A polariton graph simulator

To cite this article: Pavlos G Lagoudakis and Natalia G Berloff 2017 New J. Phys. 19 125008

View the article online for updates and enhancements.

Related content
- Competing role of interactions in synchronisation of exciton–polariton condensates
 Saeed A Khan and Hakan E Türeci
- Quantum simulation with interacting photons
 Michael J Hartmann
- Topical Review
 J Keeling, F M Marchetti, M H Szymaska et al.
A polariton graph simulator

Pavlos G Lagoudakis and Natalia G Berloff

1 Skolkovo Institute of Science and Technology Novaya St., 100, Skolkovo 143025, Russia
2 Department of Physics and Astronomy, University of Southampton, Southampton, SO17 1BJ, United Kingdom
3 Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge CB3 0WA, United Kingdom

E-mail: N.G.Berloff@dumt.cam.ac.uk

Abstract
We discuss polariton graphs as a new platform for simulating the classical XY and Kuramoto models. Polariton condensates can be imprinted into any two-dimensional graph by spatial modulation of the pumping laser. Polariton simulators have the potential to reach the global minimum of the XY Hamiltonian in a bottom-up approach by gradually increasing excitation density to threshold or to study large scale synchronization phenomena and dynamical phase transitions when operating above the threshold. We consider the modelling of polariton graphs using the complex Ginzburg–Landau model and derive analytical solutions for a single condensate, the XY model, two-mode model and the Kuramoto model establishing the relationships between them.

1. Introduction
Engineering a physical system to reproduce a many-body Hamiltonian has been at the heart of Feynman’s idea of an analogue Hamiltonian simulator [1]. Such simulators could address problems that cannot be solved by a conventional Turing classical computer, which would allow us to test various models of lattice systems or discover new states of matter. Analogue Hamiltonian simulations led to the observation of a superfluid–insulator phase transition in ultracold Bose gases that is closely related to metal–insulator transition in condensed-matter materials [2]. In the last decade various other systems have been proposed as classical or quantum simulators: ultracold bosonic and fermionic atoms and molecular gases in optical lattices [3–6], photons [7], trapped ions [8, 9], superconducting q-bits [10], network of optical parametric oscillators [11, 12], and coupled lasers [13] among other systems.

The design of an analogue Hamiltonian simulator consists of several important ingredients [14]: (i) mapping of the Hamiltonian of the system to be simulated into the elements of the simulator and the interactions between them; (ii) preparation of the simulator in a state that is relevant to the physical problem of interest: one could be interested in finding the ground or excited equilibrium state at a finite temperature; (iii) performing measurements on the simulator with the required precision. One of the platforms that have recently been explored is based on exciton–polariton lattices. Exciton–polaritons (or polaritons) are the composed light–matter bosonic quasi-particles formed in the strong exciton–photon coupling regime in semiconductor microcavities [15]. Under non-resonant optical excitation, free carriers relax, scatter, emit phonons and when the particle density reaches quantum degeneracy threshold, polaritons condense in the same state [16], driven by bosonic stimulation [17]. The steady state of such a condensate is characterized by the balance of pumping and dissipation of photons that decay through the Bragg reflectors carrying all information of the corresponding polariton state wavefunction such as the energy, momentum, density, phase and spin. This information allows for the in situ characterization of a polariton condensate in its steady state and during any dynamical transition. The non-equilibrium nature of polariton condensates gives rise to pattern formation in these systems that has been a subject of many investigations, for review see [18, 19]. Several methods for imprinting polariton lattices have been proposed. To introduce a photonic trap a partial [20] or complete etching [21] can be used. A thin-metal film technique on a grown wafer has been used to weakly modulate in-plane one-dimensional photon lattice [22]. Exciton trap states have been explored by introducing a mechanical strain in a sample [23] or by
applying electric or magnetic fields that change the exciton energy [24]. Polariton condensates can be created at the vertices of any two-dimensional graph by spatial modulation of the pumping source. The first theoretical proposal [25] and its experimental realization [26, 27] to imprint polariton condensates in multi-site configurations were focused on the states, such as vortex lattices, created by the outflowing polaritons from the condensate sites. Next question concerned the way the coherence is established between the various condensates. As the excitation intensity is increased from below polaritons at the lattice site condensate sites. Next question concerned the way the coherence is established between the various condensates. As the excitation intensity is increased from below polaritons at the lattice site \(i \) start to condense with the wavefunction \(\psi_i = \sqrt{\rho_i(r)} \exp[iS_i(r)] \), characterized by the number density \(\rho_i(r) \) and a phase \(S_i(r) \) with the relative phase-configuration that carries the highest polariton occupation due to the bosonic stimulation during the condensate formation [28]. By controlling the pumping intensity and profile, the graph geometry and the separation distance between the lattice sites one can control the couplings between the sites and realize various phase configurations that minimize the XY model as was shown in [29]. This gives rise to the use of the polariton graph as an analogue XY Hamiltonian simulator. The search for the global minimum of the XY Hamiltonian is via a bottom-up approach which has an advantage over classical or quantum annealing techniques, where the global ground state is reached through either a transition over metastable excited states or via tunnelling between the states in time that depends on the size of the system. Figure 1(a) shows the schematics of the classical thermal annealing, quantum annealing via tunnelling between the metastable states and the bosonic stimulation.

