results indicate i.) washing removes the LiPF$_6$ peak entirely, ii.) washing has no effect on the intercalated lithium, and iii.) the intercalated lithium can be fit into two discrete NMR environments.

Upon discharge, the first lithium ions occupy a site that gives rise to a resonance at 2 ppm. Above Li$_{0.2}$Nb$_2$O$_5$, the lithium ions begin to occupy one or multiple sites with resonances at approximately -5 ppm. As lithiation increases, site(s) with negative shifts are further populated and a positive shift is observed for all resonances. Given the structural complexity of T-Nb$_2$O$_5$ with multiple reasonable lithium positions and the lack of crystal structure data for the lithiated compound, there are not presently known crystallographic sites to compare with the local environments derived from NMR.
7Li NMR spectra were also collected as a function of lithiation for H-Nb$_2$O$_5$ to understand the lithiation behaviour of the crystallographic shear structure (Figure 5.19). As lithium is inserted into the structure, it initially populates a resonance around +1 ppm. From approximately 0.1 lithium per transition metal (Li‡/TM), lasting until ca. 0.35 Li‡/TM, one or more resonances are observed from −4 to −10 ppm. This region of lithiation corresponds to the “shoulder” region in the electrochemical discharge profile of H-Nb$_2$O$_5$. The longer plateau in the middle of discharge is correlated with a conversion in lithium local environment toward a relatively narrow resonance at +2 ppm. Toward the end of the electrochemical plateau, around 0.7 Li‡/TM, a small resonance appears at −4 ppm, which appears to broaden and increase as lithiation continues. At deep discharge, below the normal lower voltage limit of ca. 1.0 V vs. Li‡/TM, up to 1.5 Li‡/TM (\approxH-Li$_3$Nb$_2$O$_5$) can be intercalated and the corresponding 7Li NMR spectrum exhibits a broad and positively shifted resonance. Beyond about 1.0 Li‡/TM the rotational sideband manifold increases significantly (not shown), indicating a step change in the quadrupolar coupling and distortion of the lithium environments.
Figure 5.19 – 7Li MAS NMR of H-Li$_x$Nb$_2$O$_5$ at 16.4 T and 14 kHz MAS. The central transition is shown and the spectra are normalised by lithium content and number of FIDs collected.

The collection of high signal-to-noise spectra of 7Li and natural abundance 6Li in a matter of minutes was facilitated by the use of thick pellet electrodes. Despite the size (ca. 400–500 mg) and lack of conductive carbon or binder in the pellet design, the structure and electrochemistry upon discharge is identical between the pellets and a conventional film as confirmed by chronopotentiometry (Figure 5.20). Furthermore, lithiated Nb$_2$O$_5$ appears to be quite stable; no changes were observed in the NMR spectra over the course of several months even after intentional exposure to air for a period of 24 h.
Figure 5.20 – Chronoamperometric comparison of lithiation into a ca. 100 µm thick film and a ca. 2.5 mm thick cold-pressed pellet of T-Nb$_2$O$_5$. The conventional film electrode was composed of T-Nb$_2$O$_5$:Super P carbon:PVDF in an 80:10:10 ratio as described in the main text while the pellet was pure T-Nb$_2$O$_5$ with no conductive additive or binder. Despite two orders of magnitude difference in active material mass and absence of carbon additive, the film and pellet electrodes showed similar electrochemical profiles. Note that the voltage cut-off was set to 1.20 V for the film and 1.25 V for the pellet.

Examination of the 17O NMR spectra of T-Li$_x$Nb$_2$O$_5$ was performed by discharging electrodes of 17O-enriched T-Nb$_2$O$_5$ (Figure 5.21). Within lithiating to ca. 0.025 Li$^{+}$/TM (2.5%), both resonances shifted to lower frequency and broadened. The structure showed only minor evolution in the form of broadening as lithiation continued to 1.0 Li$^+$/TM. The rapid and holistic change in oxygen local environment at a few percent Li$^+$/TM suggests an electronic mechanism with itinerant electrons delocalising via the interconnected 3D –O–M–O– network almost immediately upon the lithiation and concomitant reduction of d^9 Nb$^{5+}$ to d^1 Nb$^{4+}$.
Figure 5.21 – 17O NMR spectra of T-Li$_x$Nb$_2$O$_5$ at 16.4 T and 60 kHz MAS. The extent of lithiation is indicated for each spectrum. Small resonances above ca. 1000 ppm and below ca. 0 ppm correspond to rotational sidebands.

Variable temperature 6-7Li MAS NMR experiments were used to investigate timescales for lithium motion and the electronic structure of lithiated Nb$_2$O$_5$. T_1 (spin–lattice) and T_2 (spin–spin) relaxation rates, as well as 1D lineshape and 2D spin exchange measurements were recorded over a range of temperatures at low and high magnetic field for selected samples. As the sample temperature cannot be measured directly with sufficient accuracy under MAS conditions, a temperature calibration (Figure 5.22) was performed based on the temperature-dependent shift of 207Pb in Pb(NO$_3$)$_2$. Figure 5.23 displays the effect of temperature on the lineshape and shift of 7Li in Li$_x$Nb$_2$O$_5$ at x = 0.44 and 1.86. Motional line narrowing and loss of rotational sideband intensity is observed which is ascribed to lithium mobility, which averages the chemical shift anisotropy (CSA) and quadrupolar interaction64. As the temperature is increased, the lithium resonance at ca. 1 ppm gradually begins to participate in the rapid process at lower frequency.
Figure 5.22 – ^{207}Pb Temperature calibration on $\text{Pb(NO}_3\text{)}_2$ – As the zirconia rotor is heated, either from frictional heating or an external source, the ^{207}Pb chemical shift of lead nitrate shifts to higher frequency.63 There is a radial and longitudinal temperature gradient across a fully packed rotor, which is exacerbated as the temperature deviates from ambient conditions, giving rise to the increasing peak width at high temperature. All spectra were recorded under 12.5 kHz MAS conditions with the exception of the lowest frequency spectrum, which was spinning at 3 kHz MAS to minimise frictional heating. An asterisk denotes the rotational sideband from the sample at 3 kHz MAS. The temperature range 298 K to 424.8 K is depicted. In the absence of external heating, the rotor is heated to \textit{ca}. 306 K at 12.5 kHz MAS via friction.
Figure 5.23 – Variable temperature 7Li MAS NMR of Li$_x$Nb$_2$O$_5$ at 12.5 kHz at 16.4 T. The central lineshape and rotational sideband manifold (marked by asterisks) are shown for $x = 0.44$ and $x = 1.86$ from 306 K to 435 K. As the ions become more mobile, sideband intensity decreases and the central line narrows. 7Li spectra were normalised to account for T_2 magnetisation loss during the echo pulse sequence.

Above 400 K, the average 7Li shift moves 1–2 ppm lower in frequency for highly lithiated samples at both 16.4 T (Figure 5.23) and 4.7 T (not shown). Wagemaker et al. observed this effect in TiO$_2$ and attributed the increased shielding to a lithium nucleus–electron interaction. Through similar arguments about a small shift range and long T_1 times, they concluded that conduction, rather than paramagnetism, was the dominant interaction, accounting for the small observed 7Li shifts in their system. In addition to electronic changes, the sampling of environments via chemical exchange is temperature-dependent; thus, the nature of the shift may be some combination of conduction and diffusion effects in both the niobium and titanium oxides. We note that an increase in conductivity upon lithiation does suggest delocalisation of electrons through T-Nb$_2$O$_5$ and offers an explanation for the high-rate and complete lithiation of insulating pellets of T-Nb$_2$O$_5$ in the absence of conductive additives, in agreement with the 17O NMR spectroscopy data.

The spin–lattice relaxation time of 7Li was on the order of 1 s for all lithium concentrations (Figure 5.24a). Spin–spin relaxation was on the order of 1 ms but not strongly temperature dependent in the explored region. The aforementioned weak dependence of shift of the
resonances on temperature suggests that paramagnetic effects do not dominate the T_1 changes. Employing the Bloembergen, Purcell, and Pound (BPP)66 model for random jump diffusion and assuming relaxation dominated by the 7Li quadrupolar interaction67,68 at the lower magnetic field strength of 4.7 T, correlation times and trends for lithium motion were extracted from the variable temperature T_1 data. To determine the nuclear quadrupolar coupling constant (C_Q) and quadrupolar asymmetry (η_Q), a global fit of the central peak and rotational sidebands was performed across spectra of 6Li and 7Li at 4.7 T and 16.4 T at 9kHz, 12.5 kHz, and 14 kHz MAS on each of the electrochemically lithiated samples at ambient temperature. Note that the 6Li C_Q of a given environment is inherently reduced by a factor of 50 with respect to 7Li and the simultaneous fitting of both isotopes is thus useful for parameter determination. Correlation times and activation energies were derived from the variable temperature T_1 measurements at 4.7 T where the quadrupolar approximation is most relevant and dipolar or paramagnetic contributions are relatively minimal. Incorporating homonuclear dipolar coupling into a combined treatment of quadrupolar–dipolar relaxation lowers the theoretical T_1 minima but had no observable effect on the activation energies in this study. Furthermore, in the absence of any T_1 minima, the simplest model was chosen to analyse the data. Single exponential fitting of the T_1 relaxation curves was achieved for samples with intermediate to high lithium content; samples below \textit{ca.} $x = 0.5$ in Li$_x$Nb$_2$O$_5$ showed a complex multiexponential relaxation curve. The multiexponential behaviour is likely due to the overlapping rigid and mobile lithium resonances, which becomes less significant as the lithium content increases and the mobile lithium sublattice increasingly comprises the overall signal. Strictly, the isotropic BPP model applies to 3D diffusion; however, in the low temperature regime of the BPP model where T_1 decreases with increasing temperature, 2D diffusion—expected in T-Nb$_2$O$_5$—is theoretically69 and experimentally70 shown to yield indistinguishable results. Determination of activation energies via the BPP model (Figure 5.24b) yields 98(1) meV, 91(6) meV, 83(5) meV, 68(4) meV, and 58(2) meV for T-Li$_x$Nb$_2$O$_5$ with $x = 0.64, 0.96, 1.28, 1.56, and 1.78, respectively.
Figure 5.24 – NMR relaxometry and the trend in correlation times derived from the BPP model display Arrhenius behaviour. (a) The spin–lattice relaxation (T_1) for all samples and temperatures was on the order of 1×10^{-1} to 1×10^1 seconds. On the low temperature flank of the T_1 minimum of the BPP model, T_1 decreases as temperature increases, as observed for all lithium concentrations in Li$_x$Nb$_2$O$_5$ in this study. (b) Lithium hopping was found to occur in electrochemically lithiated T-Li$_x$Nb$_2$O$_5$ with $E_a = 98(1)$ meV, $91(6)$ meV, $83(5)$ meV, $68(4)$ meV, and $58(2)$ meV for $x = 0.64, 0.96, 1.28, 1.56$, and 1.78, respectively.

Rotor-synchronised MAS two-dimensional exchange spectroscopy (EXSY) data were also recorded for 7Li. These experiments have proven to be a useful tool to probe dynamics on a microsecond to millisecond timescale.71,72 Figure 5.25 shows the 7Li exchange spectra of T-Li$_{0.44}$Nb$_2$O$_5$ as a function of mixing time at 16.4 T and 12.5 kHz MAS. The presence of a narrow diagonal in Figure 5.25a provides direct evidence that the peaks in the 1D spectra are not true singular broad components but comprised of distributions of individual lithium environments. Exchange between these local environments occurs when the spins are allowed to interact for 1 ms or longer. On the other hand, the intensity pattern and cross sections through the spectra indicate that exchange on this timescale is not occurring between the $ca.$ 1 ppm resonance and the lower frequency distribution of sites. Thus, the lithium in T-Nb$_2$O$_5$ can be more precisely described as two reservoirs: a weakly bound distribution of sites with resonances centred around -5 ppm and a more rigid lithium sublattice with resonances at 1 ppm. Note that spin exchange in solids can occur through chemical exchange or dipole-mediated spin interactions; variable temperature EXSY spectra showed a strong temperature dependence, which is indicative that chemical exchange dominates spin diffusion in these
spectra. Qualitatively similar results were obtained from EXSY measurements at higher lithium contents; the increased off-diagonal intensity observed at 100 µs in Li$_{1.28}$Nb$_2$O$_5$ and Li$_{1.86}$Nb$_2$O$_5$ indicates that exchange occurs on a shorter timescale at higher lithium concentrations (Figure 5.25).
Figure 5.25 – 7Li EXSY spectra of (a) T-Li$_{0.44}$Nb$_2$O$_5$, (b) T-Li$_{1.28}$Nb$_2$O$_5$, and (c) T-Li$_{1.86}$Nb$_2$O$_5$ with mixing periods of 100 µs, 1 ms, 5 ms, 10 ms, 20 ms, and 100 ms. Spectra were collected at 12.5 kHz MAS, 306 K, and 16.4 T. The absolute off-diagonal intensity at $t_{\text{mixing}} = 100$ µs is greater for further discharged samples (higher lithium content).

5.4.5 Structure–Property Relationships

In light of the observations on micrometer-sized TT-, T-, B-, and H-Nb$_2$O$_5$, their respective electrochemical performance appears to be strongly dictated by inherent crystallographic properties. All Nb$_2$O$_5$ polymorphs presented herein may be viewed as being derived from layered structures; however the nature of these layers differs in all cases and all are distinct from the O3 and P2 type73 layered structures found in LiCoO$_2$ and Na$_{0.7}$CoO$_2$, respectively. Herein, we describe T-Nb$_2$O$_5$ as a “room-and-pillar” framework with alternating layers (along c) of bridging oxygen “pillars” and O-Nb polygons; the interlayer distance is 3.93 Å. Unlike classical layered structures with structural lithium slabs, the room-and-pillar framework is self-supporting and allows lithium to act as a true guest atom over the whole range of $0 \leq x \leq 2$ in Li$_x$Nb$_2$O$_5$. In situ laboratory XRD from several groups26,33 has suggested that intercalation into T-Nb$_2$O$_5$ is accompanied by an expansion of the layers in a solid-solution reaction. B-Nb$_2$O$_5$ is structurally similar to TiO$_2$(B) with bilayers of edge-sharing octahedra; the interlayer distance is 3.51 Å. The layers of H-Nb$_2$O$_5$ comprise ReO$_3$-type blocks of dimension $(3 \times 4)_1$ and $(3 \times 5)_\infty$ NbO$_6$ octahedra, exhibiting crystallographic shear; the blocks are offset from one
another by \(\frac{1}{2} b \) with an interlayer distance of 3.83 Å. Given the complexity of these layered oxides and the distortion of the individual polyhedra due to the second-order Jahn–Teller effect of \(d^0 \) Nb\(^{5+} \), the sites and diffusion pathways for lithiation may not be immediately discernible. In order to overcome this challenge, we applied the bond valence sum mapping method to Nb\(_2\)O\(_5\) and related structures (Figure 5.26). The bond valence sum (BVS) method is a commonly employed tool to validate trial structures during crystal structure solution and refinement; however, it may be extended to help predict theoretical sites and diffusion pathways through bond valence sum mapping. This method has proven to be an accurate and useful tool for the qualitative evaluation of atomic sites and diffusion pathways in a range of materials.\(^{74}\) It should be especially relevant where solid-solution or only minor rearrangement occur during lithiation; the use of this approach to study two-phase reactions should be treated with care as diffusion through the structure and lithium positions within the structure are not representative of a reaction across a boundary to a distinct phase. In this study, the program 3DBVSMapper\(^{75}\) was used to calculate the BVS of a theoretical lithium at each position on a fine grid over a unit cell. Starting with T-Nb\(_2\)O\(_5\) (Figure 5.26a,b), one can visualise the nearly degenerate 2D diffusion pathways throughout the structure as represented by the continuous 2 eV isosurface. The isosurface energy is a relative value and does not correspond trivially to a measurable physical quantity; it is most instructive to use an energy corresponding to the onset of sites/connected pathways to see those relatively low in energy\(^{74,75}\). The high degree of favourable sites on interconnected pathways without obvious minima to trap lithium offers some qualitative insight into the fast kinetics of the system. The BVS map of H-Nb\(_2\)O\(_5\) (Figure 5.26c,d), reveals that within the ReO\(_3\) (Figure 5.26e)-type blocks, there are large spaces where lithium may sit; however, these large vacancies with 12 nearest neighbour oxygens are too big for lithium, which is likely to find an off-centre local minimum. In a true ReO\(_3\)-type structure such as NbO\(_2\)F, topotactic lithiation would theoretically lead to an ABX\(_3\) perovskite but the size-mismatch instability instead leads to tilting of the BX\(_3\) octahedra to reduce the size of the A site, and a distortion toward the LiNbO\(_3\) structure\(^{76}\). The crystallographic shear in H-Nb\(_2\)O\(_5\) and related compounds such as TiNb\(_2\)O\(_7\)\(^{77,78}\) precludes these tilting and distortion modes that are common in perovskites, which will have implications for Li\(^+\) mobility within the perovskite blocks. The BVS map of H-Nb\(_2\)O\(_5\) indicates, via breaks in the isosurface, that there is a relatively high energy barrier to diffusion between the \((3 \times 4)_1\) and \((3 \times 5)_\infty\) blocks. The abundance of lithium sites, which have been observed via neutron diffraction for H-Li\(_{12/7}\)Nb\(_2\)O\(_5\)\(^{79}\), but local minima and poor connectivity of diffusion pathways helps to explain
the high capacity but poor rate performance of H-Nb$_2$O$_5$. On the other hand, the 2 eV isosurface for B-Nb$_2$O$_5$ (Figure 5.26f) shows only discrete sites between the layers. Given the structural similarity to TiO$_2$(B) (Figure 5.26g), one might expect significant and perhaps high-rate lithiation into B-Nb$_2$O$_5$; however, the slightly smaller interlayer spacing (3.51 Å vs. 3.66 Å) and higher oxidation state (Nb$^{5+}$ vs. Ti$^{4+}$) apparently preclude facile lithiation.

![Figure 5.26 – Bond valence sum maps of (a–b) T-Nb$_2$O$_5$ (c–d) H-Nb$_2$O$_5$ (e) ReO$_3$ (f) B-Nb$_2$O$_5$ (g) TiO$_2$(B). Bond valence energy level calculations were performed for a theoretical grid of Li$^+$ and 2.0 eV isosurfaces are shown in purple.](image)

5.5 Discussion

In stark contrast to the well-known positive effects of nanoscaling in Li$_4$Ti$_5$O$_{12}$, LiCoO$_2$, LiFePO$_4$, MnO$_2$, and polymorphs of TiO$_2$ (e.g. anatase, rutile, TiO$_2$(B), brookite), both the total charge storage capacity and the rate performance of thick electrodes of bulk TT- and particularly T-Nb$_2$O$_5$ are comparable to the best nanostructured Nb$_2$O$_5$ particle geometries. It is important to stress that care must be taken when comparing high-rate...
electrochemical data in the literature; in particular, cyclic voltammetric (CV) and chronopotentiometric (i.e. galvanostatic) methods are not necessarily directly comparable. For Nb$_2$O$_5$ with a theoretical capacity of 201.7 mA·h·g$^{-1}$, a rate of 1C corresponds to 201.7 mA·g$^{-1}$ and a time of one hour for one electron/one lithium discharge. The corresponding experiment via CV is conducted at a sweep rate determined by the potential window divided by the desired discharge time (e.g. 3600 s). Thus, a change in the potential window will translate to a change in the sweep rate without affecting the C rate. More significantly, the discharge time from CV will always be longer than the time for a high-rate galvanostatic experiment that does not reach theoretical capacity (and fast discharge rarely ever reaches theoretical capacity). A sweep of 1200 mV at 20 mV·s$^{-1}$ requires 60 s and is therefore called 60C while T-Nb$_2$O$_5$ reaches only circa half of theoretical capacity at this rate and thus requires only a 30 s galvanostatic discharge. The applied galvanostatic current at 60C for T-Nb$_2$O$_5$ is by definition 12.1 A·g$^{-1}$ while the average current in a CV experiment would be scaled by the percent of theoretical capacity attained (i.e. 6.05 A·g$^{-1}$ in this example). Since ohmic (IR) losses become significant at high currents, galvanostatic cycling further suffers as the enforcement of a single initial current means the full IR drop is realised at the start of discharge. For reference, the curves denoted 30C and 60C in Figure 5.15 were acquired in 71 s and 25 s, respectively, rather than 120 s and 60 s if recorded via a cyclic voltammogram. This difference is significant for high-rate materials and high-power applications.

The activation barriers in T-Li$_x$Nb$_2$O$_5$ at 98(1)–58(2) meV are significantly lower than those found in other lithium-ion battery materials: Li$_{0.7}$TiS$_2$ at 370–410 meV70, Li$_6$Ti$_3$O$_{12}$ at 430 meV87, Li$_4$Ti$_3$O$_{12}$ at 760 meV87, Li$_{0.74}$TiO$_2$ at 370 meV62, and LiFePO$_4$ at 270–500 meV88. The dynamics of T-Li$_x$Nb$_2$O$_5$ are more similar to several recently reported Li-rich solid electrolyte materials89,90, Li$_{10}$GeP$_2$S$_{12}$, Li$_2$GePS$_8$, and Li$_{11}$Si$_2$PS$_{12}$ show activation barriers for lithium motion of 200–250 meV. NMR relaxometry is a microscopic probe of lithium diffusion and it is known that, in certain cases, the thermally activated process was not one of bulk diffusion but, for example, local librational motion of protons91 or restricted lithium hopping in a system where diffusion is controlled by phase or grain boundaries65. From the structural arguments presented above, the large particles, degenerate atomic diffusion pathways, and apparent lack of phase transition in T-Nb$_2$O$_5$ suggest that, analogous to the layered compound Li$_{0.7}$TiS$_2$,70 the microscopic processes translate to the macroscale.
The high rate capability observed for micrometer-sized particles of bronze-phase Nb$_2$O$_5$ is somewhat remarkable. To place context for this result, it is useful to compare TiO$_2$ more explicitly as titanium(IV) oxide is chemically similar to niobium(V) oxide in that both are insulators with a d^0 cation with similar ionic radii and several known polymorphs. The maximum capacity of all aforementioned TiO$_2$ polymorphs is higher for nanoparticles than the bulk phase, e.g. in anatase TiO$_2$, a careful study demonstrated that full lithiation to LiTiO$_2$ occurred only for particles <7–15 nm while bulk anatase reached a maximum lithium content of Li$_{0.5-0.6}$TiO$_{2}$ and the term “bulk” was applied to anything over ca. 120 nm92. In terms of rate, it was shown that full capacity at 5C to 10C rates required sub-10 nm particles. Thus, it is generally accepted that both the maximum capacity and rate performance are size-dependent properties in anatase TiO$_2$. A first-principles thermodynamic and kinetic study93 by the Van der Ven group showed that, as TiO$_2$ is lithiated and Ti$^{4+}$ is reduced to Ti$^{3+}$, the distortions in octahedral lithium sites are removed, which causes the minimal energy migration paths to increase from 0.50 eV to 0.78 eV to 1.37 eV for dilute Li$_x$TiO$_2$, Li$_{0.5}$TiO$_2$ and LiTiO$_2$, respectively. While polyhedra in niobium(V) and titanium(IV) oxides experience similar second-order Jahn–Teller distortions94, the relaxation of these distortions from niobium(V) to niobium(IV) in the bronze-phase Nb$_2$O$_5$ structure does not cause the same clamping of diffusion paths. Thus, the impetus to nanosize TiO$_2$ to suppress phase transitions and increase lattice flexibility is not as applicable to Nb$_2$O$_5$. The results presented here suggest that optimal performance of Nb$_2$O$_5$ is observed even on the scale of micrometers rather than only at a few nanometers. Furthermore, despite the insulating nature of Nb$_2$O$_5$, the performance herein is comparable to nanocrystalline Nb$_2$O$_5$/carbon nanocomposites with graphene29,30, carbon nanotubes28, carbide-derived carbon31, and carbon core–shell nanocrystals32, which, along with the immediate colour change, suggests that Nb$_2$O$_5$ must undergo significant conductivity changes even at low lithium content as electrons are introduced into the transition metal d-orbitals. This rate behaviour for solid-state-derived Nb$_2$O$_5$ is observed in the absence of thin electrodes, lithium perchlorate salts, and carbon counter electrodes that are frequently reported to improve Nb$_2$O$_5$ rate capability26,27.

