Figure 1. This figure shows the RCT and analyses of medical claims as two extreme ends of the spectrum of study designs, with a low versus a high level of control. In between these two extremes, there are a number of alternative designs, and some of these have been included as examples here.

- **Left end of the spectrum**
 - Large number of patients
 - Long term follow-up
 - Representative of the general population
 - Cheap
 - Low attrition

- **Right end of the spectrum**
 - Controlled conditions reducing the impact of confounders
 - Randomization isolating a causal link

<table>
<thead>
<tr>
<th>Analyses of medical claims data</th>
<th>Prospective longitudinal cohort study</th>
<th>Registry based RCT</th>
<th>Pragmatic RCT</th>
<th>RCT</th>
</tr>
</thead>
</table>

Increasingly controlled conditions

- **Left end of the spectrum**
 - Potential confounding based on un-measured factors
 - No randomization (causality cannot be guaranteed)
 - No disease-specific outcomes (such as UPDRS scale)
 - Data quality not known, including measurement error

- **Right end of the spectrum**
 - Inclusion bias (not representative for general population)
 - Small number of patients
 - Limited follow-up
 - Costly and time consuming
 - Relatively high attrition

Measurement error refers to the fact that in medical claims, conditions are defined imprecisely and inaccurately, that measurement may vary in a biased way, and that little is known about how robust the measures are.

Attrition rate is a problem for any study design. RCTs actually perform reasonably well by comparison to other clinical studies.