The XY model has been previously simulated by other physical systems: ultracold atomic optical lattices [30] and coupled photon lasers network [13]. Polariton graphs are as scalable as these platforms regarding the number of nodes it can involve. In [29] we have shown the graphs that consist of 45 nodes. Polariton graphs enjoy higher flexibility in engineering any geometrical configuration of nodes, since in optical lattices and laser networks it is harder going beyond a regular lattice configuration for the arrangement of the vertices. In a microcavity used in [29] there is only one longitudinal mode resonant to the exciton energy and thus the system can operate at threshold more stably than photonic laser which contains a large number of longitudinal modes within the gain bandwidth. Also, the large number of modes competing for lasing necessitates pumping much above a threshold for stable operation. This suggests that polariton graphs have an advantage over other systems for finding the ground state of XY models. Figure 1(b) shows the schematic difference between operating at the threshold and well above the threshold for finding the global minimum of the energy landscape which in our case is represented by the XY Hamiltonian.

The interest in using an analogue simulator for finding the global minimum of the XY Hamiltonian is motivated by the recent result in the theory of quantum complexity: there exist universal Hamiltonians such that all other classical spin models can be reproduced within such a model, and certain simple Hamiltonians such as the 2D Ising model with fields on a square grid with only nearest neighbour interactions are already universal [31]. This suggests that hard computational problems that can be formulated as a universal Hamiltonian can be solved by a simulator that is designed for finding the global minimum of such Hamiltonian. In particular, the XY model is a quadratic constrained optimization model, which is an NP-hard problem for non-convex and sufficiently dense matrices [29, 32].

A more traditional use of analogue Hamiltonian simulators has been based on modelling electrons as they move on a lattice generated by the periodic array of atomic cores. To elucidate such a behaviour ultracold atomic condensates were loaded into optical lattices such as cubic-type lattices [33], superlattice structures [34, 35], triangular [36], hexagonal [36, 37] and Kagome [38] lattices. Polariton graphs can easily produce such or any other ordered or disordered lattice. It was recently shown that a linear periodic chain of exciton–polariton

