Autophagy Impairment in Parkinson’s Disease

Cansu Karabiýik¹, Min Jae Lee²* and David Rubinsztein¹,³*

¹Cambridge Institute for Medical Research, Department of Medical Genetics, Cambridge Biomedical Campus, Wellcome Trust/MRC Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY, UK.

²Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul 03080, Korea.

³UK Dementia Research Institute, Cambridge Biomedical Campus, Cambridge Biomedical Campus, Hills Road, Cambridge, UK.

*E-mail address for correspondence: dcr1000@cam.ac.uk (DCR), minjlee@snu.ac.kr (MJL)

Abstract

Parkinson’s disease (PD) is a debilitating movement disorder typically associated with the accumulation of intracytoplasmic aggregate-prone protein deposits. Over recent years, increasing evidence has led to the suggestion that the mutations underlying certain forms of PD impair autophagy. Autophagy is a degradative pathway that delivers cytoplasmic content to lysosomes for degradation and represents a major route for degradation of aggregated cellular proteins and dysfunctional organelles. Autophagy upregulation is a promising therapeutic strategy that is being explored for its potential to protect cells against the toxicity of aggregate-prone proteins in neurodegenerative diseases. Here we describe how the mutations in different subtypes of PD can affect different stages of autophagy.

Abbreviations

AD, Alzheimer’s disease; AMPK, AMP activated protein kinase; ATG, autophagy related genes; CMA, chaperone-mediated autophagy; FIP200, focal adhesion kinase family interacting protein of 200 kDa; GBA,
Introduction

Autophagy is an evolutionarily conserved degradation pathway responsible for digestion and recycling of most long-lived intracytoplasmic proteins and organelles. Autophagy is subcategorized into three types – microautophagy, chaperone-mediated autophagy (CMA) and macroautophagy. Microautophagy involves degradation of cytosolic contents via small invaginations in the lysosome membrane (1), while CMA involves selective translocation of cytoplasmic proteins with a KFERQ-like peptide motif into the lysosomal lumen for degradation (2). Macroautophagy (hereafter called autophagy and the focus of this review) is characterized by engulfment of cytoplasmic cargo by a double-membraned cup-shaped transient structure known as the phagophore. After the phagophore expands and its edges close, the resulting vesicle is known as an autophagosome. Autophagosomes then fuse with lysosomes resulting in degradation of the autophagosomal contents (Figure 1). This series of events is regulated by an array of proteins called autophagy-related (ATG) proteins.

It has become evident in recent years that both selective and non-selective types of autophagy exist and maintain degradation of cargo material, such as aggregate-prone proteins (aggrephagy) and damaged organelles, such as mitochondria (mitophagy), peroxisomes (pexophagy) and endoplasmic reticulum (ER-phagy) (3). Mutations underlying various neurodegenerative diseases that manifest with intracytoplasmic protein aggregates have been shown to affect the clearance of these substrates by compromising autophagy (4). In the present review, we focus on autophagy impairment in Parkinson’s disease (PD). Autophagy upregulation has been studied extensively as a promising strategy for treatment of PD. Therefore, a more refined distinction between the classes of autophagy defects underlying certain subtypes of PD may be helpful in strategizing effective treatments for this condition.

The Autophagic Machinery

Autophagy is essential for cellular health and is activated as a response to the nutrient state of the cell. In basal conditions, the presence of nutrients, growth factors and AMP/ATP levels are sensed...
by the Rag/Ragulator complex, tyrosine kinase receptors and AMP-dependent protein kinase (AMPK), leading to activation of the primordial negative autophagy regulator, mammalian target of rapamycin complex 1 (mTORC1). Active mTORC1 inhibits the ULK1-ATG13-FIP200 complex through phosphorylation of ULK1/2 and ATG13. The ULK complex is the most upstream unit amongst the autophagy proteins and plays a crucial role in autophagy initiation. The inhibition of this complex results in suppression of autophagosome formation (5–7).