5.6 Conclusions

Via solid-state synthesis and electrochemical characterisation, we have demonstrated that the complex oxide structure of T-Nb$_2$O$_5$ facilitates high-rate lithium intercalation into large particles on par with the best nanostructured electrodes. Lithium dynamics were investigated
with variable temperature NMR relaxation and exchange measurements on electrochemically lithiated T-Nb$_2$O$_5$, which revealed an activation barrier for microscopic lithium diffusion on the order of a few $k_B T$ (ca. 60–100 meV). Intercalation of lithium into the room-and-pillar layered structure of T-Nb$_2$O$_5$ results in high ionic mobility and minimal strain, which negates the usual requirement of short diffusion pathways and phase transition-suppressing nanoparticles for rapid discharge. Temperature-dependent NMR shifts at high lithium content suggest delocalised conduction electrons and clarify the electronic aspect of the observed high-rate performance in this originally wide-bandgap oxide. Atomic origins of the vast differences in electrochemical behaviour among Nb$_2$O$_5$ polymorphs were elucidated. The bulk properties of high-rate TT- and T-Nb$_2$O$_5$, low-capacity B-Nb$_2$O$_5$, and high-capacity but low-rate H-Nb$_2$O$_5$ can be understood in terms of their structure and relationships to other compounds aided by lithium bond valence sum maps. The volumetric power and energy density, safety, stability (in the context of battery operation), and ease of synthesis make Nb$_2$O$_5$ an interesting candidate for energy storage applications demanding combined high rate and high capacity in a small cell. We believe the structural principles and techniques presented here will aid the exploration of materials space for future high-rate electrode materials, especially for complex structures that may offer unique advantages in capacity, rate, and/or energy density with minimal synthetic or post-synthetic processing.

5.7 Outlook

Lessons learned in the Nb$_2$O$_5$ system laid the foundation on which to identify and investigate compositionally and structurally related families of compounds – that works comprises the remainder of this thesis. In terms of the Nb$_2$O$_5$ compounds themselves, there are interesting structural questions about the nature of the T-phase and whether the structural model is correct or an average representation of a subtle superstructure distortion. Also, what is the role of defects in the H-phase given that crystallographic shear structures are known to have Wadsley defects as well as point defects about the tetrahedral site (cf. Chapter 4)? The pathways for lithium diffusion were estimated here via the bond valence sum method but more advanced techniques such as nudged elastic band calculations, transition state searching methods, or maximum entropy methods could provide a more realistic picture. From an electrochemical perspective there is much to do in terms of electrode optimisation with different carbons, binders, electrolytes, mass loading, and calendaring that could lead to improved performance and toward commercial applications. Finally, one of the outstanding questions that affected
this work and likely affects all work on niobium oxides is the prevalent but unknown role of impurities on the polymorphism and relative phase stability in Nb$_2$O$_5$. A reliable phase diagram can hardly be constructed when different precursors, and possibly commercial batches, lead to different observed phases.

5.8 Acknowledgement of Contributions

I thank Dr. Gunwoo Kim, University of Cambridge for discussions on variable temperature NMR; Professor Bruce Dunn, University of California, Los Angeles for discussions on nanostructured Nb$_2$O$_5$; Professors Siegbert Schmid and Christopher Ling, University of Sydney for structural discussions on T-Nb$_2$O$_5$. Dr. Maxim Avdeev, Bragg Institute, created the bond valence sum maps in his 3DBVSMAPPER program. Zlatko Saracevic, University of Cambridge, performed the BET measurements. Dr. Pritesh Hiralal, University of Cambridge, assisted in acquiring SEM images. All synthesis, diffraction, electrochemistry, NMR, analysis, and writing is my own work with discussion and supervision from Dr. John Griffin, Alexander Forse, and Professor Clare Grey.
5.9 References

(20) Liu, M.; Yan, C.; Zhang, Y. Fabrication of Nb$_2$O$_5$ Nanosheets for High-Rate Lithium Ion Storage Applications. Sci. Rep. 2015, 5, 8326.

(50) Titanium Oxide (TiO$_2$) Nanoparticles / Nanopowder (TiO$_2$, Anatase, 99.5% 5nm) http://www.us-nano.com/inc/sdetail/20769 (accessed Dec 8, 2015).

136

(74) Avdeev, M.; Sale, M.; Adams, S.; Rao, R. P. Screening of the Alkali-Metal Ion Containing Materials from the Inorganic Crystal Structure Database (ICSD) for High

(88) Kuhn, A.; Gerbig, O.; Zhu, C.; Falkenberg, F.; Maier, J.; Lotsch, B. V. A New Ultrafast Superionic Li-Conductor: Ion Dynamics in Li\textsubscript{11}Si\textsubscript{2}PS\textsubscript{12} and Comparison with Other Tetragonal LGPS-Type Electrolytes. Phys. Chem. Chem. Phys. 2014, 16, 14669–14674.

(89) Kuhn, A.; Duppel, V.; Lotsch, B. V. Tetragonal Li\textsubscript{10}GeP\textsubscript{2}S\textsubscript{12} and Li\textsubscript{7}GePS\textsubscript{8} – Exploring the Li Ion Dynamics in LGPS Li Electrolytes. Energy Environ. Sci. 2013, 6, 3548.

Chapter 6

Titanium Niobium Oxides

“The shear or discontinuity mechanism will undoubtedly be recognised in future studies as a common one.” – A. David Wadsley, Liversidge Research Lecture

6.1 Abstract

There exist a variety of crystallographic shear structures in mixed metal systems beyond the binary H-Nb$_2$O$_5$. Given the high capacity and unique mechanisms in Nb$_2$O$_5$ (Chapter 5), we were motivated to investigate compounds in the titania–niobia system to derive structure–property relationships and push the boundaries of performance by utilising cation disorder to tune the lithium intercalation behaviour. The host structure and reversible lithium insertion and extraction into an intercalation compound, TiNb$_{24}$O$_{62}$, are described. Neutron diffraction, applied for the first time to TiNb$_{24}$O$_{62}$, allowed an accurate refinement of the complex block superstructure, particularly with respect to the oxygen sublattice. Analysis of the transition metal sites revealed significant cation-ordering in the mixed metal oxide. Electrochemical analysis demonstrated highly reversible lithium intercalation with ca. 190 mA·h·g$^{-1}$ after 100 cycles. The effect of potential window on capacity, polarisation, and reversibility was carefully examined; a minimum voltage limit of 1.1 V–1.2 V is critical for efficient and reversible cycling. The galvanostatic intermittent titration technique revealed three solid-solution regions on the basis of Li$^+$ diffusion in addition to the two-phase plateau observed in the V vs. Q profile. Lithium-ion diffusion decreases by over three orders-of-magnitude from the dilute lithium limit early in the discharge to the lithium-stuffed phase Li$_{37.5(10)}$TiNb$_{24}$O$_{62}$. Nevertheless, prior to lithium-stuffing, TiNb$_{24}$O$_{62}$ possesses intrinsically rapid lithium-ion kinetics as demonstrated by high-rate performance in thick films of ca. 10 µm particles when interfaced with a carbon-coated aluminium foil substrate. The TiO$_2$·Nb$_2$O$_5$ phase diagram is examined and electrochemical results are compared to related superstructures of crystallographically sheared blocks of octahedra in the TiO$_2$·Nb$_2$O$_5$ homologous series including the H-Nb$_2$O$_5$ end-member.
6.2 Introduction

High-voltage anodes for lithium-ion batteries, loosely defined as materials with a lower voltage limit above 1.0 V vs. Li⁺/Li, offer promising advantages in terms of safety and cycle life. Carbonate electrolytes are not stable below ca. 1.0 V and traditional lithium battery anodes rely on the formation of a stable solid—electrolyte interphase (SEI) layer. As a result, high surface area nanoparticles as well as alloying electrodes that undergo large volume changes on cycling both consume substantial electrolyte and lithium, which is associated with poor capacity retention. In addition, during low voltage discharge, inhomogeneity in the anode electrode may lead to local regions experiencing a sufficiently low potential to promote lithium dendrite formation. Cell degradation and dangerous internal short-circuits from dendrite formation can be avoided with a high-voltage anode, at the expense of energy density.

Several high-voltage intercalation anode candidates have been investigated. The most studied is Li₄Ti₅O₁₂ (LTO) which, due to the advantages addressed above, has matured to the commercial level. While LTO performs well, it has several known issues. Relatively low gravimetric and volumetric capacity leave room for improvement but the most pressing issue is the significant gas generation and swelling observed with LTO electrodes. The gases, mostly H₂, CO₂, and CO, are formed via reactions between standard alkyl carbonate solvents and the LTO interface¹. These issues motivate the search for next generation safe anode materials. Cava et al. first reported the lithiation, primarily chemical lithiation with n-butyllithium, of a wide range Nb-based high-voltage anodes in a seminal work in the early 1980s². However, it was not until relatively recently that electrochemical studies on Nb₂O₅⁻⁵ and some mixed metal oxides such as TiNb₂O₇²,⁶–⁸ and Ti₂Nb₁₀O₂₅⁹,¹⁰ have resumed with vigour. The electrochemical lithiation of TiNb₂₄O₆₂ has not been thoroughly investigated, though 0.6 lithium per transition metal were found to intercalate chemically², which corresponds to a capacity of 120 mA·h·g⁻¹ compared to the theoretical capacity of 204.9 mA·h·g⁻¹ for a one electron reduction.

Structurally, TiNb₂₄O₆₂ falls into a large family of materials known as Wadsley–Roth phases derived from the ReO₃ structure. Several oxides with the composition MO₃ (e.g. β-MoO₃, α-, β-, γ-WO₃, ReO₃) assemble into a structure of corner-shared MO₆ octahedra. The octahedra are distorted to varying degrees based on the strength of the second-order Jahn–Teller (SOJT) effect, which increases with formal charge and decreases with cation size for the d⁰ transition metals.¹¹ Anion deficient oxides of MO₃₋ₓ (e.g. VₓO₁₃, NbO₂.₅₋ₓ, MoO₃₋ₓ, WO₃₋ₓ) with metal
valence less than M(VI) cannot form the perfect ReO$_3$-type arrangement and thus adopt a defect structure. One common motif is to form planes of edge-sharing octahedra forming so-called crystallographic shear (cs) planes, two such intersecting planes defining the edges of a length $m \times n$ block of octahedra.12 The resulting structure, known as a Wadsley–Roth or cs phase2, can consist of blocks connected in infinite ribbons ($p = \infty$), split into pairs ($p = 2$), or isolated ($p = 1$), usually by tetrahedra. The nomenclature $(m \times n)_p$ then fully describes the assembly of structural units though the description may be further complicated by the presence of multiple block sizes and intergrowths even within ordered “ideal” phases. From these principles, the composition of a block is dictated by the crystal structure and the metal oxide formula can be calculated from a summation over all combinations of block size and connectivity:

$$\Sigma M_{mnp+1}O_{3mnp-(m+n)p+4}, \quad [6.1]$$

where interconnected ribbons may be represented by:

$$\lim_{p \to \infty} M_{mnp+1}O_{3mnp-(m+n)p+4} = M_{mn}O_{3mn-(m+n)}, \quad [6.2]$$

TiNb$_{24}$O$_{62}$ (*i.e.* TiO$_2$·12Nb$_2$O$_5$)13 is the Nb-rich end member of a series of structurally and compositionally related Ti–Nb–O ternary shear phases including TiNb$_2$O$_7$ (TiO$_2$·Nb$_2$O$_5$) and Ti$_2$Nb$_{10}$O$_{29}$ (2TiO$_2$·5Nb$_2$O$_5$). Ti$_2$Nb$_{10}$O$_{29}$ has two known polymorphs: monoclinic-Ti$_2$Nb$_{10}$O$_{29}$ (m-Ti$_2$Nb$_{10}$O$_{29}$) crystallises from an amorphous solid at 810–835 °C and transforms to the orthorhombic polymorph (o-Ti$_2$Nb$_{10}$O$_{29}$) at 1200–1300 °C.14 Evidence from electron diffraction suggests the presence of domains of other TiO$_2$–Nb$_2$O$_5$ intergrowth phases, e.g. intergrowths between H-Nb$_2$O$_5$ and TiNb$_{24}$O$_{62}$: TiNb$_{38}$O$_{97}$, TiNb$_{52}$O$_{132}$,$^{15-17}$ but they have not been isolated as phase pure samples. In this family of compounds, the ribbon-breaking MO$_4$ tetrahedra in TiNb$_{24}$O$_{62}$ (3×4)$_2$ are not found in TiNb$_2$O$_7$ (3×3)$_{\infty}$ or either polymorph of Ti$_2$Nb$_{10}$O$_{29}$ (3×4)$_{\infty}$ though they are present in the aforementioned intergrowth structures.

Cheetham and Von Dreele18,19 first used neutrons to study the structure and cation distribution in the Wadsley–Roth phases TiNb$_2$O$_7$ and o-Ti$_2$Nb$_{10}$O$_{29}$ at 4.2 K.18,19 The large scattering cross section of oxygen in a neutron beam versus an X-ray source, relative to titanium and niobium, enabled a much higher quality determination of the oxygen sublattice. Furthermore, the nuclear coherent scattering length of titanium (~3.438 fm) and niobium (7.054 fm) differ in sign and thus the metal site occupancies can be readily determined. The titanium occupancy was found to vary from 14.0–64.5% in TiNb$_2$O$_7$ and from 4.5–40.0% in o-Ti$_2$Nb$_{10}$O$_{29}$.19
Neutron powder diffraction served as a complementary probe to earlier X-ray studies and, together, they provided some insight into the SOJT-distorted polyhedra and cation-ordering in these complex titania–niobia \(cs \) phases.

In this work, we begin with an accurate refinement of the lattice and atomic coordinates of the TiNb\(_{24}O_{62}\) structure via high-resolution neutron powder diffraction (NPD). The refined structure includes a determination of cation-ordering related to the block structure and significantly improved oxygen positions, yielding bond valence sums (BVS) close to the predicted values of four and five for Ti\(^{4+}\) and Nb\(^{5+}\), respectively. After establishing the host structure, we report a detailed electrochemical investigation of TiNb\(_{24}O_{62}\) as a lithium-ion battery intercalation electrode and evaluate the stability window over long-term cycling and the effects of kinetics and thermodynamics as a function of lithiation. High intercalation capacity and exceptionally stable cycle life are demonstrated. The structure and properties of TiNb\(_{24}O_{62}\) are discussed in the context of related crystallographic shear structures and mixed TiO\(_2\)–Nb\(_2\)O\(_5\) structures, which are the subject of significant recent investigation.

6.3 Experimental Methods

6.3.1 Synthesis

High-temperature solid-state methods were used to synthesise TiNb\(_{24}O_{62}\). Stoichiometric masses of TiO\(_2\) (Alfa-Aesar, 99.9\%, anatase, 0.080 g) and Nb\(_2\)O\(_5\) (Sigma-Aldrich, 99.99\%, mixed polymorphs, 3.190 g) were thoroughly mixed with an agate mortar and pestle and cold pressed into 13 mm diameter \(\times \) ca. 5 mm thick pellets (2–3 g) at 10 MPa. The pellets were then calcined at 1623 K for 96 h in platinum crucibles. The high-temperature niobia polymorph, monoclinic H-Nb\(_2\)O\(_5\), was synthesised from thermal oxidation of NbO\(_2\) in air at 1373 K for 24 h in an alumina crucible. The phase purity of this compound was determined via Rietveld refinement in a previous investigation of Nb\(_2\)O\(_5\) polymorphism.\(^20\)

6.3.2 Laboratory X-ray Powder Diffraction

Laboratory X-ray diffraction data were collected on a Panalytical Empyrean diffractometer with a Cu K\(\alpha_{1,2}\) X-ray source and K\(\beta\) filter. Patterns were recorded in Bragg–Brentano geometry from 5–80° 2\(\theta\) in steps of 0.017° 2\(\theta\) with flat-plate sample rotation.
6.3.3 High-resolution Neutron Powder Diffraction

High-resolution constant-wavelength ($\lambda = 1.5483$ Å) neutron powder diffraction data were collected from 5–150° 2θ on the SPODI21 beamline at the Heinz Maier-Leibnitz Zentrum (MLZ) in Garching, Germany. TiNb$_{24}$O$_{62}$ (5 g) was placed in a vanadium can for neutron measurements. For further details of the beamline instrumentation and data reduction process, see ref. 21. Rietveld refinement22 was carried out in GSAS-II23. The entire data range 5–150° 2θ was used for the refinement. The background was empirically fit with an 18 term Chebyshev polynomial and peak shapes were modelled with a pseudo-Voigt lineshape. Crystal structure visualisation and structural metric calculations were performed within VESTA 3.0.24

6.3.4 Scanning Electron Microscopy

Electron micrographs were collected at 3 kV on a Verios 460 scanning electron microscope (SEM, FEI Corp.). Samples were prepared by dispersing a few milligrams of TiNb$_{24}$O$_{62}$ powder into ethanol and casting the dispersion on a copper-supported carbon grid.

6.3.5 Electrochemistry

Electrochemical cells of Li (99.9%, Sigma-Aldrich) || 1 M LiPF$_6$ in ethylene carbonate/dimethyl carbonate (1:1, EC:DMC, Merck) || TiNb$_{24}$O$_{62}$ were constructed in an argon glovebox containing < 0.1 ppm H$_2$O and < 0.1 ppm O$_2$. All cells were configured in the 2032-size coin cell geometry with stainless steel components and a glass fibre (Whatman) separator. TiNb$_{24}$O$_{62}$ electrodes were made by mixing the active material, Super P carbon (Timcal) and Kynar polyvinylidene difluoride (PVDF, Arkema) in an 8:1:1 mass ratio with N-methyl-2-pyrrolidone (NMP, Sigma-Aldrich, 99.5%, anhydrous), casting the resulting slurry onto aluminium foil or carbon-coated aluminium foil with a 100 µm doctor blade, and drying the film overnight at 60 °C. Circular electrode disks (1.27 cm diameter, 1.27 cm2 geometric surface area, 2–3 mg·cm$^{-2}$ active material mass loading) were cut with a punch press. All electrochemical measurements were performed on a Bio-Logic potentiostat/galvanostat operating EC-Lab software. Galvanostatic charge/discharge data were numerically differentiated to give differential voltage curves. Galvanostatic intermittent titration experiments were performed by applying a current pulse equivalent to 1/20th theoretical capacity followed by a rest period of 12 h to allow the potential to relax toward thermodynamic equilibrium. Under these conditions, three cycles were recorded over a period of three and a half months. The theoretical capacity for a one electron reduction from Ti$^{4+}$ to Ti$^{3+}$ and Nb$^{5+}$
to Nb$^{4+}$ is 204.9 mA·h·g$^{-1}$ based on the mass of TiNb$_{24}$O$_{62}$. The C-rate is thus defined as inverse hours required to reach theoretical capacity; thus, C/10 corresponds to 20.49 mA·g$^{-1}$.

6.4 Results and Discussion

6.4.1 Synthesis and Structural Refinement

Solid-state reaction of Nb$_2$O$_5$ and TiO$_2$ at 1623 K resulted in a phase-pure white powder of TiNb$_{24}$O$_{62}$. SEM images and the neutron powder diffraction pattern of TiNb$_{24}$O$_{62}$ are shown in Figure 6.1. The particles were irregular in shape but roughly equant with a diameter of ca. 5–15 µm with no visible porosity (Figure 6.1a).