Figure 1. (a) Schematics of different types of annealing for finding the global minimum of the energy landscape of the simulated XY Hamiltonian: classical annealing via the thermal activation, quantum annealing via quantum tunnelling during the adiabatic adjustment of the simulated Hamiltonian and the bosonic stimulation that leads to the system condensation at the threshold. (b) Schematics of the comparison between photon laser and polariton graph operation.
condensates demonstrate not only various classical regimes: ferromagnetic, antiferromagnetic and frustrated spiral phases, but also at higher pumping intensities bring about novel exotic phases that can be associated with spin liquids [39]. Relationship between the energy spectrum of the XY Hamiltonian and the total number of condensed polariton particles has been established in [39] where it was shown that ‘particle mass residues’ of successive polariton states (defined as the difference between the masses of the individual condensates and the total mass) that occur with increasing excitation density above condensation threshold are an accurate approximation of the XY Hamiltonian’s energy spectrum. Therefore, polariton graph condensate system may represent not only the ground state but also the spectral gap of the XY model.

Our paper is organized as follows. In section 2 we consider the mean-field model of polariton condensates and derive analytical solutions for a single condensate. We establish the phase mapping of a polariton graph into the XY model in section 3. In section 4 we derive the Kuramoto model that describes the dynamics of the phases of the polariton condensates and show its relevance to the XY model. We conclude with the discussions in section 5.

2. An approximate analytical solution for a single condensate

The mean field of polariton condensates can be modelled [40, 41] in association with atomic lasers by writing a driven-dissipative Gross–Pitaevskii equation (aka the complex Ginzburg–Landau equation (cGLE)) for the condensate wavefunction \(\psi(r, t) \):

\[
i\hbar \frac{\partial \psi}{\partial t} = -\frac{\hbar^2}{2m} (1 - i u_{\beta} R) \nabla^2 \psi + U_0 |\psi|^2 \psi + i g R \chi \Psi + \frac{\gamma}{2} (R \chi - \gamma) |\psi|^2 \psi
\]

(1)

coupled to the rate equation for the density of the hot exciton reservoir, \(R \Psi \)

\[
\frac{\partial R}{\partial t} = (\gamma_R + R g |\psi|^2) R + P(r).
\]

(2)

In these equations \(m \) is a polariton effective mass, \(U_0 \) and \(g R \) are the strengths of effective polariton–polariton and polariton–exciton interactions, respectively, \(\eta_b \) is the energy relaxation coefficient specifying the rate at which gain decreases with increasing energy, \(R_g \) is the rate at which the reservoir exciton enters the condensate, \(\gamma_c \) is the rate of the condensate losses, \(\gamma_r \) is the redistribution rate of reservoir excitons between the different energy levels, and \(P \) is the pumping into the reservoir. In the limit \(\gamma_r \gg \gamma_c \) one can replace equation (2) with the stationary state for the reservoir \(R \Psi \). To non-dimensionalize the cGLE we use \(\psi \rightarrow \sqrt{\hbar^2/2 m U_0 \epsilon_0^2} \Psi \), \(r \rightarrow \epsilon_0 r \), \(t \rightarrow 2 m \epsilon_0^2 / \hbar \), where we choose \(\epsilon_0 = 1 \mu m \) and introduce the notations \(g = 2 g \epsilon_0 R \), \(\gamma = m \gamma_c \epsilon_0^2 / \hbar \), \(p = m \epsilon_0^2 R g \Psi / (\hbar \gamma) \), \(\eta = \eta_b (m R \epsilon_0) \), \(b = R \epsilon_0^2 / 2 m \epsilon_0 \gamma R U_0 \).

The dimensionless form of equations (1) and (2) becomes the cGLE with a saturable nonlinearity

\[
i\frac{\partial \Psi}{\partial t} = -(1 - i n R) \nabla^2 \Psi + |\Psi|^2 \Psi + g R \chi \Psi + i (n R - \gamma) |\Psi|^2 \Psi,
\]

(3)

\[
n R = p / (1 + b |\Psi|^2).
\]

(4)

By taking the Taylor expansion for small \(|\Psi|^2 \) in the expression for the reservoir \(n R \) we arrive at the more standard cGLE

\[
i\frac{\partial \Psi}{\partial t} = -(1 - i n p) \nabla^2 \Psi + (1 - g p b) |\Psi|^2 \Psi + g R \chi \Psi + i (p - \gamma - p b |\Psi|^2) \Psi,
\]