During cellular starvation, autophagy activation provides building blocks from degraded macromolecules. As a response to low nutrient levels, mTORC1 is inhibited leading to dephosphorylation of the ULK complex, causing activation of the class III PI3-kinase, VPS34. VPS34 is recruited to the phagophore initiation site where it interacts with VPS15, ATG14, and Beclin 1 to generate phosphatidylinositol 3-phosphate (PI3P), an essential lipid component of the autophagosomes. The presence of PI3P on nascent autophagosomes facilitates the recruitment of PI3P-binding proteins, such as WD repeat domain phosphoinositide-interacting protein 2 (WIPI2), which is crucial for recruitment of downstream autophagic proteins (8–10).

Next, phagophore elongation occurs, mediated by two specialized ubiquitin-like conjugation systems, with membranes obtained from the endoplasmic reticulum, Golgi, mitochondria and plasma membrane (11–13). The first system involves a conjugation reaction between ATG12 and ATG5 mediated by the E1- and E2-like enzymes ATG7 and ATG10, respectively. The subsequent non-covalent binding between ATG12-ATG5 complex and ATG16L1 enables the resulting complex to associate with pre-autophagosomal membranes to assist their elongation by recruiting LC3 and its family members. Membrane association of LC3 is mediated by the second conjugation system. After the C termini of LC3 family members are cleaved by ATG4, exposing glycine residues, LC3 family proteins can be conjugated to phosphatidylethanolamine (PE) in the preautophagosomal membranes via a reaction mediated by ATG7, ATG3, and ATG12-ATG5-ATG16L1. The lipid-conjugated LC3 is known as LC3-II. The transmembrane protein mATG9 may assist in the expansion of the phagophore by providing further lipids (14,15).

Following the completion of autophagosome formation, these vesicles are transported along microtubules to the microtubule organizing center (MTOC), where lysosomes are clustered. This facilitates autophagosome-lysosome fusion, which results in the degradation of the autophagosomal contents by lysosomal acid hydrolases. The expression of lysosomal enzymes is
regulated by the transcription factor EB (TFEB), which is the master regulator of autophagy and lysosomal genes. Translocation of TFEB to the nucleus enables its transcriptional activity, autophagosome formation and autophagosome-lysosome fusion (16). Studies have shown that overexpression of TFEB improves degradation of complex molecules (17,18).

Autophagy and Parkinson’s Disease

Basal autophagy is essential for maintaining neuronal homeostasis, since neurons are particularly susceptible to the accumulation of defective organelles and proteins due to their postmitotic nature. The importance of autophagy for the nervous system was confirmed by studies in which suppression of autophagy in atg7- and atg5-deficient mice led to phenotypes similar to those observed in neurodegenerative diseases, such as progressive motor impairment and intracytoplasmic inclusion bodies (19,20). This supports earlier studies showing the importance of autophagy in the clearance of aggregate-prone proteins in models of PD (21). Consistent with this, *in vivo* and *in vitro* studies, described below, have shown that autophagic dysfunction plays a likely role in disease pathogenesis.

PD is the most common neurodegenerative movement disorder. It is characterized by motor deficits and non-motor symptoms, like mood disorders and cognitive impairment. PD pathology is characterised by progressive neuronal loss which is observed in many areas but is most marked in dopaminergic neurons in the substantia nigra, and the presence of intraneuronal inclusions known as Lewy bodies (LBs) and Lewy neurites enriched with filamentous forms of α-synuclein (α-syn) (22,23). This protein, encoded by the *SNCA* gene, has been extensively studied. Multiplications of the *SNCA* locus cause autosomal dominant forms of PD. The identification of familial cases with *SNCA* multiplications revealed a strong correlation between levels of α-syn and disease severity (24). Although these findings show that increased levels of α-syn is critical for disease severity, α-syn mRNA levels do not consistently change in sporadic PD cases. Since α-syn degradation is maintained by multiple degradative routes including autophagy (21), chaperone-mediated autophagy (CMA) (25) and the endolysosomal pathway (26), impaired clearance of α-syn is suggested to be an underlying mechanism responsible for α-syn accumulation and aggregation in sporadic cases of PD.
Initial genetic studies led to the discovery of causal mutations in PD, which were subjected to extensive research and many were found to have functions related to autophagy. These can be subdivided into mutations that affect mitophagy or cause trafficking or lysosomal defects (Figure 2). Consistent with the converging evidence pointing towards impaired autophagy in PD, a recent meta-analysis of genome-wide association studies (GWAS) has identified novel PD risk loci that may play roles in autophagy and lysosomal function (27).