![Figure 6.1](image)

Figure 6.1 – (a) SEM images and (b) results of Rietveld refinement of TiNb$_{24}$O$_{62}$ showing experimental data (blue crosses), model fit (orange curve), background fitted by Chebyshev polynomials (red curve), difference (purple curve), and calculated positions of Bragg peaks (vertical blue ticks).
Rietveld refinement22 of the structural model against neutron scattering data (Figure 6.1b) was performed with GSAS-II23. The background, lattice parameters, atomic coordinates, atomic displacement parameters (ADPs), and metal site occupancies were initially refined in the C2 space group determined by Roth and Wadsley13. To reduce the large number of variables in this crystallographically complex structure, the ADPs were constrained to an overall value for all metal atoms and an overall value for all oxygen atoms. Interestingly, though no mirror symmetry is imposed in the initial space group choice, all octahedral metal sites and all oxygen sites refined well to the plane at \(b = 0 \). Given that \((x, 0, z)\) is a site of mirror symmetry in \(C2/m \), the remaining distinction between polar C2 and nonpolar \(C2/m \) is the nature of the tetrahedral site, which could be ordered at \((0, \frac{1}{4}, 0)\) or split occupancy above and below the \(b = \frac{1}{2} \) plane, as found in H-Nb\textsubscript{2}O\textsubscript{5}.25 This difference was “beyond [the] immediate objective” of the initial structural characterisation by Roth and Wadsley13 and is therefore investigated here. Removing the mirror symmetry constraint and letting the atomic positions move off the plane at \(b = 0 \) increased the number of parameters in the least squares refinement by 43 but led to only a minor improvement in the fit from \(R_w = 5.945\% \) to 5.703\%. With all other atomic coordinates at \((x, 0, z)\), converting the tetrahedral site from full occupancy at \(b = \frac{1}{4} \) to a split position at \(b = \frac{1}{4} \) and \(b = \frac{3}{4} \) had almost no effect on the refinement and refining the occupancy of the two sites led to a 60:40 ratio. Thus, in the absence of significant evidence for symmetry lowering, the \(C2/m \) space group was chosen though it is clear that the distinction is subtle in this compound. The possibility of small domains of lower symmetry cannot be excluded on the basis of diffraction data alone; observed deviations and non-50:50 split-site occupancy could be associated with complex domain structure in the material. Detailed transmission electron microscopy (TEM) imaging might be able to answer this question. The lattice parameters for the NPD refined structure (Figure 6.2) are \(a = 29.7940(4) \) Å, \(b = 3.82198(4) \) Å, \(c = 21.1301(4) \) Å, \(\beta = 95.043(3)\textdegree \) in close agreement with the original structure determination from XRD.
Figure 6.2 – The $2 \times 1 \times 2$ supercell of the crystallographic shear structure TiNb$_{24}$O$_{62}$ after NPD refinement. The $(3 \times 4)_2$ blocks of octahedra are clearly visible in this supercell view. The blocks in blue and purple are offset by $\frac{1}{2} b$. Tetrahedral sites are indicated with black shading. Oxygen ions are depicted as orange spheres. See main text for metal occupancies of the various sites and further structural details.

While the metal positions were accurately determined from XRD, the weak relative scattering of x-rays from oxygen ($Z = 8$) vs. Ti ($Z = 22$) or Nb ($Z = 41$) prevented the determination of accurate or precise anion coordinates. Anomalous bond valence sums (BVS)26 for Nb$^{5+}$ and Ti$^{4+}$ from the x-ray structure improved to within $\pm 10\%$ for all sites after refinement of the neutron diffraction data: the mean BVS deviation was 11.4% before refinement and 4.9% after refinement (Table 6.1). The most significant change was reflected in a 27% increase in polyhedral volume for the tetrahedral site with M–O bond lengths increasing from 1.644–1.730 Å to 1.821(16)–1.844(15) Å. Upon refining the metal site occupancies, preferential occupancy by titanium was found for the M1, M5, M8, M10, M11, and M13 sites, which are all edge-shared sites with the exception of M8 (Table 6.2 and Figure 6.3). Ti occupancy refined to zero, within error, for all other sites and was thus fixed at zero for further refinements. In the related compounds TiNb$_2$O$_7$ and o-Ti$_2$Nb$_{10}$O$_{29}$, Cheetham and Von Dreele found analogous cation ordering preferences with titanium partially preferring (multiple) edge-sharing sites and niobium favouring sites at the centre of the $n \times m$ blocks.18,19 A study of the niobium–tungsten oxide Nb$_{14}$W$_3$O$_{44}$ yielded a similar finding, with W$^{6+}$ preferring the centre of the blocks and the lower valent Nb$^{5+}$ in edge-sharing octahedra. No tetrahedral sites exist
in either TiNbO$_7$ or Ti$_2$Nb$_{10}$O$_{29}$; in the present study, the tetrahedral metal site in TiNb$_{24}$O$_{62}$ showed a preference for Ti$^{4+}$ over the higher valent but equivalently sized Nb$^{5+}$ ion. Without restraint, the total occupancy of niobium and titanium refined to 0.942 and 0.058, respectively, which are near the expected values of 0.96 and 0.04 so no restraint was imposed. During the Rietveld refinement all 31 oxygen sites were considered to be fully occupied and this parameter was not refined. Coordinates and occupancies for all 44 unique atomic positions are provided (Table 6.2). Due to the second-order Jahn–Teller effect—a symmetry-breaking structural displacement due to mixing of the ground-state filled p-orbitals with the pseudo-degenerate excited-state d-orbitals—in both d^0 Nb(V) and Ti(IV), the octahedra are highly distorted (Table 6.1). The tetrahedral M1 site lacks a centre of symmetry and is therefore not subject to this distortion.

Table 6.1 – Bond valence sums (BVS)26,28 of Ti$^{4+}$ and Nb$^{5+}$ in the MO$_4$ (M1) and MO$_6$ (M2–13) sites from x-ray13 and neutron (this work) refinement as well as structural metrics from this neutron study. The numbering of the polyhedra (1–13) corresponds to the metal atom site naming. Bond lengths refer to metal–oxygen bonds within the tetrahedra/octahedra.

<table>
<thead>
<tr>
<th>Polyhedron</th>
<th>X-ray BVS Nb$^{5+}$</th>
<th>X-ray BVS Ti$^{4+}$</th>
<th>Neutron BVS Nb$^{5+}$</th>
<th>Neutron BVS Ti$^{4+}$</th>
<th>Average Bond Length (Å)</th>
<th>Polyhedral Volume (Å^3)29</th>
<th>Distortion Index30</th>
<th>Quadratic Elongation31</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7.38</td>
<td>5.70</td>
<td>4.94</td>
<td>3.81</td>
<td>1.83</td>
<td>3.1</td>
<td>0.01</td>
<td>1.01</td>
</tr>
<tr>
<td>2</td>
<td>4.58</td>
<td>3.54</td>
<td>5.28</td>
<td>4.07</td>
<td>1.96</td>
<td>9.7</td>
<td>0.02</td>
<td>1.02</td>
</tr>
<tr>
<td>3</td>
<td>4.71</td>
<td>3.63</td>
<td>5.28</td>
<td>4.07</td>
<td>2.01</td>
<td>10.1</td>
<td>0.08</td>
<td>1.05</td>
</tr>
<tr>
<td>4</td>
<td>5.93</td>
<td>4.57</td>
<td>5.01</td>
<td>3.87</td>
<td>2.00</td>
<td>10.2</td>
<td>0.05</td>
<td>1.03</td>
</tr>
<tr>
<td>5</td>
<td>5.53</td>
<td>4.26</td>
<td>5.38</td>
<td>4.15</td>
<td>1.97</td>
<td>9.9</td>
<td>0.05</td>
<td>1.03</td>
</tr>
<tr>
<td>6</td>
<td>4.20</td>
<td>3.24</td>
<td>5.48</td>
<td>4.23</td>
<td>2.00</td>
<td>10.2</td>
<td>0.07</td>
<td>1.04</td>
</tr>
<tr>
<td>7</td>
<td>5.02</td>
<td>3.87</td>
<td>5.29</td>
<td>4.08</td>
<td>1.99</td>
<td>10.4</td>
<td>0.07</td>
<td>1.01</td>
</tr>
<tr>
<td>8</td>
<td>5.19</td>
<td>4.01</td>
<td>5.01</td>
<td>3.86</td>
<td>1.99</td>
<td>10.4</td>
<td>0.04</td>
<td>1.01</td>
</tr>
<tr>
<td>9</td>
<td>4.49</td>
<td>3.47</td>
<td>4.66</td>
<td>3.59</td>
<td>2.08</td>
<td>11.1</td>
<td>0.10</td>
<td>1.06</td>
</tr>
<tr>
<td>10</td>
<td>5.04</td>
<td>3.89</td>
<td>4.70</td>
<td>3.63</td>
<td>2.03</td>
<td>10.6</td>
<td>0.06</td>
<td>1.04</td>
</tr>
<tr>
<td>11</td>
<td>4.34</td>
<td>3.35</td>
<td>5.41</td>
<td>4.18</td>
<td>1.97</td>
<td>9.8</td>
<td>0.04</td>
<td>1.03</td>
</tr>
<tr>
<td>12</td>
<td>5.41</td>
<td>4.17</td>
<td>5.01</td>
<td>3.87</td>
<td>2.01</td>
<td>10.3</td>
<td>0.06</td>
<td>1.04</td>
</tr>
<tr>
<td>13</td>
<td>5.32</td>
<td>4.10</td>
<td>5.48</td>
<td>4.23</td>
<td>2.04</td>
<td>10.4</td>
<td>0.11</td>
<td>1.07</td>
</tr>
</tbody>
</table>

149
Table 6.2 – Wyckoff positions, atomic coordinates, and occupancies of the thirteen metal sites and thirty-one oxygen sites in TiNb$_{24}$O$_{62}$ after refinement from neutron powder diffraction. Due to the large number of variables in this structure, metal and oxygen atomic displacement parameters were each fixed to a single value; U_{iso} (Å2) refined to 0.0060(5) for metal sites and 0.0077(3) for oxygen sites (i.e. $B_{\text{iso,metal}} = 0.47(4)$ Å2 and $B_{\text{iso,oxygen}} = 0.61(2)$ Å2).

aTotal occupancy for the M1 4g site is 0.5; Ti1 occupancy is therefore the difference between 0.5 and the Nb1 occupancy.

<table>
<thead>
<tr>
<th>Atomic Site Name</th>
<th>Wyckoff position</th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>Occupancy (Nbx/Ti${1-x}$)a</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nb/Ti1</td>
<td>4g</td>
<td>0.00000</td>
<td>0.25</td>
<td>0.00000</td>
<td>0.45(2)a</td>
</tr>
<tr>
<td>Nb2</td>
<td>4i</td>
<td>0.1161(5)</td>
<td>0</td>
<td>0.0082(9)</td>
<td>1</td>
</tr>
<tr>
<td>Nb3</td>
<td>4i</td>
<td>0.2360(5)</td>
<td>0</td>
<td>0.0639(8)</td>
<td>1</td>
</tr>
<tr>
<td>Nb4</td>
<td>4i</td>
<td>0.3702(6)</td>
<td>0</td>
<td>0.1104(9)</td>
<td>1</td>
</tr>
<tr>
<td>Nb/Ti5</td>
<td>4i</td>
<td>0.4986(6)</td>
<td>0</td>
<td>0.1632(9)</td>
<td>0.94(3)</td>
</tr>
<tr>
<td>Nb6</td>
<td>4i</td>
<td>0.0909(6)</td>
<td>0</td>
<td>0.1881(9)</td>
<td>1</td>
</tr>
<tr>
<td>Nb7</td>
<td>4i</td>
<td>0.2217(6)</td>
<td>0</td>
<td>0.2380(9)</td>
<td>1</td>
</tr>
<tr>
<td>Nb/Ti8</td>
<td>4i</td>
<td>0.3470(7)</td>
<td>0</td>
<td>0.2822(10)</td>
<td>0.88(3)</td>
</tr>
<tr>
<td>Nb9</td>
<td>4i</td>
<td>0.4738(5)</td>
<td>0</td>
<td>0.3377(8)</td>
<td>1</td>
</tr>
<tr>
<td>Nb/Ti10</td>
<td>4i</td>
<td>0.0685(7)</td>
<td>0</td>
<td>0.3642(11)</td>
<td>0.83(3)</td>
</tr>
<tr>
<td>Nb/Ti11</td>
<td>4i</td>
<td>0.1961(6)</td>
<td>0</td>
<td>0.4126(10)</td>
<td>0.88(3)</td>
</tr>
<tr>
<td>Nb12</td>
<td>4i</td>
<td>0.3209(6)</td>
<td>0</td>
<td>0.4613(9)</td>
<td>1</td>
</tr>
<tr>
<td>Nb/Ti13</td>
<td>4i</td>
<td>0.4475(6)</td>
<td>0</td>
<td>0.5096(8)</td>
<td>0.87(3)</td>
</tr>
<tr>
<td>O1</td>
<td>4i</td>
<td>0.3859(7)</td>
<td>0</td>
<td>0.0110(10)</td>
<td>1</td>
</tr>
<tr>
<td>O2</td>
<td>4i</td>
<td>0.1799(6)</td>
<td>0</td>
<td>0.0316(11)</td>
<td>1</td>
</tr>
<tr>
<td>O3</td>
<td>4i</td>
<td>0.3102(7)</td>
<td>0</td>
<td>0.0884(11)</td>
<td>1</td>
</tr>
<tr>
<td>O4</td>
<td>4i</td>
<td>0.0939(6)</td>
<td>0</td>
<td>0.0895(12)</td>
<td>1</td>
</tr>
<tr>
<td>O5</td>
<td>4i</td>
<td>0.4405(7)</td>
<td>0</td>
<td>0.1391(10)</td>
<td>1</td>
</tr>
<tr>
<td>O6</td>
<td>4i</td>
<td>0.2283(7)</td>
<td>0</td>
<td>0.1467(13)</td>
<td>1</td>
</tr>
<tr>
<td>O7</td>
<td>4i</td>
<td>0.0135(7)</td>
<td>0</td>
<td>0.1614(10)</td>
<td>1</td>
</tr>
<tr>
<td>O8</td>
<td>4i</td>
<td>0.3607(7)</td>
<td>0</td>
<td>0.1975(10)</td>
<td>1</td>
</tr>
<tr>
<td>O9</td>
<td>4i</td>
<td>0.1448(7)</td>
<td>0</td>
<td>0.2119(11)</td>
<td>1</td>
</tr>
<tr>
<td>O10</td>
<td>4i</td>
<td>0.4954(6)</td>
<td>0</td>
<td>0.2534(10)</td>
<td>1</td>
</tr>
<tr>
<td>O11</td>
<td>4i</td>
<td>0.2800(8)</td>
<td>0</td>
<td>0.2622(12)</td>
<td>1</td>
</tr>
<tr>
<td>O12</td>
<td>4i</td>
<td>0.0785(6)</td>
<td>0</td>
<td>0.2781(10)</td>
<td>1</td>
</tr>
<tr>
<td>O13</td>
<td>4i</td>
<td>0.4148(6)</td>
<td>0</td>
<td>0.3222(9)</td>
<td>1</td>
</tr>
<tr>
<td>O14</td>
<td>4i</td>
<td>0.1997(6)</td>
<td>0</td>
<td>0.3295(11)</td>
<td>1</td>
</tr>
<tr>
<td>O15</td>
<td>4i</td>
<td>0.3326(7)</td>
<td>0</td>
<td>0.3776(9)</td>
<td>1</td>
</tr>
<tr>
<td>------</td>
<td>----</td>
<td>------------</td>
<td>---</td>
<td>------------</td>
<td>---</td>
</tr>
<tr>
<td>O16</td>
<td>4i</td>
<td>0.1302(7)</td>
<td>0</td>
<td>0.3941(9)</td>
<td>1</td>
</tr>
<tr>
<td>O17</td>
<td>4i</td>
<td>0.4751(7)</td>
<td>0</td>
<td>0.4405(10)</td>
<td>1</td>
</tr>
<tr>
<td>O18</td>
<td>4i</td>
<td>0.2603(7)</td>
<td>0</td>
<td>0.4393(11)</td>
<td>1</td>
</tr>
<tr>
<td>O19</td>
<td>4i</td>
<td>0.0476(7)</td>
<td>0</td>
<td>0.4608(10)</td>
<td>1</td>
</tr>
<tr>
<td>O20</td>
<td>4i</td>
<td>0.3911(6)</td>
<td>0</td>
<td>0.4889(11)</td>
<td>1</td>
</tr>
<tr>
<td>O21</td>
<td>4i</td>
<td>0.1810(6)</td>
<td>0</td>
<td>0.5113(11)</td>
<td>1</td>
</tr>
<tr>
<td>O22</td>
<td>4i</td>
<td>0.3113(6)</td>
<td>0</td>
<td>0.5671(11)</td>
<td>1</td>
</tr>
<tr>
<td>O23</td>
<td>4i</td>
<td>0.4426(7)</td>
<td>0</td>
<td>0.6176(11)</td>
<td>1</td>
</tr>
<tr>
<td>O24</td>
<td>4i</td>
<td>0.0071(6)</td>
<td>0</td>
<td>0.6534(10)</td>
<td>1</td>
</tr>
<tr>
<td>O25</td>
<td>4i</td>
<td>0.1482(6)</td>
<td>0</td>
<td>0.7100(11)</td>
<td>1</td>
</tr>
<tr>
<td>O26</td>
<td>4i</td>
<td>0.2777(6)</td>
<td>0</td>
<td>0.7673(9)</td>
<td>1</td>
</tr>
<tr>
<td>O27</td>
<td>4i</td>
<td>0.4279(7)</td>
<td>0</td>
<td>0.8160(10)</td>
<td>1</td>
</tr>
<tr>
<td>O28</td>
<td>4i</td>
<td>0.1187(6)</td>
<td>0</td>
<td>0.9103(11)</td>
<td>1</td>
</tr>
<tr>
<td>O29</td>
<td>4i</td>
<td>0.4839(6)</td>
<td>0</td>
<td>0.9282(9)</td>
<td>1</td>
</tr>
<tr>
<td>O30</td>
<td>4i</td>
<td>0.2560(6)</td>
<td>0</td>
<td>0.9640(10)</td>
<td>1</td>
</tr>
<tr>
<td>O31</td>
<td>4i</td>
<td>0.0506(6)</td>
<td>0</td>
<td>0.9834(10)</td>
<td>1</td>
</tr>
</tbody>
</table>

Figure 6.3 – TiNb$_{24}$O$_{62}$ unit cell highlighting the sites preferentially occupied by Ti (red polyhedra) relative to the stoichiometric Ti:Nb ratio of 1:24. Nb-rich octahedra are shown in blue; oxygen atoms are shown in orange.
6.4.2 Electrochemical Performance

In order to study the electrochemical performance of TiNb$_{24}$O$_{62}$ as a lithium-ion battery material, electrode films were prepared with conductive carbon and polymeric binder (oxide:carbon:polymer 8:1:1 by mass). TiNb$_{24}$O$_{62}$ was cycled between 3.00 V and 1.20–0.90 V versus Li$^+$/Li at C/10. Figure 6.4 shows the cycling performance of this material as a function of lower voltage cut-off (V_{min}). On first discharge to 0.90 V, TiNb$_{24}$O$_{62}$ intercalates 300 mA·h·g$^{-1}$ (1.5 Li/transition metal); however, there is a first cycle capacity loss of 40 mA·h·g$^{-1}$ and a 79% capacity retention from the 2$^{\text{nd}}$ to 100$^{\text{th}}$ cycle. Narrowing the potential window by raising the lower cut-off voltage stabilises the capacity retention, as shown in Table 6.3. When the electrode was not taken below 1.10 V, the first cycle irreversible capacity was only ca. 4%. In addition, for electrodes that stayed above 1.00 V, the capacity retention over a three month time period from the 2$^{\text{nd}}$ to 100$^{\text{th}}$ cycle was 92–94%.

![Figure 6.4](image-url)
Figure 6.4 – Cycle performance of TiNb$_{24}$O$_{62}$ from 3.0 V to 1.20–0.90 V vs. Li$^+$/Li for the first 100+ cycles at C/10. Undulations over the first 25 cycles result from temperature fluctuations.
Table 6.3 – 1st Cycle capacity, irreversible capacity, and capacity retention of TiNb$_{24}$O$_{62}$ vs. Li$^+/\text{Li}$ as a function of the lower voltage cut-off.

<table>
<thead>
<tr>
<th>Lower Voltage Cut-off (V)</th>
<th>1st Cycle Capacity (mA·h·g$^{-1}$)</th>
<th>1st Cycle Capacity Loss (%)</th>
<th>Capacity Retention (%) [2nd – 100th]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.90</td>
<td>302</td>
<td>15</td>
<td>79</td>
</tr>
<tr>
<td>1.00</td>
<td>240</td>
<td>11</td>
<td>93</td>
</tr>
<tr>
<td>1.10</td>
<td>218</td>
<td>3.7</td>
<td>94</td>
</tr>
<tr>
<td>1.20</td>
<td>214</td>
<td>4.1</td>
<td>92</td>
</tr>
</tbody>
</table>

As seen in Figure 6.5, the intercalation initially occurs primarily below 2.0 V with three reversible discharge regions. The first region exhibits a shoulder/slope from 2.05 V to 1.70 V and is ca. 40 mA·h·g$^{-1}$. Following this, intercalation is nearly potential invariant between 1.70–1.60 V for ca. 80 mA·h·g$^{-1}$. Finally, another sloping profile region occurs from 1.60 V to below 0.9 V with capacity dependent on cut-off voltage as discussed above. The full discharge and charge profiles are plotted for the 2nd, 10th, 50th, and 100th cycles as a function of lower voltage cut-off in Figure 6.5a. The high reversibility and extremely low overpotential (ca. 0.03 V on the 100th cycle from 3.00 to 1.20 V) are apparent when the voltage is limited above 1.10 V. On the other hand, when cycled in a wider potential window, the cell polarization evidently increases; a significant overpotential (ca. 0.80 V for 100th cycle from 3.00 to 0.90 V) and lower energy efficiency are observed. Perhaps surprisingly, the capacity of the cells cycled to low voltage decays slowly (Figure 6.4) even whilst the polarization rises by more than a factor of 25 over the first 100 cycles. In other words, the energy efficiency is affected to a much greater extent than the capacity in this system, when the cells are cycled vs. Li (i.e., when there is an excess of Li in the cell). The increase in polarization with cycle number suggests the build-up of a resistive SEI from electrolyte reduction at low potentials, which is consistent with the observation of irreversible capacity loss under low voltage cycling conditions.
Figure 6.5 – (a) Discharge and charge curves and (b) dQ/dV curves of TiNb$_{24}$O$_{62}$ as a function of minimum voltage limit and cycle number. Expanded curves are given in Figure 6.6.
Figure 6.6 – dQ/dV plot showing detailed charge storage vs. potential relationship and peak splitting for the 2$^{\text{nd}}$, 10$^{\text{th}}$, 50$^{\text{th}}$, and 100$^{\text{th}}$ cycles of Li$_x$TiNb$_2$O$_{62}$ discharged to different lower cut-off voltages (V_{min}, vs. Li$^+$/Li).

Detailed analysis of the intercalation behaviour is aided by the examination of dQ/dV plots shown in Figure 6.5b. Again, the 2$^{\text{nd}}$, 10$^{\text{th}}$, 50$^{\text{th}}$, and 100$^{\text{th}}$ cycle are compared as a function of lower voltage cut-off. From Figure 6.5b, the decreasing peak potential on discharge (negative peaks) and increasing peak potential on charge (positive peaks) for low voltage cut-off cycling corresponds to the polarization seen in the curve separation from Figure 6.5a. In addition to the voltage shift, the dQ/dV reveals that the reduction and oxidation peaks broaden in all cases over cycling and even separate to distinct potentials for V_{min} of 1.00 V or below. Peak splitting in the dQ/dV suggests that the lithium sites are filling discretely and/or the particles are not lithiating homogeneously after extended cycling to lower potentials. A view of the dQ/dV data with a smaller y-axis range is shown (Figure 6.6) to highlight the effect of the sloping regions. The shoulder region at 2.00 V is present as a broad reversible peak in dQ/dV while the regions at higher and lower potential than the major redox peak show featureless intercalation on initial cycling and become overlapped with the broadened/split peaks on later cycles. The high degree of reversibility observed in cycling profiles and differential analysis (to 1.10 V) indicates that
the crystal structure of TiNb$_{24}$O$_{62}$ is very stable toward lithiation even over extended intercalation and deintercalation of a full formula unit of lithium.