(5)

where, in the view of smallness of \(p \) we dropped \(g n |\Psi|^2 \) term. We can compare the relative strength of nonlinearities in equations (3)–(5) depending of the physical quantities that define \(b \). By taking the values the system parameters typically accepted for GaAs microcavities [26, 42, 43] \(R \chi \approx 0.1 \) meV \(\mu m \), \(U_0 = 0.02 \)–0.04 meV \(\mu m \), \(b = 2 \approx 4 / \gamma R \). With \(\gamma R \) on the order of 1 ps\(^{-1} \) we have \(b \approx 3 \) of the order of the real nonlinearity.

We consider the asymptotics and approximations of the steady state solutions for a single radially symmetric Gaussian pumping profile \(P(r) = p_0 \exp(-\sigma^2) \), where \(p_0 \) is the maximum pumping intensity and \(\sigma \) characterizes the inverse width of the Gaussian. The Madelung transformation \(\Psi = \sqrt{\rho} \exp[i S] \) relates the wavefunction to density \(\rho = |\Psi|^2 \) and velocity \(u = \nabla S \). Separating the real and imaginary parts of equations (3) and (4) we arrive at the mass continuity and the Bernoulli equations:

\[
\frac{1}{r \rho} \frac{d(r \rho u)}{dr} = \frac{p(r)}{1 + b p} \left(1 + \frac{\eta(r \sqrt{\rho})'}{r \sqrt{\rho}} - \eta u^2 \right) - \gamma,
\]

(6)
Finally, the expansions to utilizing their behaviour at the origin and in velocity can be approximated by

\[p(r) = p_0 \exp(-\sigma r^2) \]

Equations

Away from the pumping spot, where \(p(r) = 0 \), the velocity \(u \) is given by the outflow wavenumber \(k_c = \text{const} \) with \(r_\rho_c + \rho = -\gamma r/k_c \), which can be integrated to yield \(\rho \sim \exp[-r_\rho/k_c]/r \). From equation (7) at infinity we obtain \(\rho = k_c^2 - \gamma^2/4k_c^2 \). In the view of their asymptotic behaviour the condensate density and velocity can be approximated by

\[\rho(r) = \frac{a_0}{\gamma r \exp(\gamma r k_c^{-1})k_c^{-1} + \xi - \gamma r/k_c + a_3 r^3} \]

and

\[u(r) = k_c \tanh((r/k_c)), \]

utilizing their behaviour at the origin and infinity and introducing parameters \(\xi, a_0, a_3, \) and \(l \) that define the parametric family of solutions. Their values should be found from the governing equations via matching asymptotics, as shown below.

We neglect \(\eta \) in the view of its smallness and substitute the expressions for the density, velocity and the pumping profile given by \(p(r) = p_0 \exp(-\sigma r^2) \) (green shaded area). The system parameters are \(b = 1.5, \gamma = 0.2, g = 0.5 \) and (a) \(\sigma = 0.2, p_0 = 5 \), (b) \(\sigma = 0.4, p_0 = 10 \).

Figure 2. Approximate analytical (blue lines) and numerical (black lines) solutions for density (solid lines) and velocity (dashed lines) of equations (5) for the pumping profile given by \(p(r) = p_0 \exp(-\sigma r^2) \) (green shaded area). The system parameters are \(b = 1.5, \gamma = 0.2, g = 0.5 \) and (a) \(\sigma = 0.2, p_0 = 5 \), (b) \(\sigma = 0.4, p_0 = 10 \).
$k_c = 1.99239$, $l = 0.909976$ for (b). Both analytical density and velocity profiles are in an excellent agreement with the numerical solutions.