Mitophagy defects in PD

Mitochondria are essential for maintaining critical cellular functions, such as generating energy. Genetic linkage studies identified mutations in phosphatase and tensin homologue-induced putative kinase 1 (PINK1 or PARK6) and Parkin (PARK2) in autosomal recessive juvenile Parkinson’s disease. PINK1 and Parkin coordinately regulate the autophagic degradation of mitochondria (mitophagy), which is a crucial quality control that removes defective mitochondria from the cells, and these two proteins were first shown in *D. melanogaster* studies to act via the same pathway (28–30). Under normal conditions, the mitochondrial serine/threonine kinase PINK1 is recruited to the inner mitochondrial membrane (IMM) by the translocase of the outer membrane (TOM) complex and the translocase of the inner membrane (TIM23) complex. It is then cleaved by the mitochondrial processing peptidase (MPP) and presenilin-associated rhomboid-like protein (PARL) before it is translocated back to the cytoplasm. The cleaved PINK1 is ubiquitinated and consequently degraded by the 26S proteasome. However, when mitochondria are depolarised or damaged, PINK1 accumulates on the outer mitochondrial membrane (OMM), where it phosphorylates parkin and ubiquitin on Ser65, which in turn leads to activation of Parkin (31). Activated Parkin forms polyubiquitin chains on damaged mitochondria, which are then phosphorylated by PINK1. The phospho-polyubiquitination of dysfunctional mitochondria enables the binding of autophagy receptors, such as NDP52 and Optineurin, which serve as signals for autophagic clearance by recruiting LC3-containing phagophores (3,32,33).

The function of these PD-related mitophagy effectors have been subject to extensive research. Interestingly, deletion of parkin in mouse models did not cause an obvious behavioural phenotype (34–36), although it impaired striatal neuron mitochondria and caused a deficit in evoked dopamine release (37). PINK1 deletion also resulted in striatal mitochondria defects and increased sensitivity to oxidative stress (38). However, a study in which parkin is deleted in adult mice described age-dependent loss of dopamine neurons, suggesting the existence of a compensatory mechanism in
germline knockouts (39). The importance of Parkin for ensuring mitochondrial quality was further shown in a study using the so-called mutator mice, in which mitochondrial function is gradually impaired due to an accelerated generation of mtDNA mutations. The absence of Parkin in the mutator mice led to degeneration of dopaminergic neurons. The motor deficit that appeared in the Parkin-mutator mice was reversed by administration of L-DOPA (40). A recent study in DA neurons derived from iPSCs with Parkin or PINK1 mutations show impaired ubiquitination of mitochondria and may explain how these mutations cause reduced clearance of damaged mitochondria (41).

Mutations in the F-box protein 7 (FBXO7) gene (PARK15) are associated with a severe form of juvenile onset PD. FBXO7 interacts with PINK1 and Parkin and helps facilitate Parkin-mediated mitophagy (42). PD-associated FBXO7 mutations in D. melanogaster led to mitochondrial toxicity as a result of FBXO7 aggregation in the mitochondria (43).

Trafficking defects in PD

It is well-established that α-syn plays a substantial role in PD pathogenicity. The presence of α-syn inclusion bodies affects autophagosome maturation and fusion with lysosomes, resulting in decreased protein degradation (44). *In vitro* studies show that the presence of α-syn inclusions specifically inhibits transport of endocytic and autophagic vesicles (45). Additionally, overexpression of α-syn *in vitro* and *in vivo* leads to compromised autophagosome biogenesis by inhibiting Rab1 causing mislocalization of mATG9 (46).