The galvanostatic intermittent titration technique (GITT, Figure 6.7) was employed to gain insights into the (de)lithiation mechanism, diffusion kinetics, and thermodynamic voltage of TiNb$_{24}$O$_{62}$. In this experiment32, a current pulse is applied followed by a long relaxation period and the cell voltage is continuously monitored (Figure 6.8). Immediately after the current pulse, the electrode is in a non-equilibrium state with a potential known as the closed-circuit voltage (V$_{cc}$). Throughout the relaxation period, Li$^+$ diffuses from the surface of the electrode/particles until it reaches an equilibrium state and corresponding open-circuit voltage (V$_{oc}$). As the observed voltage during the relaxation step is a function of a diffusive process, the chemical diffusion coefficient (\bar{D}_{Li}) can be derived32. While absolute values of \bar{D}_{Li} from GITT of polycrystalline electrodes are susceptible to errors in the estimation of particle size/diffusion distance, relative values are quite informative. During the initial lithiation, \bar{D}_{Li} is relatively constant from 2.45 V until the divergent behaviour at 1.68 V. The divergent region corresponds to a stoichiometry of Li$_{8.5(10)}$TiNb$_{24}$O$_{62}$—close to the one-third lithiated composition Li$_{8.33}$TiNb$_{24}$O$_{62}$—to Li$_{20(1)}$TiNb$_{24}$O$_{62}$ and suggests a two-phase reaction or region of lithium-ordering. Intermittent titration technique diffusion coefficients, based on Fickian diffusion, are only applicable within single-phase regions32,33 and thus the phenomenon, not the absolute values, should be regarded for this divergent region.34 Efforts have been made to extend GITT theory to phase transformation regions by accounting for the interface mobility but further knowledge or assumptions are required concerning the particle size, morphology, and distribution as well as the geometry of intercalant diffusion and interface propagation.35 Upon lithiation below an open-circuit voltage of ca. 1.6 V, from Li$_{20(1)}$TiNb$_{24}$O$_{62}$ to Li$_{27.5(10)}$TiNb$_{24}$O$_{62}$, Li$^+$ diffusion enters a second relatively constant region that is one order-of-magnitude lower than the dilute Li$_x$TiNb$_{24}$O$_{62}$ to Li$_{8.5(10)}$TiNb$_{24}$O$_{62}$ region. Finally, from Li$_{27.5(10)}$TiNb$_{24}$O$_{62}$ to Li$_{37.5(10)}$TiNb$_{24}$O$_{62}$, the Li$^+$ diffusion becomes steadily more hindered. This could be attributed to filling of the sites as the phase becomes overlithiated, i.e. greater than one lithium per transition metal (Li$^+$/TM). While this “lithium-stuffed” phase can incorporate additional Li-ions, the diffusion is slower (Figure 6.7a). Overall, Li$^+$ diffusion decreases by 10^3 from dilute Li$_x$TiNb$_{24}$O$_{62}$ to stuffed Li$_{37.5(10)}$TiNb$_{24}$O$_{62}$. In addition, the difference between V$_{oc}$ and V$_{cc}$ increases from 45 mV at 0.75 Li$^+$/TM to 105 mV at 1.0 Li$^+$/TM to 244 mV at 1.5 Li$^+$/TM (Figure 6.7b). The low hysteresis between discharge and charge, particularly above V$_{cc} = 1.2$ V, demonstrates the energy efficiency of TiNb$_{24}$O$_{62}$. Accessing
higher capacities, at least in these bulk particles, will incur some efficiency and stability penalties.

Figure 6.7 – (a) \bar{D}_{Li} as a function of open-circuit voltage for three discharge–charge cycles and (b) the extracted open-circuit vs. closed-circuit plot from the first cycle at C/10 showing increased overpotential as $Li_{x}TiNb_{24}O_{62}$ surpasses $x = 25 \, (1 \, Li^+/TM)$.

157
Figure 6.8 – Current pulse voltage response as a function of square root time for the coulombic titration measurement. After initial double-layer charging and other transitory effects, the voltage response is proportional to the square root of time, indicating that the $t << L^2 D^{-1}$ approximation is appropriate for these short current pulses.

The rate performance of TiNb$_{24}$O$_{62}$ was examined with thick films (2–3 mg·cm$^{-2}$ active material) prepared from the ca. 5–15 µm particles (Figure 6.9–10). On aluminium foil current collectors, the TiNb$_{24}$O$_{62}$ capacity faded as a function of increasing current density with approximately 50% capacity realized at 2C (409.8 mA·g$^{-1}$) and nearly no charge storage above 5C (1025 mA·g$^{-1}$) in a standard 2032-size coin cell with one 0.5 mm stainless steel spacer disk and a 1.0 mm conical spring. It is known that pressure can play a role in cell performance so cells were also examined with a second 0.5 mm spacer disk added; this significantly improved the high-rate performance such that 50% theoretical capacity was achieved at 5C. Given that theoretical capacity was reached at C/5, this phase might be considered a typical battery material for standard rate conditions. Still, in order to better understand the nature of the rate limitations, TiNb$_{24}$O$_{62}$ was also cast onto carbon-coated Al foil (C@Al), (Figure 6.9–10), it being a well-established method in the carbon supercapacitor community to produce electric double-layer supercapacitors with current densities in the range 1–100 mA·cm$^{-2}$. In this study, thick films comprised of the large particles of TiNb$_{24}$O$_{62}$ maintained greater than 50% theoretical capacity at 10–15C (2–3 A·g$^{-1}$; 6.7–10 mA·cm$^{-2}$). These results suggest that this
phase is not only stable upon long-term cycling but also has intrinsic high-rate insertion and extraction of lithium under appropriate conditions, which is reminiscent of the bronze-phase T-Nb$_2$O$_5$20. We note that pressure and a constant voltage charge step (involving a 1 hour hold period at 3.0 V) appear to be much more significant on the non-optimized Al foil whilst having little effect on the performance of TiNb$_2$O$_6$ on a more suitable substrate such as carbon-coated Al foil. The lack of effect of a one hour hold period for the carbon-coated films indicates that the measured capacities reflect the intrinsic behaviour of the oxide film on discharge and that TiNb$_2$O$_6$ is not limited by the ability to extract Li$^+$ on charge. The results are consistent with rapid Li$^+$ transport in the oxide, despite the drop in the lithium diffusivity with increasing lithium content.

Figure 6.9 – High-rate performance of TiNb$_2$O$_6$ vs. Li. The mixed metal oxide capacity was examined as a function of current collector substrate, pressure, and cycling conditions in a 3.0–1.0 V potential window (vs. Li$^+/Li$): capacity data are displayed for (i) carbon-coated Al foil (C@Al) and untreated Al foil, (ii) one or two 0.5 mm stainless steel spacer disks, and (iii) with or without a 1 h constant voltage hold step at the top of charge (3.0 V). Electrodes were 1.27 cm in diameter, the active material mass loading was 3–4 mg, and the composition was TiNb$_2$O$_6$:carbon:PVDF in 8:1:1 mass ratio, analogous to the long duration cycling.
Figure 6.10 – Discharge profile curves of the lithiation of TiNb$_{24}$O$_{62}$ at C/5, 1C, 2C, 5C, 10C, and 15C on different current collector materials in the potential window 3.0–1.0 V. Both cells were constructed with one spacer and cycling was performed with a one hour constant voltage charge step at 3.0 V to remove lithium before subsequent discharge. Each electrode (d = 1.27 cm) was comprised of TiNb$_{24}$O$_{62}$, super P conductive carbon, and PVDF binder in an 8:1:1 mass ratio; the active material loading was 3.25 mg on the carbon-coated Al foil and 3.26 mg on the plain Al foil. Both the overall capacity and voltage–capacity relationship are affected by the nature of the current collector. Note that only five curves are evident for the Al foil current collector; both 10C and 15C rates yield no capacity, thus the curves are directly overlapping.

6.4.3 Comparison to Related Structure Types

With the goal of understanding and designing next-generation energy storage materials, it is interesting to consider how the block superstructure changes with minimal compositional differences and how the block size and interconnectivity may affect properties such as intercalation chemistry. The difference between TiNb$_{24}$O$_{62}$ (3×4)$_2$ and the block structures found in H-Nb$_2$O$_5$$_{25}$ [(3×4)$_1$+$($3 \times 5$)$_\infty$], i.e., Nb$_{25}O_{62.5}$, is the absence of only one out of every 125 oxygen atoms. Rather than a disordered defect, this minor change in anion stoichiometry, dictated by charge neutrality, results in an ordered shear structure with a different block
connectivity and thus different ionic diffusion pathways. This structural rearrangement is also observed in the case of α-ZrNb$_{24}$O$_{62}$, which is isostructural with TiNb$_{24}$O$_{62}$. In the case of Zr, however, two additional polymorphs are known from electron microscopy—β and γ—though they are not fully characterized due to the complexity of their crystal structures. These additional polymorphs are observed after prolonged heating of Nb$_2$O$_5$ and ZrO$_2$, which yields primarily α-phase after ca. 24 h and primarily β-phase after ca. 160 h. In an effort to investigate the stability of TiNb$_{24}$O$_{62}$, a sample was heated in a Pt crucible in air at 1623 K for 167 h followed by 1673 K for a further 167 h. No apparent phase transformation was observed in the powder X-ray diffraction data though the weak, high d-spacing superstructure reflections became more pronounced after extended annealing (Figure 6.11).

Figure 6.11 – Powder X-ray diffraction pattern of TiNb$_{24}$O$_{62}$ after 96 h at 1623 K and 333 h total (166.5 h at 1623 K and 166.5 h at 1648 K). The relatively weak, long-range order, superstructure reflections become more pronounced after extended high-temperature calcination.
As aforementioned, the monoclinic H-Nb$_2$O$_5$ cs phase is compositionally and structurally closely related to TiNb$_{24}$O$_{62}$. While the discharge and charge processes are similar in reaction voltage and capacity between the two phases, the shoulder regions from 0–0.25, 0.70–1.00, and beyond one Li$^+$/TM are significantly suppressed in TiNb$_{24}$O$_{62}$, appearing more solid-solution-like (Figure 6.12a). This may be related to the presence of disordered cation sublattices containing Nb and Ti ions with different charges, which can help prevent Li$^+$ ordering, although at such low Ti concentrations the effects are clearly subtle. Given their structural and compositional similarity, it is noteworthy that under the same conditions—rate, particle size, voltage window, temperature, electrolyte, and cell design—the capacity retention of TiNb$_{24}$O$_{62}$ is significantly higher and more stable than H-Nb$_2$O$_5$ (Figure 6.12b). Both structures feature (3×4) blocks and tetrahedral linkages though every other $\frac{1}{2} b$ layer in H-Nb$_2$O$_5$ is comprised of an infinite chain of (3×5) blocks. While it is difficult to pinpoint the exact nature of the difference in capacity retention in these complex structures, the specific arrangement of the shear planes, block sizes, and block connectivity certainly has implications for electrochemical performance in the extended family of cs phases.
Figure 6.12 – Comparison of the electrochemical properties of TiNb$_{24}$O$_{62}$ and H-Nb$_2$O$_5$. (a) 2nd cycle lithiation/delithiation profiles and (b) capacity as a function of compound, cycle number, and lower voltage cut-off. All tests were performed at C/10 rate in coin cells with additive-free 1 M LiPF$_6$ in EC:DMC (1:1, v/v) and an upper voltage limit of 3.0 V.
Given the substantial and rising interest in Ti- and Nb-containing electrode materials for energy storage6,8,9,20,38, the Nb–Ti–O phase space is as important as it is complex. We seek to bring together ideas from the previous structural studies and phase chemistry in this context. As introduced, TiNb\textsubscript{2}O\textsubscript{7}, \textit{m}-Ti\textsubscript{2}Nb\textsubscript{10}O\textsubscript{29}, \textit{o}-Ti\textsubscript{2}Nb\textsubscript{10}O\textsubscript{29}, and intergrowth phases are well known. Recently, Lin \textit{et al.}39 suggested the existence of another electrode material with the stoichiometry TiNb\textsubscript{6}O\textsubscript{17} (TiO\textsubscript{2}·3Nb\textsubscript{2}O\textsubscript{3}) and proposed that the structure is similar to that of monoclinic-Ti\textsubscript{2}Nb\textsubscript{10}O\textsubscript{29} but that it contained cation vacancies. Roth and Coughanour40 reported this phase in the titania–niobium system sixty years prior but recognised that the formula was uncertain; in a subsequent single-crystal X-ray study, Wadsley41 reported that reaction with a 1:3 TiO\textsubscript{2}:Nb\textsubscript{2}O\textsubscript{5} stoichiometry also yielded H-Nb\textsubscript{2}O\textsubscript{5} and showed that the proposed “1:3” phase was actually 2TiO\textsubscript{2}:5Nb\textsubscript{2}O\textsubscript{5}. The recent proposal that TiNb\textsubscript{6}O\textsubscript{17} is a new phase, based on its composition, but with a good fit to the diffraction pattern of \textit{m}-Ti\textsubscript{2}Nb\textsubscript{10}O\textsubscript{29}39 requires significant further evidence if one considers (i) the previous single-crystal work by Wadsley, (ii) the lack of evidence for this cation-deficient defect motif in other \textit{cs} structures, (iii) the infinitely adaptive nature of the \textit{cs} structures, especially given the similar block sizes of H-Nb\textsubscript{2}O\textsubscript{5} and Ti\textsubscript{2}Nb\textsubscript{10}O\textsubscript{29}, and (iv) the difficulty of detecting a small percentage of microheterogeneous regions with laboratory X-ray diffraction (employed in the prior study) amongst the already complex diffraction pattern. Indeed, coherent intergrowths of domains as small as a single block-width are known in the TiO\textsubscript{2}–Nb\textsubscript{2}O\textsubscript{5} system.42 A thorough TEM investigation and careful pycnometry measurements may help resolve this section of the phase diagram; however, for the reasons discussed, TiNb\textsubscript{6}O\textsubscript{17} is omitted at present. Finally, the phase Ti\textsubscript{2}Nb\textsubscript{6}O\textsubscript{19} may exist, which Jongejan and Wilkins reported to be stable only above 1425 °C, but has not been structurally characterised.43 Therefore, the updated TiO\textsubscript{2}–Nb\textsubscript{2}O\textsubscript{5} phase diagram (Figure 6.13), based on the diagram from Roth,44 now clarifies the polymorphism in Ti\textsubscript{2}Nb\textsubscript{10}O\textsubscript{29}, the lack thereof in TiNb\textsubscript{24}O\textsubscript{62}, intergrowths of ternary phases with H-Nb\textsubscript{2}O\textsubscript{5}, and the consideration of other stoichiometries, which require further investigation.
Figure 6.13 – Temperature versus composition phase diagram of the Nb₂O₅–TiO₂ system. Nb₂O₅, TiNb₂₄O₆₂, Ti₂Nb₁₀O₂₉, TiNb₂O₇, a solid-solution of Nb in TiO₂, and TiO₂ are well established. Ti₂Nb₁₀O₂₉ is found as monoclinic (m) and orthorhombic (o) polymorphs. Nb solubility in TiO₂ decreases as a function of temperature below 1475 °C. Ti solubility in Nb₂O₅ is minimal. Dashed vertical lines indicate regions where structures are not well defined and/or T–C space is not well sampled. Phase data based on Roth and supplemented from the literature and this work.

Electrochemical studies of TiNb₂O₇⁶,45 and Ti₂Nb₁₀O₂₉⁹,10,46 have reported good capacity and cycling performance, especially when steps were taken to reduce the particle size or improve the electrode design⁴⁷–⁴⁹. This initial report on TiNb₂₄O₆₂ compares well with other members of the same family. Bulk TiNb₂O₇⁷,45,50 and Ti₂Nb₁₀O₂₉ were reported to cycle 200–250 mA·h·g⁻¹ though most studies report just the first 20 cycles and use smaller particles. Thus, the intercalation reversibility of TiNb₂₄O₆₂ is comparable to other safe anode candidates but further studies are needed to differentiate this family of electrode materials. Furthermore,
though it is known that the gassing in Li$_4$Ti$_5$O$_{12}$ is more detrimental than in TiO$_2$, the role of titanium in this process is not yet clear. This Nb-rich end member of the family of Ti–Nb–O compounds may help with the identification of the mechanism of gassing and prove useful if gassing is indeed tied to Ti-rich interface chemistry. The advanced synthetic techniques applied to TiNb$_2$O$_7$ or Ti$_2$Nb$_{10}$O$_{29}$ to carbon coat45, introduce charge carriers through partial reduction51, or nanoscale the particles47–49,52 may be analogously applied to increase the capacity and kinetics of TiNb$_{24}$O$_{62}$.

6.5 Conclusions

A third titanium–niobium mixed metal oxide in the Wadsley–Roth family of crystallographic shear compounds has been structurally and electrochemically characterised. Neutron diffraction was applied for the first time to TiNb$_{24}$O$_{62}$ to elucidate subtle structural details. Thanks to the scattering properties of neutrons, the oxygen bonding was more accurately derived and partial cation ordering was found with Ti$^{4+}$ preferentially occupying the tetrahedral site and some multi-edge-sharing octahedra within TiNb$_{24}$O$_{62}$. Though lithiation of TiNb$_2$O$_7$ and o-Ti$_2$Nb$_{10}$O$_{29}$ have been more widely studied, there lack detailed structural and electrochemical investigations of the third and final known TiO$_2$–Nb$_2$O$_5$ Wadsley–Roth phase. Intercalation and deintercalation occur in three broad regions between 2.0 and 1.2–0.9 V with a reversible capacity of ca. 190 mA·h·g$^{-1}$ over 100 cycles in dense electrodes of ~10 μm particles. Long term cycling to lower potentials (at or below 1.0 V) results in polarisation and separation of the average and individual redox peaks. In a slightly narrower potential window, the first-cycle irreversibility can be mitigated and long term capacity retention maintained. GITT measurements revealed differential lithium-ion mobility, which could be partitioned into four regions of composition, and showed that “lithium-stuffing” rapidly reduces diffusion within the structure. In the absence of overlithiation, rapid Li$^+$ diffusion in the bulk is evidently present within the shear structure of TiN$_{24}$O$_{62}$ as high-rate electrochemical testing demonstrated a reversible capacity of 150 mA·h·g$^{-1}$ in ca. 20 mins and 100 mA·h·g$^{-1}$ in ca. 2 mins. The high-rate cycling also revealed a sensitivity of this material structure/morphology to the current collector substrate and, to a lesser extent, pressure and charging conditions. The phase chemistry of TiO$_2$–Nb$_2$O$_5$ was discussed and an updated phase diagram presented to facilitate the development of this promising family of energy storage materials.
6.6 Outlook

Future studies on electrolyte decomposition/gassing and the effects of advanced synthetic and/or post-synthetic treatments will yield further insight into the applicability of TiNb$_{24}$O$_{62}$ as a high-capacity, safe anode material. Computational quantum or molecular dynamics calculations could reveal the role of cation ordering and differences in local diffusion around titanium and niobium.

The related compounds TiNb$_2$O$_7$ and Ti$_2$Nb$_{10}$O$_{29}$ have been investigated electrochemically$^{9,10,46–49,52,53}$ and some structural aspects have been examined7,8,54 but little is known about the lithium positions (with the exception of highly lithiated TiNb$_2$O$_7$) or dynamics, nature of the pseudo-plateau-like electrochemical region, or how the structure–property relationships vary amongst the TiO$_2$–Nb$_2$O$_5$ family of compounds. These questions beyond the discovery and characterisation of TiNb$_{24}$O$_{62}$ are now underway, beyond the scope of this thesis. Regarding the variation of electrochemistry, some initial trends emerge (Figure 6.14) that are briefly disclosed here as an outlook. First, the initial “shoulder” region present in H-Nb$_2$O$_5$ is smoothed out for all ternary crystallographic shear oxides phases. A trend emerges in the overall capacity where increasing titanium content flattens and thus extends the accessible low voltage capacity. The plateau regions are qualitatively similar but the slopes differ and the regions below 1.5 V appear considerably different between these related phases, prompting further study.

![Graph](image-url)
Figure 6.14 – Electrochemical profiles of binary H-Nb$_2$O$_5$ and ternary Ti–Nb–O crystallographic shear structures. Discharge and charge curves are shown for the third cycle at C/5. Data for the orthorhombic polymorph of Ti$_2$Nb$_{10}$O$_{29}$ are shown.

Probing the $^{6/7}$Li solid-state NMR spectroscopy of TiNb$_2$O$_7$ (Figure 6.15) offers insight into the local structure evolution and nature of the two-phase plateau region. As lithium is intercalated into TiNb$_2$O$_7$, a resonance emerges at 0 ppm and shifts to lower frequency. As lithiation continues through the first sloping discharge region (Figure 6.14), the initial resonance shifts to -10 ppm and a second, smaller and broader resonance appears at 0 ppm. Between Li$_{0.90}$TiNb$_2$O$_7$ and Li$_{1.20}$TiNb$_2$O$_7$, i.e. the start of the electrochemical plateau region, the $^{6/7}$Li NMR bulk signals shift back toward 0 ppm and become narrow, indicating a locally ordered site. This is perhaps surprising given that TiNb$_2$O$_7$ does not contain a single crystallographic site that can accommodate nearly a full unit of lithium per transition metal. At even higher lithium content, beyond the plateau, the $^{6/7}$Li NMR resonances broaden significantly (Figure 6.15a–b) and lithium occupies a more distorted site with a larger quadrupolar coupling value, as apparent from the increasing 7Li rotational sideband manifold (Figure 6.15c). The 7Li rotational sidebands span a width of over 350 kHz above Li$_3$TiNb$_2$O$_7$, which is an unusually large value for lithium and indicates severe local geometry distortion.
Figure 6.15 – $^{6/7}$Li NMR of Li$_x$TiNb$_2$O$_7$ at 11.7T and 12.5 kHz MAS. The central transition lineshape of (a) 6Li and (b) 7Li NMR spectra are qualitatively similar; the former shows higher resolution from smaller dipolar and quadrupolar broadening interactions while the latter affords higher signal-to-noise due to higher natural abundance and gyromagnetic ratio. (c) Full spectral view of the 7Li NMR of Li$_x$TiNb$_2$O$_7$ displaying rotational sidebands.