3. Mapping of phases into the classical XY model

In the previous section we obtained solutions of the governing equation equation (5) for a single pumping Gaussian spot. Spatial light modulator can be used to pump condensates at the vertices of a distributed graph via

$$p(r) = \sum_{i=1}^{N} p_i \exp[-\sigma |r - r_i|^2],$$

(14)

where p_i stands for the pumping intensity at the centre of the spot at position $r = r_i$. In what follows we shall assume that all vertices are pumped identically, so that $p_i = p_0$, $\sigma = \sigma$ for all $i = 1, \cdots, N$. To the leading order and assuming that all condensates are well-separated we can approximate the resulting condensate wavefunction, Ψ_0, as

$$\Psi_0(r, t) \approx \sum_{i=1}^{N} \Psi_0(r - r_i) \exp(i \theta_i),$$

where $\Psi_0 = \Psi_0(r)$ is the solution of the stationary equation (5) for a single localized radially symmetric condensate pumped by $p(r) = p_0 \exp(-\sigma r^2)$, found in the previous section.

$$\Psi_0(r) = \sqrt{\rho_0(r)} \exp \left[\frac{k_r^2}{l} \log \left(\cosh \left(\frac{r}{k_r} \right) \right) \right],$$

(15)

where $\rho_0(r)$ is given by equation (8). To find the total amount of matter \mathcal{M} we write

$$\mathcal{M} = \int |\Psi_0|^2 \, dr = \frac{1}{(2\pi)^2} \int |\tilde{\Psi}_N(k)|^2 \, dk,$$

(16)

$$\tilde{\Psi}_N(k) = \int \exp(-i k \cdot r) \Psi_0(r) \, dr = \tilde{\Psi}_N(k) \sum_{i=1}^{N} \exp(i k \cdot r_i + i \theta_i),$$

(17)

where $\tilde{\Psi}_N(k) = 2\pi \int_0^{\infty} \Psi_0(r) J_0(k r) \, r \, dr$ and J_0 is the Bessel function. The total mass becomes

$$\mathcal{M} = 2\pi N \int_0^{\infty} |\Psi_0|^2 \, r \, dr + \sum_{i<j} J_{ij} \cos(\theta_i - \theta_j),$$

(18)

$$J_{ij} = \frac{1}{\pi} \int_0^{\infty} |\Psi_0(k)|^2 J_0(k |r_i - r_j|) \, dk.$$

(19)

Since the system maximizes the total number of particles given by equation (18), this is equivalent to minimizing the XY Hamiltonian functional $\mathcal{H}_{XY} = \sum_{i<j} J_{ij} \cos \theta_{ij}$ [29]. The main contribution to the integral defining $\tilde{\Psi}_N(k)$ is from $k = k_c$, where k_c is the outflow wavevector from the pumping site fully determined by the pumping profile [28, 29].

Figure 3 shows the density contour plots (normalized) and the spin orientations (arrows) representing the relative phases, with the incoherent pump spots located at the vertices. The coupling between the adjacent polariton sites can be made ferromagnetic ($J_{ij} > 0$, solid lines) or antiferromagnetic ($J_{ij} < 0$, dashed lines) by either varying the distance between the pumping spots, as illustrated in figures 3(a)–(e), (g)) or by changing the pumping parameters of the individual spots as shown in figure 3(f). Spin configuration, such as ferromagnetic, where all $J_{ij} > 0$ (figure 3(a)), rhombic, where all horizontal $J_{ij} > 0$ (figure 3(b)), spiral 1, where all $J_{ij} < 0$ (figure 3(c)) and spiral 2, where all horizontal $J_{ij} < 0$ (figure 3(d)) can be obtained by controlling independently the distance and therefore the coupling along two directions of the lattice. In atomic optical lattices, this can be achieved via an elliptical shaking of the lattice and the spin configurations on figures 3(a)–(d) were demonstrated for trapped atomic condensates [30].