Autophagy is also impaired by the vacuolar protein sorting-associated protein 35 (VPS35) D620N mutation causing an autosomal dominant form of PD. VPS35 is a component of the retromer complex, which is required for the recruitment of the actin nucleation-promoting WASP and Scar homolog (WASH) complex to endosomes to facilitate protein sorting (47) and trafficking of transmembrane receptors within the endosome-to-Golgi retrieval pathway (48). D620N VPS35 associates poorly with the WASH complex and impairs the recruitment, which causes mATG9 mislocalization and inhibition of autophagosome formation (49). Interestingly, the effects of the VPS35 D620N mutation on autophagy were not mimicked by loss of VPS35 in this study and were unrelated to retrograde endosome-to-Golgi trafficking, suggesting that the point mutation may affect only a subset of VPS35 functions. Studies suggest that VPS35 interacts with Parkin (50), which in turn ubiquitinates VPS35 in human neuroblastoma cells (51). Interestingly, loss of Parkin led to decreased membrane association of VPS35 (52). Additionally, the D620N VPS35 mutation
has been suggested to affect the endolysosomal pathway (53) leading to increased α-syn aggregation (54). A study conducted in α-syn expressing mice showed a reduction in α-syn inclusions and reduced neuronal loss when delivering lentiviral WT VPS35, in contrast to lentiviral D620N VPS35 (55).

Lysosomal defects in PD

Degradation of α-syn can be maintained via multiple degradative routes. However, regardless of the route, functioning lysosomes are required for the degradation. The importance of lysosomal function for α-syn clearance was suggested by a study conducted in both cathepsin D (CatD) deficient mice and *C. elegans* showing that not only does CatD deficiency impair autophagy, but it also causes accumulation of α-syn aggregates in the nervous system (56). As outlined below, there is increasing evidence of lysosomal defects in PD.

Autosomal dominant mutations in the gene *LRRK2*, which encodes a multidomain protein with multiple functions, are among the most common genetic determinants underlying familial forms of PD. The causative role of LRRK2 in PD has been studied extensively and many studies suggest that LRRK2 is involved in endosome-to-lysosome trafficking. A study in *D. melanogaster* showed that the LRRK2 homolog, Lrk, is localized on late endosomal and lysosomal membranes and that Lrrk physically binds to the late endosomal protein Rab7. Overexpression of mutant GS lrrk, analogous to the most common PD causing mutation in human *LRRK2* (G2019S), led to defective lysosomal positioning mediated by Rab7 (57). Further studies in *D. melanogaster* showed that loss of Lrrk function led to the accumulation of enlarged lysosomes containing undigested content, indicating defective lysosomal degradation. Constitutive activation of Rab9, which promotes endosomal recycling, suppressed the lysosomal dysfunction caused by the G2019S lrrk mutation (58). Additionally, endolysosomal sorting defects were observed in primary rodent neurons expressing G2019S LRRK2, leading to VPS35 retromer complex deficiency (59). The notion that LRRK2 is involved in regulating lysosome function is further supported by a study conducted in mice and in primary cells. In this study, expression of G2019S LRRK2 led to production of enlarged lysosomes and a reduction in lysosomal pH. The perturbations in lysosomal pH and morphology were rescued by selective inhibition of LRRK2’s kinase activity. This suggests that the G2019S LRRK2 mutation promotes lysosomal dysfunction (60).

The role of LRRK2 in autophagy has been controversial, as LRRK2 knockdown has been shown to both reduce and potentiate autophagic flux (61,62). Studies in mutant fibroblasts showed both
increased levels of autophagy through activation of the MEK/ERK pathway in G2019S-LRRK2 cells (63) and decreased responses to autophagy induction in R1441G, Y1699C and G2019S-LRRK2 cells. Studies of PD fibroblast-derived neurons (G2019S-LRRK2) also showed impairment of autophagy, however at the stage of autophagosome clearance level rather than induction. A recent study in an astrocyte cell model proposes that the kinase activity of LRRK2 negatively regulates autophagy, as chemical inhibition of LRRK2 kinase activity led to induction of non-canonical, mTOR/ULK1-independent, Beclin 1-dependent autophagy (64). LRRK2 studies have been complicated by the existence of a wide range of LRRK2 models and LRRK2 modulators and the role of LRRK2 in autophagy remains yet to be clarified.