6.7 Acknowledgement of Contributions

Dr. Anatoliy Senyshyn and Dr. Martin J. Mühlbauer provided beamline assistance and data reduction at the beamline for neutron diffraction measurements. Discussions with Dr. Matthew J. Cliffe regarding crystallography are sincerely appreciated. In addition, I gratefully acknowledge the financial support provided by FRM II to perform the neutron scattering measurements at the Heinz Maier-Leibnitz Zentrum (MLZ), Garching, Germany. I also thank Dr. Melanie Loveridge, University of Warwick for providing current collector substrates. All synthesis, diffraction (other than raw neutron diffraction data reduction), electrochemistry, analysis, and writing is my own work with comments from Dr. Anatoliy Senyshyn and Professor Clare Grey.
6.8 References

(6) Han, J.-T.; Goodenough, J. B. 3-V Full Cell Performance of Anode Framework TiNb$_2$O$_7$/Spinel LiNi$_{0.5}$Mn$_{1.5}$O$_4$. Chem. Mater. 2011, 23, 3404–3407.

Chapter 7

Niobium Tungsten Oxides

“I wish all you thermodynamic experts would try and believe us when we say that these structures are stable at high temperatures.” – Robert S. Roth, The Chemistry of Extended Defects in Non-metallic Solids

7.1 Abstract

Two novel complex niobium tungsten oxide electrode materials with unusual lithium-ion charge storage properties are described. High rate and high capacity electrode performance suggests light elements with nanoscale domains, which has motivated intense synthetic efforts toward nanostructured first-row transition metal oxides. In this work, Nb$_{16}$W$_5$O$_{55}$ and Nb$_{18}$W$_{16}$O$_{93}$ from bulk synthesis demonstrate the ability to rapidly intercalate a full unit of lithium per transition metal across µm grains leading to a gravimetric capacity of 150 mA·h·g$^{-1}$ in three minutes (20C). Not only is this value approaching the best known nanostructured analogues of state-of-the-art titanium-based materials, the tap density of bulk niobium tungsten oxides also leads to volumetric densities that far surpass high-rate nanomaterials without the practical synthetic limitations for large-scale battery applications. A mechanistic investigation was carried out including the study of lithium kinetics through pulsed field gradient nuclear magnetic resonance spectroscopy and electrochemistry, local structure and multi-redox behaviour through X-ray absorption spectroscopy, and long-range structure evolution through operando diffraction. The host niobium tungsten oxide structures possess the open, layered framework of an empty perovskite (i.e. ReO$_3$) but are topologically-frustrated by the crystallographic shear planes in Nb$_{16}$W$_5$O$_{55}$ and the rotational rearrangement of octahedra and pentagonal columns in bronze-like Nb$_{18}$W$_{16}$O$_{93}$ to prevent transport-limiting distortions. Both structure types can incorporate high lithium concentration and multielectron redox of both Nb$^{5+}$ and W$^{6+}$ while mitigating the overall lattice expansion.

7.2 Introduction

Nanomaterials are often prepared to produce high power rechargeable lithium-ion batteries, their short diffusion distances allowing rapid intercalation dynamics. At the same time, it is now widely recognized that it is not just the lithium transport within the active particles that
controls rate, but it is also the pathways for Li-ions within the whole composite, the tortuosity of Li migration through the electrolyte being an important component of this. Thus, the overall rate becomes a product of transport through both the liquid and solid phases. Carbonaceous hierarchical structures and carbon-coating are also employed to improve electronic conductivity, which is also a prerequisite for the application of high current densities. A simple mechanism for increasing rate is to create nanosized or porous (and often hierarchical) structures, which allow more rapid Li transport through the electrode, increase surface areas of the electrode materials in contact with electrolyte, and minimize Li transport distances through the bulk solid phases. Impressive rate performances have been achieved.1–3 However, these approaches come with a severe penalty in terms of volumetric energy density.

Nanosizing is clearly justified when it results in emergent phenomena, such as the suppression of a phase transition and the reaction via metastable solid solutions (LFP)4,5, and access to a wider range of lithiation (TiO\textsubscript{2})6. In LFP, nanosizing also minimizes the effect of anti-site defects, which reduce Li transport in the 1-dimensional tunnels. In the case of the spinel Li\textsubscript{4}Ti\textsubscript{5}O\textsubscript{12} (LTO), the well-known “high”-voltage/high-rate anode, the capacity of 1 \(\mu\)m particles from solid-state synthesis reaches only 60–65 mA\(\cdot\)h\(\cdot\)g\(^{-1}\) at 10C7. In contrast, through two decades of research, present carbon-coated nanoparticles of LTO can reach at least 150 mA\(\cdot\)h\(\cdot\)g\(^{-1}\) at 10C1,8, which corresponds to approximately 0.5 lithium ions per transition metal (Li+/TM). But again, this capacity is measured or quoted in terms of the active material mass alone, which does not represent the whole story.

Substantial progress has been made to overcome the intrinsic electronic and ionic limitations of a wide variety of electrode materials but the modifications come at significant expense, hinder scalability, and sometimes lead to counterproductive stability and safety issues. These trade-offs could potentially be justified with commensurate improvements in performance but such performance from the bulk would clearly represent a fundamental improvement. 3\textit{d} transition metals have been the most widely explored to achieve high gravimetric density. With this in mind, studies of 4\textit{d} compounds have been limited and 5\textit{d} compounds are excluded from practical consideration, though oxides of Ru9 and Ir10 have recently proven to be interesting model systems for anionic redox. Given these considerations, multiple iterations of synthetic and post-synthetic modification have been performed on a relatively small number of compounds. In this work, we demonstrate that, with the appropriate host lattice, strictly none of these criteria – nanoscale/nanostructured/hierarchical, natively conductive, carbon-coating,
buffering atoms, light elements – are required for a practical high-rate battery electrode. When certain 4d and 5d metals are used with the appropriate three-dimensional oxide structure, we can achieve extremely high volumetric energy densities at impressive rates.

Here we show that a series of complex “block” or “bronze-like” oxides structures comprised of niobium and tungsten from gram-scale solid-state synthesis exhibit extremely high-rate electrochemistry. We illustrate this first, by studying large (3–10 𝜇m primary, 10–30 𝜇m agglomerate) dense particles of the block-structure Nb₁₆W₅O₅₅ in standard electrode formulations i.e., 8:1:1 active material/carbon/binder; 2 mg·cm⁻² active material loading; Li metal counter electrode; 2032-type coin cell geometry; 1 M LiPF₆ in EC/DMC electrolyte. Under these conditions, this insulating, 𝑑⁰ transition metal oxide can intercalate 0.8 lithium ions per transition metal in three minutes (20 C) and maintain up to 150/125 mA·h·g⁻¹ at 10/20C for 1000 cycles. Reversible multielectron redox is observed at rates up to 2C. Even on a mass normalized basis, this performance exceeds nanostructured versions of heavily studied Li₄Ti₅O₁₂, TiO₂(B), T-Nb₂O₅, and LiFePO₄ under similar loading conditions. Given the high crystal density and even higher practical density of bulk Nb₁₆W₅O₅₅ vs. nanomaterials, this corresponds to an unexplored region of volumetric performance. The atomic and electronic mechanisms that enable this bulk behaviour are explored via pulsed field gradient nuclear magnetic resonance (PFG NMR) spectroscopy in combination with detailed electrochemical measurements, high-rate operando X-ray diffraction (XRD), and X-ray absorption (XAS) spectroscopy at the niobium K-edge and tungsten L₁, L₂, and L₃ edges. Local and long-range structural transitions are correlated with the electrochemistry. We further demonstrate the generality of this bulk phenomenon by exploring another new electrode material, bronze-like Nb₁₈W₁₆O₉₃. This bronze phase is able to intercalate a full lithium per transition metal at 20 C and reach over 100 mA·h·g⁻¹ at 60C. The shift to new battery materials and away from nano/microstructure manipulation is realized with niobium–tungsten oxides via their combination of frustrated topology with ideally-spaced and effectively three-dimensional lithium pathways as well as multi-electron redox elements.

7.3 Experimental Methods

7.3.1 Synthesis

Nb₁₆W₅O₅₅ and Nb₁₈W₁₆O₉₃ were synthesized by co-thermal oxidation of dark blue NbO₂ (Alfa Aesar, 99+% and brown WO₂ (Alfa Aesar, 99.9%) in approximately one to five gram batches.
The partially reduced oxides were massed to within 0.001 g of the 16:5 or 18:16 stoichiometric ratios, ground together by hand with an agate mortar and pestle, pressed into a pellet at 10 MPa, and heated in a platinum crucible at a rate of 10 K·min⁻¹ to 1473 K, and naturally cooled in the furnace over ca. 2 h. Though the phase diagram suggests that Nb₁₆W₅O₅₅ is only formed between 1363–1658 K and is a metastable phase that should disproportionate to Nb₁₄W₃O₄₄ and Nb₂WO₈ on cooling, this was not observed. Nb₁₆W₅O₅₅ retains its high-temperature structure on quenching and even with more modest cooling. In the original synthetic report, Roth and Wadsley also noted that phase-pure Nb₁₆W₅O₅₅ was obtained even after annealing at 1273 K for one to three days after an initial heat treatment at 1623 K for 24 h. To investigate other synthetic methods, samples were also prepared by quenching the samples from 1473 K onto a steel plate as well as from analogous pellets of Nb₂O₅ (Alfa Aesar, 99.9985%) and WO₃ (Sigma-Aldrich, ≥99%) precursors. WO₃ will undergo sublimation at temperatures near or above 1273 K; however, the reaction with niobium oxide apparently stabilizes the volatile tungsten to significantly higher temperatures. After 24 h at 1473 K, the mass change was –0.4% for Nb₁₆W₅O₅₅ and –0.3% for Nb₁₈W₁₆O₉₃ below the expected value, which is within the error of the expected mass changes for NbO₂ and WO₂ oxidation.

7.3.2 Laboratory Powder X-ray Diffraction

Laboratory powder X-ray diffraction (XRD) patterns were measured at ambient temperature with a Cu Kα₁,₂ source in Bragg–Brentano geometry at 0.83°·min⁻¹. The sample stage rotated continuously to improve powder averaging. Crystal structure models were compared to the diffraction patterns by Rietveld refinement in GSAS-II.

7.3.3 Thermal Gravimetric Analysis

Thermal gravimetric analysis (TGA) measurements were performed on a Mettler Toledo TGA/SDTA 851 thermobalance. Samples were placed in a tared 100 μL alumina crucible and the mass was recorded from 323 to 1273 K in steps of 1 K·min⁻¹ under constant air flow (50 mL·min⁻¹). A blank with an empty crucible was recorded under the same conditions and subtracted from the NbOₓ/WOₓ data. The raw data were numerically differentiated to obtain differential thermogravimetric analysis (DTA) curves.
7.3.4 Scanning Electron Microscopy

Scanning electron microscopy (SEM) images were taken with a Sigma VP microscope (Zeiss). Tap density was recorded on an AutoTap (Quantachrome Instruments) instrument operating at 257 taps min\(^{-1}\). The tap densities were measured according to ASTM international standard B527-15 modified to accommodate a 5–10 cm\(^3\) graduated cylinder.

7.3.5 Electrochemical Characterization

All electrochemical measurements were conducted in stainless steel 2032-coin cells (Cambridge Energy Solutions) with a conical spring, two 0.5 mm stainless steel spacer disks, a plastic gasket, and a glass microfiber separator (Whatman). The metal oxide and conductive carbon (Super P, TIMCAL) were ground by hand in an agate mortar and pestle in an 8:1 mass ratio. This powder was ground in a 9:1 mass ratio with poly(vinylidene difluoride) (PVDF, Kynar) dispersed in N-methyl pyrrolidone (NMP, Sigma-Aldrich, anhydrous, 99.5%). Though standard, SuperP carbon is a nanoparticulate powder and NMP is a hazardous organic solvent so appropriate nanoparticle cabinets/fume hoods should be used. This metal oxide/carbon/polymer electrode served as the cathode against a Li metal disk (LTS Research, 99.95%) anode in half-cell geometry. The electrolyte for all experiments was 1 M LiPF\(_6\) dissolved in 1:1 v/v ethylene carbonate/dimethyl carbonate (EC/DMC, Sigma-Aldrich, battery grade). No additives were used. Electrochemistry was performed in a temperature-controlled room at 293 K. A Biologic galvanostat/potentiostat with EC-Lab software was used to perform the electrochemical measurements. In this work, C-rate is always defined relative to one electron transfer per transition metal, e.g.) for Nb\(_{16}\)W\(_5\)O\(_{55}\), 1C = 171.3 mA·g\(^{-1}\), 20C = 3426 mA·g\(^{-1}\). Theoretical capacity is calculated by:

\[
Q_{\text{theoretical}} = \frac{nF}{3.6m} = \frac{21.96485.3\text{[C·mol}^{-1}\text{]}}{3.6\text{[C·mA}^{-1}\cdot\text{h}^{-1}\text{]}\cdot3285.65\text{[g·mol}^{-1}\text{]}} = 171.3\text{ mA} \cdot \text{h} \cdot \text{g}^{-1}, \quad [7.1]
\]

where \(n\) is the number of electrons transferred per formula unit, \(F\) is Faraday’s constant, 3.6 is a conversion factor between Coulombs and the conventional mA·h·g\(^{-1}\), and \(m\) is the mass per formula unit.

Coulometric efficiency (CE) is an important criterion for rechargeable batteries and must be well over 99% to be practically meaningful. To expand upon this, the capacity after \(n\) cycles may be estimated as CE\(^n\) and underlines the importance of extremely high electron efficiency.
for large n: 0.99^{1000} is 0.00004, 0.999^{1000} is 0.368, 0.9999^{1000} is 0.905; for the $\text{Nb}_{16}W_5O_{55}$ and $\text{Nb}_{18}W_{16}O_{93}$ electrodes demonstrated here, the computed values for $n = 1000$ are 0.875 and 0.766 in the bulk without calendaring or electrolyte additives.

7.3.6 Operando Synchrotron X-ray Diffraction

Operando powder diffraction measurements were carried out at beamline 17BM (bending magnet) at the Advanced Photon Source at Argonne National Laboratory. The samples were measured at ambient temperature in transmission geometry at 17 keV (0.7295 Å) with an area detector. All operando measurements were performed in the AMPIX cell, which has been described elsewhere. Briefly, it contains a hard, conductive glassy carbon window to prevent inhomogeneous electrochemical reactions, which are a concern with flexible and/or non-conductive X-ray windows. Due to the absorbing nature of niobium and tungsten and the lack of current collector, self-standing electrodes were made with a 3:6:1 ($\text{Nb}_{16}W_5O_{55}$ at C/2) or 5:4:1 ($\text{Nb}_{16}W_5O_{55}$ at 5C and $\text{N}_{18}W_16O_{93}$ at 1C, 5C, and 10C) ratio of metal oxide/SuperP carbon/poly(tetrafluoroethylene). The resulting electrodes were approximately 1.0 cm in diameter and contained 5.3 mg, 8.7 mg, and 8.0 mg active material for $\text{Nb}_{16}W_5O_{55}$ (C/2), $\text{Nb}_{16}W_5O_{55}$ (5C), and $\text{N}_{18}W_16O_{93}$ (1C, 5C, and 10C). AMPIX cells were constructed in an argon glovebox with lithium metal counter electrodes, glass fibre separators (Whatman), and 1 M LiPF$_6$ dissolved in 1:1 v/v ethylene carbonate/diethyl carbonate (EC/DEC). Two-dimensional image data were converted to conventional one-dimensional diffraction patterns through integration in GSAS-II after calibration with LaB$_6$. Background subtraction, primarily from the glassy carbon window, and normalization to X-ray intensity were performed on the one-dimensional integrated diffraction data.

7.3.7 Operando and Ex Situ Synchrotron X-ray Absorption Spectroscopy

Operando X-ray absorption spectroscopy (XAS) was performed at beamline 9BM (bending magnet) at the Advanced Photon Source at Argonne National Laboratory. Nb K-edge data were recorded at ambient temperature in transmission mode above and below the absorption edge of 18,986 eV. The same AMPIX cells were used as for the diffraction measurements but with a higher metal oxide loading of 22.5 mg and lower carbon content (8:1:1 ratio, oxide/carbon/binder).

Ex situ XAS was performed at beamline B18 (bending magnet) at Diamond Light Source, Didcot, UK. Nb K-edge, W L$_1$-, L$_{23}$-, and L$_{33}$-edges were measured at ambient temperature in
transmission mode in energy scans above and below the absorption edges of 18,986, 12,100, 11,544, and 10,207 eV, respectively. To synthesize powders for ex situ characterization, pellets of pure $\text{Nb}_{16}\text{W}_5\text{O}_{55}$ powder were pressed into pellets at 1–2 MPa, discharged to the relevant lithium content in coin cells as previously described, extracted in the glovebox and rinsed three times with 2 mL dimethyl carbonate (DMC, Sigma-Aldrich, anhydrous, ≥99%). Upon lithiation, the colour of $\text{Nb}_{16}\text{W}_5\text{O}_{55}$ changed from a pale yellow–green toward dark blue. Samples for XAS were prepared in an argon glovebox by grinding the active material (typically 10 mg) with dry cellulose in an agate mortar and pestle to achieve a change in absorption coefficient of ca. 1 across the absorption edge and a total thickness of ca. 1 mm. The thoroughly ground powders were then pressed into 0.8 cm diameter pellets in the glovebox. Non-air sensitive samples (pristine and reference) were measured in air while lithiated samples were transferred from the glovebox in a home-built (Diamond) transfer chamber with X-ray transparent windows. The argon in the chamber was flushed with helium to reduce background absorption and the samples were measured at a slight overpressure of helium to ensure the exclusion of air. Multiple spectra were collected on each sample to improve signal-to-noise and to ensure sample stability with respect to possible air contamination or beam damage. The oxides appear to be quite stable; no changes were observed for any sample between the first and last measurement (typically 2–6 spectra per sample).

For all XAS measurements, simultaneous measurement of a reference Nb or W foil was recorded with each spectrum to ensure X-ray beam stability and energy calibration. Data merging, calibration, analysis, and peak fitting were performed within the Athena program in the Demeter package running IFEFFIT.16,17 The Nb K-edge, W L$_{I}$-, L$_{II}$-, and L$_{III}$-edges were calibrated to the reference Nb and W metal foils by setting the first maximum in the derivative plot of absorption versus energy equal to the standard electron binding energy.18 $\text{Nb}_{16}\text{W}_5\text{O}_{55}$ operando calibration was set equivalent to ex situ calibration to simultaneously compare edge shifts of both datasets.

7.3.8 ^7Li Pulsed Field Gradient NMR Spectroscopy

^7Li NMR diffusion spectra were recorded on a Bruker Avance III 300 MHz spectrometer using a Diff50 probehead equipped with an extended variable temperature (EVT) 5 mm single-tuned ^7Li saddle coil insert. Spectra were recorded with a stimulated echo pulsed field gradient (PFG) sequence at elevated temperatures due to the observed increase in T_2 (e.g. T_2 is approximately 700 µs at room temperature vs. 1.9 ms at 453 K for $\text{Li}_{3.4}\text{Nb}_{18}\text{W}_{16}\text{O}_{93}$), which allowed the use
of longer gradient pulses that were necessary to measure the relatively slow diffusion coefficients present in the solid oxides. (N.b. No attempt was made to calibrate the temperature for this experimental setup because a single-tuned ^7Li coil was used and no reliable ^7Li reference is routinely used for temperature calibration. The Bruker manual states that for static measurements, the temperature calibration should be within ±7 degrees of the set value.) The gradient strength, g, was varied from 0.87 to 1800 G/cm. The response of the NMR signal intensity, I, to variation in gradient strength, g, is described by the Stejskal–Tanner equation:

$$\frac{I}{I_0} = \exp \left(-g^2 \gamma^2 \delta^2 \left(\Delta - \frac{\delta}{3} \right) \cdot D \right),$$

[7.2]

where I_0 is the intensity in the absence of gradients, γ is the gyromagnetic ratio ($\gamma_{7\text{Li}} = 103.962 \times 10^6 \text{rad.s}^{-1}\cdot\text{T}^{-1}$), δ is the effective gradient pulse duration, Δ is the diffusion time, and D is the diffusion coefficient. Typical δ values ranged from 0.8 ms to 1.5 ms and Δ values ranged from 50–100 ms for the bronze and the block phase samples, respectively.

7.4 Results

7.4.1 Nb$_{16}$W$_5$O$_{55}$ Host Structure

Within the Nb$_2$O$_5$–WO$_3$ phase diagram, 20 Nb$_{16}$W$_5$O$_{55}$ is a metastable member with a monoclinic superstructure comprised of subunits of corner-shared octahedra arranged into ReO$_3$-like blocks four octahedra wide by five octahedra long and infinite in the third dimension (Figure 7.1a). 21 The block subunits are connected by a crystallographic shear plane along the edges and tetrahedra at each corner leading to the notation $(4 \times 5)_p$, where, in $(m \times n)_p$, m and n denote block length in units of octahedra and p relates to the connectivity of the blocks which may also be joined in pairs ($p = 2$) or infinite ribbons ($p = \infty$). To the best of our knowledge, this is the first reported application, of any kind, for Nb$_{16}$W$_5$O$_{55}$ since its discovery in 1965.13,21
Figure 7.1 – Crystal structure and particle morphology of Nb$_{16}$W$_5$O$_{55}$ and Nb$_{18}$W$_{16}$O$_{93}$. (a–c) Nb$_{16}$W$_5$O$_{55}$ is built up from blocks of 4 × 5 octahedra with crystallographic shear planes adjoining each block. (d–f) Nb$_{18}$W$_{16}$O$_{93}$ is a 1 × 3 × 1 superstructure of the tetragonal tungsten bronze with pentagonal tunnels partially filled by –W–O– chains that form pentagonal bipyramids.