The ultimate advantage of polariton graphs for analog Hamiltonian simulations is the potential to control both the sign and the strength of any coupling, J_{ij}, by tuning the distance between polariton sites, or the characteristics of the pumping spots (the intensity, p_0, or the inverse width of the Gaussian, σ) leading to more exotic phases. We illustrate the control over an individual J_{ij} on the seven-vertex graphs of figures 3(e), (f). In figure 3(e) we utilize control over an individual J_{ij} by tuning the distance between two vertices and introduce a single ferromagnetic coupling (defect edge) into an otherwise antiferromagnetically coupled graph. In figure 3(f) we control the coupling of a single polariton site (central vertex) to all its neighbours by tuning the intensity of its pumping spot and switch them to ferromagnetic in an otherwise antiferromagnetically coupled graph (star...
configuration). Finally, polariton graphs allow for fully disordered systems to be addressed as shown in figure 3(g).

4. Kuramoto model

The cGLE can be reformulated as the Kuramoto model which is a paradigm for a spontaneous emergence of collective synchronization and that has been widely used to understand the topological organization of real complex systems from neural networks to power grids [44]. In this context the polariton lattice describes collective dynamics of N coupled phase oscillators with phases $\theta_i(t)$, characterized by the natural frequencies ω_i which are associated with the chemical potential of individual condensates.

To show this we adopt a two-mode model that neglects the spacial variations and represents the network of interacting polariton condensates via the radiative couplings J_{ij} between ith and jth condensates.
We neglect the blueshift g and without loss of generality let $\gamma = 1$. For the densities and phases of the individual condensates we obtain

\[
i\Psi_i = \left|\Psi_i\right|^2\Psi_i + \left(\frac{g + i\beta}{1 + k\left|\Psi_i\right|^2} - i\gamma\right)\Psi_i + i\sum_j J_{ij}\Psi_j.
\]

(20)

The radiative coupling J_{ij} is due to the interference of the condensates from different pumping spots 45, and are such that $J_{ij} \ll \rho_i$ for any j. First, we shall assume that the density number dynamics is faster than the phase dynamics, so that the densities acquire the instantaneous steady state values $\rho_i = \rho = (p - 1)/b$ to the leading order in J_{ij}. In this case we get the equations of the phase dynamics represented by the Kuramoto model:

\[
\dot{\theta}_i(t) = -\rho - \sum_{j=1}^{N} J_{ij} \sin \theta_{ij}.
\]

(21)

The equilibria of system (22) are the stationary points of the potential energy landscape

\[
V(\theta) = \rho \sum_{i=1}^{N} \theta_i - \frac{1}{2} \sum_{i,j=1}^{N} J_{ij} \cos \theta_{ij},
\]

so that the Kuramoto model (22) describes the gradient flow to the minima of $V(\theta)$ and, therefore, minimizes the XY Hamiltonian.

Next, we will allow for the density variations and consider two spots only. For the system with just two condensates we introduce the average density $R = (\rho_1 + \rho_2)/2$ and the half density difference $z = (\rho_1 - \rho_2)/2$ for which the system reduces to three equations:

\[
\begin{align*}
\dot{\theta}_{12} &= -2z - 2J_{12} \frac{R}{\sqrt{R^2 - z^2}} \sin \theta_{12}, \\
R &= \rho \left[(R + z)Q_+ + (R - z)Q_- \right] - 2R + 2J_{12} \sqrt{R^2 - z^2} \cos \theta_{12}, \\
z &= \rho \left[(R + z)Q_+ - (R - z)Q_- \right] - 2z,
\end{align*}
\]

(24)

where we defined $Q_{\pm} = (1 + b(R \pm z))^{-1}$. Assuming that z and J_{12} are small compared to R we can expand these equations in small parameters z and J_{12} and consider the steady state for R, which to the leading order is $R = (p - 1)/b$. Eliminating z from equation (24) we see that θ_{12} satisfies the second-order differential equation

\[
\dot{\theta}_{12} + 2 \left(1 - \frac{1}{p} + J_{12} \cos \theta_{12}\right) \theta_{12} = -4 \left(1 - \frac{1}{p}\right) J_{12} \sin \theta_{12}.
\]