Heterozygous mutations in the gene encoding the lysosomal enzyme glucocerebrosidase (GBA) are the most common known genetic risk factor for PD. Individuals carrying a heterozygous GBA mutation have a five-fold higher risk of developing PD than non-carriers (65). Homozygous mutations in this gene cause Gaucher disease (GD), in which the loss of GBA causes accumulation of its substrate glucosylceramide within lysosomes, leading to lysosomal dysfunction (66). Studies using iPSC-derived neurons from PD patients with GBA mutations showed increased α-synuclein levels as well as autophagic and lysosomal defects (67). In non-GBA related PD patients, α-syn accumulation impairs trafficking of GBA to lysosomes (68). This suggests a possible positive feedback loop, in which loss of GBA leads to impaired lysosomal function and α-syn accumulation. Inhibition of glycosylceramide synthase (the enzyme that regulates the formation of the GBA substrate glucocerebroside) in a mouse model of GBA-related synucleinopathy and in mice overexpressing α-syn (A53T) reduced α-syn and ubiquitin accumulation in hippocampal neurons and improved cognitive behaviour (69).

Mutations in the gene ATP13A2/PARK9, which encodes a transmembrane lysosomal P-type ATPase, cause familial Kufor-Rakeb syndrome characterized by early-onset Parkinsonism (70). Mutations in ATP13A2 impair lysosomal function, which manifests with an accumulation of lysosomes and autophagosomes (71). Studies in cell models of PD showed that the dopaminergic neuron loss caused by α-syn overexpression could be rescued by co-expression of ATP13A2. Additionally, knockdown of the ATP13A2 ortholog in C. elegans enhanced α-syn misfolding, suggesting a link between α-syn and ATP13A2 (72). This was further supported by a study in which loss of ATP13A2 in vitro impaired lysosomal function and led to α-syn accumulation (73). The increase in α-syn was, however, not observed in mice, in which loss of ATP13A2 caused endolysosomal abnormalities without disrupting α-syn levels (74). Depletion of ATP13A2 in vitro led to a decrease in the levels of another PD-associated gene, synaptotagmin 11 (SYT11). The
decrease in SYT11 can account for the lysosomal dysfunction and impaired autophagosome degradation resulting from ATP13A2 deficiency, since SYT11 overexpression in ATP13A2 knockdown cells was able to rescue the autophagy defects in these cells, suggesting that these proteins act in the same pathway (15).

Autophagy as a therapeutic strategy

There is compelling evidence suggesting that impaired trafficking to the lysosome is a common mechanism underlying PD pathogenesis and that the aggregate-prone α-syn is an autophagy substrate (21,75). Upregulation of autophagy for degradation of aggregate-prone proteins is a promising mechanism to protect cells against the toxicity of such proteins and is, therefore, a major therapeutic strategy that is being explored (76).

Autophagy can be upregulated by targeting either the mTOR-dependent or mTOR-independent pathway. The allosteric mTORC1 inhibitor rapamycin ameliorates toxicity in animal models of PD (77,78). Due to its non-ATP-competitive inhibitory properties, rapamycin possesses a safer profile than ATP-competitive mTOR inhibitors like Torin1. While rapamycin specifically inhibits mTORC1, Torin1 inhibits mTORC1 as well as mTORC2, which is a positive autophagy regulator, thus leading to neuronal toxicity rather than protection (77).

Several mTOR-independent compounds that stimulate autophagosome formation have been studied for their therapeutic potential (79). Some of those have been shown to induce autophagy by stimulating the AMPK pathway, including the FDA-approved compound trehalose, which induces autophagy and enhances clearance of α-syn both in vitro (80) and in vivo (81). Nilotinib, a tyrosine kinase inhibitor and AMPK activator protects against loss of DA neurons and improves motor behaviour in a mouse model of PD by accelerating autophagic clearance of α-syn (82).