Nb$_{16}$W$_5$O$_{55}$ was prepared via co-thermal oxidation of a pellet of NbO$_2$ and WO$_2$ in stoichiometric 16:5 ratio. TGA measurements (Figure 7.2) reveal that WO$_2$ oxidizes to WO$_3$ starting around 700 K and NbO$_2$ oxidizes to Nb$_2$O$_5$ starting around 550 K. At 1273 K, the WO$_2$ sample gained 7.8% vs. the expected 7.4% and NbO$_2$ gained 5.8% compared to the expected 6.4%. These small differences may arise from slight off-stoichiometry in the starting material. Laboratory X-ray diffraction and Rietveld refinement (Figure 7.3) determined that the desired phase was produced with no observable secondary phases of e.g. Nb$_2$O$_5$, WO$_3$ though the complexity of the pattern and nature of the data meant that no attempt was made to refine advanced structural aspects such as cation ordering in this study. Given the synthesis time and temperature (1473 K, 24h) the block phase Nb$_{16}$W$_5$O$_{55}$ samples are expected to contain several percent of Wadsley defect fringes, as suggested by the laborious study of Allpress and Roth.22
Figure 7.2 – Thermogravimetric analysis of reagents. (a) NbO$_2$ and (b) WO$_2$ were heated from 323 to 1273 K at 1 K·min$^{-1}$. The mass change and its time derivative are shown.

Figure 7.3 – X-ray diffraction patterns and Rietveld refinement. Structural models for (a) Nb$_{16}$W$_3$O$_{55}$ and (b) Nb$_{18}$W$_{16}$O$_{93}$ fit to laboratory X-ray diffraction data to confirm the phase of the complex mixed metal oxide host structures. Diffraction data are plotted on an intensity$^{0.5}$ scale to partially compensate for the decreasing X-ray scattering factor at high angle.
7.4.2 Electrochemistry and Lithium Diffusion of Nb$_{16}$W$_5$O$_{55}$

Reaction with lithium (Figure 7.4a) proceeds in three regions from 2.5 V to 1.0 V, with an average voltage ca. 1.6 V. The three regions, more easily observed in the derivative plot (Figure 7.4b), are characterized by their slope and are reminiscent of the three regions observed in other crystallographic shear structures23, e.g.) H-Nb$_2$O$_5$24, PNb$_9$O$_{25}$25, TiNb$_2$O$_7$26, and Nb$_{12}$WO$_{33}$27. When the kinetics were examined over a range of current densities from C/5 (34.3 mA·g$^{-1}$) up to 60C (10.3 A·g$^{-1}$), Nb$_{16}$W$_5$O$_{55}$ showed unprecedented bulk rate performance (Figure 7.4a,c). At C/5, around 1.3 Li$^+$ can be reversibly intercalated per transition metal for a gravimetric capacity of ca. 225 mA·h·g$^{-1}$. When the rate is increased by a factor of 25 to 5C, Nb$_{16}$W$_5$O$_{55}$ maintains a capacity of 1.0 Li$^+$/TM (171 mA·h·g$^{-1}$). At 20C, which corresponds to a three-minute discharge, it is still possible to exchange 0.86 Li$^+$/TM and achieve 148 mA·h·g$^{-1}$. Rate tests on Nb$_{16}$W$_5$O$_{55}$ were measured with a potentiostatic hold at the top of charge to ensure a reliable starting point for discharge. To test the performance under more demanding conditions, 1000 cycles were measured with fixed galvanostatic discharge and charge conditions of 10C for 250 cycles followed by 20C for 750 cycles with no hold (Figure 7.4f). Under these conditions, 0.90 Li$^+$/TM (avg. 155 mA·h·g$^{-1}$) were reversibly intercalated at 10C with 95% capacity retention after 250 cycles on non-optimized or calendared electrodes. At 20C, the capacity was 0.75 Li$^+$/TM (avg. 128 mA·h·g$^{-1}$); the capacity retention was again 95% over the 750 cycles at 20C. Other cycling conditions such as long term C/5 cycling and the effect of current collectors, which cannot be ignored at these high rates28, were examined (Figure 7.5–6). In Nb$_{16}$W$_5$O$_{55}$, the lower voltage region is the source of excess capacity beyond 1.0 Li$^+$/TM at low rates but is effectively shifted below 1.0 V at moderate rates. The second discharge peak (centred at 1.2 V) is only observed at C/5 in the dQ/dV plot (Figure 7.4b). As a result, the capacity observed when cycling with a minimum voltage limit of 1.2 V vs. 1.0 V becomes less significant as rate increases and safety may be further improved by avoiding low voltages. As a control, Li || Li symmetric cells were cycled at current densities corresponding to those for C/5 to 100C in Figure 7.4e (Figure 7.7). The overpotentials in the symmetric cell match closely to those observed in the electrochemical cycling curves of Figure 7.4a and 7.4d. This suggests that the these extremely high rates for a bulk electrode are approaching the limits of Li metal plating/stripping and/or lithium-ion desolvation and transport in carbonate ester electrolytes at room temperature.
Figure 7.4 – Electrochemistry of Nb$_{16}$W$_5$O$_{55}$ and Nb$_{18}$W$_{16}$O$_{93}$. Galvanostatic discharge and charge curves and dQ/dV plots of bulk (a–b) Nb$_{16}$W$_5$O$_{55}$ and (c–d) Nb$_{18}$W$_{16}$O$_{93}$ from C/5 to 100C with (e) a summary of the rate performance and (f) high-rate cycling of 250 cycles at 10C + 750 cycles at 20C. Dense electrodes of large particles with 2–3 mg·cm$^{-2}$ active mass loading were tested at current densities corresponding to discharge times of several hours to tens of seconds. Nb$_{16}$W$_5$O$_{55}$ was charged with a 1 h constant voltage step at the top of charge to ensure a comparable starting point on discharge; Nb$_{18}$W$_{16}$O$_{93}$ was cycled without this step and stored over 100 mA·h·g$^{-1}$ at 60C (<60 s). High-rate cycling for 1000 cycles was performed on both oxides at 10C/20C constant current without any potentiostatic step.
Figure 7.5 – Comparison of Cu foil to carbon-coated Al foil current collector. For Nb$_{16}$W$_5$O$_{55}$ cycled for 1000 cycles at 10C/20C, Cu foil current collector displayed moderately higher capacity than carbon-coated Al (C@Al) foil. Untreated Al foil has been shown to be insufficient for high current densities; C@Al demonstrated significant improvement over untreated Al.28

Figure 7.6 – Longer term cycling as a function of minimum cut-off voltage. (a) Nb$_{16}$W$_5$O$_{55}$ cycled at C/5 and 1C on Cu foil with a 1 h potentiostatic hold at the top of charge and (b) at C/5 on Al foil without a potentiostatic charging step. The 2nd to 50th cycle retention in (a) is 96% and 93% for a voltage minimum of 1.2 and 1.0 V, respectively. The 51st to 100th cycles
at 1C show capacity retentions of 99% and 101% for 1.2 and 1.0 V, respectively. Cycle retention for the 2nd to 50th cycles for C/5 in (b) is 88%, 90%, and 40% for 1.1, 1.0, and 0.9 V, respectively. Cycling time was approximately one month.

Figure 7.7 – Overpotential in a Li || Li symmetric cell as a function of current density. Cells were configured identically to those used for metal oxide testing with the exception of a second Li disk replacing the composite electrode. Rate testing was carried out as in Figure 7.4a–c with 5 cycles at 100 µA (C/5), 500 µA (1C), 1 mA (2C), 2.5 mA (5C), 5 mA (10C) and 10 cycles at 10 mA (20C), 20 mA (40C), 30 mA (60C), and 50 mA (100C). The “rate” in parentheses indicates the amount of time that current was applied, simulating the rate test. An excerpt of the results is shown here. At low current densities, below 1 mA (2C), the overpotential is below 100 mV; however, at 5 mA (10C) is rises to 200 mV and increases to ca. 700 mV at 100C.

Information on electrode thermodynamics, including phase transitions, and lithium kinetics29 can be extracted from galvanostatic intermittent titration technique (GITT) measurements by tracking the voltage evolution after a brief current pulse as lithium diffuses and the chemical potential equilibrates within the electrode/particles. Quantitative diffusion coefficients, D_{Li}, are difficult to extract from GITT alone due to the challenges associated with defining a single diffusion length (L) in a heterogeneous composite electrode with a particle size distribution. Variation in L – a parameter required to relate the rate of relaxation to the diffusion – causes values of D_{Li} to vary significantly between reports even for the same material.24,30 For this reason, we propose an extracted proxy for lithium diffusion ($D_{\text{Li}} L^{-2}$) which removes the
uncertainty in L and enables self-consistent analysis of a single electrode and electrodes prepared under identical conditions (Figure 7.8). With the addition of quantitative information from another method, e.g. NMR spectroscopy or tracer diffusion, it may be possible to calibrate relative changes in Li$^+$ kinetics to quantitative diffusion values throughout a range of lithiation.

Pulsed field gradient NMR measurements performed from 60–140 °C, the higher temperatures being required because of the short T_2 (spin–spin) relaxation times of the Li ions, show that the Li ions are extremely mobile. Linear fitting of the 7Li diffusion coefficients as a function of temperature allows extraction of an activation energy, assuming Arrhenius behaviour (Figure 7.9). Extrapolation, using the activation energy, allows estimation of 7Li diffusion at room temperature (Table 7.1) and facilitates comparison to other solid-state materials (Table 7.2).

Analysis of the data for Li$_{6.3}$Nb$_{16}$W$_5$O$_{55}$ shows two-component behaviour with diffusion as rapid as 2.1×10^{-12} m$^2 \cdot s^{-1}$ at room temperature (Table 7.1). Fitting the data with two components for a biexponential decay resulted in an improvement in the fitting of the 7Li diffusion data at all temperatures. On average, an improvement of a factor of two was observed in the residual sum of squares of the fit upon fitting the NMR data with a biexponential decay rather than a monoexponential decay. Therefore, the 7Li NMR signal of the Li$_{6.3}$Nb$_{16}$W$_5$O$_{55}$ sample represented in Table 7.1 consists of two Li species, one that diffuses rapidly and one that diffuses more slowly. This diffusion is markedly faster than that of Li$_{4+x}$Ti$_5$O$_{12}$ or Li$_x$TiO$_2$ at ca. $2 \times 10^{-16}–3 \times 10^{-15}$ m$^2 \cdot s^{-1}$ and comparable to the best known lithium solid electrolytes (i.e. thio-LISICONs) (Table 7.2). The GITT (Figure 7.8), in combination with PFG NMR spectroscopy (Figure 7.9), indicates that rapid lithium diffusion is present throughout the lithiation reaction with only a slight decrease in diffusion until deep discharge. The deep discharge region is also associated with an increase in overpotential (Figure 7.9b).
Figure 7.8 – Galvanostatic intermittent titration technique (GITT). (a) Relative changes in lithium diffusion as a function of open-circuit voltage \((V_{oc}) \) and (b) open-circuit voltage vs. closed-circuit voltage \((V_{cc}) \) from the GITT measurements showing the “thermodynamic” electrochemical profiles at C/20 rate with a 12 h rest period at each point, reaching a full discharge in approximately one month. In Nb\(_{16}\)W\(_{5}\)O\(_{55}\), the fastest diffusion is observed from the dilute limit to Li\(_{4.5(5)}\)Nb\(_{16}\)W\(_{5}\)O\(_{55}\), dropping by two orders-of-magnitude in the low voltage window where more than 1 Li\(^+\)/TM is incorporated. The GITT data indicates that the 2\(^{nd}\) electrochemical region of Nb\(_{16}\)W\(_{5}\)O\(_{55}\) is broader than typically observed for a two-phase reaction\(^{31}\) but the observed discontinuity in the \(D_{Li}L^{-2} \) values in this region suggests that it is approaching two-phase behaviour. The average diffusion coefficient in Nb\(_{18}\)W\(_{16}\)O\(_{93}\) is similar to that of Nb\(_{16}\)W\(_{5}\)O\(_{55}\). The bronze also displays discontinuities at 2.1, 1.85, and 1.7 V. In both phases, the low voltage region – below 1.25 V, well over 1 Li\(^+\)/TM – is characterized by an increasing overpotential and suppressed kinetics.
Figure 7.9 – 7Li diffusion from PFG NMR. 7Li diffusion as a function of inverse temperature to extract activation energies for room temperature diffusivities. The lithium diffusion coefficients of Li$_{6.3}$Nb$_{16}$W$_5$O$_{55}$ and Li$_x$Nb$_{18}$W$_{16}$O$_{93}$ ($x = 3.4, 6.8, 10.2$) were measured in the temperature range 60–180 °C (Table 7.1). The filled (85% signal contribution) and empty (15% signal contribution) symbols for Li$_{6.3}$Nb$_{16}$W$_5$O$_{55}$ correspond to the observed two-component diffusion.

Table 7.1 – Lithium diffusion coefficients from PFG NMR. D_{Li} was measured directly from 60–140 °C and extrapolated from the activation energy to room temperature where the T_2 relaxation was too short to allow direct measurement. Error estimates for activation energies are derived from the standard error of the linear fit. Error bars for the diffusion coefficients are given in Fig. S6. The two diffusion components observed in Li$_{6.3}$Nb$_{16}$W$_5$O$_{55}$ are denoted as a and b with 15% and 85% signal contribution, respectively.

<table>
<thead>
<tr>
<th>Component</th>
<th>D_{Li} (m2·s$^{-1}$) @ 25 °C</th>
<th>D_{Li} (m2·s$^{-1}$) @ 140 °C</th>
<th>E_a (eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Li${6.3}$Nb${16}$W5O${55}$·a (15%)</td>
<td>2.1×10$^{-12}$</td>
<td>2.7×10$^{-11}$</td>
<td>0.23 ± 0.04</td>
</tr>
<tr>
<td>Li${6.3}$Nb${16}$W5O${55}$·b (85%)</td>
<td>1.7×10$^{-13}$</td>
<td>5.2×10$^{-13}$</td>
<td>0.10 ± 0.04</td>
</tr>
<tr>
<td>Li${3.4}$Nb${18}$W${16}$O${93}$</td>
<td>1.1×10$^{-13}$</td>
<td>2.0×10$^{-12}$</td>
<td>0.27 ± 0.03</td>
</tr>
<tr>
<td>Li${6.8}$Nb${18}$W${16}$O${93}$</td>
<td>1.1×10$^{-13}$</td>
<td>1.8×10$^{-12}$</td>
<td>0.30 ± 0.01</td>
</tr>
<tr>
<td>Li${10.2}$Nb${18}$W${16}$O${93}$</td>
<td>1.1×10$^{-13}$</td>
<td>2.7×10$^{-12}$</td>
<td>0.29 ± 0.01</td>
</tr>
</tbody>
</table>
Table 7.2 – Lithium diffusion coefficients of lithium-ion battery electrode materials, solid electrolytes, liquid electrolytes, and reference compounds. Few battery electrode materials are amenable to the direct measurement of lithium diffusion via PFG NMR due to rapid paramagnetic (T_1 and T_2) relaxation and relatively slow diffusion. The weak paramagnetism (as indicated by small NMR shift) and ultrafast diffusion enabled PFG NMR measurement of block phase Nb$_{16}$W$_5$O$_{55}$ and bronze phase Nb$_{18}$W$_{16}$O$_{93}$, but only at slightly elevated temperature where the T_2 relaxation time is longer. Abbreviations: cs = crystallographic shear, LISICON = lithium superionic conductor, NASICON = sodium superionic conductor, PC = propylene carbonate, EC = ethylene carbonate, DEC = diethyl carbonate, PFG NMR = pulsed field gradient nuclear magnetic resonance, μ-SR = muon spin resonance.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Structure Type</th>
<th>D_{11} (m2/s)</th>
<th>T (K)</th>
<th>Technique</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Li${6.5}$Nb${16}$W5O${55}$</td>
<td>Block, cs</td>
<td>2.1×10^{-12} to 1.7×10^{-13}</td>
<td>298 K</td>
<td>PFG NMR (extrapolated)</td>
<td>This work</td>
</tr>
<tr>
<td>Li${6.5}$Nb${16}$W5O${55}$</td>
<td>Block, cs</td>
<td>2.7×10^{-11} to 5.2×10^{-13}</td>
<td>413 K</td>
<td>PFG NMR</td>
<td>This work</td>
</tr>
<tr>
<td>Li${3.4}$Nb${18}$W${16}$O${93}$</td>
<td>Bronze</td>
<td>1.1×10^{-13}</td>
<td>298 K</td>
<td>PFG NMR (extrapolated)</td>
<td>This work</td>
</tr>
<tr>
<td>Li${3.4}$Nb${18}$W${16}$O${93}$</td>
<td>Bronze</td>
<td>1.8×10^{-12}</td>
<td>403 K</td>
<td>PFG NMR</td>
<td>This work</td>
</tr>
<tr>
<td>Li$_{10}$GeP5S${12}$</td>
<td>Thio-LISICON</td>
<td>2×10^{-12}</td>
<td>298 K</td>
<td>PFG NMR</td>
<td>32</td>
</tr>
<tr>
<td>Li$_{10}$GeP5S${12}$</td>
<td>Thio-LISICON</td>
<td>4×10^{-11}</td>
<td>453 K</td>
<td>PFG NMR</td>
<td>32</td>
</tr>
<tr>
<td>Li$_3$GePS$_8$</td>
<td>Thio-LISICON</td>
<td>2×10^{-12}</td>
<td>298 K</td>
<td>PFG NMR</td>
<td>32</td>
</tr>
<tr>
<td>Li$_3$GePS$_8$</td>
<td>Thio-LISICON</td>
<td>4×10^{-11}</td>
<td>453 K</td>
<td>PFG NMR</td>
<td>32</td>
</tr>
<tr>
<td>Li$_{10}$SnP5S${12}$</td>
<td>Thio-LISICON</td>
<td>3×10^{-12}</td>
<td>298 K</td>
<td>PFG NMR</td>
<td>33</td>
</tr>
<tr>
<td>Li$_{10}$SnP5S${12}$</td>
<td>Thio-LISICON</td>
<td>4×10^{-11}</td>
<td>453 K</td>
<td>PFG NMR</td>
<td>33</td>
</tr>
<tr>
<td>Li$_{11}$Si2PS${12}$</td>
<td>Thio-LISICON</td>
<td>5×10^{-12}</td>
<td>298 K</td>
<td>PFG NMR</td>
<td>33</td>
</tr>
<tr>
<td>Li$_{11}$Si2PS${12}$</td>
<td>Thio-LISICON</td>
<td>4×10^{-11}</td>
<td>453 K</td>
<td>PFG NMR</td>
<td>33</td>
</tr>
<tr>
<td>1.0 M LiPF$_6$ in PC</td>
<td>Liquid electrolyte</td>
<td>8.3×10^{-11}</td>
<td>298 K</td>
<td>PFG NMR</td>
<td>34</td>
</tr>
<tr>
<td>1.0 M LiPF$_6$ in EC</td>
<td>Liquid electrolyte</td>
<td>9.9×10^{-11}</td>
<td>298 K</td>
<td>PFG NMR</td>
<td>34</td>
</tr>
<tr>
<td>1.0 M LiPF$_6$ in DEC</td>
<td>Liquid electrolyte</td>
<td>2.5×10^{-10}</td>
<td>298 K</td>
<td>PFG NMR</td>
<td>34</td>
</tr>
<tr>
<td>Sodium β-alumina 35,36</td>
<td></td>
<td>4.3×10^{-11}</td>
<td>298 K</td>
<td>tracer</td>
<td>37</td>
</tr>
<tr>
<td>Sodium β-alumina</td>
<td></td>
<td>3.7×10^{-10}</td>
<td>453 K</td>
<td>tracer</td>
<td>37</td>
</tr>
<tr>
<td>Li$_3$N</td>
<td></td>
<td>1.4×10^{-10}</td>
<td>534 K</td>
<td>PFG NMR</td>
<td>38</td>
</tr>
<tr>
<td>Li$_3$N</td>
<td></td>
<td>3.4×10^{-10}</td>
<td>774 K</td>
<td>PFG NMR</td>
<td>38</td>
</tr>
<tr>
<td>Li${1.5}$Al${0.5}$Ge$_{1.5}$PO$_4$</td>
<td>NASICON</td>
<td>2.9×10^{-13}</td>
<td>311 K</td>
<td>PFG NMR</td>
<td>39</td>
</tr>
<tr>
<td>Li${1.2}$Al${0.2}$Ti$_{1.8}$PO$_4$</td>
<td>NASICON</td>
<td>1.5×10^{-12}</td>
<td>250 K</td>
<td>NMR relaxometry + PFG NMR</td>
<td>40</td>
</tr>
<tr>
<td>Li${6.6}$La${1.6}$Ta${0.4}$O${12}$</td>
<td>Garnet</td>
<td>3.5×10^{-13}</td>
<td>353 K</td>
<td>PFG NMR</td>
<td>41</td>
</tr>
<tr>
<td>Li${1.6}$La${2}$Zr2O${12}$</td>
<td>Garnet</td>
<td>1.8×10^{-18}</td>
<td>298 K</td>
<td>NMR relaxometry</td>
<td>42</td>
</tr>
<tr>
<td>Li${1.6}$La${2}$Zr2O${12}$</td>
<td>Garnet</td>
<td>1.3×10^{-17}</td>
<td>325 K</td>
<td>NMR relaxometry</td>
<td>42</td>
</tr>
<tr>
<td>Li${1.6}$La${2}$Zr2O${12}$</td>
<td>Garnet</td>
<td>3.3×10^{-14}</td>
<td>530 K</td>
<td>NMR relaxometry</td>
<td>42</td>
</tr>
<tr>
<td>Water</td>
<td>Liquid</td>
<td>2.6×10^{-9}</td>
<td>298 K</td>
<td>NMR relaxometry</td>
<td>43</td>
</tr>
<tr>
<td>Li$_2$Ti2O${12}$</td>
<td>Spinel</td>
<td>3.2×10^{-15}</td>
<td>300 K</td>
<td>μ-SR</td>
<td>44,45</td>
</tr>
<tr>
<td>Li$_{5.5}$Ti2O${12}$</td>
<td>Spinel</td>
<td>2.7×10^{-16}</td>
<td>300 K</td>
<td>NMR relaxometry</td>
<td>46</td>
</tr>
<tr>
<td>Li$_{x}$TiO$_2$ ($x = 0.12$)</td>
<td>Anatase</td>
<td>4.7×10^{-16}</td>
<td>293 K</td>
<td>NMR relaxometry</td>
<td></td>
</tr>
<tr>
<td>--------------------------</td>
<td>---------</td>
<td>---------------------</td>
<td>-------</td>
<td>----------------</td>
<td></td>
</tr>
<tr>
<td>Li$_{x}$TiO$_2$ ($x = 0.12$)</td>
<td>Titanate (anatase)</td>
<td>1.3×10^{-15}</td>
<td>293 K</td>
<td>NMR relaxometry</td>
<td></td>
</tr>
<tr>
<td>Li$_{x}$TiO$_2$ ($x = 0.06$)</td>
<td>Anatase</td>
<td>1.9×10^{-16}</td>
<td>293 K</td>
<td>NMR relaxometry</td>
<td></td>
</tr>
<tr>
<td>Li$_{x}$TiO$_2$ ($x = 0.06$)</td>
<td>Titanate (anatase)</td>
<td>5.7×10^{-16}</td>
<td>293 K</td>
<td>NMR relaxometry</td>
<td></td>
</tr>
<tr>
<td>Li$_{x}$TiO$_2$ ($x = 0.12$)</td>
<td>Anatase</td>
<td>1.1×10^{-16}</td>
<td>293 K</td>
<td>NMR relaxometry</td>
<td></td>
</tr>
<tr>
<td>Li$_{x}$TiO$_2$ ($x = 0.12$)</td>
<td>Titanate (anatase)</td>
<td>1.8×10^{-16}</td>
<td>293 K</td>
<td>NMR relaxometry</td>
<td></td>
</tr>
<tr>
<td>Li$_{x}$TiO$_2$ ($x = 0.12$)</td>
<td>Titanate (anatase)</td>
<td>4.9×10^{-16}</td>
<td>413 K</td>
<td>NMR relaxometry</td>
<td></td>
</tr>
<tr>
<td>Li$_{0.55}$TiO$_2$ nano</td>
<td>Titanate (anatase)</td>
<td>1.7×10^{-16}</td>
<td>293 K</td>
<td>NMR relaxometry</td>
<td></td>
</tr>
<tr>
<td>Li$_{0.55}$TiO$_2$ nano</td>
<td>Titanate (anatase)</td>
<td>4.6×10^{-16}</td>
<td>413 K</td>
<td>NMR relaxometry</td>
<td></td>
</tr>
<tr>
<td>LiMn$_2$O$_4$</td>
<td>Spinel</td>
<td>1.8×10^{-16}</td>
<td>298 K</td>
<td>Tracer</td>
<td></td>
</tr>
</tbody>
</table>