(25)

As the pumping increases from the threshold value of ρ_{th} the oscillations between two condensates become damped with the rate proportional to $2(1 - p^{-1} + J_{12} \cos \theta_{12})$. The relative phases lock to 0 or π difference depending on whether $J_{12} > 0$ or $J_{12} < 0$, respectively. This again agrees with the minimization of the XY Model, for which two pumping spots is $H_{XY} = -J_{12} \cos \theta_{12}$ with minimum at $\theta_{12} = 0$ if $J_{12} > 0$ and π if $J_{12} < 0$.

Despite many numerical and analytical studies of the Kuramoto model on complex networks of different architectures there are many questions remain, in particular, on the dependence of synchronization on the system size, the relaxation dynamics of the model, the effects of time-delayed couplings and stochastic noise. In a large heterogeneous network may exist various synchronization phase transitions. These effects as well as the effect of other correlations between intrinsic dynamical characteristics and local topological properties could be addressed by the polariton graph simulator.

5. Conclusions

In conclusion, we discussed polariton graphs as an analogue platform for minimizing the XY Hamiltonian and therefore emulating classical spin model with a potential of solving computationally hard problems. We demonstrated that the search for the global ground state of a polariton graph is equivalent to the minimization of the XY Hamiltonian $H_{XY} = -\sum_j J_j \cos(\theta_j)$. The theoretically predicted phase transitions explained the recent experiments for small and large scale polariton graphs $26, 28, 29$. Polariton graphs offer the scalability of optical lattices, together with the potential to study disordered systems and to control both the sign and the strength of the coupling for each edge independently. Phase transitions in polariton graphs occur at the global ground state. With the recent advances in the field of polariton condensates, such as room temperature...
operation [46] and condensation under electrical pumping [47]. polariton graph based simulators offer unprecedented opportunities in addressing NP-complete and hard problems, quantum information processing and the study of exotic phase transitions. Finally, we would like to emphasize that the word ‘quantum’ could be attached to our proposal for a simulator to reflect the statistical nature of polariton condensates. The process of Bose–Einstein condensation is inherent to quantum statistics where a large fraction of bosons occupies the lowest quantum state, at which point macroscopic quantum phenomena become apparent. The use of the classical mean-field equations to describe the kinetics of the condensate does not negate the quantum statistic nature of its existence. At the same time, the proposed simulator has a quantum speed-up which is associated with the stimulated process of condensation i.e. an accelerated relaxation to the ground global quantum state.

Acknowledgments

This work was carried out in the framework of the joint Russian–Greek project supported by Ministry of Education and Science of The Russian Federation (project RFMEFI61617X0085). The authors acknowledge the support of the Skoltech NGP Program (Skoltech–MIT joint project), and the UK’s Engineering and Physical Sciences Research Council (grant EP/M025330/1 on Hybrid Polaritonics).

ORCID iDs

Pavlos G Lagoudakis https://orcid.org/0000-0002-3557-5299
Natalia G Berloff https://orcid.org/0000-0003-2114-4321

References

[20] Nardin G, Léger Y, Pietka B, Morier-Genoud F and Deveaud-Plédran B 2010 Phase-resolved imaging of con...
[31] Cuevas G D and Cubitt T S 2016 Simple universal models capture all classical spin physics Science 351 1180
Aleiner I L, Altshuler B I and Rubo Y G 2012 Resulting from finite inertia in coupled oscillator systems Phys. Rev. Lett. 78 2104
Aleiner I L, Altshuler B I and Rubo Y G 2012 Oscillators with hysteretic responses Physica D 100 279
Aleiner I L, Altshuler B I and Rubo Y G 2001 Oscillators with hysteretic responses Physica D 13 R135