At early stages of disease, pharmacological activation of autophagosome biogenesis may be neuroprotective. Such strategies have potential for treating PD variants where increased levels of α-syn caused by factors like SNCA multiplication is the underlying mechanism and impairs not only autophagosome formation (46), but also endosomal trafficking (83), chaperone-mediated autophagy (84) and mitochondrial fusion (85). Indeed, lentiviral delivery of Beclin 1, which is a part of the VPS34 complex, into α-syn transgenic mice reduced α-syn accumulation by inducing
autophagosome biogenesis and enhanced lysosomal activation (75). However, inducing autophagy may be detrimental, if the presence of α-syn containing inclusion bodies is due to impaired autophagosome clearance caused by compromised lysosomal function, as is the case for several PD variants. In PD cases with mutations causing impaired autophagosome clearance, an upstream induction of autophagosome biogenesis may cause a pathological accumulation of autophagosomes and exacerbate disease.

Since α-syn aggregation in some cases of PD is associated with reduced lysosomal capacity implied by the impaired trafficking of lysosomal hydrolases (86) and reduction of lysosomal markers in nigral DA neurons (87), enhancement of lysosomal capacity through strategies like gene therapy may be a promising strategy. A study conducted in a PD model with adeno-associated virus (AAV) vector-mediated overexpression of human wild-type (WT) α-syn in the rat midbrain showed that delivery of the TFEB gene prevents α-syn induced neurodegeneration (88).

Although autophagy upregulation is a strategy that holds great therapeutic potential, the side-effect profiles of many autophagy inducers make them unsuited for long-term treatment due to the caveats related to prolonged autophagy upregulation. Development of specialized autophagy modulators with tightly regulated mechanisms of action is desirable for effective and differential treatment of the subtypes of PD.

Concluding remarks

Treatment of PD is expected to become more personalized in the future, due to the heterogeneity in causal elements underlying the vast range of PD variants. This will be facilitated by understanding the genetic determinants and molecular mechanisms responsible for the clinical phenotype of each PD patient, in order to tailor the most appropriate treatment option towards the elements that specifically disrupt autophagy and α-syn clearance in each case.
Acknowledgements
We are grateful for funding to DCR from the UK Dementia Research Institute (funded by the MRC, Alzheimers Research UK and the Alzheimer’s Society), Tau consortium, Alzheimer’s Research UK, Wellcome Trust (Principal Research Fellowship to 095317/Z/11/Z), a Wellcome Trust Strategic Grant to Cambridge Institute for Medical Research (100140/Z/12/Z), Gates Cambridge Scholarship (CK), Korea-UK R&D Collaboration grant (HI14C2036 to MJL) of the Korea Health Industry Development Institute and the National Research Foundation grant (2016R1A2B2006507 to MJL).

Author contributions
All authors contributed to the manuscript. CK coordinated the first draft.

Conflict of interest
The authors declare no conflict of interest.

References

74. Kett LR, Stiller XB, Bernath MM, Tasset I, Blesa X, Jackson-lewis V, et al. α-Synuclein-

84. Xilouri M, Vogiatzi T, Vekrellis K, Park D, Stefanis L. Abberant α-Synuclein Confers Toxicity

Figure Legends:

Figure 1. Overview of the autophagy pathway. Low levels of nutrients, growth factors and energy levels culminate in inhibition of mTORC1 and AMPK activation. AMPK activates the ULK1 complex, which subsequently activates the VPS34 complex, resulting in PI3P synthesis. PI3P recruits WIPI2 and assists in the recruitment of the ATG12-ATG5-ATG16L1 complex, which is essential for the conjugation of LC3-I to PE, leading to membrane elongation and engulfment of cytosolic contents. These include aggregate-prone proteins and damaged organelles that ultimately are degraded in the lysosome after fusion with autophagosomes. Upregulation of autophagy after starvation/mTOR inhibition is in part regulated by translocation of TFEB to the nucleus, where it induces transcription of many autophagic and lysosomal genes. AMPK, AMP-dependent protein kinase; FIP200, focal adhesion kinase family interacting protein of 200kD; mTORC1, mammalian target of rapamycin complex 1; PE, phosphatidylethanolamine; PI3P, phosphatidylinositol 3-phosphate; TFEB, transcription factor EB; ULK, mammalian homologs of the C. elegans uncoordinated-51 kinase.

Figure 2. PD-related genes associated with the autophagic and endolysosomal pathways. A variety of genes associated with sporadic and familial forms of PD are known to affect mitophagy, autophagosome biogenesis, lysosomal function and lysosome formation.
Figure 1
Figure 2