7.4.3 Local Structure and Redox Chemistry

For the related shear phase Nb$_{12}$WO$_{33}$, the three electrochemical regions have been previously assigned to the sequential reduction of W$^{6+/5+}$, Nb$^{5+/4+}$, and Nb$^{4+/3+}$. Thus, in order to understand (i) the nature of the charge transfer sequence as a function of lithiation and (ii) the origin of multiredox behaviour in Nb$_{16}$W$_5$O$_{55}$, the X-ray absorption near-edge structure of the Nb K-edge and W L-edges was analysed (Figure 7.10). XAS of the Nb K-edge probes 1s to 5p excitations at energies around 19.0 keV, which is well-suited for standard synchrotron analysis. In theory, one could perform the same type of analysis with 1s to 6p excitations at the W K-edge but at 69.5 keV it is impractically high in energy for standard beamline configurations and suffers from severe core-hole lifetime broadening. The W L-edges, however, at 12.1 to 10.2 keV are suitable for high-resolution XAS. The W L$_{1}$-edge measures 2s to 6p excitations while the W L$_{II}$- and L$_{III}$-edges correspond to transitions of 2p to (near-)valence 5d states. The L$_{II/III}$ edges are split by ca. 1337 eV by spin–orbit coupling; in the octahedral sites present in Nb$_{16}$W$_5$O$_{55}$, these edges are further split by ca. 4 eV by ligand-field effects into transitions to t_{2g} and e_g orbitals. Authors have recently demonstrated the use of the 5d L$_1$ edges for oxidation state analysis in periodic and molecular structures. We considered this; however, the edge position of the W L$_1$-edge in Nb$_{16}$W$_5$O$_{55}$ is severely complicated by the strong pre-edge feature. In this system, the L$_{II}$-edge offered an excellent alternative with a stronger signal and a single contribution from 2p$_{1/2}$ to 5d$_{3/2}$ excitations. N.b. the contribution expected for 2p to 6s transitions can be neglected at the absorption edge for early third row transition metals. Meanwhile, the W L$_1$ pre-edge peaks do provide direct
evidence for local geometry around the tungsten ions. For niobium, *operando* and *ex situ* Nb K-edge X-ray absorption near edge structure (XANES) spectra show a nearly linear trend between the number of electrons (*i.e.* Li⁺) transferred and the oxidation state of niobium, extracted from the shift of the absorption edge (Figure 7.11a–7.13). Similarly, *ex situ* samples measured at the $W_{\text{L}_{\text{II}}}$-edge showed a steadily negative correlation between capacity and edge position but there appears to be a stronger shift in the tungsten absorption edge for the first 0.5 Li⁺/TM inserted (Figure 7.11b, 7.14), indicating a slight preference for tungsten reduction initially. The most lithiated sample measured with composition $\text{Li}_{31.5}\text{Nb}_{16}\text{W}_{5}\text{O}_{55}$ (1.5 Li⁺/TM), indicated the presence of $\text{Nb}^{3.4(2)+}$ and $\text{W}^{4.1(2)+}$, which is consistent within experimental uncertainty. Thus, both cations participate in all stages of discharge and both undergo multielectron reduction.

![Figure 7.10](image)

Figure 7.10 – X-ray absorption spectra of $\text{Nb}_{16}\text{W}_{5}\text{O}_{55}$ at the (a) tungsten L-edges and (b) niobium K-edge. Non-normalized spectra show absorption edge jumps of approximately 0.8 and 0.9 at the $W_{\text{L}_{\text{III}}}$ and Nb K-edges, respectively. The prominent white-line feature of $W_{\text{L}_{\text{III}}}$ and L_{II}-edges corresponds to the dipole-allowed excitation of $2p$ electrons to vacant $5d$ orbitals. The $W_{\text{L}_{1}}$ and Nb K-edges contain pre-edge features owing to noncentrosymmetry-enabled mixing of dipole-allowed p-states and dipole-forbidden lower energy d-states in addition to the weak quadrupole-allowed s to d transitions. The absorption edge shifts, pre-edge features, and post-edge modulations are used here to probe changes in transition metal oxidation state, local symmetry/oxidation state, and local structure/bonding, respectively.
Figure 7.11 – X-ray absorption spectroscopy of Nb$_{16}$W$_5$O$_{55}$. (a) Niobium and (b) tungsten oxidation states, as a function of lithiation, extracted from shifts in the absorption energy of the Nb K-edge and W L$_{III}$-edge. (c) Pre-edge intensity from the Nb K-edge and W L$_{III}$-edge serves as a measure of local distortion from SOJT effects on d^0 octahedral sties and, as the SOJT effect is relaxed upon reduction to d^1, a further indication of oxidation state. (d) Niobium and (e) tungsten local structure evolution via Fourier transform of the post-edge scattering. Data in (d–e) are vertically offset by 4 and 6 Å$^{-4}$, respectively, for clarity. The X-axes have not been phase corrected.
Figure 7.12 – Calibration of X-ray absorption energy and oxidation state. (a, c) The Nb K-edge was calibrated at $E(0.5)$ for Nb^0, $\text{Nb}^{II}O$, $\text{LiNb}^{III}O_2$, $\text{Nb}^{IV}O_2$, and $\text{H-Nb}^{V}_2O_5$. (b, d) The W L_{III}-edge was calibrated at the zero crossing in the second derivative for $\text{W}^{IV}O_2$ and $\text{W}^{VI}O_3$.
Figure 7.13 – Niobium K-edge X-ray absorption spectroscopy. (a–b) $\text{Li}_x\text{Nb}_{16}\text{W}_5\text{O}_{55}$ ex situ XANES and (c–d) derivative spectra. (e) Operando XANES of $\text{Nb}_{16}\text{W}_5\text{O}_{55}$ and 22 discharge spectra, with each successive spectra at ca. +11 mA·h·g$^{-1}$ and (f) operando derivative spectra. The pre- and main edge are at ca. 18,991 and 19,004 eV, respectively. Spectra in (b, d) are vertically offset by 0.2 and 0.02, respectively, for clarity.
The redox centres Nb$^{5+}$ and W$^{6+}$ in Nb$_{16}$W$_5$O$_{55}$ are both d^0 and in oxides with octahedral coordination, both of these cations experience second-order Jahn–Teller (SOJT) distortions, which arises from pseudodegeneracy of the valence, filled p-orbitals and the first excited state, empty d-orbitals. This off-centre distortion enables mixing of the dipole-allowed p-states (for example, $5p$ for Nb K-edge) with lower energy d-states ($4d$ for Nb K-edge), which gives rise to a pre-edge feature before the main absorption edge in Nb K- and W L$_1$-edge XAS spectra (Figure 7.13, 7.15), and serves as a direct probe of local symmetry and an additional measure of oxidation state. As the d^0 cations are reduced, the energy of the d-states moves up and the SOJT distortion is reduced, which increases the local octahedral symmetry and decreases the pre-edge states and intensity (Figure 7.11c, 7.13, 7.15). The normalized pre-edge intensity decreases monotonically, again with a slightly larger decrease for tungsten at low lithium concentrations. By ca. 0.8–1.0 Li$^+$/TM, both the Nb K and W L$_1$ pre-edges have nearly disappeared. The relaxation of the SOJT leads to centring of the cation and restoration of inversion symmetry in the octahedra within the blocks, lithiation being associated with an increase in local symmetry for the d^0 oxide intercalation hosts. Note this phenomenon does not affect the intensity originating from the tetrahedral sites, which must be small, consistent with the tetrahedral:octahedral ratio of 1:20.
Figure 7.14 – Tungsten L\textsubscript{II}-edge X-ray absorption spectroscopy. (a–b) Li\textsubscript{x}Nb\textsubscript{16}W\textsubscript{5}O\textsubscript{55} \textit{ex situ} XANES, (c–d) derivative spectra, and (e–f) second derivative spectra. Spectra in (b,d,f) are vertically offset by 0.5, 0.2, and 0.4, respectively, for clarity.
Figure 7.15 – Tungsten L\textsubscript{I}-edge X-ray absorption spectroscopy. (a) Li\textsubscript{16}Nb\textsubscript{5}W\textsubscript{55} \textit{ex situ} XANES and (b) derivative spectra near the L\textsubscript{I} absorption edge. The pre-edge occurs at \textit{ca.} 12,104 eV and the main edge at \textit{ca.} 12,117 eV. Spectra are vertically offset by 0.5 in (a) and by 0.02 in (b) for clarity.

High-resolution extended X-ray absorption fine structure (EXAFS) spectra revealed changes in the first and second coordination shell of both the Nb and W sites (Figure 7.11d–e, 7.16–17) as a function of lithium content. For the tungsten component, the W L\textsubscript{III}-edge was used for Fourier transformation to real-space EXAFS because it is the strongest W L-edge transition, does not contain interference from lower energy absorption events (\textit{e.g.} L\textsubscript{I} and L\textsubscript{II}), and is not significantly truncated by higher energy absorption (\textit{e.g.} L\textsubscript{II}). This enables high-resolution EXAFS spectra from a wide range in \textit{k}-space and the best signal-to-noise amongst the available edges. Interestingly, the spectra suggest different local structure evolution. Niobium metal–metal intensity broadens almost immediately while tungsten maintains a sharp metal–metal correlation until about 0.5 Li+/TM with no shift in interatomic distance. The metal–oxygen behaviour is markedly different with Nb–O coalescing toward an intermediate peak, in line with increasing local symmetry, while W–O loses a short bond at the gain of one \textasciitilde 0.2 Å longer. Figure 7.16 also indicates a longer coherence length for niobium than for tungsten, with several larger coordination shells that appear to evolve in a similar way to the inner shells. The unique electrochemical properties of Nb\textsubscript{16}W\textsubscript{55}O\textsubscript{55} enabled preparation of pure \textit{ex situ} XAS samples by lithiation of 100–300 mg electrodes of the metal oxide without conductive additive or binder (Figure 7.18), which suggests good intrinsic electronic and ionic conductivity.
Figure 7.16 – High-resolution niobium and tungsten EXAFS spectra of Nb$_{16}$W$_5$O$_{55}$. Real-space EXAFS spectra of (a) niobium from the K-edge and (b) tungsten from the L$_{III}$-edge. The x-axis has not been phase shifted. These real-space spectra result from the Fourier transform of the k-space data (*vide infra*) in the k-range 3–17 Å$^{-1}$.

Figure 7.17 – EXAFS data in k-space. Li$_6$Nb$_{16}$W$_5$O$_{55}$ (a) Nb K-edge and (b) W L$_{III}$-edge EXAFS data in k-space following the same colour scheme as Figure 7.15. Data for the point Li$_{6.3}$Nb$_{16}$W$_5$O$_{55}$ was of lower quality than other samples so a limited k-space and R-space range was used. Data are vertically offset by 8 Å$^{-3}$ for clarity.
Figure 7.18 – Comparison of electrochemistry on large pure pellets to standard composite films. (a) Discharge profiles of thick 100–300 mg pellets of pure \(\text{Nb}_{16}\text{W}_{5}\text{O}_{55} \) prepared for \textit{ex situ} analysis by cold pressing at 2 MPa. (b) Discharge profile of a standard 8:1:1 \(\text{Nb}_{16}\text{W}_{5}\text{O}_{55}: \text{superP carbon}:\text{PVDF} \) composite film with active mass loading of 2.1 mg and a diameter of 1.27 cm. The pellets were lithiated at 100–500 \(\mu \text{A} \cdot \text{cm}^{-2} \). The black points in (b) represent the open-circuit voltage of the pellet electrodes after ca. 12 h. Despite the significant difference in mass and lack of conductive additive or binder in the pellets, no difference is observed in the discharge profile or open-circuit voltage of the pure pellets relative to the composite film.

7.4.4 Anisotropic Lattice Evolution

\textit{Operando} X-ray diffraction was performed to investigate how the crystallographic shear blocks of \(\text{Nb}_{16}\text{W}_{5}\text{O}_{55} \) accommodate the large and rapid influx of lithium. At C/2, \(\text{Nb}_{16}\text{W}_{5}\text{O}_{55} \) evolves through a complex, solid-solution mechanism (Figure 7.19–20) that can be summarized in three stages, which correlate with the observed electrochemical regions:

(a) high voltage (until \textit{ca.} 65 mA·h·g\(^{-1}\) or 0.4 Li\(^+\)/TM) \textit{ac}-plane expansion of the blocks along with a slight expansion of the layers perpendicular to the block plane,

(b) \textit{ca.} 65–170 mA·h·g\(^{-1}\) (0.4–1.0 Li\(^+\)/TM): anisotropic behaviour involving a contraction of the blocks and a significant expansion of the layers, (c) low voltage (beyond 1.0 Li\(^+\)/TM) linear expansion in all dimensions. The volume expansion is significantly buffered by the block contraction in the second stage; the lattice undergoes only 5.5% expansion at lithiation to 1.0 Li\(^+\)/TM. Of note, despite the ambiguity in the electrochemical profile, the diffraction shows
that the second process is not actually two-phase, consistent with the GITT. Upon charge, the stages are reversed (Figure 7.21) though there is some first cycle capacity loss. This capacity loss is ascribed at least in part to residual Li remaining in the structure (Figure 7.22–23, Table 7.3), rather than (significant) SEI formation, the final lithium ions being significantly harder to remove as their removal would lead to insulating domains with d^0 metal ions. At a factor of ten higher rate (5C), only the first two stages of lattice evolution were observed (Figure 7.24–25), which is commensurate with the faster kinetics up to 1.0 Li$^+$/TM. In addition, there is more strain and reaction inhomogeneity at 5C likely indicating a lithium concentration gradient in the electrolyte of the thick (ca. 200 µm, 8–9 mgNb–W–O·cm$^{-2}$) electrodes used for the high-rate operando study. Nevertheless, the mechanism remains solid-solution, which is evident in the significant interpeak intensity (Figure 7.24).
Figure 7.19 – X-ray diffraction peak evolution of Nb$_{16}$W$_5$O$_{55}$ and Nb$_{18}$W$_{16}$O$_{93}$ from *operando* synchrotron diffraction. (a) The block-phase Nb$_{16}$W$_5$O$_{55}$ evolves in three stages upon lithiation from 3.0–1.0 V at C/2; the expansion is buffered by block contraction in the second stage. (b) The bronze-like phase Nb$_{18}$W$_{16}$O$_{93}$ evolves through six stages upon lithiation from 3.0–1.0 V at 1C. In this complex oxide, volume expansion is buffered by layer contraction in the second stage and *b*-axis contraction in the fourth and fifth stage. A portion of the (c) Nb$_{16}$W$_5$O$_{55}$ and (d) Nb$_{18}$W$_{16}$O$_{93}$ *operando* diffraction patterns with some of the strongest reflections labelled and the electrochemistry (heavy black lines) overlaid.

Figure 7.20 – Lattice parameter evolution of Nb$_{16}$W$_5$O$_{55}$ upon lithiation. Results from Rietveld refinement of *operando* diffraction data, analogous to that of Figure 7.19 but in terms of the absolute lattice parameters. Estimated standard deviation of each parameter from each fit is shown. The feature that shows up around 150 mA·h·g$^{-1}$ is not necessarily real; there is a high correlation (0.7) between the *c* lattice parameter and *β* angle which precludes the precise individual determination of these values. Shading serves as a guide to the eye.
Figure 7.21 – Full cycle of Nb$_{16}$W$_5$O$_{55}$. A full *operando* synchrotron XRD discharge–charge cycle is shown for Nb$_{16}$W$_5$O$_{55}$ at C/2. The (14 09)/(407) [left] and (020) [right] reflections are displayed here. When overlaid, discharge and charge appear highly symmetric, though a small amount of lithium remains in the structure after charging (Figure 7.22–23, Table 7.3).
Figure 7.2 – Discharge profiles and dQ/dV curves of Nb$_{16}$W$_{55}$O$_{55}$ and Nb$_{18}$W$_{16}$O$_{93}$ over the first five cycles. There is an activation process on the first cycle, which extends to a much smaller extent in the next several cycles, that leads to an increase in the intercalation voltage at the first “plateau-like” feature and a broadening of the dQ/dV peaks. The phenomenon is associated with a retention of lithium in the structure (Figure 7.23, Table 7.3). It is structure independent, indicating that it may have electronic origins. These data were collected at C/5 but the phenomenon is also observed at other rates.
Figure 7.23 – Diffraction pattern of Nb$_{16}$W$_5$O$_{55}$ before lithiation and after the first charge. Data are from *operando* diffraction measurements at C/2 rate. The lattice parameters of the pristine and charged structure are given in Table 7.3. The changes indicate that some lithium was retained in the structure after charging the electrode, commensurate with the changes from 1$^{\text{st}}$ to 2$^{\text{nd}}$ cycle in the electrochemistry (Figure 7.22).

Table 7.3 – Lattice parameters of Nb$_{16}$W$_5$O$_{55}$ before cycling and after the first full discharge–charge cycle. The increases lattice size indicates that some lithium was retained in the structure after charging the electrode.

<table>
<thead>
<tr>
<th>State of charge</th>
<th>a (Å)</th>
<th>b (Å)</th>
<th>c (Å)</th>
<th>β (°)</th>
<th>Block area ($Å^2$)</th>
<th>Volume ($Å^3$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pristine</td>
<td>29.657(4)</td>
<td>3.8225(3)</td>
<td>23.106(4)</td>
<td>126.50(1)</td>
<td>550.8(1)</td>
<td>2105.5(2)</td>
</tr>
<tr>
<td>After 1$^{\text{st}}$ charge</td>
<td>29.708(4)</td>
<td>3.8313(3)</td>
<td>23.140(4)</td>
<td>126.51(1)</td>
<td>552.6(1)</td>
<td>2117.0(2)</td>
</tr>
<tr>
<td>Change</td>
<td>+0.17%</td>
<td>+0.23%</td>
<td>+0.15%</td>
<td>+0.01%</td>
<td>+0.31%</td>
<td>+0.54%</td>
</tr>
</tbody>
</table>
Figure 7.24 – Operando X-ray diffraction patterns of Nb$_{16}$W$_{55}$O$_{55}$ at C/2 and 5C. The profile evolution of selected reflections is shown at (a–b) C/2 and (d–e) 5C along with the respective electrochemical discharge profiles (c, f). (a, d) (60I) and (b, e) left (10 0I) and right (609), overlapping smaller reflections. The evolution in each case is commences analogously; as lithiation increases, the structure evolution at high-rate becomes inhomogeneous and the ac-block contraction is not fully realized. Nevertheless, this does not occur until high capacities.
Figure 7.25 – Evolution of Nb_{16}W_{5}O_{55} as a function of rate. Unlike Nb_{18}W_{16}O_{93} (vide infra), the mechanism of Li_{x}Nb_{16}W_{5}O_{55} lattice evolution becomes rate dependent at high capacity as the electrode inhomogeneity increases. *N.b.* Refined lattice parameters represent an average value in the inhomogeneous regions, particularly the end of high-rate discharge (cf. Figure 7.24).

7.4.5 Comparisons to Nb_{18}W_{16}O_{93}

Very similar rate performance was obtained with the structurally distinct bronze-like phase Nb_{18}W_{16}O_{93} (Figure 7.1d), with enhanced rate performance at the highest rates (Figure 7.4c–f). Nb_{18}W_{16}O_{93} is orthorhombic, a 1×3×1 superstructure of the classic tetragonal tungsten bronze (TTB, Figure 7.26). The superstructure results from partial filling of pentagonal tunnels by −M−O− chains to form pentagonal bipyramids in addition to the distorted octahedral imparting structural stability. In terms of gravimetric capacity, Nb_{18}W_{16}O_{93} stores *ca.* 20 mA·h·g⁻¹ less than Nb_{16}W_{5}O_{55} at C/5 and 1C due to the higher mass of the tungsten-rich bronze phase. However, at 20 C, Nb_{18}W_{16}O_{93} is still able to accommodate a full unit Li⁺/TM
for a capacity of \(ca. \) 150 mA·h·g\(^{-1}\). At 60C and 100C, the capacity is still 105 and 70 mA·h·g\(^{-1}\), respectively. Unfortunately, PFG NMR was somewhat hindered by the much faster \(T_1 \) and \(T_2 \) relaxation for the bronze phase, \(\text{Li}_{3.4}\text{Nb}_{18}\text{W}_{16}\text{O}_{93} \), and fewer VT data points could be collected until the temperature was lowered to a point where \(T_2 \) relaxation times were too short to turn on the gradients for a sufficient amount of time to measure \(^7\text{Li}\) diffusion. Still, three data points were able to be collected in the range of 130-180 °C, albeit with larger error due to the shorter relaxation times (Table 7.1, Figure 7.9).

Figure 7.26 – Bronze-like structure of \(\text{Nb}_{18}\text{W}_{16}\text{O}_{93} \). \(\text{Nb}_{18}\text{W}_{16}\text{O}_{93} \) is structurally related to the classic tetragonal tungsten bronze (TTB) by a tripling of the tetragonal \(a \)-axis. The TTB structure is stabilized by cations (e.g. \(\text{K}^+ \)); alkali cation-free \(\text{Nb}_{18}\text{W}_{16}\text{O}_{93} \) is stabilized by –M–O– chains partially occupying the tunnels and forming pentagonal bipyramids. This ionic and electronic implications for lithium intercalation, respectively, are that the layers of \(\text{Nb}_{18}\text{W}_{16}\text{O}_{93} \) are still fully open and unoccupied by cations (i.e. around the plane \((x, y, \frac{1}{2})\)) and all metal cations in the desired \(d^0 \) electron configuration. In TTB, neither of these criteria is met and lithium rate capacity and rate are limited.

Operando diffraction experiments were performed at rates up to 10C (Figure 7.19b,d; 7.27–29). Like the block phase, the bronze phase shows a complicated but reversible non-linear and strongly anisotropic structural evolution upon lithiation (Figure 7.19b). Lithiation from 0 to 0.2 \(\text{Li}^+/\text{TM} \) is characterized by \(ab \)-plane expansion. The plateau-like region from
0.2–0.3 Li⁺/TM is associated with further ab-plane expansion, still maintaining the $b \approx 3a$ superstructure, and contraction of the layers (c-axis). From 0.3–0.55 Li⁺/TM, the structure expands nearly isotropically, while at about 0.55 Li⁺/TM, the pseudo-superstructure relationship collapses. From this point until 0.75 Li⁺/TM, b contracts rapidly, a expands, and c is constant. At 0.75 Li⁺/TM, the layers begin to expand back to their initial spacing while b continues contracting, albeit at a slower rate, all the way to its initial length and a continues its expansion. Thus, when fully lithiated to 1.0 Li⁺/TM ($\text{Li}_{34}\text{Nb}_{18}\text{W}_{16}\text{O}_{93}$), b and c are within ±0.1% to the unlithiated host while c, and thus the total volume expansion, is +2.8%. In the multi-redox region beyond 1 Li⁺/TM, the structure again expands somewhat isotropically. This is phenomenologically related to negative thermal expansion (NTE)54,55 or negative linear compressibility (NLC)56 and the small volume change has implications for the suppression of intergranular cracking and long-term cycle performance57. The structural stability of both the block and bronze phases is also reflected in the coulometric efficiency (CE) during cycling (Figure 7.4f), the average discharge/charge efficiency over 1000 cycles (250 at 10C, 750 at 20 C) is 0.99987 for Nb₁₆W₅O₅₅ and 0.99973 for Nb₁₈W₁₆O₉₃.
Figure 7.27 – Lattice parameter evolution of Nb$_{18}$W$_{16}$O$_{93}$ upon lithiation. Results from Rietveld refinement of operando diffraction data, analogous to that of Figure 7.19b but in terms of the absolute lattice parameters. Estimated standard deviation of each parameter from each fit is shown. Shading serves as a guide to the eye to distinguish the different structural regions.
Figure 7.28 – Evolution of Nb$_{18}$W$_{16}$O$_{93}$ as a function of rate. The mechanism of Li$_x$Nb$_{18}$W$_{16}$O$_{93}$ lattice evolution does not appear to be strongly rate dependent. The reaction extends further at lower rate within the same voltage range due to a smaller overpotential.
Figure 7.29 – Operando X-ray diffraction patterns of Nb$_{18}$W$_{16}$O$_{93}$. The profile evolution of selected reflections and the corresponding electrochemical discharge profile is shown at (a–d) 1C, (e–h) 5C, and (i–l) 10C. (a, e, i) (040), (b, f, j) overlapped (230) and (160), (c, g, k) (001) and overlapped (330) and (190). The evolution in each case is similar in mechanism and differs in the extent of reaction, consistent with the electrochemical profiles.

7.5 Discussion

Both the block and bronze structural motifs are derived from the parent ReO$_3$ structure type, of which WO$_3$ is a locally distorted analogue and lithium lanthanum titanate (LLTO) perovskite is a version with Li$^+$ and La$^{3+}$ cations in the A-site. In ReO$_3$, WO$_3$, and LLTO, Li ions occupy four-to-five coordinate sites and diffuse through square planar window transition states. It is well established that this process is fast; the activation energy is only 120–220 meV in LLTO, whose framework is stabilized by the large lanthanum ions.$^{58-64}$ While ReO$_3$/WO$_3$ should also
be suitable for rapid 3D lithium motion, their non-stabilized framework undergoes a significant phase transition beyond ca. 0.35 Li\(^+/\)TM.

Relative to ReO\(_3\), the niobium–tungsten oxides accommodate anion-deficient nonstoichiometry by forming topologically-distinct condensed phases. The intersecting crystallographic shear planes (block phases) or twisted octahedra locked to pentagonal columns (bronze-like) (Figure 7.1d) decrease the structural degrees of freedom and result in frustrated polyhedral networks that prevent changes (e.g. tilting or clamping) from occurring upon lithiation. This leads to two fundamentally different but effectively three-dimensional networks for lithium while stabilizing the framework and precluding significant Li-induced structural rearrangements that restrict Li transport. From structural analysis and bond valence energy landscape calculations (Figure 7.30), it is proposed that infinite lithium diffusion in the Nb\(_{16}\)W\(_5\)O\(_{55}\) block phase is one-dimensional down the b-axis but the twelve parallel tunnels act as metaphorical multi-lane highways, enabling lithium to change “lanes” via a local hop in the ac-plane. Lithium sites and diffusion in this twelve-channel path are essentially identical to that of the ReO\(_3\)/LLTO structure types (Figure 7.30) without the phase transition of ReO\(_3\) or the blocking La\(^{3+}\) ions of LLTO. Furthermore, given this mechanism, Nb\(_{16}\)W\(_5\)O\(_{55}\) should not be susceptible to tunnel-blocking defects that hinder one-dimensional conductors such as LiFePO\(_4\) performance in the bulk.\(^{65,66}\) Meanwhile, the Nb\(_{18}\)W\(_{16}\)O\(_{93}\) bronze-like phase has the infinite two-dimensional lithium pathway of T-Nb\(_2\)O\(_5\) in the (x, y, \(\frac{1}{2}\)) crystallographic plane with the additional benefit of four- and five-sided channels along the c-axis (Figure 7.30) to increase the dimensionality of long-range diffusion to 3D. As a result, the structure appears to exhibit better performance, certainly under comparable morphologies and conditions, than the recently intensely studied low temperature T-phase of Nb\(_2\)O\(_5\).\(^{24,67-70}\) The bronze comparisons stress the importance of the open room-and-pillar host structure found in T-Nb\(_2\)O\(_5\)\(^{69}\) and Nb\(_{18}\)W\(_{16}\)O\(_{93}\) plus the added benefit of the perpendicular lithium diffusion channels in Nb\(_{18}\)W\(_{16}\)O\(_{93}\). In addition, both Nb\(_{16}\)W\(_5\)O\(_{55}\) and Nb\(_{18}\)W\(_{16}\)O\(_{93}\) may benefit from the randomly-distributed Nb/W occupancy throughout the metal sites which prevents rate-inhibiting lithium ordering. Nb\(_{16}\)W\(_5\)O\(_{55}\) and Nb\(_{18}\)W\(_{16}\)O\(_{93}\) are compared to their binary counterparts H- and T-Nb\(_2\)O\(_5\) as a function of capacity and Li\(^+/\)TM (Figure 7.31). Though the hosts are \(d^0\) insulators, their three-dimensional \(\text{M—O—M}\) connectivity enables effective electronic pathways as the structure is n-doped upon lithiation. Very high electronic conductivities are known in in the crystallographic shear niobium tungsten oxides and partially reduced versions of both families, e.g. Nb\(_2\)O\(_{29}\)\(^{71}\) and A\(_{0.3}\)WO\(_3\)\(^{72}\) (A = alkali metal cation), which are both metallic
conductors with resistivities lower than 10^{-2} Ω-cm. Variations of the bronze and crystallographic shear structure types are abundant. Cation (e.g. early transition metals, p-block elements, different valency) and anion (e.g. oxyfluorides) doping make it possible to tune the ionic and electronic properties and thereby affect voltage, capacity, power capability, and stability. Analogues are known with Na$^+$, K$^+$, Mg$^{2+}$, Ca$^{2+}$, which suggests that the variety of possible tunnel shapes and sizes, vacant sites, and 3D connectivities is also promising for beyond Li electrochemical energy storage following the insights into high-rate and capacity discovered here.

![Figure 7.30](image)

Figure 7.30 – Prospective lithium positions and pathways. Bond valence sum (BVS) maps of (a) Nb$_{16}$W$_5$O$_{55}$ and (b) Nb$_{18}$W$_{16}$O$_{93}$ show stable lithium positions and pathways according to bond valence energy landscape (BVEL) calculations performed in 3DBVS MAPPER73. Calculations were performed over a fine grid with $149 \times 20 \times 116$ points computed for Nb$_{16}$W$_5$O$_{55}$ and $61 \times 184 \times 20$ points computed for Nb$_{18}$W$_{16}$O$_{93}$ along their respective crystallographic axes. Isosurface levels are shown at “2.0 eV”, which is a parameter used to visualize ionic pathways and not a quantitative estimation. BVS and BVEL provide an indication of lithium positions and diffusion pathways in complex and/or novel systems and have shown good agreement with experimental and computational investigations of structure and dynamics.$^{73-75}$ (c–d) Proposed intrablock lithium positions for Nb$_{16}$W$_5$O$_{55}$ based on the low Li concentration Li$_x$ReO$_3$ ($x < 0.35$).
Figure 7.31 – Discharge and charge profiles of ternary vs. binary block-type and bronze-type Nb-containing oxides on the third cycle at C/5. Block phases Nb$_{16}$W$_5$O$_{55}$ and H-Nb$_2$O$_5$ are compared on the basis of (a) Li$^+$/TM and (c) gravimetric capacity. Bronze phases Nb$_{18}$W$_{16}$O$_{93}$ and T-Nb$_2$O$_5$ are compared on the basis of (b) Li$^+$/TM and (d) gravimetric capacity.

When compared strictly on the basis of theoretical 1.0 Li$^+$/TM volumetric energy density of the active material, titania, niobia, and graphite can all display charge densities of greater than 800 mA·h·cm$^{-3}$. Once experimental capacities and tap density are considered (Figure 7.32), the bulk, unoptimized niobium–tungsten oxides presented here maintain volumetric charge densities of greater than 500 mA·h·cm$^{-3}$ at 1C and up to 400 mA·h·cm$^{-3}$ at 20C, which compare favourably to all present and next-generation electrode technologies. On the basis on electrode formulations, rather than tap density, these volumetric capacities increase by a factor of ca. 1.2.
Despite the years (decades) of nanostructuring, hierarchical architecting, and electrode optimization, no version of TiO$_2$, Nb$_2$O$_5$, LTO, or graphite has displayed volumetric performance approaching that demonstrated here. This is not to say that the compounds presented cannot be improved by e.g., nanostructuring, calendaring, carbon-coating, etc. but to highlight the fact that large micrometer size particles do not necessarily lead to low rate electrodes and illustrate that nanosizing is not always the most appropriate strategy to improve performance.

Fast charging or high-power delivery from a full cell requires a cathode to match the anode. While LiFePO$_4$ has been used as a promising high-rate cathode along with LTO, both of these electrodes have exceptionally flat voltage profiles. The combination provides a constant voltage but presents a serious challenge in terms of battery management systems (BMS). Simple and accurate BMS is a crucial factor for battery applications in electric vehicles and mobile technology and is even more important at high-rates to prevent dangerous and degradative over(dis)charging while maximizing utility. BMS rely on the ability to measure state-of-charge, which cannot be done simply by charge counting alone as the battery degrades. The open-circuit voltage is a more reliable measure, a thermodynamic quantity. In contrast to the LTO/LiFePO$_4$ battery, the sloping voltage profiles of the new high-rate materials presented herein provide an opportunity for the modeling and electrochemical engineering/industrial communities to develop BMS based on sloping voltage profiles, which may prove to be a significant commercial advantage for Nb$_{16}$W$_{55}$O$_{95}$, Nb$_{18}$W$_{16}$O$_{93}$, and related materials in the growing area of high-power/fast charging applications.

The ability to intercalate lithium into microscopic particles in minutes calls for a different paradigm for electrode structuring. Rather than focusing on particle dimensions, aspects such as electrolyte transport or counter electrode diffusivity and overpotential may become critical to push the frontier of performance. The strict requirements for carbon-coating and intricately wiring nanoparticles are relaxed and issues stemming from surface reactivity and stability are diminished. There are also implications for the field of all-solid-state batteries where there has been a mismatch between lithium transport in solid electrolytes compared to electrode materials. If both components have similar diffusivities, it may be possible to design and implement new, simplified composite structures to speed up the realization of safe all-solid-state cells.
Figure 7.32 – Microscale $\text{Nb}_{16}\text{W}_{5}\text{O}_{55}$ and $\text{Nb}_{18}\text{W}_{16}\text{O}_{93}$ compared to some state-of-the-art nanoscale materials and formulations. (a) $\text{Nb}_{16}\text{W}_{5}\text{O}_{55}$ and $\text{Nb}_{18}\text{W}_{16}\text{O}_{93}$ from this work are compared to high-rate electrode formulations from the literature.$^{67,69,70,76–88}$ Volumetric capacities at 1C and 20C are determined from reported capacities and reported, measured, or estimated tap densities. (b) Ragone (log–log) plot of energy density and power density on the basis of anode active materials vs. a 4.0 V cathode. The mass loading of the niobium tungsten oxides here was 2.6 mg·cm$^{-2}$, the mass loading of the other titanium and niobium-based materials was ca. 1 mg·cm$^{-2}$. Graphite is included as a reference, though it cannot be used for high rate applications due to Li plating risks and particle fracture.
7.6 Conclusions

With appropriate three-dimensional oxide crystal structures, extremely high rates can be obtained without the need to nanosize. The two new electrode materials, Nb$_{16}$W$_5$O$_{55}$ and Nb$_{18}$W$_{16}$O$_{93}$, effectively use superstructure motifs to provide stable host structures for lithium intercalation with facile and defect-tolerant lithium diffusion networks. Volume expansion is mitigated by structural contraction along specific crystallographic axes in response to increased lithium content, which may enable the extended cycling of these large particles89. The materials investigated here operate in a similar voltage region to the well-studied anode materials LTO and TiO$_2$-B, which are considered “safe”. Rather than the route of trying to overcome physical properties (such as ionic and electronic conductivity) extrinsically (by, for example carbon coating and nano-sizing), this discovery underlines that the high-rate, high-capacity properties of the Nb–W–O block and bronze phases presented here are intrinsic to the complex atomic and electronic networks.

7.7 Outlook

Following the discovery of high-rate Li$^+$ intercalation in Nb$_{16}$W$_5$O$_{55}$ and Nb$_{18}$W$_{16}$O$_{93}$, it would be interesting to understand the lithium sites from a local (NMR) and average (neutron diffraction) perspective. I am undertaking NMR measurements and I have been awarded neutron diffraction time as part of this work for a future study. It is also interesting to consider the other materials in the Nb$_2$O$_5$–WO$_3$ family such as Nb$_{12}$WO$_{33}$ (C2)21, Nb$_{26}$W$_4$O$_{77}$ (C2)90, Nb$_{14}$W$_3$O$_{44}$ (I4)91, Nb$_{18}$W$_8$O$_{60}$ (I4)91, Nb$_5$WO$_8$ (Pbcm)92, and Nb$_8$W$_8$O$_{47}$ (Pbam)93 (Figure 7.33). A limited number of electrochemical studies$^{23,27,49,94-98}$ have been performed on these phases but a mechanistic understanding of the lithiation trends and detailed structural evolution remains for future work.
Figure 7.33 – Crystal structures of (a) Nb$_{12}$WO$_{33}$ (C2), (b) Nb$_{26}$W$_{4}$O$_{77}$ (C2), (c) Nb$_{14}$W$_{3}$O$_{44}$ ($I\bar{4}$), (d) Nb$_{18}$W$_8$O$_{69}$ ($I\bar{4}$), (e) Nb$_2$WO$_8$ (Pbcm), and (f) Nb$_8$W$_9$O$_{47}$ (Pbam). Blue polyhedra represent mixed Nb/W sites; grey tetrahedra in (a) designate WO$_4$ sites.

Looking toward that future, I have synthesised several of these compounds and electrochemical and structural characterisation is underway. The electrochemical profiles of crystallographic shear structures Nb$_{12}$WO$_{33}$ and Nb$_{18}$W$_8$O$_{69}$ are overlaid (Figure 7.34) on those from H-Nb$_2$O$_5$ and Nb$_{16}$W$_5$O$_{55}$ (Figure 7.31). As in the case of titanium-dilute TiNb$_{24}$O$_{62}$ (cf. Chapter 6), the tungsten-dilute compound Nb$_{12}$WO$_{33}$ leads to a pronounced change in the first “shoulder” region that is exhibited by the niobium-pure H-Nb$_2$O$_5$. The compound Nb$_{18}$W$_8$O$_{69}$ exhibits electrochemical properties that closely resemble Nb$_{16}$W$_5$O$_{55}$, indicating it may be another promising high-rate bulk electrode material. The amount of lithium intercalated per transition metal is essentially invariant across the series, indicating that the differences in gravimetric capacity are due to the difference in mass rather than redox activity between tungsten and niobium.
Figure 7.34 – Electrochemical discharge and charge profiles of ternary Nb–W–O vs. binary Nb–O block-type phases. The compounds are compared on the basis of (a) gravimetric capacity and (b) Li⁺/TM on the third cycle at C/5.

Initial high-resolution 7Li solid-state NMR studies (Figure 7.35) of block-phase $\text{Li}_x\text{Nb}_{12}\text{WO}_{33}$ and bronze-phase $\text{Li}_x\text{Nb}_8\text{W}_9\text{O}_{47}$ indicate complex lithiation behaviour. In $\text{Li}_x\text{Nb}_{12}\text{WO}_{33}$, the isolated resonances, one near 0 ppm and one near -5 ppm, that eventually merge to a broad asymmetric resonance is qualitatively in line with the lithiation of $\text{H-Nb}_2\text{O}_5$ (*cf.* Chapter 5). The 7Li NMR of bronze $\text{Li}_x\text{Nb}_8\text{W}_9\text{O}_{47}$ also shows similarities to its binary oxide counterpart $\text{T-Nb}_2\text{O}_5$ (*cf.* Chapter 5) with a minor resonance at ca. $+5$ ppm and a major resonance at ca. 0 ppm. The non-Gaussian/Lorentzian lineshapes may indicate that second-order quadrupolar lineshapes are not completely motionally averaged in this compound or they could result from a distribution of sites; further NMR measurements will help elucidate this picture.
Figure 7.35 – 7Li solid-state NMR spectra of a block and bronze Nb–W–O phase at 16.4 T and 60 kHz MAS. Lithiated (a) Nb$_{12}$WO$_{33}$ and (b) Nb$_8$W$_9$O$_{47}$ exhibit discrete NMR resonances at low lithiation, which merge to broad asymmetric lineshapes as the lithium content increases.

7.8 Acknowledgement of Contributions

I thank Drs. Jeremy Skepper and Heather Greer, University of Cambridge, for assistance with the electron microscopy and Dr. Maxim Avdeev, Bragg Institute, for his bond valence sum mapping program. I also thank Dr. Ieuan Seymour, University of Cambridge, and Prof. Bruce Dunn, University of California, Los Angeles, for fruitful discussions. Diamond Light Source is acknowledged for access to beamline B18 (SP14956, SP16387) that contributed to the results presented here. This research used resources of the Advanced Photon Source, a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357. Dr. Lauren Marbella performed the PFG NMR diffusion measurements and wrote the PFG experimental section 7.3.8. Dr. Kamila Wiaderek advised on the operando electrochemistry and cells and performed some data reduction of the operando XRD data. Dr. Giannantonio Cibin provided guidance on the XAS measurements and associated data processing in ATHENA. Unless otherwise stated, all synthesis, diffraction, electron microscopy, XAS, electrochemistry, analysis, and writing is my own work with discussion and input from Professor Clare Grey.
7.9 References

(32) Kuhn, A.; Duppel, V.; V. Lotsch, B. Tetragonal Li$_{10}$GeP$_2$S$_{12}$ and Li$_7$GePS$_8$ – Exploring the Li Ion Dynamics in LGPS Li Electrolytes. *Energy Environ. Sci.* **2013**, *6*, 3548–3552.

(39) Hayamizu, K.; Seki, S. Long-Range Li Ion Diffusion in NASICON-Type Li_{1.5}A_{10.5}Ge_{1.5}(PO_4)_3 (LAGP) Studied by 7Li Pulsed-Gradient Spin-Echo NMR. Phys. Chem. Chem. Phys. 2017, 19, 23483–23491.

(41) Hayamizu, K.; Matsuda, Y.; Matsui, M.; Imanishi, N. Lithium Ion Diffusion Measurements on a Garnet-Type Solid Conductor Li$_{6.6}$La$_3$Zr$_{1.6}$Ta$_{0.4}$O$_{12}$ by Using a Pulsed-Gradient Spin-Echo NMR Method. Solid State Nucl. Magn. Reson. 2015, 70, 21–27.

(90) Andersson, S.; Mumme, W. G.; Wadsley, A. D. Multiple Phase Formation in the Binary System Nb$_2$O$_5$–WO$_3$. The Structure of W$_3$Nb$_{26}$O$_{77}$, an Ordered Intergrowth of the Adjoining Compounds WNb$_{12}$O$_{33}$ and W$_3$Nb$_{14}$O$_{44}$. *Acta Crystallogr.* **1966**, *21*, 802–808.

(91) Roth, R. S.; Wadsley, A. D. Multiple Phase Formation in the Binary System Nb$_2$O$_5$–WO$_3$. III. The Structures of the Tetragonal Phases W$_3$Nb$_{14}$O$_{44}$ and W$_8$Nb$_{18}$O$_{69}$. *Acta Crystallogr.* **1965**, *19*, 38–42.

(94) Fuentes, A. F.; Martinez De La Cruz, A.; Torres-Martinez, L. M. A Comparative Study of Lithium and Sodium Insertion in Two Block Structure Type Phases, $W_3\text{Nb}_1\text{O}_{44}$ and $W_4\text{Nb}_{26}\text{O}_{77}$. In Symposium R – Solid State Chemistry of Inorganic Materials; MRS Online Proceedings Library; 1996; Vol. 453.

